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Isoscalar E0, E1, E2, and E3 strength in 92,96,98,100Mo
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Isoscalar giant resonances in 92,96,98,100Mo have been studied with inelastic scattering of 240-MeV α particles
at small angles including 0◦. A significant fraction of the energy-weighted sum rule was found for isoscalar
E0 (107%, 105%, 103%, and 110%), E1 (71%, 71%, 70%, and 55%), E2 (73%, 69%, 85%, and 79%), and
high-energy octupole E3 (52%, 65%, 61%, and 53%) resonances in 92,96,98,100Mo, respectively. Spherical
Hartree-Fock-based random-phase approximation calculations were performed for each multipole using the
KDE0v1 Skyrme-type effective interaction, and the results are compared to the experimental distributions.
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I. INTRODUCTION

The isoscalar giant resonances in the Mo isotopes have
received limited study. Moalem et al. [1] studied the isoscalar
giant quadrupole resonance (GQR) with inelastic scattering
of 110-MeV 3He in all of the stable Mo isotopes whereas
Duhamel et al. [2] reported results for the GQR and the
isoscalar giant monopole resonance (GMR) in 92Mo obtained
by inelastic scattering of 152-MeV α particles. These analyses
assumed Gaussian shapes for both the GQR and the GMR dis-
tributions. Recently, we reported a study using inelastic scatter-
ing of 240-MeV α particles at small angles including 0◦ of the
GMR in the Zr and Mo isotopes [3] where the E0 strength has
two components. Because of the excellent peak-to-continuum
ratio [4] with the 240-MeV α data, the actual distribution
of strength between Ex = 9 and 36 MeV can be obtained not
only for the GMR, but also for the isoscalar giant dipole
resonance (ISGDR), the GQR, and the high-energy octupole
resonance (HEOR) as well. In this paper we report E1, E2, and
E3 multipole strength distributions obtained for 92,96,98,100Mo
and compare the results of spherical Hartree-Fock- (HF-) based
random-phase-approximation (RPA) calculations [5] with the
KDE0v1 Skyrme-type effective interaction [6].

II. EXPERIMENTAL TECHNIQUE AND DATA ANALYSIS

The experimental technique and detailed method of the
analysis have been discussed thoroughly in Ref. [4] and
are summarized only briefly below. A beam of 240-MeV
α particles from the Texas A&M K500 superconducting
cyclotron, after passing through a beam analysis system,
bombarded self-supporting target foils 5–8-mg/cm2 thick
enriched to more than 96% in the desired isotope located in the
scattering chamber of the multipole-dipole-multipole (MDM)
spectrometer. The horizontal and vertical acceptances of the
spectrometer were set at 4◦. Scattered particles entering the
MDM spectrometer were momentum analyzed and measured
by a 60-cm-long focal plane detector, which consisted of four
resistive wire proportional counters to measure position as
well as an ionization chamber to provide �E and a plastic
scintillator behind the ionization chamber to measure the

energy deposited and provide a fast timing signal for the event
trigger.

The data for each run were binned into ten angle bins by
horizontal angle. The differential cross section was extracted
from the number of beam particles collected, the target
thickness, the solid angle, the yields measured, and the dead
time. The number of beam particles was monitored with a
detector at a fixed scattering angle in the scattering chamber.
Dead time of the data acquisition system was measured
by comparing the number of pulses sent to the system to
those accepted. The cumulative uncertainties in the above
parameters result in an approximately ±10% uncertainty in
absolute cross sections. 24Mg spectra were taken before and
after each run, and the (13.85 ± 0.02)-MeV L = 0 state [7]
was used as a check on the energy calibration in the giant
resonance region.

Giant resonance data were taken with the spectrometer at
0.0◦ (0.0◦ < θ < 2.0◦) and at 4.0◦ (2.0◦ < θ < 6.0◦). Sample
spectra obtained for 92,96,98,100Mo are shown in Fig. 1. The
giant resonance peaks can be seen extending up past Ex =
30 MeV in all nuclei. The spectra were divided into a peak and
a continuum where the continuum was assumed to have the
shape of a straight line at high excitation joining onto a Fermi
shape at low excitation to model particle threshold effects [4].
Samples of the continua used in the analysis are also shown in
Fig. 1.

III. MULTIPOLE ANALYSIS

The multipole components of the giant resonance peak
were obtained [4] by dividing the peak into multiple regions
(bins) by excitation energy and then comparing the angular
distributions obtained for each of these bins to the sum of those
calculated for isoscalar 0+, 1−, 2+, 3−, and 4+ transitions and
the isovector 1− excitation with distorted-wave Born approxi-
mation (DWBA) calculations. Fits to the angular distributions
were carried out with a sum of isoscalar 0+, 1−, 2+, 3−, and 4+
strengths. The isovector giant dipole resonance contributions
were calculated from the known distribution [8] and were
held fixed in the fits. The uncertainty from the multipole
fits was determined for each multipole by incrementing (or
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FIG. 1. (Color online) Inelastic α spectra obtained at two angles for 92,96,98,100Mo. The thick pink lines show a continuum chosen for the
analysis.

decrementing) that strength, then adjusting the strengths of
the multipoles to minimize total χ2. This continued until the
new χ2 was one unit larger than the total χ2 obtained for the
best fit.

The DWBA calculations were performed [9,10] using
the density-dependent single-folding model for the real part,
obtained with a Gaussian α-nucleon potential, and a phe-
nomenological Woods-Saxon potential for the imaginary term.
These calculations were carried out with the code PTOLEMY

[11]. Optical parameters used for the calculations were those
determined for elastic scattering of 240-MeV α particles from
90Zr [12] and are given in Table I. The Fermi parameters used
for the density distribution of the nuclear ground state were
obtained from Ref. [13].

The shape of the real part of the potential and the
form factors for PTOLEMY were obtained using the codes
SDOLFIN and DOLFIN [14]. The transition densities and sum
rules for various multipolarities are discussed thoroughly in
Ref. [15] and, except for the ISGDR, the same expressions and
techniques were used in this paper. The transition density for
inelastic α-particle excitation of the ISGDR given by Harakeh
and Dieperink [16] (and described in Ref. [15]) is for only
one magnetic substate so that the transition density given in
Ref. [15] must be multiplied by

√
3 in the DWBA calculations.

Samples of the angular distributions obtained for the giant
resonance peak and the continuum are shown for 92Mo
in Fig. 2 and for 98Mo in Fig. 3. Distributions for 96Mo
and 100Mo are similar. Sample fits obtained, along with the

TABLE I. Optical parameters used in DWBA calculations.

V (MeV) Wi(MeV) ri(fm) ai(fm)

40.2 40.9 0.786 1.242

individual components of the fits, are shown superimposed
on the data in Figs. 2 and 3. The continuum distributions
are similar over the entire energy range, whereas the angular
distributions of the cross sections for the peak change as
the contributions of different multipoles dominate in different
energy regions.

Several analyses were carried out to assess the effects of
different choices of the continuum on the resulting multipole
distribution as described in Ref. [17] where the continuum
was systematically varied and the data were reanalyzed. The
strength distributions obtained from these analyses using
different choices of continuum were then averaged, and
errors were calculated by adding the errors obtained from the
multipole fits in quadrature to the standard deviations between
the analyses with different continua. The resulting E0 − E3
multipole distributions obtained for 92Mo, 96Mo, 98Mo, and
100Mo are shown in Figs. 4 and 5.

IV. DESCRIPTION OF MICROSCOPIC CALCULATIONS

The microscopic mean-field-based RPA theory provides
a good description of collective states in nuclei [18,19]. It is
common to calculate the RPA states |n〉 with the corresponding
energies En and obtain the strength (response) function,

S(E) = �n|〈0|F |n〉|2δ(E − En),

for a certain single-particle scattering operator F = �f (i) and
then determine the energy moments,

mk =
∫

nEkS(E)dE.

The constrained energy Econ, centroid energy Ecen, and the
scaling energy Escal of the resonance are then obtained from

Econ = (m1/m−1)1/2, Ecen = m1/m0, Escal = (m3/m1)1/2.
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FIG. 2. (Color online) The angular distributions of the 92Mo
cross sections for a 500-keV wide bin centered at the excitation
energy (in MeV) indicated in each panel for inelastic α scattering
for three excitation ranges of the GR peak and the continuum. The
lines through the data points indicate the multipole fits. Contributions
of each multipole are shown (L = 0 red; L = 1, T = 0 blue-green;
L = 1, T = 1 blue; L = 2 maroon; L = 3 brown; L = 4 green). The
statistical errors are shown but in many cases are smaller than the
data points.

The energy moment m1 can also be calculated using the HF
ground-state wave function, leading to an energy-weighted
sum rule (EWSR).

In a fully self-consistent mean-field calculation of the
response function, one adopts an effective two-nucleon in-
teraction V , usually fitted to ground-state properties of nuclei
and determines the HF mean field. Then, the RPA calculation is
carried out with all the components of the two-body interaction
using a large configuration space. Employing the numerical
approach of Refs. [5,20], we have carried out spherical
HF-based RPA calculations of the strength functions and
centroid energies of the isoscalar (T = 0) giant resonances
in 92,96,98,100Mo by employing an occupation number approx-
imation for the single-particle orbits of the open shell nuclei.
For the single-particle scattering operator F = �if (ri)YLO ,
we used f (r) = r2 for the monopole (L = 0) and quadrupole

FIG. 3. (Color online) The angular distributions of the 98Mo
cross sections. See Fig. 2 caption.

(L = 2), f (r) = r3 for the octupole (L = 3), and f (r) =
r3 − 5

3 〈r2〉r for the dipole (L = 1) in order to account for
contribution from the spurious state [21,22]. Here we present
results obtained using the KDE0v1 Skyrme-type effective
interaction, which was fitted to ground-state properties of
nuclei, such as binding energy and radii as well as the
breathing mode energies of several nuclei [6]. The energy
moments of the calculated strength functions were obtained
using small smearing widths (0.1 MeV) to ensure accuracy,
and they are given in Tables II–V. We used the appropriate
experimental excitation energy ranges: ISGMR 9–36 MeV,
low component of the ISGDR 9–20 MeV, high component
of the ISGDR 20–36 MeV, ISGQR 9–36 MeV, and ISGOR
15–36 MeV when calculating these moments. The calculated
distributions using smearing widths of � = 10 MeV for the
ISGDR and � = 5 MeV for the other multipoles are shown
superimposed on the experimental results in Figs. 4 and 5.

V. DISCUSSION

The E0−E3 multipole distributions obtained for 92Mo,
96Mo, 98Mo, and 100Mo are shown in Figs. 4 and 5 along
with two (Gaussian) peak fits for the E0 and E1 distributions,
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FIG. 4. (Color online) Strength distributions obtained for 92Mo
and 96Mo are shown by the histograms. Error bars represent the
uncertainty due to the fitting of the angular distributions and different
choices of the continuum as described in the text. The thick lines in
the E0 and E1 distributions represent the individual peaks and their
sum obtained from the Gaussian fits (the blue and yellow lines are the
individual peaks, whereas the brown line indicates the sum). The thin
(red) lines are the strength distributions obtained with the HF-RPA
calculations using the KDE0v1 interaction, smeared to more closely
represent the data as discussed in the text.

whereas single Gaussian fits are shown for each of the E2
distributions and the E3 distributions for 96Mo, 98Mo, and
100Mo. The E0 distributions have been reported previously
[3], and the implications of these distributions along with
those of the Zr isotopes were explored. Parameters obtained
for the moments of the multipole distributions and/or from
the Gaussian fits are given in Tables II–V along with those
obtained from the KDE0v1 calculations. Each multipole is
discussed separately below.

A. E0 strength

The E0 distributions obtained for the four Mo isotopes have
been previously reported [3] and are shown in Figs. 4 and 5.
The parameters obtained are summarized in Table II. Each
consists of an approximately symmetrical peak between 15.7
and 16.8 MeV with a tail extending up to 30–35 MeV. Also
shown in the figures are two-peak fits to the distributions. The
E0 EWSR strengths obtained are 107 ± 13%, 105 ± 12%,
103 ± 12%, and 110 ± 12%, respectively, for 92,96,98,100Mo.
The existence of this high-energy tail (or second peak) was
the focus of Ref. [3], but its origin is not understood. The

FIG. 5. (Color online) Strength distributions obtained for
98,100Mo are shown by the histograms. See Fig. 4 caption.

substantial enhancement of the strength in the tail to that in
the lower symmetrical peak in both 92Mo and 92Zr results
in KA values for these two nuclei 8σ and 4σ above those
obtained with interactions that predict KA values in agreement
with those for the other Zr and Mo isotopes [3]. The results
of HF-RPA calculations for the E0 strength (broadened
with a Lorentzian shape with ∼5-MeV width) are shown
superimposed on the data in Figs. 4 and 5. The calculations
for each isotope result in a single slightly asymmetrical peak
concentrated in a narrow band just above the narrow peak in
the data. The energies obtained for the four Mo isotopes from
the two peak fits for the low and high components of the E0
distributions are plotted versus A in Fig. 6. Also shown are
lines representing 74/A1/3 and 109/A1/3 on the low and high
plots indicating a possible A−1/3 dependence of the energies.
The energy of the higher peak is essentially constant (within
errors) over the mass range of 92–100, however the errors
are large enough to possibly mask an A−1/3 dependence. The
energy of the lower peak clearly decreases somewhat faster
than A−1/3.

B. Isoscalar E1 strength

Much of the expected isoscalar E1 strength was identified in
the Mo isotopes with strength corresponding to 71 ± 8%, 71 ±
8%, 70 ± 8%, and 55 ± 7% of the isoscalar E1 EWSR located
in 92Mo, 96Mo, 98Mo, and 100Mo, respectively, between Ex =
9–36 MeV.
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TABLE II. Parameters obtained for the E0 distributions shown in Figs. 4 and 5. Uncertainties include systematic errors.

Gaussian fit

Low peak High peak KDE0v1

%E0 (m3/m1)1/2 m1/m0 Ex � %E0 Ex � %E0 (m3/m1)1/2 %E0
Nucleus EWSR (MeV) (MeV) (MeV) (MeV) EWSR (MeV) (MeV) EWSR (MeV) EWSR

92Mo 107 ± 13 21.68+0.53
−0.33 19.62+0.28

−0.19 16.8 4.0 42 23.9 14.7 65 18.51 99.43
96Mo 105 ± 12 18.18+0.20

−0.13 16.95+0.12
−0.10 16.4 5.7 83 23.8 5.7 20 18.04 98.36

98Mo 103 ± 12 17.29+0.46
−0.21 16.01+0.19

−0.13 15.7 6.5 89 24.2 5.6 14 18.07 98.10
100Mo 110 ± 12 17.35+0.16

−0.12 16.13+0.11
−0.10 15.8 7.1 97 23.6 5.5 14 17.89 99.28

TABLE III. Parameters obtained for the isoscalar E1 distributions shown in Figs. 4 and 5. Uncertainties include systematic errors.

Gaussian fit KDE0v1

Total Low peak High peak Low peak High peak

%E1 Ex � %E1 Ex � %E1 m1/m0 %E1 m1/m0 %E1
Nucleus EWSR (MeV) (MeV) EWSR (MeV) (MeV) EWSR (MeV) EWSR (MeV) EWSR

92Mo 71 ± 8 17.5 ± 0.4 5.4 ± 0.7 5.8 ± 1.1 27.6 ± 0.5 10.2 ± 2.0 59 ± 7 13.46 13.95 28.81 75.58
96Mo 71 ± 8 15.9 ± 0.3 10.1 ± 1.1 17 ± 2 30.0 ± 0.7 13.1 ± 2.9 62 ± 8 14.30 15.05 28.37 69.22
98Mo 70 ± 8 16.0 ± 0.3 10.9 ± 1.1 26 ± 3 27.4 ± 0.7 10.8 ± 3.0 49 ± 8 14.02 15.06 28.36 70.01
100Mo 55 ± 7 13.0 ± 0.3 11.6 ± 1.2 18 ± 3 30.1 ± 0.7 12.5 ± 3.8 47 ± 10 14.50 13.99 28.37 71.10

TABLE IV. Parameters obtained for the isoscalar E2 distributions shown in Figs. 4 and 5. Uncertainties include systematic errors.

Gaussian fit KDE0v1

%E2 m1/m0 RMS width Ex � m1/m0 %E2
Nucleus EWSR (MeV) (MeV) (MeV) (MeV) (MeV) EWSR

92Mo 73 ± 13 14.16 ± 0.25 2.03 ± 0.30 14.51 ± 0.23 4.84 ± 0.35 15.44 93.48
96Mo 69 ± 13 13.61 ± 0.24 1.80 ± 0.25 13.85 ± 0.25 4.70 ± 0.37 14.78 97.18
98Mo 85 ± 14 13.53 ± 0.23 2.80 ± 0.26 13.85 ± 0.24 4.68 ± 0.34 14.77 97.45
100Mo 79 ± 14 13.46 ± 0.26 1.91 ± 0.26 13.60 ± 0.26 4.75 ± 0.38 14.76 97.18

Ref. [1] Ref. [2]

%E2 Ex � %E2 Ex �

Nucleus EWSR (MeV) (MeV) EWSR (MeV) (MeV)
92Mo 84 ± 17 15.1 ± 0.4 5.0 ± 0.4 23 ± 5 14.1 ± 0.2 4.55 ± 0.34
96Mo 72 ± 14 14.2 ± 0.2 5.0 ± 0.3
98Mo 87 ± 17 14.2 ± 0.4 4.7 ± 0.4
100Mo 88 ± 18 13.7 ± 0.2 5.2 ± 0.3

TABLE V. Parameters obtained for the isoscalar E3 strength above Ex = 15 MeV shown in Figs. 4 and 5. Uncertainties include systematic
errors.

KDE0v1

Nucleus %E3 EWSR m1/m0 (MeV) RMS width (MeV) m1/m0 (MeV) %E3 EWSR

92Mo 52 ± 7 21.8 ± 0.4 4.3 ± 0.3 26.99 63.85
96Mo 65 ± 9 21.4 ± 0.4 5.8 ± 0.4 26.35 60.66
98Mo 61 ± 8 21.5 ± 0.4 4.2 ± 0.3 26.27 61.01
100Mo 53 ± 7 21.5 ± 0.4 3.7 ± 0.3 26.11 61.80
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FIG. 6. (Color online) The centroids of the Gaussians obtained
from the fits to the E0 distributions for the Mo isotopes are plotted
versus A. The error bars indicate the uncertainty obtained using the
errors shown in Figs. 4 and 5. The (yellow) lines show (a) 74/A−1/3

and (b) 109/A−1/3 in two plots.

The isoscalar dipole is split into 1�ω and 3�ω components
[23–25], and the upper component is expected to be a
compression mode whose energy is related to the compression
modulus KA of the nucleus. Two-peak Gaussian fits were
made to the distributions shown in Figs. 4 and 5. The fits are
shown in the figures, and the parameters obtained are listed in
Table III. There are no previous reports of the ISGDR in the Mo
isotopes. HF-RPA calculations with the KDE0v1 interaction
are shown superimposed on the multipole distributions in
Figs. 4 and 5. The HF-RPA calculations show 14% to 15%
of the ISGDR EWSR in the range of Ex = 9–20 MeV (mostly
the 1�ω component) with m1/m0 ∼ 14MeV and 69%–76% of
the ISGDR EWSR in the range of Ex = 20–36 MeV (the 3�ω
component) with m1/m0 ∼ 28.5 MeV. For 92Mo and 98Mo,
the strongest peak in the calculation is at approximately Ex =
32.5–33 MeV whereas the data peak around 26–28 MeV and
are substantially lower than the calculation in the 34–36-MeV
region. For 96Mo and 100Mo the experimental and calculated
distributions are in fairly good agreement (within the errors),
although the strength seen in 100Mo is a little low. The strengths
and Gaussian centroids of the high-energy peaks are compared
to those obtained from the HF-RPA calculations in Table III
and Fig. 7. Except for 96Mo, the strength seen experimen-
tally is somewhat less than predicted to lie in this energy
range.

FIG. 7. (Color online) The centroid of the Gaussian fit to the
high-energy peak in the ISGDR distributions for each of the Mo
isotopes is plotted versus A in (a) whereas the strength of the upper
peak is plotted in (b). The error bars indicate the uncertainty obtained
using the errors shown in Figs. 4 and 5. The triangles (blue) show
m1/m0 for the strength between Ex = 20 MeV and Ex = 36 MeV
calculated with HF-RPA using the KDE0v1 interaction.

C. E2 strength

The E2 strengths in 92Mo, 96Mo, 98Mo, and 100Mo,
summarized in Table IV, are concentrated in (almost) Gaussian
peaks centered between 13.5 and 14.2 MeV containing
73 ± 13%, 69 ± 13%, 85 ± 14%, and 79 ± 14% of the E2
EWSR, respectively. The peaks were fitted with Gaussians
and m1/m0, the rms width, and the Gaussian parameters are
given. The peaks are a little asymmetric with extra yield on the
low-energy side, so the Gaussian energies are a few hundred
keV higher than m1/m0. Moalem et al. [1] measured the GQR
in 92,94,96,98,100Mo with inelastic scattering of 110-MeV 3He,
and our results for % EWSR, energy, and width agree within
the errors with their work. Duhamel et al. [2] measured the
GQR in 92Mo with inelastic scattering of 120-MeV α particles
and obtained an energy and width in agreement with our result
but only identified 23 ± 5% of the E2 EWSR strength. Figure 8
compares the (Gaussian) energy of the GQR in the Mo isotopes
obtained from the three experiments and m1/m0 obtained from
the calculation with the KDE0v1 interaction. The calculated
energies are ∼1 MeV higher than our experimental energies.
The position of the GQR is sensitive [26] to the effective
mass (0.74 in KDE0v1), and a higher effective mass would
lower the predicted GQR energy, obtaining agreement with
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FIG. 8. (Color online) The centroid of the E2 strength in each of
the Mo isotopes obtained in this work (red squares) is plotted versus
A. The error bars indicate the uncertainty obtained using the errors
shown in Figs. 4 and 5. Also shown with error bars are centroids
reported in Ref. [1] (black diamonds) and a measurement for 92Mo
[2] (blue circle). The light blue triangles show the centroid of the
E2 strength obtained from HF-RPA calculations with the KDE0v1
interaction.

data with effective masses of ∼0.8, see Ref. [27] for a more
detailed investigation.

D. E3 strength

In the harmonic-oscillator shell model, E3 strength in a
nucleus is split into a 1�ω low-energy-octupole resonance
(LEOR) containing 25% of the isoscalar E3 EWSR and a
3�ω high-energy-octupole resonance (HEOR) containing 75%
of the EWSR [28], however coupling these modes with an
octupole-octupole residual interaction results in the LEOR
having ∼35% of the E3 EWSR and the HEOR having ∼65%.
Our low-energy cutoff in this experiment lies in the middle
to higher region of the LEOR so that we are unable to
extract useful parameters for the LEOR. The observed E3
strength distributions (Figs. 4 and 5) are broadly spread from
Ex ∼ 9 MeV (the lower threshold of our detector) and taper off
between Ex = 30–35 MeV before reaching the upper limit of
the region we observe (Ex ∼ 36 MeV). We arbitrarily assign
to the HEOR that strength lying above Ex = 12–15 MeV
depending on the apparent gap in the strength distributions,
and the strengths, m1/m0, and rms widths for the data above
this division are listed in Table V along with m1/m0 and
the strengths calculated with KDE0v1 over the range of
15–36 MeV. There are no previous reports of the HEOR in
the Mo isotopes. The isoscalar E3 strength calculated with the
KDE0v1 interaction is also shown in Figs. 4 and 5 and has
peaks at ∼8 MeV (the LEOR) and at ∼29 MeV (the HEOR)
whereas the experimental strength lies in a broad peak centered
at ∼21.5 MeV. The experimental and calculated energies
and strengths are compared in Fig. 9. The excitation energy
(m1/m0) we obtain for each of the isotopes is near 21.5 MeV,
well below the ∼26.1–27.0 MeV obtained with the HF-RPA
calculations. The centroid (m1/m0) obtained from the HF-RPA
calculations for the strength lying above Ex = 15 MeV of the
E3 is 2 to 3 MeV below the ∼29-MeV peak position because

FIG. 9. (Color online) The centroid of the E3 strength observed
above Ex = 15 MeV for each of the Mo isotopes in this work (red
squares) is plotted versus A in (a), whereas the strength in this region
is plotted in (b). The error bars indicate the uncertainty obtained
using the errors shown in Figs. 4 and 5. The large light blue triangles
show (a) the centroid and (b) the % EWSR of the E3 strength between
Ex = 15 MeV and Ex = 36 MeV obtained from HF-RPA calculations
with the KDE0v1 interaction.

there is significant strength in the 15–20-MeV range. The
strengths obtained for the HEOR in the HF-RPA calculations
range from 60.7% to 63.9% of the E3 EWSR, in agreement
within the errors with data for 96Mo and 98Mo. The observed
E3 strengths for 92Mo (52 ± 7%) and 100Mo (53 ± 7%) are
somewhat lower than the 63.85% and 61.80% obtained with
the KDE0v1 interaction. The energies of the HEOR and the
GQR are sensitive to the effective mass [26], and a larger
effective mass would result in a lower energy for both these
excitations.

VI. SUMMARY

We have obtained distributions for isoscalar E0, E1,
E2, and E3 strength containing 52%–110% of the expected
strength in 92Mo, 96Mo, 98Mo, and 100Mo and compared these
to spherical Hartree-Fock-RPA calculations using the KDE0v1
Skyrme-type interaction. As discussed in a previous report
[3], the E0 strength has a high-energy tail which contains a
substantially larger fraction of the E0 strength in 92Mo than
the other isotopes which shifts the GMR energy substantially
higher for 92Mo, a shift not seen in the HF-RPA calculation.
The source of this tail, not present in heavier nuclei, is not
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understood, and the distributions for the other multipoles do
not differ substantially between the isotopes. The position of
the high-energy part of the isoscalar dipole agrees reasonably
well with the HF-RPA calculation. The position, strength, and
width of the E2 distributions agree within errors with those
obtained by Moalem et al. [1] but are ∼1 MeV below those
obtained with the HF-RPA calculations. The HEOR strength
lies in a broad peak centered at ∼21.5 MeV in each isotope,
approximately 4 MeV below that obtained with the HF-RPA
calculations. We will follow up with a study, similar to an

earlier one for 40Ca and 48Ca [26], which found the E2
and E3 centroids most sensitive to the effective mass m∗/m
by carrying out self-consistent HF-RPA calculations using a
number of interactions.
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