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Background: For nuclei heavier than 208Pb α decay is a dominating decay mode. α decay of odd nuclei can give
spectroscopic information because different states in the daughter nucleus can be populated in the decay.
Purpose: To explore and test microscopic descriptions of α decay of odd nuclei based on self-consistent models
with effective nuclear interactions. To predict the hindrance of α decay of odd-A superheavy nuclei.
Methods: We apply the method of our previous work [D. E. Ward, B. G. Carlsson, and S. Åberg, Phys. Rev.
C 88, 064316 (2013)] to the case of odd-A near-spherical nuclei. The Skyrme effective interaction SLy4 is
used. Starting from the obtained Hartree-Fock-Bogoliubov vacuum and quasiparticle excitations, the α-particle
formation amplitude is calculated giving the decay rates and hindrance of different α-decay channels.
Result: The calculated relative decay rates show good agreement with available data. The hindrance of decay
channels where the odd nucleon changes orbital is reasonably described by the microscopic calculation. Several
hindered ground-state decays of superheavy nuclei are predicted, implying possible α-γ coincidences.
Conclusions: The approach offers a practical method of making quantitative predictions for the relative hindrance
of different α-decay channels.
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I. INTRODUCTION

The α-decay spectra of odd nuclei show more complexity
than for even nuclei. Several α-decay channels with different
Qα values and partial half-lives are often observed. By
comparing the partial half-life with the corresponding half-life
for an even-even nucleus one observes a hindrance of certain
decay channels—an increase in partial half-life not attributable
to energetics. The hindrance arises from different structure
of the mother nucleus and daughter nucleus states, and can
make decays populating excited states in the daughter nucleus
more probable than the more energetic decay populating the
ground state. Consequently, α decay of odd nuclei provides
spectroscopic information from the α-decay fragmentation, as
well as from γ decay following α decay to excited states.

α decay is a dominating decay mode in many heavy
and superheavy nuclei (SHN). The α-decay half-lives are
important for determining which SHN are the longest lived
in a proposed island of stability [1–3]. In the case of odd SHN
the half-life can be enhanced by hindrance. Information on the
level structure of the heaviest elements can provide important
constraints on effective interactions. One way to obtain
this structure data is through α-γ -spectroscopy experiments,
where the subsequent γ decays of low-lying excited states
populated by the α decay are measured; see, e.g., [4]. In recent
experiments [5], one has also detected x rays that allows for
the proton number of the daughter nucleus to be determined.
This calls for accurate theoretical predictions for the hindrance
of the α decays of SHN.

Empirically the hindrance shows some regularity [6,7],
where different hindrance factors are associated with different
classes of decay scenarios. To fully describe the hindrance calls
for a microscopic description, where the nuclear structure of
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the mother, daughter, and α nuclei are explicitly considered.
Already in early microscopic calculations using simple shell-
model wave functions, some of the variation in the relative
decay rates of odd-mass nuclei near 208Pb could be explained
[8–10]. Microscopic calculations using a BCS description [11]
offered an interpretation of hindrance in terms of loss of pairing
enhancement, and differences in single-particle wave functions
for odd-A α decay.

Skyrme-Hartree-Fock-Bogoliubov (SHFB) and other self-
consistent mean-field models are applicable throughout the
chart of nuclides [12]. The reasonable description of bulk
ground-state properties of large numbers of nuclei offered by
these models motivates the extrapolation to unknown regions
of nuclei. Indeed, SHFB models have been applied extensively
to predict different properties of superheavy nuclei [3,13,14].
Such self-consistent models thus provide an excellent basis
for the simultaneous description of the structure of different
nuclear states and the α decay.

In our previous work [15] we applied a SHFB nuclear
structure model in microscopic α-decay calculations for near-
spherical even-even nuclei. The obtained α-particle formation
amplitudes in the nuclear surface, sensitive to the tail of the
nuclear wave function, were shown to be converged with
respect to the size of the large spherical oscillator basis used.
The obtained α-decay half-lives were too long, but relative
values could be well described. In this work we investigate if a
similar good agreement for relative decay rates is obtained for
the case of near-spherical odd-A α-decaying nuclei. We also
microscopically test the description of hindrance of different
categories of α-decay channels, and to what extent simple
classifications or selection rules, based on the spin and parity
of the mother and daughter nucleus, can be used to determine
the hindrance factor. The approach is then applied to make
predictions for the α decay of odd-A superheavy nuclei,
specifically the hindrance of the decay populating the daughter
nucleus ground state.
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D. E. WARD, B. G. CARLSSON, AND S. ÅBERG PHYSICAL REVIEW C 92, 014314 (2015)

A brief review of the formalism and calculation method
is presented in Sec. II. Available experimental data to be
compared with the results of calculations and classification
of α-decay channels is detailed in Sec. III. The results for
known odd-A α decays and a detailed quantitative comparison
of the obtained results with the data is presented in Sec. IV.
Sensitivity of the predicted hindrance to the pairing properties
of the employed SHFB model is investigated in Sec. V.
Predictions of the ground-state-to-ground-state α decay of
superheavy nuclei, and possibilities of α decay to excited
states, are presented in Sec. VI. A summary of the results
and an outlook is presented in Sec. VII.

II. METHOD

We employ the same general formalism used in the previous
work [15] to describe the α-decay rates. In that work several
aspects of the formalism and the approximations involved
are discussed. This microscopic approach to α decay, based
on R-matrix theory, is reviewed in [16,17]. Here we briefly
review the parts relevant for the current work, focusing on the
additional aspects relevant for the treatment of odd nuclei that
do not arise in the even case.

In Sec. II A expressions for the nuclear wave functions
are provided. The decay width is treated in Sec. II B and the
calculation of the α-particle formation amplitude in Sec. II C.
The application of the method is detailed in Sec. II D. Details
on the α-particle wave function and the two-particle transfer
amplitudes are provided in two appendixes.

A. Nucleus wave functions

The present study is restricted to near-spherical odd-A
nuclei. We consider the simplest extension from the even-even
case treated in [15] by describing the odd nucleus as a
one-quasiparticle excitation β† on top of the HFB vacuum.
For an α-decaying odd-proton nucleus the mother (M) and
daughter (D) states are

|M; kMIMMM〉 = (
β

(M)†
kMIMMM

∣∣Mπ
0

〉) ⊗ ∣∣Mν
0

〉
, (1)

|D; kDIDMD〉 = (
β

(D)†
kDIDMD

|Dπ
0 〉) ⊗ ∣∣Dν

0

〉
, (2)

where |Mπ/ν
0 〉(|Dπ/ν

0 〉) is the proton or neutron part of the
spherically symmetric HFB vacuum for the mother (daughter)
nucleus |M00〉(|D00〉). IM (ID) and MM (MD) is the spin and
spin projection of the mother (daughter) nucleus and kM (kD)
labels the quasiparticle orbital. The vacuum |M00〉(|D00〉) is
obtained by solving the HFB equations in a spherical oscillator
basis, with the average particle numbers constrained to those
of the odd nucleus.

The α-particle formation amplitudes for even-even nuclei
obtained in microscopic SHFB calculations show a large
sensitivity to the pairing strength, but appears relatively
insensitive to which Skyrme effective interaction is used
[15,18]. As long as the variation of the pairing properties with
proton and neutron number are similar, we expect different
Skyrme parametrizations to give similar predictions for even
nuclei. For the odd-A nuclei considered here the shell structure
enters more directly in the α-decay widths through the different

quasiparticles. We use the well-tested Skyrme interaction
SLy4 [19], which gives a reasonable description of the shell
structure around 208

82 Pb126. SLy4 was also applied in large-scale
calculations for SHN, giving good agreement between the
obtained Qα values and available experimental data [13,14].

The SLy4 particle-hole interaction is combined with
the pairing recipes “volume pairing” and “surface pairing”
used in [15]. We also employ a pairing of mixed surface
and volume type, “mixed pairing” that will be used in the
calculations for SHN. The strength of the mixed pairing is
tuned to reproduce experimental odd-even mass differences
for 100Fm150−159 isotopes and 94−105X150 isotones. This is
achieved by setting the mixed pairing force strength to 90% of
the default values for SLy4 in the code presented in Ref. [20].
The Lipkin-Nogami method for approximate particle number
projection is used to avoid the collapse of pairing, that
otherwise occurs for magic nuclei.

The HFB wave functions are obtained using a modified
version of the program HOSPHE [21]. All major oscillator shells
up to Nmax = 30 are included in the harmonic oscillator basis.
Coulomb exchange is treated in the Slater approximation.

B. Decay width

The decaying mother nucleus can be described as an expo-
nentially decaying Gamow state. This state can have several
decay channels k; here we only consider those corresponding
to a fragmentation of the nucleus into an α particle and a
daughter state of the type (2). As the different daughter states
are orthogonal, the decay width can be written,

� =
∑

k

�k, (3)

where �k is the decay width for channel k. The decay width
can be decomposed in partial waves,

�k =
∑
Lα

�kLα
, (4)

where �kLα
is the partial width corresponding to the frag-

mentation k and α-particle angular momentum Lα . When the
α particle and the daughter nucleus are well separated they
only interact through the Coulomb repulsion, which for the
spherical nuclei studied in this work is isotropic. The radial
part of the relative motion of the two fragments in a given
partial wave can then be described by an outgoing Coulomb
wave function. This leads to the R-matrix expression [16,17]
for the decay width,

�
(R)
kLα

(rc) = 2γ 2
kLα

(rc)PLα
(Qαk,rc), (5)

where PLα
(Qαk,rc) is the Coulomb penetrability and γ 2

kLα
(rc)

is the reduced width. Qαk is the Q value for the decay into
the fragments k, and rc is a matching radius which should be
chosen beyond the range of interfragment nuclear forces.

The Coulomb penetrability PLα
(Qαk,rc) depends on the

magnitude of the Coulomb repulsion, proportional to the
number of protons in the daughter nucleus. PLα

takes into
account the centrifugal barrier from the angular momentum Lα

and depends on the linear momentum of the relative motion,
which depends on Qα . It is highly energy dependent because
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of the tunneling through the combined Coulomb and centrifugal barrier. The reduced width contains the microscopic overlap of
initial and fragment states, and is defined as

γ 2
kLα

(rc) = �
2

2μrc

r2
c f 2

kLα
(rc), (6)

where μ is the reduced mass, fkL(r) is the formation amplitude, and r is the separation between daughter and α particle centers
of mass. The choice of the matching radius r = rc is described in Sec. II D.

C. Formation amplitude

The formation amplitude is given by

fkLα
(r) =

√
8gkLα

(2r), (7)

where gkLα
is defined as the overlap between the mother nucleus �

(M)
IMMM

, and the α cluster 	
(C)
Lα

, coupled to the daughter nucleus

�
(D)
k ,

gkLα
(R′

α) =
∫

dXDdξαdRαADα

[
�

(D)
k (XD),	(C)

Lα
(R′

α; ξα,Rα)
]∗
IMMM

�
(M)
IMMM

(XM ), (8)

where Rα and ξα ≡ (rπ ,rν,rα) are the standard Jacobi coordinates (A2), XD , and XM = {r1,r2,r3,r4,XD} are the laboratory
coordinates for the daughter and mother nucleus. The symbol ADα implies antisymmetrization of the daughter and α particle.
The cluster function 	

(C)
LαMα

is defined,

	
(C)
LαMα

(R′
α; rπ ,rν,rα,Rα) = 	

(α)
00 (rπ ,rν,rα)

δ(Rα − R′
α)

R2
α

YLαMα
(R̂α), (9)

where 	
(α)
00 (rπ ,rν,rα) is the standard intrinsic α-particle wave function (A1).

The α-cluster function is expanded in a basis,∣∣	(C)
LαMα

(R′
α)

〉 =
∑
i<j

∑
k<l

|ijkl〉〈ijkl
∣∣	(C)

LαMα
(R′

α)
〉
, (10)

where |ijkl〉 = a
†
πia

†
πj |0π 〉 ⊗ a

†
νka

†
νl |0ν〉 is a two-proton plus two-neutron state, and the overlap is given by〈

ijkl
∣∣	(C)

LαMα
(R′

α)
〉 =

∫
dRαdξαA12{φi(r1)φj (r2)}∗A34{φk(r3)φl(r4)}∗	(C)

LαMα
(R′

α; ξα,Rα). (11)

Inserting expansion (10) into (8), we get the expression

gL(R′
α) =

∑
MDMα

C
IMMM

IDMDLαMα

∑
i<j

∑
k<l

〈
ijkl

∣∣	(C)
LαMα

(R′
α)

〉∗〈D; kDIDMD|aνlaνkaπjaπi |M; kMIMMM〉, (12)

containing a four-particle transfer amplitude. Using the expressions for the transfer amplitudes (B5), (B8) in Appendix B and
transforming [22] to the Jacobi coordinates (A2) gives

gLα
(R′

α) = δI,ID
δLα,0F

π
kD,kM

gF
0 (R′

α) − 1 + (−1)lM+lD−Lα

2
gH

Lα
(R′

α), (13)

where Fπ
kD,kM

is given by (B9) and gF
0 is the formation amplitude for the HFB vacua |M00〉 and |D00〉 [15]. The second term is

given by

gH
Lα

(R′
α) = 〈

Dπ
0

∣∣Mπ
0

〉〈
Dν

0

∣∣Mν
0

〉1
2

√
2ID + 1

√
2Lα + 1(−1)lM+Lα+ 1

2 +ID

{
lD lM Lα

IM ID
1
2

} ∑
lν jν

2jν + 1√
2lν + 1

∑
n3�n4

(2 − δn3n4 )κ (DM)ν,lνjν
n3n4

×
∑
nn′

Hπ
(nlM ),kM ;(n′lD ),kD

∑
N12

〈N12Lα,n120; Lα|nlM,n′lD; Lα〉
∑
N34

〈N340,n340; 0|n3lν,n4lν ; 0〉
∑
Nαnα

〈NαLα,nα0; Lα|N12Lα,N340; Lα〉I (b,bα )
n12

I (b,bα )
n34

I (b,bα )
nα

R
(b)
NαLα

(R′
α), (14)

where the Hπ
(nlM ),kM ;(n′lD ),kD

coefficients are given by (B10) and

I (b,bα )
n =

∫
r2drR

(bα )∗
00 (r)R(b)

n0 (r). (15)

R
(b)
nl (r) is here the radial part of a spherical oscillator wave

function with n nodes and angular momentum l, and b denotes
the oscillator length used for the basis. The overlap of HFB
vacua 〈Dπ

0 |Mπ
0 〉 is calculated in the same way as in the previous
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article [15]. A similar expression is obtained in the case of odd
neutron states.

D. Application

1. Q values and matching radius

As the Coulomb penetrability is highly energy dependent,
we calculate the decay width (5) using the experimental Qα

value for the decay channel Q
exp
αk unless stated otherwise. The

matching radius rc is chosen as the touching radius rt of the
daughter and α particle,

rt = r0
(
41/3 + A

1/3
D

)
, (16)

with r0 = 1.2 fm, and AD the number of nucleons of the
daughter nucleus.

2. Phenomenological scaling

In [15] it was found that for α decay of even nuclei,
the adopted model underestimates the absolute values of the
decay rates. On the other hand, relative values were found to
be in good agreement with experiment. A phenomenological
one-parameter rescaling of the calculated decay rates was
introduced, so that the variation in decay rates over an extensive
region of even-even nuclei could be more easily compared to
experiment. Possible reasons for the need of rescaling were
discussed in [15] where several extensions that might improve
the model, e.g., by increasing the formation amplitudes were
listed. Among those is an improved description of correlations.
Several calculations for 212

84 Po128 [23–26] indeed suggest that
a mixing of many configurations can lead to a substantial
increase in the formation amplitude.

The current approach employs only pairing correlations and
gives a surprisingly good agreement for the relative rates for a
large number of even-even nuclei [15]. This indicates that the
missing formation amplitude is approximately proportional
to the amplitude obtained from the SHFB wave functions.
In this work the scaling recipe is tested for the case of odd
nuclei using the scaling factors determined in our previous
study of even-even nuclei. The R-matrix decay widths for all
considered odd (as well as even) nuclei are thus scaled by the
constant factor S,

�th
k = S

∑
Lα

�
(R)
kLα

(rt ). (17)

The constant S is given by the reciprocal geometrical average,

S = 10−Mee , (18)

where Mee is calculated for 48 ground-state-to-ground-state
decays of near-spherical even-even nuclei studied in [15],

Mee = 1

n

n∑
i=1

log10
(
�

exp
i / �

(R)
i (rt )

)
. (19)

The mean values Mee and corresponding standard deviations,

σee =
√√√√ 1

n − 1

n∑
i=1

(
log10

(
�

exp
i

/
�

(R)
i (rt )

) − Mee

)2
,

for different pairing approaches are summarized in Table I. It is
seen that the best mean agreement with experiment is obtained
with surface pairing, giving the smallest absolute mean |Mee|

TABLE I. Logarithm of geometric mean relative errors, and cor-
responding standard deviations for near-spherical even-even nuclei
for three different pairing approaches. For each case results of 50%
larger and half pairing strength are also shown.

Model Mee σee

SLy4+0.5 × Vol.P. −5.136 0.382
SLy4+Vol.P. −3.854 0.298
SLy4+1.5 × Vol.P. −2.498 0.406
SLy4+0.5 × Mix.P. −4.987 0.353
SLy4+Mix.P. −3.422 0.284
SLy4+1.5 × Mix.P. −1.568 0.418
SLy4+0.5 × Surf.P. −5.144 0.426
SLy4+Surf.P. −3.233 0.226
SLy4+1.5 × Surf.P. −0.127 0.400

as well as the smallest standard deviation. By increasing the
surface-pairing interaction strength to a quite unphysical value,
the mean comes close to zero (Mee = −0.13), corresponding
to on average correct decay widths, but with a quite large
spreading σee.

III. EXPERIMENTAL DATA

A. Equivalent reduced width

The reduced width (6) depends on the nuclear structure of
the mother, daughter, and α nucleus, with no explicit energy
dependence. The Coulomb penetrability on the other hand
contains a drastic energy dependence of the tunneling, as well
as the effect of the centrifugal barrier, with no dependence
on the nuclear structure. To study the influence of nuclear
structure on the decay probability, the reduced width is the
relevant quantity.

In a typical α-decay experiment, different α-decay channels
can be identified based on the Qαk values. The different
Lα partial waves belonging to the same fragmentation k are
usually not resolved. In this case one cannot make a direct
comparison of the formation amplitudes for different Lα values
with the experimental data. To compare with experiment, we
define a theoretical equivalent reduced width γ̄ 2

k by dividing
the calculated decay width �th

k with the s-wave Coulomb
penetrability P0(Qexp

αk ,rt ),

γ̄ 2
k (rt ) = �th

k

2P0
(
Q

exp
αk ,rt

) . (20)

This quantity contains the formation amplitudes of the frag-
mentation k. The energy dependence is mostly removed, but
the influence of the different centrifugal barriers, for different
Lα , is kept. The corresponding experimental value is obtained
from the decay width �

exp
k = �ln(2)/T

exp
k , where T

exp
k is the

observed partial α-decay half-life, and the measured Q
exp
αk ,

γ̄ 2
exp,k(rt ) = �

exp
k

2P0
(
Q

exp
αk ,rt

) . (21)

B. Selection of nuclear states

We apply the described theoretical approach to near-
spherical odd-A α-emitting nuclei with the calculated
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TABLE II. Experimental α-decay data for odd nuclei indexed with increasing A. Qk is the Qα value for the α-decay channel connecting
the states with excitation energies EM and ED , spin and parity JMπM and JDπD for the mother and daughter nuclei, respectively. The energies
are in units of MeV. Tk is the partial half-life in seconds and γ̄ 2

k (rt ) is the equivalent reduced width in MeV for the decay channel. In the column
“1-q.-p. states” the interpretation of the mother and daughter configurations as single quasiparticle states are listed. An odd proton(neutron) is
indicated by π (ν). Fav, PC, SF, and OC indicate if the decay belongs in the group of (i) favored, (ii) parity change, (iii) spin flip, or (iv) orbital
change decays, respectively.

Index Z N JMπM EM JDπD ED Qk Tk γ̄ 2
k (rt ) 1-q.-p. states Group

1 61 84 5/2+ 0 5/2+ 0 2.322 1.993 × 1017 1.463 × 10−2 π : d5/2 → d5/2 Fav
2 62 85 7/2− 0 7/2− 0 2.311 3.374 × 1018 8.318 × 10−3 ν : f7/2 → f7/2 Fav
3 63 84 5/2+ 0 5/2+ 0 2.991 9.465 × 1010 1.889 × 10−2 π : d5/2 → d5/2 Fav
4 65 84 11/2− 0.040 5/2+ 0 4.117 1.135 × 106 6.043 × 10−5 π : h11/2 → d5/2 PC
5 65 84 1/2+ 0 5/2+ 0 4.077 8.877 × 104 1.367 × 10−3 π : s1/2 → d5/2 OC
6 65 84 1/2+ 0 7/2+ 0.330 3.748 2.965 × 108 6.439 × 10−5 π : s1/2 → g7/2 SF
7 84 117 13/2+ 0.424 13/2+ 0.319 5.904 1.841 × 104 1.415 × 10−3 ν : i13/2 → i13/2 Fav
8 84 117 3/2− 0 5/2− 0.085 5.714 2.869 × 106 7.198 × 10−5 ν : p3/2 → f5/2 SF
9 84 117 3/2− 0 3/2− 0 5.799 5.737 × 104 1.405 × 10−3 ν : p3/2 → p3/2 Fav
10 84 119 5/2− 0 3/2− 0 5.496 2.002 × 108 1.172 × 10−5 ν : f5/2 → p3/2 SF
11 85 118 9/2− 0 9/2− 0 6.210 1.644 × 103 1.826 × 10−3 π : h9/2 → h9/2 Fav
12 84 121 5/2− 0 5/2− 0 5.324 1.565 × 107 1.122 × 10−3 ν : f5/2 → f5/2 Fav
13 85 120 9/2− 0 9/2− 0 6.019 1.614 × 104 1.190 × 10−3 π : h9/2 → h9/2 Fav
14 84 123 5/2− 0 5/2− 0 5.216 9.943 × 107 6.369 × 10−4 ν : f5/2 → f5/2 Fav
15 85 122 9/2− 0 9/2− 0 5.872 7.535 × 104 1.126 × 10−3 π : h9/2 → h9/2 Fav
16 86 121 5/2− 0 3/2− 0.060 6.191 3.993 × 105 2.214 × 10−5 ν : f5/2 → p3/2 SF
17 86 121 5/2− 0 5/2− 0 6.251 2.643 × 103 1.830 × 10−3 ν : f5/2 → f5/2 Fav
18 87 120 9/2− 0 9/2− 0 6.900 1.558 × 101 2.098 × 10−3 π : h9/2 → h9/2 Fav
19 83 126 9/2− 0 3/2+ 0.204 2.933 1.498 × 1030 4.518 × 10−7 π : h9/2 → d3/2 PC
20 83 126 9/2− 0 1/2+ 0 3.137 5.997 × 1026 2.748 × 10−6 π : h9/2 → s1/2 PC SF
21 84 125 1/2− 0 3/2− 0.263 4.716 5.836 × 1011 1.081 × 10−4 ν : p1/2 → p3/2 SF
22 84 125 1/2− 0 1/2− 0.002 4.977 4.071 × 109 3.538 × 10−4 ν : p1/2 → p1/2 Fav
23 84 125 1/2− 0 5/2− 0 4.979 1.632 × 1010 8.544 × 10−5 ν : p1/2 → f5/2 OC
24 85 124 9/2− 0 9/2− 0 5.757 4.750 × 105 5.820 × 10−4 π : h9/2 → h9/2 Fav
25 86 123 5/2− 0 3/2− 0.155 6.001 4.670 × 106 1.255 × 10−5 ν : f5/2 → p3/2 SF
26 86 123 5/2− 0 1/2− 0.144 6.011 7.200 × 106 7.241 × 10−6 ν : f5/2 → p1/2 OC
27 86 123 5/2− 0 5/2− 0 6.156 1.022 × 104 1.138 × 10−3 ν : f5/2 → f5/2 Fav
28 87 122 9/2− 0 9/2− 0 6.777 5.674 × 101 1.550 × 10−3 π : h9/2 → h9/2 Fav
29 84 127 9/2+ 0 13/2+ 1.633 5.961 6.370 × 104 1.442 × 10−4 ν : g9/2 → i13/2 OC
30 84 127 9/2+ 0 3/2− 0.898 6.697 9.609 × 101 8.560 × 10−5 ν : g9/2 → p3/2 PC
31 84 127 9/2+ 0 5/2− 0.570 7.025 9.451 × 101 5.584 × 10−6 ν : g9/2 → f5/2 PC SF
32 84 127 9/2+ 0 1/2− 0 7.594 5.217 × 10−1 1.366 × 10−5 ν : g9/2 → p1/2 PC SF
33 85 126 9/2− 0 7/2− 0.743 5.240 2.497 × 109 5.252 × 10−5 π : h9/2 → f7/2 SF
34 85 126 9/2− 0 11/2− 0.670 5.313 6.834 × 108 7.503 × 10−5 π : h9/2 → h11/2 SF, 2+

35 85 126 9/2− 0 9/2− 0 5.982 6.213 × 104 3.520 × 10−4 π : h9/2 → h9/2 Fav
36 86 125 1/2− 0 9/2− 0.811 5.154 3.285 × 1010 4.153 × 10−5 ν : p1/2 → h9/2 OC, 2+

37 86 125 1/2− 0 7/2− 0.586 5.379 1.282 × 109 5.621 × 10−5 ν : p1/2 → f7/2 SF
38 86 125 1/2− 0 3/2− 0.236 5.729 7.103 × 106 1.514 × 10−4 ν : p1/2 → p3/2 SF
39 86 125 1/2− 0 1/2− 0.069 5.897 3.038 × 105 5.407 × 10−4 ν : p1/2 → p1/2 Fav
40 86 125 1/2− 0 5/2− 0 5.965 5.591 × 105 1.399 × 10−4 ν : p1/2 → f5/2 OC
41 87 124 9/2− 0 13/2− 0.687 5.976 2.325 × 106 8.957 × 10−5 π : h9/2 → j13/2 OC, 2+

42 87 124 9/2− 0 11/2− 0.644 6.019 3.720 × 106 3.528 × 10−5 π : h9/2 → h11/2 SF, 2+

43 87 124 9/2− 0 7/2− 0.344 6.319 5.167 × 105 1.157 × 10−5 π : h9/2 → f7/2 SF
44 87 124 9/2− 0 9/2− 0 6.663 2.138 × 102 1.053 × 10−3 π : h9/2 → h9/2 Fav
45 84 129 9/2+ 0 11/2+ 0.779 7.758 8.750 × 10−2 2.397 × 10−5 ν : g9/2 → i11/2 SF
46 84 129 9/2+ 0 9/2+ 0 8.537 4.200 × 10−6 3.619 × 10−3 ν : g9/2 → g9/2 Fav
47 85 128 9/2− 0 9/2− 0 9.254 1.250 × 10−7 5.171 × 10−3 π : h9/2 → h9/2 Fav
48 87 126 9/2− 0 9/2− 0 6.905 3.479 × 101 6.965 × 10−4 π : h9/2 → h9/2 Fav
49 88 125 1/2− 0 5/2− 0 6.860 4.567 × 102 2.102 × 10−4 ν : p1/2 → f5/2 OC

deformation parameter |β2| < 0.1 [27]. Only decays starting
and ending in states where the spin jexp and parity πexp are
assigned in the ENSDF database [28] are considered. States
where spin and parity assignments are weak are excluded.

The adopted SHFB approach can only describe one-
quasiparticle states, Eqs. (1) and (2). To exclude more
complicated states, only the lowest-energy state of a given
spin jexp and parity πexp is considered. This gives the
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49 different α decays shown in Table II. Based on the spin and
parity assignments, each state is assigned the lowest-energy
quasiparticle β

†
1ljm, Eq. (B1), with orbital angular momentum

l and total spin j so that the parity π and spin match the
corresponding experimental values,

π = πexp, j = jexp. (22)

C. Hindrance factors and selection rules

α decay of an odd nucleus is generally slower than the
α decay of even-even neighbors. To quantify this one can
introduce a hindrance factor (HF). It is defined as the ratio
of the partial half-life Tk for an α-decay channel of an odd
nucleus, to a reference half-life Tref obtained from a one-body
model for α decay fitted to gs-gs decays of even-even nuclei
(i.e., Lα = 0),

HFk = Tk

Tref
(
N,Z,Q

exp
αk

) . (23)

The HF thus accounts for structural changes from the odd par-
ticle and the centrifugal barriers for the different allowed Lα .
From experimentally deduced HF-values different amounts of
hindrance have been associated with different classes of decay
scenarios [7]: The smallest HF ∼ 1–4 corresponds to a favored
transition, where the odd nucleon stays in the same orbital. A
HF ∼ 100–1000 indicates a change in parity of the mother
nucleus state and the state of the daughter, πM/πD = −1, but
with the spin projections of mother and daughter states being
parallel �s = 0. A HF > 1000 indicates both a change in
parity and in spin projection, πM/πD = −1 and |�s| = 1.

It is one aim of the current work to investigate to what extent
these selection rules can be applied to near-spherical odd-
A α emitters, and especially if the observed variation of the
hindrance can be reproduced in the microscopic calculations.
We consider the following four groups:

(i) Favored. Similar odd quasiparticle states in mother
and daughter, kM = kD , lM = lD , IM = ID .

(ii) Spin flip. Different spin projections |�s| = 1, i.e.,
IM = lM ± 1

2 ,ID = lD ∓ 1
2 .

(iii) Parity change. πM/πD = −1, i.e., different parity
(−1)lM = (−1)lD+1.

(iv) Orbital change. Different quasiparticle states, but
same spin projection and parity, i.e., �s = 0 and
πM/πD = 1.

With this classification some decays belong to both groups
(ii) and (iii).

To compare with microscopic results, Eq. (23) can be
rewritten,

HFk = γ 2
ref(rt )

γ̄ 2
k (rt )

, (24)

where Eq. (20) was used, and where the reference reduced
width γ 2

ref(rt ) is related to Tref through,

Tref
(
N,Z,Q

exp
αk

) = �ln(2)

2P0
(
Q

exp
αk ,rt

)
γ 2

ref(rt )
. (25)

The penetrability P0 describes the s-wave tunneling of a
preformed α particle. In a simple one-body model one
effectively fits the reduced width γ 2

ref(rt ) to data. An equivalent
measure of the hindrance is thus to compare the reduced width
γ̄ 2

k (rt ) to an average reduced width 〈γ 2
0 (rt )〉 for even-even

nuclei. In this work we use the geometric mean reduced width
obtained from experimental data for the gs-gs α decays of
the 48 near-spherical even nuclei studied in the previous work
[15], γ 2

ref(rt ) = 4.10 keV.

IV. RESULTS FOR KNOWN α DECAYS

A. Decay widths

The ratios of the calculated decay widths to the correspond-
ing experimental values for the 49 cases in Table II are shown in
Fig. 1. The different panels show results obtained with different
density dependence of the effective pairing interaction. The
theoretical decay widths for most cases are within a factor of
3 from the experimental values, shown by the dotted lines.
For some cases the calculated decay widths are much smaller
than the experimental value. For the four cases 34, 36, 41, and
42, marked with “2+” in the figure, the state of the daughter
nucleus is interpreted as being dominated by the odd particle
coupled to a 2+ configuration of the even-numbered particle
species [28]. The four daughter states are the 11/2− state in
207
83 Bi124 (case 34), the 9/2− state in 207

84 Po123 (case 36), and
the 13/2− and 11/2− states in 207

85 At122 (cases 41 and 42,
respectively). These situations are outside the domain of the
current model, where we assume one-quasiparticle states for
the mother and daughter nucleus. In the following we shall
exclude these four cases. The remaining cases in Table II are
denoted data set I.

The decay width for three other cases, 211
85At126 (case 33),

211
87Fr124 (case 43), and 213

84Po129 (case 45), also come out too
small in the calculations. Here the model should be applicable,
and the discrepancy deserves further investigation. A common
property of these three cases is that the odd particle in the
daughter nucleus has an unusually small occupation in the
mother nucleus. The occupation probability is defined,

nM
klj =

∑
k′

V
(M)lj
k′k V

(M)lj∗
k′k , (26)

where V (M) is the HFB V matrix for the mother nucleus; cf.
Eq. (B1). For these three cases nM

1lDjD
≈ 0.05, while for all

other cases this occupation is larger, nM
1lDjD

> 0.1. How these
small occupations influence the decay width is discussed in
Sec. V.

The root-mean-square logarithmic deviation from experi-
ment is defined,

RMS =
√√√√1

n

n∑
i=1

(
log10

[
�th

(i)

/
�

exp
(i)

])2
. (27)

A factor of 10 deviation thus gives RMS = 1, while a perfect
agreement gives RMS = 0. For data set I the deviation
is RMS = {0.68,0.72,0.79} for SLy4 with volume, mixed,
and surface pairing, respectively. If the three cases with
unusual small occupations nM

1lDjD
(cases 33, 43, and 45) are
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FIG. 1. (Color online) Logarithm of the ratio of the theoretical decay width �th to the experimental value �exp for the α-decaying odd-A
nuclei in Table II. The Skyrme interaction SLy4 combined with volume (a), mixed (b), or surface pairing (c) is used in the calculations. The
dotted lines indicate a deviation from experiment by a factor of 3.

excluded, the RMS improves to RMS = {0.39,0.44,0.42}.
This corresponds to a deviation less than a factor of 3 from
the experimental values for odd-A nuclei, shown by the dotted
lines in Fig. 1.

B. Reduced widths and hindrance factors

Figure 2 shows the reduced widths for α decay of odd-A
nuclei in data set I. For comparison reduced widths for
the 48 ground-state-to-ground-state decays of near-spherical
even-even nuclei studied in the previous article [15], are also

shown. In Fig. 2(a) the widths are obtained from experimental
data, Eq. (21), while Fig. 2(b) shows the microscopic results,
Eq. (20), obtained with surface pairing. The experimental
reduced widths for favored odd decays follow closely the trend
of the even-even decays. The theoretical results reproduce the
variation with neutron number in both the even and odd favored
decays reasonably well. For the favored odd case the main
component of the formation amplitude corresponds to the odd
quasiparticle acting as a spectator to the formation of the α
particle from the HFB vacuum, which explains the similarity
to the even-even reduced widths.
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FIG. 2. (Color online) Reduced widths for data set I. (a) The experimental reduced width [Eq. (21)]. (b) The microscopic reduced width
[Eq. (20)] obtained with SLy4 and surface pairing.
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TABLE III. Geometric mean hindrance factors MHF for different
groups of α decays. No. is the number of data points in the group.
Expt. refers to values extracted from the experimental data, Vol., Mix.,
and Surf. refer to results from the microscopic calculations with SLy4
and volume, mixed, and surface pairing, respectively.

Group No. MHF

Expt. Vol. Mix. Surf.

Even-even 48 1 1 1 1
Favored odd 22 2.57 1.71 1.51 1.81
Spin flip 14 163 625 854 1165
Parity change 6 462 335 508 983
Orbital change 6 33.2 71.7 105 115
All unfavored odd 23 117 294 417 562

The unfavored decays have smaller reduced widths than
the favored decays, and are generally well reproduced in the
calculations. The hindrance factor, Eq. (24), is defined with the
reference reduced width chosen as the geometric mean reduced
width for the even-even decays shown in Fig. 2. This mean
value is shown by a full horizontal line in the figure. The other
lines in the figure show the geometric mean reduced width for
different groups of decays of odd nuclei. The distance between
the average for the even-even nuclei to those of the odd nuclei
corresponds to the geometric mean hindrance factor MHF,

log10(MHF) = 1

n

n∑
k=1

log10(HFk). (28)

The mean hindrance factors MHF and corresponding stan-
dard deviations σHF obtained from the experimental data and
in the calculations are summarized in Tables III and IV.

The hindrance factors are classified in the four groups
defined in Sec. III C. In the experimental data, the favored
odd decays are on average hindered by a factor 2.6, and when
there is a change in parity by a factor 462. This agrees with the
empirical rules of Ref. [7]. When the decay is characterized as a
spin flip, the geometrical mean hindrance in the data is a factor
163. Finally, orbital change gives a mean hindrance factor of
33. In the data set there are three cases where there is both
a change in parity and a spin flip, 209

83Bi126(case 20), 211
84Po127

(cases 31 and 32) with corresponding hindrance factors 1490,
735, and 300, respectively. The values for Po are smaller than
expected from the empirical rule of Ref. [7].

TABLE IV. Similar to Table III, but showing the corresponding
standard deviations σHF.

Group No. σHF

Expt. Vol. Mix. Surf.

Even-even 48 2.74 1.91 1.82 2.47
Favored odd 22 2.97 1.78 1.73 2.36
Spin flip 14 3.22 9.13 8.39 12.7
Parity change 6 7.19 3.06 3.07 3.91
Orbital change 6 5.42 5.18 4.41 6.28
All unfavored odd 23 5.44 8.42 7.65 11.1

The reduced widths of spin-flip and parity-change decays
shown in Fig. 2, show a quite large variation around the
respective mean values. This is reflected in the geometrical
standard deviations in Table IV, where σHF = 1 corresponds
to no variation and σHF = 10 to a factor 10 larger or smaller
hindrance factor than the geometrical mean. The hindrance
factors for unfavored decays in a given group can vary by
an order of magnitude when comparing nearby nuclei. This
implies that the simple empirical rule can only be used as a
rough indication of the hindrance. Considering the large fluc-
tuations in reduced widths, one cannot deduce the hindrance
of an unfavored decay channel based on which subgroup of
decays it belongs to. For simple estimates, it is more useful to
consider only two groups, favored and unfavored decays.

The hindrance obtained in the microscopic calculations
agrees well with the hindrance seen in the experimental data,
except for the spin-flip category, where the mean hindrance
is increased by the large errors in the calculated reduced
widths for the cases 33, 43, and 45, discussed in the previous
subsection. If these cases are ignored a better agreement to
data is obtained. For example, using surface pairing we get for
the spin-flip group MHF = 386 and σHF = 4.26 that are closer
to the experimental numbers MHF = 161 and σHF = 3.63.

V. ROLE OF PAIRING

Pairing correlations play a most important role for the for-
mation of the α particle in the mother nucleus. The sensitivity
of the calculated decay widths for odd-A nuclei to the strength
and density dependence of the pairing force is investigated
in Sec. V A. An approximate relation for the formation
amplitude, where the effect of the paring can be separated
out, is presented in Sec. V B, and used to analyze the variation
of the reduced widths in Sec. V C. Section V D contains a
discussion on the three decays widths (cases 33, 43, and 45)
which come out too small in the results presented in Sec. IV.

A. Sensitivity to pairing force properties

To investigate the sensitivity of the formation amplitude
in the odd case, we consider the reduced set of decays I′,
corresponding to data set I but excluding the three cases where
the calculations give unusually small occupations, 33, 43 and
45.

The dependence on the pairing strength is shown in
Fig. 3. It shows the mean value of log10(�th/�exp) =
log10[γ̄ 2

th(rt )/γ̄ 2
exp(rt )] for the favored decays (F), and unfa-

vored decays (U) as a function of a scaling of the paring
interaction strength. 1.0 corresponds to the pairing interaction
giving realistic odd-even staggering, and 0.5 and 1.5 to
decreasing or increasing the interaction strength by 50%. The
phenomenological scaling factor S [Eq. (18)] is held constant
for all pairing strengths.

The formation amplitude of the unfavored decays is less
sensitive to the strength of the pairing, as seen by the
steeper slope of the mean value for the favored decays (solid
symbols) than for the unfavored (open symbols) in Fig. 3.
This behavior is because for unfavored decay, the part of the
α particle belonging to the odd-numbered particle species is
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FIG. 3. (Color online) Mean value of log10(�th/�exp) for Data set
I′. The circles, squares, and triangles show results for SLy4 + volume,
mixed, and surface pairing, respectively. Solid symbols indicate
favored decays, while open symbols indicate unfavored decays.

not formed from time-revered pairs of nucleons. This is seen
most clearly in the approximate relations in Sec. V B. Because
of the different dependencies of the favored and hindered
decays, the overall hindrance is sensitive to the value of the
pairing strength. At the realistic strength 1.0 the mean ratio
to experiment for the favored decays is around a factor 1.4,
while for the unfavored decays around a factor 0.5. From
Fig. 3, we see that the mean agreement with experiment for
the two groups would coincide when using a reduced pairing
strength, roughly a factor ∼0.7 of the realistic value. The
different behavior of the favored and hindered groups suggests
that a more realistic treatment of the blocking effect on the
pairing might improve the overall description of the data.
Blocking would approximately correspond to a reduction of
the pairing strength and would move the mean values of the
favored and hindered groups closer to each other.

The corresponding standard deviations are shown in Fig. 4.
The standard deviations σ for the unfavored decays are
generally more sensitive to the pairing strength than for
the favored decays. The smallest σ for the hindered cases
is obtained when keeping the pairing strength close to the
realistic value. For the case of even-even nuclei the smallest
deviation from experiment is obtained when using the surface
pairing [15], cf. Table I. Figure 4 shows that surface pairing
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FIG. 4. (Color online) Similar to Fig. 3, but showing instead the
standard deviation of log10(�th/�exp).

also gives a slightly better description than volume and mixed
pairing when considering unfavored and favored groups of
odd-nucleus α decays separately.

B. Approximate pairing dependence of the formation amplitude

To better understand the variation in the reduced width
from pairing, we consider some simplifying approximations
for the formation amplitude. The expressions for the transfer
amplitudes Eqs. (B5) and (B8) entering in the formation
amplitude become simpler if one considers a BCS description
of the mother and daughter nuclei; see Eqs. (B12)–(B14) in
Appendix B.

By making the approximation that the mother and daughter
vacua are the same, |M00〉 ≈ |D00〉, and replacing the over-
laps of four-particle configurations with the α-particle wave
function with an average value, one obtains an approximate
relation for the pairing dependence of the formation amplitude
[11],

gF
0 (R′

α) ∼ �Nπ�Nνg
average
0 (R′

α), (29)

where �Nπ(ν) is the standard deviation of the number of
protons (neutrons) in the BCS wave function.

For the second term in Eq. (13), which is the only active term
in the case of an unfavored decay, the sum over two-particle
configurations for the odd-numbered species is restricted to a
single configuration by Eq. (B14). This implies that there will
be no pairing enhancement of the formation amplitude for the
odd-numbered species. In Ref. [11] the reduction in amplitude
for the hindered decay channels was seen to come both from
this fact, and that the overlap of the two different orbitals of
the odd particles with the α particle are generally smaller than
for two time-reversed conjugate orbitals.

If one makes a further approximation that the formation
amplitude is separable in a proton and a neutron part, the
approximate pairing dependence for an odd number of protons
becomes

gH
Lα

(R′
α) ∼ phLα

(R′
α), (30)

where the pairing factor p is given by

p = uDπ
kMlMjM

vMπ
kDlDjD√

2jM + 1
�Nν, (31)

with the BCS amplitudes uDπ
kMlMjM

and vMπ
kDlDjD

defined in
Appendix B. For the HFB case we consider the pairing factor,

p =
√(

1 − nDπ
kMlMjM

)
nMπ

kDlDjD

2jM + 1
�Nν, (32)

where n
D(M)
klj is the occupation probability, Eq. (26), for the

daughter (mother). The factor hLα
(R′

α) depends on the overlap
of the single-particle wave functions of the odd particles in the
mother and daughter nucleus with the α particle. The reduced
width can thus be estimated as γ 2 ∼ p2.

C. Variation of reduced widths

The upper panel of Fig. 5 shows the reduced widths,
Eq. (20), for 84Po117 (case 8), where the odd particle occupies
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FIG. 5. (Color online) (a) Reduced widths for cases (8), (10),
(16), and (25) in Table II. (b) The corresponding pairing factors p2

multiplied by a constant C. The constant is chosen to set Cp2 equal
to the theoretical reduced width of 86Rn121 when surface pairing is
employed, giving C = 3.82×10−5 MeV.

the orbital νp3/2 in the mother nucleus and νf5/2 in the daugh-
ter, and for decays of 84Po119 (case 10), 86Rn121 (case 16), and
84Rn123 (case 25) where the odd particle orbital changes from
νf5/2 → νp3/2. In the lower panel the corresponding pairing
factors squared p2, Eq. (32), appearing in the approximate
relation (30), are shown. There is a correlation in the variation
with neutron number of these two quantities: When the orbitals
occupied by the odd particle are the same in different hindered
decays, the fluctuation in the reduced width can be qualitatively
explained by the variation of these simple pairing properties.
A similar comparison can be made for decays where the
odd-particle orbitals involved are different. In that case there
is less correlation between the two quantities, because of the
difference in the wave functions for the odd particle orbitals
entering in the overlap with the α particle.

D. Decay widths not reproduced in the calculations

Equation (32) provides a simple picture describing unfa-
vored α decay, i.e., when the odd nucleon changes orbital.
To get a large reduced width, the orbital kD of the odd
nucleon in the daughter nucleus should be fully occupied in
the mother-nucleus vacuum, nMπ

kDlDjD
= 1, while the orbital kM

of the odd nucleon in the mother nucleus should be empty in
the daughter-nucleus vacuum, nDπ

kMlMjM
= 0. The α particle is

thus formed by taking one of the nucleons from the orbital kD ,
leaving the odd nucleon of the daughter nucleus, and taking the
other nucleon from the initial odd-nucleon orbital in the mother
nucleus kM . For unfavored decay leading to a daughter nucleus
where the odd quasiparticle corresponds to creating a hole in
the daughter-nucleus vacuum, the occupation probability of
this orbital in the mother-nucleus vacuum nMπ

kD
is close to

1. For cases where the odd nucleon in the daughter nucleus
occupies a high lying particle state nMπ

kD
can be small. The three

cases (33, 43, and 45) where the decay width comes out too
small in the calculations corresponds to this situation.

Figure 6 shows single-particle energies for 208
82Pb126, close to

the α-decaying nuclei in question. In the unfavored α decays
of 211

85At126 (case 33) and 211
87Fr124 (case 43) the odd proton
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FIG. 6. (Color online) Single-particle energies εt for 208
82Pb126

obtained with SLy4. k
π (ν)
M denotes the orbital of the odd particle in

the mother nucleus and k
π (ν)
D in the daughter nucleus for the unfavored

odd proton(neutron) decays discussed in the text.

quasiparticle in the mother nucleus kπ
M is in the 0h9/2 shell,

above the Z = 82 gap. In the daughter nucleus the odd-proton
quasiparticle kπ

D is in the 1f7/2 shell, above 0h9/2. For the
decay of 213

84Po129 (case 45), the odd neutron quasiparticle
changes from kν

M = 1g9/2 in the mother nucleus to kν
D = 0i11/2

in the daughter nucleus. The spherical Hartree-Fock (HF)
single-particle level 0i11/2 is ∼1.5 MeV above 1g9/2, and both
levels sit above the N = 126 gap. These three cases stand out
with small occupations nMπ

kD
< 0.1, small pairing factors p2 <

0.05, and too small decay widths compared to experiment.
The poor description of the three cases is not significantly
improved when the pairing interaction strength is changed as in
Sec. V A.

The HF single-particle energies around the Z = 82 and
N = 126 gaps obtained with SLy4 for 208

82Po126 agree within
1 MeV with experimental spectra [19]. The difference of
the quasiparticle energy with the lowest quasiparticle energy
gives an approximate excitation energy of the daughter state.
These energies agree within 0.6 MeV with experimental
data for the three cases. The reasonable description of the
single-particle energies and that the three cases stand out for
a range of pairing strengths point to the need to improve the
treatment of pairing correlations. An increase of the occupation
probability of orbitals above the gaps should lead to a larger
formation amplitude for these cases, giving better agreement
with experiment.

VI. PREDICTIONS FOR α DECAY
OF ODD SUPERHEAVY NUCLEI

In this section we present results for the gs-gs partial
α-decay half-lives Tgs-gs of even-even and odd-A superheavy
nuclei. A complete description of the α-decay properties
requires a description of both the low-lying states and the Qα

values. To fully describe the α-decay spectra of superheavy
nuclei thus requires accurate spectroscopic predictions, which
are not available from current models applicable to the heaviest
elements. Here we instead focus on the Tgs-gs, which gives an
upper limit of the total half-life, and indicates where one might
observe α decay to excited states.
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The Skyrme force SLy4 combined with the mixed pairing
is used. The volume and surface pairing give slightly smaller
RMS for the known α decays of near-spherical odd-A nuclei;
see Sec. IV A. On the other hand, fits of known masses suggest
that a surface pairing is less realistic [29], while the volume
pairing gives the poorest description of even-even α decays.
To demonstrate the accuracy of the method when the Qα

values and the level structure of the nuclei are known we
first show results for Po isotopes, in Sec. VI A. Predictions for
superheavy nuclei, using calculated Qα values and ground-
state configurations, are then presented in Sec. VI B.

When α decay to the ground state is hindered one can
observe decays populating excited states. The observation of
subsequent electromagnetic decay of these states can then be
used to obtain spectroscopic information of the superheavy
elements. Which state is populated depends on the balance of
the hindrance of the more energetic gs-gs decay and the smaller
Qα value leading to the excited state. The competition between
unfavored gs-gs and favored gs-es α decay is discussed and
investigated in detail for a few cases in Sec. VI C. Finally,
Sec. VI D contains a discussion on the ordering of single-
particle states in different models, affecting which gs-gs decays
are hindered. The sensitivity of the Qα values and half-lives
to neglected beyond mean-field effects is briefly discussed.

A. Ground-state α-decay half-lives for Po isotopes

The ground-state α-decay properties of odd Po isotopes are
displayed in Table V, with experimental data from [28]. The
one-quasiparticle description of the ground state is selected
in the same way as in Sec. III B, except that we also
consider decays where the spin and parity assignments in
[28] are weaker. For Po and Pb isotopes with N � 113 the
assignments are based on systematics. The present model
is applicable only for near-spherical nuclei. However, to get

TABLE V. Ground-state-to-ground-state α-decay properties of
odd Po isotopes. Experimental Q

exp
gs-gs values in MeV, and gs-gs

half-lives T
exp

gs-gs in seconds from [28]. βM(D) denotes the theoretical
quadrupole deformation of the mother(daughter) nucleus [27].

N Q
exp
gs-gs T

exp
gs-gs 1-q.-p. states βM βD

103 7.979 1.400 × 10−3 p3/2 → p3/2 0.311 0.009
105 7.701 4.375 × 10−2 p3/2 → p3/2 0.274 0.009
107 7.501 1.477 × 10−1 p3/2 → i13/2 0.275 0.000
109 7.093 3.737 × 10−1 p3/2 → p3/2 − 0.215 0.000
111 6.746 6.187 × 100 p3/2 → p3/2 0.071 0.000
113 6.412 1.218 × 102 p3/2 → p3/2 0.062 0.000
115 6.074 2.735 × 103 p3/2 → p3/2 0.000 0.009
117 5.799 5.737 × 104 p3/2 → p3/2 0.000 0.000
119 5.496 2.002 × 108 f5/2 → p3/2 0.000 0.000
121 5.324 1.565 × 107 f5/2 → f5/2 0.018 0.000
123 5.216 9.943 × 107 f5/2 → f5/2 − 0.026 0.008
125 4.979 1.632 × 1010 p1/2 → f5/2 − 0.008 -0.018
127 7.595 5.217 × 10−1 g9/2 → p1/2 − 0.008 -0.008
129 8.537 4.200 × 10−6 g9/2 → g9/2 − 0.008 -0.008
131 7.526 1.781 × 10−3 g9/2 → g9/2 0.020 0.008
133 6.662 1.611 × 100 g9/2 → g9/2 0.031 0.009
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FIG. 7. (Color online) Ground-state-to-ground-state half-lives for
Po isotopes. The experimental data are shown by the squares, results
from the microscopic calculations by the diamonds, and half-lives
giving a hindrance factor HF = 1 by the circles. The shaded area
shows where the mother nuclei are deformed, |βM | > 0.1.

rough systematic estimates, deformed cases are occasionally
considered. When the ground state is deformed the spherical j
shell corresponding to the proposed Nilsson quantum numbers
is used. The j shell is selected by tracing the deformed level
to its spherical origin.

The gs-gs partial α-decay half-lives are shown in Fig. 7.
The diamonds show the theoretical half-lives obtained with
SLy4 and mixed pairing. The experimental Q

exp
gs-gs values are

used in the calculation. For the near-spherical Po isotopes,
with N > 110, the model describes the experimental data
well. The lighter, N < 110, Po isotopes have deformed ground
states, |βM | > 0.1, according to the theoretical mass table in
Ref. [27], and the calculations are very approximative.

The circles show the reference half-lives Tref (25), corre-
sponding to a hindrance factor HF = 1 in the definition (24).
For the considered Po isotopes the half-lives vary over more
than 17 orders of magnitude, mainly caused by the variations in
the Qα values. The maximum in T corresponds to a minimum
in Qα related to the N = 126 shell closure. The distance in the
figure between the partial half-life and the corresponding Tref

gives the hindrance factor, and shows the influence of differing
structures of mother and daughter states.

The spherical j shell of the odd neutron in the mother
nucleus is marked by the spectroscopic labels in the figure. The
gs-gs α decays of 211

84Po127, 209
84Po125, 203

84Po119 are unfavored
because of a change of the j shell for the odd neutron, from
j shells g9/2, p1/2, and f5/2; see Table V and Fig. 6. These
unfavored decays have a longer Tgs-gs compared to Tref. The
hindrance is well described in the microscopic calculations, as
seen by the close agreement with experimental data.

B. Ground-state α-decay half-lives for superheavy isotopes

The gs-gs α-decay properties of odd-A and even-even su-
perheavy isotopes with 107 � Z � 120, 172 � N � 187 are
studied. To obtain the ground-state configurations and Qgs-gs

values, axially symmetric SHFB calculations are performed
using the code HFBTHO [20]. The same SLy4 Skyrme force and
mixed pairing as used in the microscopic α-decay calculations
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FIG. 8. (Color online) Nilsson diagrams for neutron levels (a) and proton levels (b) in 298
114Fl184, obtained with SLy4. The large dots connected

by a dotted line show the ground-state deformations of even-even 114Fl isotopes.

is employed. The ground states for the odd-A nuclei are found
by quasiparticle blocking in the equal filling approximation.

Figure 8 shows Nilsson diagrams for neutron and proton
single-particle energies for 298

114Fl184 obtained with SLy4.
Ground-state properties obtained from the calculations are
summarized in Tables VI–VIII. Nuclei with N � 178 are
found to be near-spherical (|β| � 0.1), whereas the lighter
isotopes are deformed.

For the predicted near-spherical nuclei microscopic α-
decay calculations are performed in the same way as in
the previous section but using the theoretical Qth

gs-gs values
and gs configurations. The odd quasiparticle states used in
the spherical α-decay calculation are selected by tracing the
deformed states back to their spherical origin and picking the
corresponding j shell. Figures 9 and 10 show the resulting gs-
gs half-lives. The microscopic α-decay half-lives are shown as
solid lines. The dashed lines show the reference half-lives Tref,
Eq. (25), giving a hindrance factor HF = 1, obtained with the
theoretical Qth

gs-gs values. We have checked that these reference
half-lives do not differ much from half-lives obtained from
two semiempirical formulas [30,31] when the same Qα values
are used. The largest difference for all considered superheavy
nuclei is a factor 1.74 between Tref and the UDL formula of
Ref. [30], fitted to gs-gs α decay of even-even nuclei. For
the Viola-Seaborg formula fitted to heavy even-even nuclei in
Ref. [31], the largest difference is a factor 16.2. This Viola-
Seaborg formula consistently gives longer half-lives than Tref,
with the largest differences for the heaviest nuclei.

The predicted gs-gs half-lives for even-Z isotope chains in
Fig. 9 show a maximum at N = 183, caused by a minimum
of the Qα value related to the N = 184 shell closure (cf.
Fig. 8). In the microscopic calculations, these half-lives are
enhanced by hindrance as the odd neutron orbital changes
from s1/2 → d3/2. Hindered gs-gs decay is also predicted for
N = 185 and for N = 179. For N = 185 there is a change in
parity of the mother and daughter ground states h11/2 → s1/2,
and a large centrifugal barrier from the change in spin of the
mother and daughter nucleus. The gs-gs decays of N = 179
isotones are predicted to be hindered by a spin flip d3/2 → d5/2.
These nuclei are close to the nuclei reached by current

experiments. The competition between the gs-gs decay and α
decay populating the excited d3/2 state in the daughter nucleus
is investigated in Sec. VI C.

For the gs-gs decay of odd-Z superheavy nuclei shown in
Fig. 10, the decays of 107182, 109180,182, 113184,186, and 115180

are predicted to be hindered. For the unfavored gs-gs decays
of Z = 107 and Z = 109 isotopes the hindrance is from a
change of the odd proton orbital i13/2 to f7/2, which have
different parities but the same orientation of the intrinsic spin.
For the unfavored gs-gs decays of Z = 113,115 isotopes, the
hindrance is associated with crossing the Z = 114 gap, cf.
Fig 8. The odd proton orbital changes f5/2 → i13/2, implying
both a change in parity and a spin flip. This gives a large
hindrance, as seen by the large peaks in the microscopic Tgs-gs

compared to the reference half-lives Tref in Fig. 10. Note that
in the results of the SHFB calculations, the ground state in
113180,182,184,186 is predicted as a blocked quasiparticle state
originating from the f5/2 shell, with the states originating from
i13/2 at small excitation energies. The Z = 114 gap seen in
Fig. 8 is quite small, about 1.2 MeV for 298

114Fl184. Blocking
of an f5/2 quasiparticle gives in the calculations a larger
pairing contribution to the binding energy than blocking an
i13/2 quasiparticle, lowering the f5/2 state relative to the i13/2

state. If the effective pairing interaction strength is reduced,
the ordering of these configurations is reversed, with states
originating from i13/2 as the ground state, making the gs-gs
decay of the mother nuclei 115182,184,186 hindered instead.

C. Competing decay channels

The gs-gs partial α-decay half-life Tgs-gs gives an upper
limit to the total α-decay half-life T . Expressing T in terms of
the widths �k for the different α-decay channels for a nucleus
in its ground state gives

T = �ln(2)

�gs-gs(Qgs-gs) + ∑
i �gs-i(Qgs-gs − Ei)

, (33)

where Qgs-gs is the gs-gs decay energy, and Ei denotes the
excitation energy of excited state i in the daughter nucleus.
For an even-even nucleus or when the gs-gs decay of an odd
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TABLE VI. Predicted ground-state-to-ground-state (gs-gs) α-decay properties of odd-N superheavy nuclei. The Qgs-gs value and the
quadrupole deformation of the mother(daughter) nucleus βM(D) are obtained in the axially deformed Skyrme-HFB calculations. gs M(D)
denotes the asymptotic Nilsson quantum numbers 2jπ [N nz �] of the blocked quasiparticle in the ground state of the mother(daughter)
nucleus. 1-q.-p. states show the quasiparticle states used in the spherical microscopic α-decay calculation. Tgs-gs is the gs-gs partial α-decay
half-life in seconds and γ̄ 2

gs-gs(rt ) the reduced width in MeV predicted by the microscopic α-decay calculations.

Z N gs M gs D βM βD Qgs-gs Tgs-gs γ̄ 2
gs-gs(rt ) 1-q.-p. states Group

108 173 1+ [6 1 1] 1+ [6 1 1] 0.141 0.175 7.737
108 175 3+ [6 4 2] 1+ [6 1 1] −0.129 0.140 7.260
108 177 1+ [6 4 0] 3+ [6 4 2] −0.111 −0.130 6.805
108 179 3+ [6 5 1] 1+ [6 4 0] −0.077 −0.111 6.806 4.322 × 1010 1.200 × 10−4 ν : d3/2 → d5/2 SF
108 181 3+ [6 0 2] 3+ [6 5 1] 0.011 −0.077 6.708 2.234 × 109 6.520 × 10−3 ν : d3/2 → d3/2 Fav
108 183 1+ [6 0 0] 3+ [6 0 2] −0.000 0.011 5.951 9.074 × 1014 1.978 × 10−4 ν : s1/2 → d3/2 SF
108 185 11−[7 0 5] 1+ [6 0 0] −0.019 −0.000 8.049 8.685 × 105 2.551 × 10−5 ν : h11/2 → s1/2 PC
110 173 1+ [6 1 1] 1+ [6 1 1] 0.140 0.174 8.478
110 175 15−[7 0 7] 1+ [6 1 1] 0.118 0.141 8.232
110 177 1+ [6 4 0] 3+ [6 4 2] −0.109 −0.129 7.509
110 179 3+ [6 5 1] 1+ [6 4 0] −0.076 −0.111 7.539 1.628 × 108 1.065 × 10−4 ν : d3/2 → d5/2 SF
110 181 3+ [6 0 2] 3+ [6 5 1] 0.011 −0.077 7.392 1.314 × 107 5.183 × 10−3 ν : d3/2 → d3/2 Fav
110 183 1+ [6 0 0] 3+ [6 0 2] 0.000 0.011 6.703 6.016 × 1011 1.791 × 10−4 ν : s1/2 → d3/2 SF
110 185 11−[7 0 5] 1+ [6 0 0] −0.019 −0.000 8.823 1.129 × 104 2.127 × 10−5 ν : h11/2 → s1/2 PC
112 173 1+ [6 1 1] 1+ [6 1 1] 0.137 0.168 9.142
112 175 15−[7 0 7] 1+ [6 1 1] 0.118 0.140 9.077
112 177 1+ [6 4 0] 15−[7 0 7] −0.106 0.118 8.354
112 179 3+ [6 5 1] 1+ [6 4 0] −0.073 −0.109 8.236 1.838 × 106 9.767 × 10−5 ν : d3/2 → d5/2 SF
112 181 3+ [6 0 2] 3+ [6 5 1] 0.010 −0.076 8.059 1.510 × 105 5.177 × 10−3 ν : d3/2 → d3/2 Fav
112 183 1+ [6 0 0] 3+ [6 0 2] −0.000 0.011 7.477 1.047 × 109 1.675 × 10−4 ν : s1/2 → d3/2 SF
112 185 11−[7 0 5] 1+ [6 0 0] −0.019 0.000 9.605 2.077 × 102 2.179 × 10−5 ν : h11/2 → s1/2 PC
112 187 11−[7 0 5] 11−[7 0 5] −0.017 −0.019 9.501 1.378 × 100 6.140 × 10−3 ν : h11/2 → h11/2 Fav
114 173 1+ [6 1 1] 1+ [6 1 1] 0.133 0.161 9.870
114 175 15−[7 0 7] 1+ [6 1 1] 0.115 0.137 9.915
114 177 1+ [6 4 0] 15−[7 0 7] −0.102 0.118 9.243
114 179 3+ [6 5 1] 1+ [6 4 0] −0.070 −0.106 8.925 4.074 × 104 8.718 × 10−5 ν : d3/2 → d5/2 SF
114 181 3+ [6 0 2] 3+ [6 5 1] 0.010 −0.073 8.726 3.847 × 103 4.066 × 10−3 ν : d3/2 → d3/2 Fav
114 183 1+ [6 0 0] 3+ [6 0 2] −0.000 0.010 8.273 4.214 × 106 1.491 × 10−4 ν : s1/2 → d3/2 SF
114 185 11−[7 0 5] 1+ [6 0 0] −0.019 −0.000 10.414 5.922 × 100 1.996 × 10−5 ν : h11/2 → s1/2 PC
114 187 11−[7 0 5] 11−[7 0 5] −0.016 −0.019 10.182 8.229 × 10−2 5.495 × 10−3 ν : h11/2 → h11/2 Fav
116 173 1+ [6 1 1] 1+ [6 1 1] 0.126 0.154 10.750
116 175 15−[7 0 7] 1+ [6 1 1] 0.110 0.133 10.791
116 177 1+ [6 4 0] 15−[7 0 7] −0.098 0.115 10.014
116 179 3+ [6 5 1] 1+ [6 4 0] −0.066 −0.102 9.683 8.879 × 102 7.830 × 10−5 ν : d3/2 → d5/2 SF
116 181 3+ [6 0 2] 3+ [6 5 1] 0.009 −0.070 9.508 5.379 × 101 4.059 × 10−3 ν : d3/2 → d3/2 Fav
116 183 1+ [6 0 0] 3+ [6 0 2] 0.000 0.010 9.165 1.609 × 104 1.531 × 10−4 ν : s1/2 → d3/2 SF
116 185 11−[7 0 5] 1+ [6 0 0] −0.018 −0.000 11.260 2.148 × 10−1 1.829 × 10−5 ν : h11/2 → s1/2 PC
116 187 11−[7 0 5] 11−[7 0 5] −0.016 −0.019 10.923 4.747 × 10−3 4.903 × 10−3 ν : h11/2 → h11/2 Fav
118 173 1+ [6 1 1] 1+ [6 1 1] 0.114 0.146 11.806
118 175 3+ [6 4 2] 1+ [6 1 1] −0.109 0.126 11.569
118 177 1+ [6 4 0] 15−[7 0 7] −0.093 0.110 10.708
118 179 3+ [6 5 1] 1+ [6 4 0] −0.062 −0.098 10.591 1.239 × 101 6.997 × 10−5 ν : d3/2 → d5/2 SF
118 181 3+ [6 0 2] 3+ [6 5 1] 0.008 −0.066 10.413 7.506 × 10−1 3.203 × 10−3 ν : d3/2 → d3/2 Fav
118 183 1+ [6 0 0] 3+ [6 0 2] −0.000 0.009 10.090 1.453 × 102 1.202 × 10−4 ν : s1/2 → d3/2 SF
118 185 11−[7 0 5] 1+ [6 0 0] −0.018 0.000 12.148 9.418 × 10−3 1.683 × 10−5 ν : h11/2 → s1/2 PC
118 187 11−[7 0 5] 11−[7 0 5] −0.015 −0.018 11.728 2.668 × 10−4 4.417 × 10−3 ν : h11/2 → h11/2 Fav
120 173 5+ [6 4 2] 1+ [6 1 1] −0.117 0.133 12.528
120 175 3+ [6 4 2] 1+ [6 1 1] −0.103 0.114 12.179
120 177 1+ [6 2 0] 3+ [6 4 2] −0.083 −0.109 11.762
120 179 3+ [6 5 1] 1+ [6 4 0] −0.055 −0.093 11.678 9.978 × 10−2 7.464 × 10−5 ν : d3/2 → d5/2 SF
120 181 3+ [6 0 2] 3+ [6 5 1] 0.006 −0.062 11.399 9.318 × 10−3 3.291 × 10−3 ν : d3/2 → d3/2 Fav
120 183 1+ [6 0 0] 3+ [6 0 2] 0.000 0.008 11.115 1.162 × 100 1.197 × 10−4 ν : s1/2 → d3/2 SF
120 185 11−[7 0 5] 1+ [6 0 0] −0.016 −0.000 13.083 4.844 × 10−4 1.556 × 10−5 ν : h11/2 → s1/2 PC
120 187 11−[7 0 5] 11−[7 0 5] −0.014 −0.018 12.654 1.196 × 10−5 3.940 × 10−3 ν : h11/2 → h11/2 Fav
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TABLE VII. Similar to Table VI, but for odd-proton superheavy nuclei.

Z N gs M gs D βM βD Qgs-gs Tgs-gs γ̄ 2
gs-gs(rt ) 1-q.-p. states Group

107 172 1−[5 2 1] 9+ [6 2 4] 0.159 0.195 7.776
107 174 1−[5 2 1] 1−[5 2 1] 0.133 0.164 7.180
107 176 1−[5 0 1] 1−[5 0 1] −0.121 −0.143 6.607
107 178 1−[5 0 1] 1−[5 0 1] −0.100 −0.121 6.471
107 180 1−[5 1 0] 1−[5 0 1] −0.065 −0.098 6.453 1.390 × 1010 7.764 × 10−3 π : f7/2 → f7/2 Fav
107 182 13+ [6 0 6] 1−[5 1 0] 0.003 −0.062 5.973 4.138 × 1015 1.115 × 10−5 π : i13/2 → f7/2 PC
107 184 13+ [6 0 6] 13+ [6 0 6] 0.001 −0.002 6.095 1.208 × 1012 6.896 × 10−3 π : i13/2 → i13/2 Fav
107 186 13+ [6 0 6] 13+ [6 0 6] 0.001 −0.001 7.717 2.064 × 104 7.888 × 10−3 π : i13/2 → i13/2 Fav
109 172 3−[5 1 2] 9+ [6 2 4] 0.165 0.199 8.827
109 174 1−[5 5 0] 1−[5 2 1] 0.129 0.159 7.913
109 176 5−[5 3 2] 1−[5 2 1] −0.119 0.133 7.391
109 178 5−[5 0 3] 1−[5 0 1] −0.100 −0.121 7.214
109 180 5+ [6 2 2] 1−[5 0 1] −0.063 −0.100 7.235 1.417 × 1010 9.479 × 10−6 π : i13/2 → f7/2 PC
109 182 13+ [6 0 6] 1−[5 1 0] 0.008 −0.065 6.701 4.590 × 1012 9.053 × 10−6 π : i13/2 → f7/2 PC
109 184 13+ [6 0 6] 13+ [6 0 6] 0.005 0.003 6.873 8.786 × 108 6.214 × 10−3 π : i13/2 → i13/2 Fav
109 186 13+ [6 0 6] 13+ [6 0 6] 0.004 0.001 8.416 3.347 × 102 7.142 × 10−3 π : i13/2 → i13/2 Fav
111 172 3−[5 1 2] 3−[5 1 2] 0.156 0.195 9.329
111 174 11+ [6 1 5] 3−[5 1 2] 0.132 0.165 8.533
111 176 5−[5 3 2] 1−[5 5 0] −0.116 0.129 8.451
111 178 5−[5 0 3] 5−[5 3 2] −0.095 −0.119 7.841
111 180 5−[5 0 3] 5−[5 0 3] −0.063 −0.100 7.832 4.813 × 105 5.370 × 10−3 π : f5/2 → f5/2 Fav
111 182 13+ [6 0 6] 5+ [6 2 2] 0.013 −0.063 7.394 2.614 × 107 6.294 × 10−3 π : i13/2 → i13/2 Fav
111 184 13+ [6 0 6] 13+ [6 0 6] 0.008 0.008 7.690 1.353 × 106 6.238 × 10−3 π : i13/2 → i13/2 Fav
111 186 13+ [6 0 6] 13+ [6 0 6] 0.008 0.005 9.131 8.413 × 100 6.382 × 10−3 π : i13/2 → i13/2 Fav
113 172 3−[5 1 2] 3−[5 1 2] 0.148 0.182 9.876
113 174 3−[5 1 2] 3−[5 1 2] 0.129 0.156 9.480
113 176 7−[5 0 3] 11+ [6 1 5] 0.102 0.132 9.450
113 178 1+ [6 3 1] 5−[5 3 2] −0.093 −0.116 8.576
113 180 5−[5 0 3] 5−[5 0 3] −0.053 −0.095 8.502 9.267 × 103 4.656 × 10−3 π : f5/2 → f5/2 Fav
113 182 5−[5 0 3] 5−[5 0 3] −0.011 −0.063 8.133 1.800 × 105 5.204 × 10−3 π : f5/2 → f5/2 Fav
113 184 5−[5 0 3] 13+ [6 0 6] −0.006 0.013 8.388 4.744 × 107 2.023 × 10−6 π : f5/2 → i13/2 PC SF
113 186 5−[5 0 3] 13+ [6 0 6] −0.006 0.008 9.695 1.972 × 103 2.576 × 10−6 π : f5/2 → i13/2 PC SF
115 172 1−[5 1 0] 1−[5 1 0] 0.142 0.172 10.437
115 174 1−[5 1 0] 3−[5 1 2] 0.125 0.148 10.235
115 176 3−[5 3 2] 3−[5 1 2] −0.107 0.129 10.209
115 178 3−[5 0 1] 7−[5 0 3] −0.089 0.102 9.180
115 180 3−[5 0 1] 1+ [6 3 1] −0.051 −0.093 9.215 3.637 × 105 2.367 × 10−6 π : f5/2 → i13/2 PC SF
115 182 5−[5 0 3] 5−[5 0 3] −0.005 −0.053 8.778 5.592 × 103 4.081 × 10−3 π : f5/2 → f5/2 Fav
115 184 5−[5 0 3] 5−[5 0 3] −0.003 −0.011 9.103 3.711 × 102 4.603 × 10−3 π : f5/2 → f5/2 Fav
115 186 5−[5 0 3] 5−[5 0 3] −0.003 −0.006 10.350 7.267 × 10−2 4.702 × 10−3 π : f5/2 → f5/2 Fav
117 172 7−[5 0 3] 1−[5 1 0] 0.135 0.158 11.494
117 174 1−[5 1 0] 1−[5 1 0] 0.111 0.142 11.377
117 176 3−[5 3 2] 1−[5 1 0] −0.101 0.125 10.862
117 178 3−[5 0 1] 3−[5 3 2] −0.081 −0.107 9.993
117 180 3−[5 1 2] 3−[5 0 1] −0.040 −0.089 10.049 2.951 × 100 4.137 × 10−3 π : f5/2 → f5/2 Fav
117 182 5−[5 0 3] 3−[5 0 1] 0.002 −0.051 9.544 8.659 × 101 4.064 × 10−3 π : f5/2 → f5/2 Fav
117 184 5−[5 0 3] 5−[5 0 3] 0.001 −0.005 10.081 2.094 × 100 4.071 × 10−3 π : f5/2 → f5/2 Fav
117 186 5−[5 0 3] 5−[5 0 3] 0.001 −0.003 11.219 2.195 × 10−3 4.201 × 10−3 π : f5/2 → f5/2 Fav
119 172 1−[5 3 0] 7−[5 0 3] −0.123 0.150 12.780
119 174 1−[5 0 1] 7−[5 0 3] −0.108 0.135 12.216
119 176 1−[5 0 1] 1−[5 1 0] −0.095 0.111 11.343
119 178 1−[5 0 1] 3−[5 3 2] −0.074 −0.101 11.076
119 180 1−[5 4 1] 3−[5 0 1] −0.040 −0.081 11.017 3.670 × 10−2 3.736 × 10−3 π : f5/2 → f5/2 Fav
119 182 5−[5 0 3] 3−[5 1 2] 0.009 −0.040 10.690 2.344 × 10−1 3.703 × 10−3 π : f5/2 → f5/2 Fav
119 184 5−[5 0 3] 5−[5 0 3] 0.005 0.002 11.196 1.171 × 10−2 3.691 × 10−3 π : f5/2 → f5/2 Fav
119 186 5−[5 0 3] 5−[5 0 3] 0.005 0.001 12.284 3.913 × 10−5 3.790 × 10−3 π : f5/2 → f5/2 Fav

014314-14



α-DECAY SPECTRA OF ODD NUCLEI USING THE . . . PHYSICAL REVIEW C 92, 014314 (2015)

TABLE VIII. Similar to Table VI, for even-even superheavy nuclei.

Z N βM βD Qgs-gs Tgs-gs γ̄ 2
gs-gs(rt )

108 172 0.160 0.192 8.214
108 174 0.130 0.162 7.562
108 176 −0.119 −0.140 6.940
108 178 −0.097 −0.119 6.821 5.241 × 108 8.666 × 10−3

108 180 −0.059 −0.096 6.780 8.201 × 108 8.146 × 10−3

108 182 −0.000 −0.059 6.231 6.552 × 1011 6.844 × 10−3

108 184 −0.000 −0.000 6.502 1.914 × 1010 7.564 × 10−3

108 186 −0.000 −0.000 8.088 1.969 × 103 7.774 × 10−3

110 172 0.155 0.192 9.024
110 174 0.130 0.160 8.338
110 176 −0.116 0.130 7.852
110 178 −0.095 −0.119 7.542 2.572 × 106 6.776 × 10−3

110 180 −0.058 −0.097 7.510 3.501 × 106 6.285 × 10−3

110 182 −0.000 −0.059 6.966 9.449 × 108 5.986 × 10−3

110 184 −0.000 −0.000 7.263 3.697 × 107 6.081 × 10−3

110 186 −0.000 −0.000 8.768 5.023 × 101 6.986 × 10−3

112 172 0.150 0.184 9.580
112 174 0.129 0.155 9.112
112 176 −0.113 0.130 8.888
112 178 −0.092 −0.116 8.235 3.173 × 104 5.917 × 10−3

112 180 −0.054 −0.095 8.207 3.487 × 104 6.338 × 10−3

112 182 −0.000 −0.058 7.668 4.538 × 106 6.130 × 10−3

112 184 −0.000 −0.000 8.032 1.457 × 105 6.085 × 10−3

112 186 −0.000 −0.000 9.456 1.920 × 100 6.226 × 10−3

114 172 0.144 0.173 10.185
114 174 0.125 0.150 9.925
114 176 −0.108 0.129 9.779
114 178 −0.089 −0.113 8.924 7.270 × 102 5.129 × 10−3

114 180 −0.049 −0.092 8.905 7.181 × 102 5.577 × 10−3

114 182 −0.000 −0.054 8.395 4.228 × 104 5.429 × 10−3

114 184 −0.000 −0.000 8.846 9.904 × 102 5.460 × 10−3

114 186 −0.000 −0.000 10.160 9.579 × 10−2 5.587 × 10−3

116 172 0.136 0.164 11.032
116 174 0.117 0.144 10.823
116 176 −0.104 0.125 10.485
116 178 −0.084 −0.108 9.663 1.635 × 101 5.078 × 10−3

116 180 −0.042 −0.089 9.681 1.379 × 101 4.909 × 10−3

116 182 −0.000 −0.049 9.199 4.113 × 102 4.838 × 10−3

116 184 −0.000 −0.000 9.713 9.700 × 100 4.848 × 10−3

116 186 −0.000 −0.000 10.945 4.260 × 10−3 4.986 × 10−3

118 172 0.121 0.153 12.120
118 174 0.104 0.136 11.863
118 176 −0.099 0.117 11.051
118 178 −0.078 −0.104 10.580 2.393 × 10−1 4.033 × 10−3

118 180 −0.035 −0.084 10.599 2.081 × 10−1 3.821 × 10−3

118 182 −0.000 −0.042 10.122 3.872 × 100 3.805 × 10−3

118 184 −0.000 −0.000 10.625 1.542 × 10−1 3.816 × 10−3

118 186 −0.000 −0.000 11.762 2.282 × 10−4 4.495 × 10−3

120 172 −0.123 0.138 12.728
120 174 −0.106 0.121 12.396
120 176 −0.090 0.104 11.744
120 178 −0.067 −0.099 11.815 9.086 × 10−4 4.174 × 10−3

120 180 0.000 −0.078 11.755 1.211 × 10−3 3.956 × 10−3

120 182 −0.000 −0.035 11.084 4.427 × 10−2 3.872 × 10−3

120 184 −0.000 −0.000 11.557 3.031 × 10−3 3.870 × 10−3

120 186 −0.000 −0.000 12.682 1.086 × 10−5 3.958 × 10−3
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FIG. 9. (Color online) Ground-state-to-ground-state half-lives
for even-even and even-odd superheavy isotopes. The dashed lines
correspond to a hindrance factor HF = 1; the solid lines are from
the microscopic calculations with SLy4 and mixed pairing. The dots
show available experimental data. The shaded area marks where the
mother nuclei ground states are well deformed |β| � 0.1.

nucleus is favored the gs-gs channel often dominates over the
other α-decay channels, �gs-gs(Qgs-gs) ≫

∑
i �gs-i(Qgs-gs −

Ei), giving T ≈ �ln(2)/�gs-gs. This is from the large sensi-
tivity of the decay widths to the decay energy in combination
with smaller formation amplitudes for unfavored channels.

For several odd-A nuclei studied in the preceding subsec-
tion the gs-gs channel is unfavored, and the α decay populating
an excited state can dominate. We consider the favored excited
state where the odd nucleon remains in the same orbital. The
decay to the excited state relative the ground state depends on
the hindrance factor and the excitation energy. The competition
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FIG. 10. (Color online) Similar to Fig. 9, but for even-even and
odd-even superheavy nuclei, where the predicted mother and daughter
nucleus deformation |β| � 0.1. Solid symbols connected by solid
lines show the microscopic results; open symbols and dashed lines
show half-lives corresponding to HF = 1.
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FIG. 11. (Color online) Competition between α-decay channels
for (a) 115180, and (b) 116Lv179. The black dots shows the predicted
decay widths of the unfavored gs-gs decays. The red lines show the
predicted decay width for the favored gs-es decay as a function of
the excitation energy Eexc of the daughter nucleus state where the
odd nucleon remains in the same orbital as in the mother nucleus.
The blue vertical arrows show the excitation energies of these states
obtained in the HFB calculation.

between these two α-decay channels is illustrated in Fig. 11.
Figure 11(a) shows the predicted decay width for α decay of
115180 in its calculated f5/2 ground state to either the calculated
ground state i13/2 of the daughter nucleus or the first excited
f5/2 state at an excitation energy Eexc. Figure 11(b) shows a
similar predicted competition between unfavored gs-gs decay
and favored gs-es decay of 116Lv179.

For 115180, the predicted Qgs-gs = 9.215 MeV is obtained
in the calculations described in Sec. VI B. The Qgs-es value
for decay populating the excited f5/2 state is set to Qgs-es =
Qgs-gs − Eexc, where the excitation energy Eexc is varied. In
this example the reduced width for the favored f5/2 → f5/2

transition is a factor 1972 larger than for the unfavored, corre-
sponding to a large hindrance. In the deformed calculations
(Sec. VI B) the excitation energy of the first excited state
is 14 keV. From Fig. 11 we see that the α decay would
be dominated by the favored decay channel populating the
excited state. SHFB predictions for this excitation energy carry
a large uncertainty. The intersection of the solid and dotted
lines in Fig. 11 indicates that the favored α-decay channel
would dominate for an excitation energy of the favored state
up to 0.9 MeV. Considering the high multipolarity and the
low energy of possible γ decays, the predicted low-lying f5/2

excited state is likely to be isomeric with respect to γ decay,
and will in turn decay by α decay.

A similar analysis is made for 116Lv179. The predicted gs
is a quasiparticle occupying a d3/2 orbital, while the predicted
gs in the daughter nucleus 114Fl177 originates from d5/2. The
d3/2 state in 114Fl117 is predicted to have excitation energy
0.75 MeV. In this case the unfavored gs-gs α decay dominates
over the favored decay, giving no possibility for a subsequent
γ decay. The α-decay half-life is on the other hand hindered by
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a factor ∼50 compared to the neighboring even-even nuclei,
shown by the peak in the half-lives in Fig. 9.

From the intersection of the solid and dotted lines in
Fig. 11(b), one can see that the unfavored gs-gs decay
dominates if the excitation energy of the d3/2 state is larger than
about 0.5 MeV. For the N = 179 isotones studied in Sec. VI B,
the ratio of the reduced width for the favored d3/2 → d3/2 decay
γ̄ 2

fav(rt ), and the gs-gs decay γ̄ 2
gs-gs(rt ) is

γ̄ 2
fav(rt )

γ̄ 2
gs-gs(rt )

= {52.3, 50.6, 49.6, 48.6, 47.7, 46.7, 45.9},

for Z = {108,110,112,114,116,118,120}, respectively. For
these cases the slope of the decay width as a function of energy
becomes flatter with increasing Z. The excitation energy where
the more energetic gs-gs channel dominates increases from
0.34 MeV for 108179 to 0.65 MeV for 120179.

The competition between favored and hindered α-decay
channels illustrated here depends on a balance of the hindrance
factor and the Q-value dependence of the Coulomb penetra-
bility. The hindrance factors depend strongly on the orbitals
of the odd nucleons, so to make detailed predictions each
α-decaying odd nucleus needs to be considered separately. In
general, the slope of the decay width as a function of energy
is flatter for superheavy nuclei than for medium-mass nuclei,
because of the scaling of the penetrability with proton number
and Q value. Also, in general the density of single-particle
levels increases when the mass increases. This should lead to
on the average smaller excitation energies for the states in the
daughter nuclei where the odd nucleon remains in the same
orbital. These two observations lead to the general conclusion
that the favored decay to a suitable excited state should be the
dominant α-decay channel more often for superheavy nuclei
than for medium-mass nuclei.

Superheavy nuclei can α decay in several steps before the
α-decay chain is ended by spontaneous fission. In each α-
decay step there is a competition between α-decay channels.
For a sufficiently long α-decay chain, one cannot expect that
the odd nucleon will remain in the same orbital in all the
nuclei of the chain. Considering the above example of 115180,
α-decay populating a low-lying excited state in the daughter
nucleus 113178, where the odd proton remains in the same
f5/2 orbital, is predicted to be the dominant decay channel. In
the subsequent α decay of 113178 there is again a competition
between a favored f5/2 → f5/2 channel where the odd proton
remains in the same orbital, but where the excitation energy
of the favored state is larger, and a channel with a larger Qα

value where the odd proton changes orbital. At some point
along the chain the odd nucleon will change orbital, either
through γ decay or by α decay through an unfavored channel
with a larger Qα value, as in the example of 116Lv179, shown
in the second panel of Fig. 11.

D. Discussion on ground-state and Qα predictions

The particle numbers where one can expect hindered gs-gs
α decay depend on the ordering of the single-particle levels.
The size of the gaps in the spherical single-particle spectra
can differ significantly in different self-consistent mean-field
models [14,32]. However, the models compared in Ref. [32]

all predict the same ordering for neutron and proton spherical
shells in this mass region as SLy4, with a few exceptions: The
order of the j13/2 and the h11/2 neutron shells above N = 184
is reversed in some models. For protons shells below Z = 114,
some of the models get f7/2 above the i13/2 shell.

The SHFB calculations do not consider beyond-mean-field
corrections to the binding energy. The effect on Qα values
should be quite small, except near the spherical N = 184 shell
closure, where the magnitude of the correction varies quickly
with particle number [14]. Calculations with a relativistic
mean-field approach combined with a collective Hamiltonian
for even-even superheavy nuclei in the α-decay chain of
120178,180 were reported in Ref. [33]. The effect of symmetry
restoration and quadrupole vibrations on the Qα values was
found to be small, at most ∼0.5 MeV for the deformed
Z = 112,114 isotopes. In the generator coordinate method
calculations presented in Ref. [14], the effect on Qα values
was also observed to be small, except near N = 184. The Qα

values of the even-even N = 184 isotones with Z � 120 are
increased by up to around 1 MeV when beyond-mean-field
correlations are included. For the nuclei 120183,184,185 we can
thus expect that the half-life predicted by the calculations
presented here is overestimated by up to two orders of
magnitude. For the remaining nuclei, we expect the effect
on the half-life to be small.

VII. SUMMARY AND OUTLOOK

Microscopic calculations for the α-particle formation and
α-decay half-lives were performed for near-spherical odd-A
nuclei. An R-matrix-type microscopic formalism was used for
the calculation of the decay rate, using HFB wave functions
obtained with the SLy4 Skyrme effective interaction and
different pairing prescriptions as inputs for the calculation of
the formation amplitude. Following the method of our previous
study [15] the reduced widths were renormalized with a single
mass-independent scaling factor fitted to even-even nuclei.

The obtained decay rates reproduced the available data for
α decay of near-spherical odd-A nuclei well. The variation
in the reduced widths of both favored and hindered decays
were reasonably described in the calculations. The root-mean-
square deviation of the logarithm of the theoretical decay rate
from the corresponding experimental value was 0.68–0.79,
depending on the effective pairing interaction used. If three
pathological cases out of the 45 studied cases are removed
from consideration the RMS is reduced to 0.39–0.44, i.e., the
calculated decay rates are correct within a factor 3.

The studied cases were classified according to how the
orbital of the odd nucleon changes in the α decay. Comparing
favored and unfavored α decays there is a clear difference
in the reduced widths and hindrance factors. The variation
of the hindrance factors for different unfavored decays was
large, and could not be described by a simple selection rule.
To predict hindrance factors detailed calculations must indeed
be performed.

After the test of the method on decays where experimental
data exist, the approach was applied to ground-state-to-
ground-state α decay of near-spherical superheavy nuclei.
Based on Qα values and level structure obtained in deformed
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D. E. WARD, B. G. CARLSSON, AND S. ÅBERG PHYSICAL REVIEW C 92, 014314 (2015)

HFB calculations, we predict the longest α-decay half-lives for
N = 183 isotones. The partial half-lives of gs-gs transitions
of N = 179, 183, and 185 isotones, as well as Z = 113
and 115 isotopes are enhanced by hindrance. These nuclei
are candidates for higher probability of α-decay populating
excited states in the daughter nucleus and thus giving rise to
subsequent γ decay.

The adopted approach works well for describing the relative
decay rates of both odd-A and even-even nuclei. By extending
the method to deformed HFB states, the approach may offer
a practical method of predicting relative rates and hindrance
factors across the nuclear chart.

As future experiments on superheavy nuclei move up in the
nuclear chart and possibly reach the near-spherical region, the
gs-gs α decays will be hindered when there is a change of j
shells for the odd particle. The hindrance factor depends on
the shell structure. If the gs-gs decay or a favored decay to an
excited state is observed depends on the hindrance factor and
the energy distance between shells. If the decay populates an
excited state, consecutive γ decay can give further information
on the shell structure. The approach presented here then offers
a possibility to study in detail the competition of different
possible α-decay scenarios, suggested by the data and nuclear
structure models.
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APPENDIX A: α-PARTICLE WAVE FUNCTION

We employ the following model α-particle wave function
[16],

	
(α)
00 (rπ ,rν,rα,s1,s2,s3,s4)

=
(

4

b3
α

√
π

)3/2

e
− r2
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00, (A1)

with the oscillator length bα = 1.42 fm. We use the Jacobi
coordinates rπ ,rν,rα,Rα related to the laboratory coordinates
r1,r2,r3,r4 of the valence particles through:

⎛
⎜⎝

rπ

rν

rα

Rα

⎞
⎟⎠ = 1

2

⎛
⎜⎜⎝

√
2 −√

2 0 0
0 0

√
2 −√

2
1 1 −1 −1
1 1 1 1

⎞
⎟⎟⎠

⎛
⎜⎝

r1

r2

r3

r4

⎞
⎟⎠. (A2)

The formation amplitude gkLα
defined in the coordinates (A2)

is related to the formation amplitude fkLα
defined for the

physical separation of the centers of mass r as [34]

fkL(r) =
√

8gkL(2r). (A3)

APPENDIX B: TWO-PARTICLE TRANSFER AMPLITUDES

For the spherical symmetric HFB vacua used here the
quasiparticle creation operator can be written,

β
†
nljm =

∑
n′

U
lj
n′na

†
n′ljm − (−1)j−mV

lj
n′nan′lj−m, (B1)

where a
†
n′ljm creates a particle in the spherical oscillator state

with n′ radial nodes, orbital angular momentum l, total angular
momentum j , and angular momentum projection m. n labels
the quasiparticles corresponding to the same l and j in order of
increasing energy. Ulj

n′n and V
lj
n′n correspond to matrix elements

of the HFB U and V matrices [35].
The formation amplitude (12) depends on the four-particle

transfer amplitudes,

〈D00|βD
kDIDMD

aνlaνkaπjaπiβ
M†
kMIM |M00〉. (B2)

As p-n mixing is not considered we only need to consider the
following overlaps, expressed in the spherical oscillator basis,

〈D0|aα′j ′m′aαjm|M0〉, (B3)

for the even-numbered particle species, and

〈D0|βD
kDIDMD

aα′j ′m′aαjmβ
M†
kMIM |M0〉, (B4)

for the odd-numbered particle species. To save space the
labeling α ≡ (nl) is used. |M0〉(|D0〉) is the relevant particle-
species part of the mother(daughter) HFB vacuum.

Expanding |M0〉 in terms of |D0〉 with Thouless’ theorem
and using the generalized Wick theorem, the overlaps can
be written in terms of three different two-particle transfer
densities [35]. The first is

κ
(DM)∗
αjm,α′j ′m′ = 〈M0|a†

αjma
†
α′j ′m′ |D0〉

〈M0|D0〉
= δjj ′δm,−m′ (−1)j−mκ

(DM)j∗
α,α′ . (B5)

This density is the only one needed for the even-numbered
particle species. The other two densities are

κ
(MD)
αjm,α′j ′m′ = 〈M0|aα′j ′m′aαjm|D0〉

〈M0|D0〉
= δjj ′δm,−m′ (−1)j−mκ

(MD)j
α,α′ , (B6)

and

ρ
(MD)
αjm,α′j ′m′ = 〈M0|a†

α′j ′m′aαjm|D0〉
〈M0|D0〉 = δjj ′δmm′ρ

(MD)j
α,α′ . (B7)

The transfer densities for the odd-numbered particle species
can now be computed,

〈D0|M0〉−1〈D0|β(D)
kDIDMD

aα′j ′m′aαjmβ
(M)†
kMIM |M0〉

= +δI,ID
δMMD

δj ′j δm′,−m(−1)j−mκ
(DM)j
α,α′ FkD,kM

− δIj δMmδIDj ′δMD,−m′ (−1)ID−MDHα,kM ;α′,kD

+ δIj ′δMm′δIDj δMD,−m(−1)ID−MDHα′,kM ;α,kD
, (B8)
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where the F coefficient is given by

FkD,kM
= (

U (D)I†(1 − ρ(MD)I )†U (M)I
)
kD,kM

+ (
V (D)I†ρ(MD)I∗V (M)I

)
kD,kM

+ (U (D)I†κ (DM)I,T V (M)I )kD,kM
+ (

V (D)I†κ (MD)I∗U (M)I
)
kD,kM

, (B9)

and the H coefficient by

Hα,kM ;α′,kD
= ((

κ (DM)I,T V (M)I
)
α,kM

+ (
(1 − ρ(MD)I )†U (M)I

)
α,kM

)((
κ (DM)IDU (D)ID∗)

α′,kD
+ (

ρ(MD)ID†V (D)ID∗)
α′,kD

)
. (B10)

Expressions for the BCS case

Considering a standard seniority pairing BCS calculation the expressions for the transfer amplitudes become simpler. The
same spherical single-particle basis is used for the mother and daughter nucleus. The BCS wave function can be expressed in
terms of quasiparticles of the form (B1) with the U and V matrices U

lj
n′n = δnn′unlj , and V

lj
n′n = δnn′ (−1)lvnlj .

The expression for the overlap of vacua then becomes

|〈D0|M0〉|2 =
∏
lj

∏
a

(
uD

alju
M
alj + vD

alj v
M
alj

)2j+1
, (B11)

and for the two-particle transfer amplitudes,

κ
(DM)lj∗
aa′ = δaa′uD

alj

(
uD

alju
M
alj + vD

alj v
M
alj

)−1
(−1)lvM

alj , (B12)

Faa′ = δaa′
(
uD

alju
M
alj + vD

alj v
M
alj

)−1
, (B13)

Ha,kM ;a′,kD
= δakM

δa′kD
uD

kMlMjM
vM

kDlDjD
(−1)lD

(
uD

kMlMjM
uM

kMlMjM
+ vD

kMlMjM
vM

kMlMjM

)−1(
uD

kDlDjD
uM

kDlDjD
+ vD

kDlDjD
vM

kDlDjD

)−1
. (B14)
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