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Background: The ground state neutron density of a medium mass nucleus contains fundamental nuclear structure
information and is at present relatively poorly known.
Purpose: We explore if parity violating elastic electron scattering can provide a feasible and model independent
way to determine not just the neutron radius but the full radial shape of the neutron density ρn(r) and the weak
charge density ρW (r) of a nucleus.
Methods: We expand the weak charge density of 48Ca in a model independent Fourier Bessel series and calculate
the statistical errors in the individual coefficients that might be obtainable in a model parity violating electron
scattering experiment.
Results: We find that it is feasible to determine roughly six Fourier Bessel coefficients of the weak charge density
of 48Ca within a reasonable amount of beam time. However, it would likely be much harder to determine the full
weak density of a significantly heavier nucleus such as 208Pb.
Conclusions: Parity violating elastic electron scattering can determine the full weak charge density of a medium
mass nucleus in a model independent way. This weak density contains fundamental information on the size,
surface thickness, shell oscillations, and saturation density of the neutron distribution in a nucleus. The measured
ρW (r), combined with the previously known charge density ρch(r), will literally provide a detailed textbook
picture of where the neutrons and protons are located in an atomic nucleus.
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I. INTRODUCTION

Where are the protons located in an atomic nucleus? His-
torically, charge densities from elastic electron scattering have
provided accurate and model independent information [1].
These densities are, quite literally, our picture of the nucleus
and have had an enormous impact. They have helped reveal the
size, surface thickness, shell structure, and saturation density
of nuclei.

Where are the neutrons located in an atomic nucleus?
Additional, very fundamental, nuclear structure information
could be extracted if we also had accurate neutron densities.
For example, knowing both the proton and the neutron
densities would provide constraints on the isovector channel
of the nuclear effective interaction, which is essential for the
structure of very neutron rich exotic nuclei.

However, compared to charge densities, our present knowl-
edge of neutron densities is relatively poor and may be
model dependent. Often neutron densities are determined with
strongly interacting probes [2] such as antiprotons [3,4], proton
elastic scattering [5], see also [6], heavy ion collisions [7], Pion
elastic scattering [8], and coherent pion photo production [9].
Here one typically measures the convolution of the neutron
density with an effective strong interaction range for the probe.
Uncertainties in this range, from complexities of the strong
interactions, can introduce significant systematic errors in the
extracted neutron densities.

It is also possible to measure neutron densities with
electroweak interactions, by using neutrino-nucleus coherent
scattering [10,11] or parity violating electron scattering [20].
This is because the weak charge of a neutron is much larger
than that of a proton. Compared to strongly interacting probes,
parity violation provides a clean and model-independent way

to determine the neutron density and likely has much smaller
strong interaction uncertainties. In the last decades, great
theoretical [12–19] and experimental [20,21] efforts have
been made to improve parity violating electron scattering
experiments. At Jefferson Laboratory, the neutron radius of
208Pb has been preliminarily measured by PREX [20,21],
and will be measured with higher accuracy by the PREX-II
experiment [22], while an approved experiment CREX aims
to measure the neutron radius of 48Ca [23].

In this paper, we propose to measure not only the neutron
radius, but the full radial structure of the weak charge
density distribution in 48Ca, by measuring the parity violating
asymmetry at a number of different momentum transfers. This
will determine the coefficients of a Fourier Bessel expansion
of the weak charge density that is model independent. By
measuring the weak density, the full structure of neutron
density can be derived, since the weak form factor of the
neutron is largely known and the weak charge of the proton
is very small. Our formalism to determine the cross section
for longitudinally polarized electrons scattered from 48Ca and
the parity violating asymmetry Apv is presented in Sec. II. In
Sec. III we motivate measuring the full radial dependence of
the weak charge density in 48Ca and discuss the large informa-
tion that it contains. In Sec. IV we illustrate our formalism with
an example experiment and calculate the resulting statistical
errors. The resulting weak density can be directly compared to
modern microscopic calculations of the ground state structure
of 48Ca using chiral effective field theory interactions [24].
We conclude in Sec. V that it is feasible to measure the
full weak density distribution of 48Ca. However this may
be much harder for a significantly heavier nucleus such as
208Pb because more Fourier Bessel coefficients likely will be
needed.
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FIG. 1. (Color online) Ground state (electromagnetic) charge
and weak charge densities of 48Ca versus radius r . The solid black line
shows the Fourier Bessel experimental charge density from Ref. [1]
while the dotted red line shows the charge density of the FSU-Gold
relativistic mean field model. Finally the green dashed line shows the
weak charge density of the FSU-Gold model.

II. FORMALISM

The parity violating asymmetry for longitudinally polarized
electrons scattering from a spin zero nucleus, Apv , is the
key observable which is very sensitive to the weak charge
distribution. The close relationship between Apv and the
weak charge density ρW (r) can be readily seen in the Born
approximation,

Apv ≡ dσ/d�R − dσ/d�L

dσ/d�R + dσ/d�L

≈ − GF q2

4πα
√

2

QWFW (q2)

ZFch(q2)
. (1)

Here dσ/d�R (dσ/d�L) is the cross section for positive
(negative) helicity electrons, GF is the Fermi constant, q the
momentum transfer, α the fine structure constant, and FW (q2)
and Fch(q2) are the weak and charge form factors, respectively,

FW (q2) = 1

QW

∫
d3rj0(qr)ρW (r), (2)

Fch(q2) = 1

Z

∫
d3rj0(qr)ρch(r). (3)

These are normalized FW (0) = Fch(0) = 1. The charge den-
sity is ρch(r) and Z = ∫

d3rρch(r) is the total charge. Finally,
the weak charge density ρW (r), see Fig. 1, and the total weak
charge QW = ∫

d3rρW (r) are discussed below.
The elastic cross section in the plane wave Born approxi-

mation is

dσ

d�
= Z2α2 cos2

(
θ
2

)
4E2 sin4

(
θ
2

) |Fch(q2)|2, (4)

with θ the scattering angle. However, for a heavy nucleus,
Coulomb-distortion effects must be included [12]. In Fig. 2
we compare the plane-wave cross section, Eq. (4), to the cross
section including Coulomb-distortion effects, see for exam-
ple [17]. Coulomb distortions are seen to fill in the diffraction
minima. However away from these minima distortion effects
on the cross section are relatively small. The cross section
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FIG. 2. (Color online) Differential cross section for 2 GeV elec-
trons elastically scattered from 48Ca versus scattering angle. The
experimental charge density is used for the solid black line including
Coulomb distortions and the dotted blue line in a plane wave impulse
approximation. Finally the dashed red line uses the model FSU
Gold relativistic mean field theory charge density including Coulomb
distortions.

calculated with the charge density from a relativistic mean
field model using the FSU-gold interaction [25], see Fig. 1,
agrees well with the experimental charge density except at the
largest angles.

We now expand the weak density of 48Ca in a Fourier
Bessel series. We truncate this expansion after nmax terms and
assume the weak density ρW (r) is zero for r > Rmax. This
expansion will be model independent if truncation errors are
small:

ρW (r) =
nmax∑
i=1

aij0(qir). (5)

Here qi = iπ/Rmax and j0(x) = sin(x)/x.
To minimize measurement time we would like nmax and

Rmax to be as small as possible while still accurately repre-
senting the full weak density. In this paper we consider

Rmax = 7 fm, (6)

since the weak charge density determined from many density
functionals is small for r > 7 fm. In addition we use

nmax = 6, (7)

because the expansion coefficients ai determined for many
density functional calculations of 48Ca are very small for
i > 6. We determine truncation errors using a model weak
charge density based on the FSU-Gold relativistic mean field
interaction [25], see below. This model density has 1.8 × 10−3

of the weak charge at r > Rmax = 7 fm, and the expansion
coefficients |ai | for i > nmax = 6 are all < 7 × 10−4 fm−3.
This is an order of magnitude or more smaller than the smallest
|ai | for i � nmax.

We now consider determining the six coefficients ai for
i = 1 to 6. In plane wave Born approximation, a given aj can
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be determined from a measurement of Apv(qj ) at momentum
transfer qj = jπ/Rmax. In principle only five measurements
are needed to determine the six ai because the weak density
is normalized to the total weak charge

∫
d3rρW (r) = QW . To

be very conservative we use this normalization condition to
determine a1. If instead we used the normalization to determine
a6, considerably less beam time might be needed for a given
statistical accuracy. However, the resulting density might then
be more sensitive to truncation errors.

Note that in plane wave Born approximation Apv(qj ) is
only sensitive to aj because of the orthogonality of the Fourier
Bessel series. When Coulomb distortions are included Apv(qj )
is still primarily sensitive to aj and only depends very slightly
on the other coefficients. This will be shown in Figs. 4 and 5
in Sec. IV.

We consider a reference weak charge density by calculating
ρW (r) for a realistic model and then expanding the model
density in the Fourier Bessel series. For the model the
expansion coefficients are given by

ai =
∫ Rmax

0 ρW (r)j0(qir)r2 dr∫ Rmax

0 j 2
0 (qir)r2 dr

. (8)

After having determined the weak density distribution, we can
constrain the neutron density ρn(r) in 48Ca since the neutron
density is closely related to the weak density. If one neglects
spin-orbit currents that are discussed in Ref. [26], and other
meson exchange currents [27] one can write

ρW (r) =
∫

d3r ′{4GZ
n (|r − r ′|)ρn(r) + 4GZ

p (|r − r ′|)ρp(r)
}
.

(9)
Here ρp(r) is the proton density and GZ

n (r) and GZ
p (r) are the

Fourier transforms of the neutron and proton single nucleon
weak form factors,

4GZ
n (r) = QnG

p
E(r) + QpGn

E(r) − Gs
E(r), (10)

4GZ
p (r) = QpG

p
E(r) + QnG

n
E(r) − Gs

E(r), (11)

where G
p
E(r) and Gn

E(r) are Fourier transforms of the proton
and neutron electric form factors. They are normalized∫

d3rG
p
E(r) = 1,

∫
d3rGn

E(r) = 0. (12)

Finally Gs
E(r) is the Fourier transform of strange quark

contributions to the nucleon electric form factor [28–31] and
is normalized

∫
d3rGs

E(r) = 0. The weak form factors are
normalized,∫

d3r 4GZ
n (r) = Qn,

∫
d3r 4GZ

p (r) = Qp. (13)

The weak charge of the neutron Qn is −1 at tree level, while
the weak charge of the proton Qp is 1 − 4 sin2 θW at tree level.
Including radiative corrections [32,33] one has

Qn = −0.9878, Qp = 0.0721 . (14)

Finally, the total weak charge of 48Ca is

QW =
∫

d3rρW (r) = NQn + ZQp = −26.216 . (15)

Further radiative corrections, for example from γ − Z box
diagrams [34,35], are not expected to be important compared
to this large value of QW , see also [36].

We emphasize that parity violating experiments can deter-
mine the weak density ρW (r) in a model independent fashion.
This can be compared to theoretical predictions for ρW (r) that
are obtained by folding theoretical nucleon densities ρn(r)
and ρp(r) with single nucleon weak form factors and possibly
including meson exchange current contributions.

III. MOTIVATION

In this section we discuss the information content in the
weak charge density and some of the physics that would be
constrained by measuring ρW (r) with parity violating electron
scattering. First the weak radius Rw = [

∫
d3rr2ρW (r)/QW ]1/2

is closely related to the neutron radius, see for example [21].
This has been extensively discussed.

The surface thickness of ρW (r) can differ from the known
surface thickness of ρch(r) and is expected to be sensitive
to poorly constrained isovector gradient terms in energy
functionals. One way to constrain these gradient terms is
to perform microscopic calculations of pure neutron drops
in artificial external potentials, using two and three neutron
forces. Then one can fit the resulting energies and neutron
density distributions with an energy functional by adjusting
the isovector gradient terms. It may be possible to test
these theoretically constrained isovector gradient terms by
measuring the surface behavior of ρW (r).

Next, the interior value of ρW (r) for small r is closely
related to the interior neutron density. This, when combined
with the known charge density, will finally provide a direct
measurement of the interior baryon density of a medium
mass nucleus. Previously, this has only been extracted in
model dependent ways by fitting a density functional to the
charge density and then using the functional to calculate the
baryon density. This is sensitive to the form of the symmetry
energy contained in the functional. The interior baryon density
is thought to saturate (stay approximately constant) with
increasing mass number A. This saturation density is closely
related to the saturation density of infinite nuclear matter and
insures that nuclear sizes scale approximately with A1/3.

The saturation density of infinite nuclear matter ρ0 ≈
0.16 fm−3 is a very fundamental nuclear property that has
proved difficult to calculate. It is very sensitive to three nucleon
forces and calculations with only two body forces can saturate
at more than twice ρ0. Indeed microscopic calculations that use
phenomenological two nucleon forces fit to nucleon-nucleon
scattering data and phenomenological three nucleon forces
fit to properties of light nuclei may not be able to make
sharp predictions for ρ0 because of unconstrained short range
behavior of the three nucleon forces [37]. As a result these
calculations often do not predict ρ0 but instead fit ρ0 by
adjusting three nucleon force parameters.

Alternatively, chiral effective field theory provides a frame-
work to expand two, three, and four or more nucleon forces
in powers of momentum over a chiral scale. There are now
a growing number of calculations of nuclear matter, see
for example [38,39]. However, at this point it is unclear
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how well the chiral expansion converges for symmetric
matter at nuclear densities and above. There could still be
significant uncertainties from higher order terms in the chiral
expansion and from the dependence of the calculation on the
assumed cutoff parameter and on the form of regulators used.
Furthermore, there are uncertainties in the energy of nuclear
matter that arise from uncertainties in short-range parameters
that are fit to other data. Finally, some higher order terms in
the chiral expansion may be somewhat larger than expected
because of large contributions involving 	 baryons.

In addition to calculations for infinite nuclear matter,
advances in computational techniques have now allowed
improved microscopic calculations directly in finite nuclei.
These calculations can directly test nuclear saturation by
seeing how predictions compare to data as a function of mass
number A. One can test both isoscalar and isovector parts
of these calculations by comparison to both interior charge
and weak charge densities. The interior weak density may be
sensitive to three neutron forces and reproducing it may allow
better predictions for very neutron rich medium mass nuclei
where three neutron forces may also play a very important
role.

Finally we expect shell oscillations in ρW (r). Shell oscilla-
tions have been observed in ρch(r) for a variety of nuclei.
For example there is a small increase in ρch(r) for 208Pb
as r → 0 due to the filling of the 3S proton state. However
observed shell oscillations in ρch are often much smaller than
those predicted in many density functional calculations. Indeed
almost all density functional calculations over predict the small
r bump in ρch(r) for 208Pb, see for example [40]. It may be very
useful to finally have direct information on shell oscillations
for neutrons in addition to protons. This could suggest changes
in the form of the density functionals that are used that would
correct the shell oscillations.

We conclude this section. A model independent determi-
nation of ρW (r) and features of the neutron density including
surface thickens, central value, and shell oscillations address
a number of important current problems in nuclear physics.
Together with ρch(r) they will literally provide a detailed
picture of where the neutrons and protons are in an atomic
nucleus.

IV. SAMPLE EXPERIMENT

In this section we evaluate the statistical error for the
measurement of the weak charge density of 48Ca in a sample
experiment. As an example we consider measuring Apv at
five q2 points during a single run in Hall A at Jefferson
Laboratory. The total measurement time for all five of the
points is assumed to be 60 d. The experimental parameters
including beam current I , beam polarization P , detector solid
angle 	�, number of arms N , and the radiation loss factor
ζ are assumed to be similar to the CREX experiment [23]
and are listed in Table I, see also Ref. [41]. This example
provides a conservative baseline for the final statistical error.
Measuring some (or all) of the points at other laboratories
such as Mainz, or combining data from other experiments
could significantly reduce the statistical error. For example if
the CREX experiment is run first and provides a very accurate

TABLE I. Assumed experimental parameters including beam
current I , beam polarization P , target thickness ρtar, detector solid
angle 	�, number of arms N , and radiation loss factor ζ .

Parameter value

I 150 μA
P 0.9
ρtar 2.4 × 1022 cm−2

	� 0.0037 Sr
N 2
ζ 0.34

low q2 point, then that information could be used to reduce
the number of future measurements needed to determine the
full weak density. We emphasize that in this section we only
present statistical errors. Of course any real experiment will
also have systematic errors that we discuss briefly at the end
of this section.

We calculate the statistical error in the determination of the
Fourier Bessel coefficients ai of the weak density. The total
number of electrons detected Ntot in a measurement time Ti is

Ntot = ITiρtar
dσ

d�
ζ	�N . (16)

The statistical error in the determination of ai is 	ai ,

	ai

ai

= (
NtotApv(qi)

2P 2εi
2)− 1

2 . (17)

Here εi is the sensitivity of Apv to a change in ai and is defined
as

εi = ∂ ln Apv(qi)

∂ ln ai

= ai

Apv

∂Apv

∂ai

. (18)

In plane wave Born approximation εi = 1 and including
Coulomb distortions one still has εi ≈ 1, see Figs. 4 and 5.

Our reference weak charge density ρW (r) for 48Ca is the
Fourier Bessel expansion of a relativistic mean field theory
model using the FSU-Gold interaction, see Fig. 1. The Fourier
Bessel coefficients determined from Eq. (8) are listed in
Table II. This model yields a charge density for 48Ca that

TABLE II. The momentum transfer qi , beam energy E, cross
section, parity violating asymmetry Apv , measurement time T ,
Fourier Bessel expansion coefficient ai of the weak charge density
as determined for the FSU-Gold relativistic mean field model,
and fractional statistical error 	ai/ai . Note that the error in a1 is
determined by normalizing the weak charge density to the total weak
charge QW .

qi E dσ
d�

Apv T ai 	ai/ai

fm−1 GeV mb ppm days fm−3 %

0.45 0.0752 1.1
0.90 2.06 2.44 2.54 5 0.0468 5.9
1.35 3.09 1.07 × 10−1 8.31 7 −0.0438 7.6
1.80 4 2.9 × 10−3 9.92 10 −0.0147 27
2.24 4 4.05 × 10−4 22.5 15 0.0161 29
2.69 4 9.7 × 10−6 36.5 23 0.0066 90
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FIG. 3. (Color online) Parity violating asymmetry Apv for 2 GeV
electrons elastically scattered from 48Ca versus scattering angle. The
dashed red line is based on the weak and charge densities from the
FSU-Gold relativistic mean field model. The solid black line uses the
experimental charge density from Ref. [1] and the FSU-Gold weak
density.

agrees well with the experimental charge density from Ref. [1]
except in the central region as shown in Fig. 1.

It is crucial to use a very accurate charge density in the
determination of the weak charge density. In Fig. 3 we show
Apv calculated with the same reference weak density but with
the FSU-Gold model or the experimental charge density. There
is a significant difference at large momentum transfers. Note
both curves include Coulomb distortions. In the following
we will always include Coulomb distortions using the code
ELASTIC [12] and use the full experimental charge density.
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FIG. 4. (Color online) Parity violating asymmetry Apv for 2 GeV
electrons elastically scattered from 48Ca versus scattering angle. The
solid black line shows the asymmetry curve based on the charge
density from Ref. [1] and the FSU-Gold weak density. The red dotted,
green dashed, and blue dot-dashed curves show Apv when a2, a3, and
a4 have been varied one at a time by 10%, respectively. The arrows
show the momentum transfers qi for i = 2,3, and 4.
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FIG. 5. (Color online) As per Fig. 4 but for larger scattering
angles. The arrows show qi for i = 4,5, and 6.

We now consider five measurements of Apv(qi) at momen-
tum transfers qi for i = 2 to 6. In general one may be able to
improve statistics, for a given qi , by going to a more forward
angle and higher beam energy. We somewhat arbitrarily restrict
the scattering angle to be at least five degrees, since this
is the scattering angle for the septum magnet of the PREX
experiment. We also limit the beam energy to no more than
4 GeV as a possible restriction from the HRS spectrometers
in Hall A. Thus we consider five measurements with the
kinematics in Table II.

The statistical error in the total weak charge density ρW (r)
is the quadratic combination of the errors for the six Fourier
Bessel terms. Note that the statistical errors 	ai for different
i are independent:

	ρweak(r) =
{

nmax∑
i=1

[	aij0(qir)]2

} 1
2

. (19)

The individual errors 	ai depend on the time Ti spent
measuring Apv(qi) at momentum transfer qi . As a simple
example we optimize the individual Ti , subject to a constraint
on the total measurement time

6∑
i=2

Ti = 60 d, (20)

in order to minimize the statistical error in ρW (0) at r =
0. Note that the error in a1 is calculated by using the
normalization condition

∫
ρW (r)d3r = QW . The individual Ti

and the fractional errors in each of the 	ai are listed in Table II.
Table II shows that most of the time is spent measuring the

highest momentum transfer points. This is because the cross
section falls so rapidly with increasing q. One alternative, to
this model independent approach, would be to constrain the
higher i coefficients ai from theory and only measure Apv for
smaller momentum transfers. This could significantly reduce
the run time and the statistical error.

Figure 6 shows the statistical error in the weak density
ρW (r) as a function of radius r . The error in ρW is largest
for small r and gradually decreases as r increases. Thus it is
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FIG. 6. (Color online) Weak charge density ρW (r) of 48Ca versus
radius r . The black solid line is the reference FSU-Gold weak density
and the black dotted lines show the statistical error band that could be
obtained by measuring Apv at five specific momentum transfers with
a total running time of 60 d, see text. The dashed red line shows the
experimental (electromagnetic) charge density [1].

most difficult to determine ρW (r) near the origin. There may
be several ways to decrease the error band in Fig. 6. One
could measure with higher beam currents and or with larger
acceptance spectrometers. Alternatively, one could measure
for a larger time either as one extended experiment or by
combining experiments that each focus on only some of the qi

points.
We now discuss systematic errors. Because it is so difficult

to get good statistics for large q, the higher i coefficients
ai may only be determined with somewhat large statistical
errors 	ai/ai . As a result many systematic errors such as
determining the absolute beam polarization or from helicity
correlated beam properties may be less important. Instead
backgrounds, from for example electrons that scatter from
collimators used to define the acceptance, could be important
because the elastic cross section is small (at higher q).

We have focused on 48Ca. Determining the full ρW (r)
for a significantly heavier nucleus such as 208Pb may be
dramatically harder. This is because more Fourier Bessel

coefficients will likely be needed and because the cross section
drops extremely rapidly with increasing q. Thus it may be very
hard to measure Apv , at high enough q, in order to directly
determine the weak density in the center of 208Pb.

V. CONCLUSIONS

The ground state neutron density of a medium mass nucleus
contains fundamental nuclear structure information and it is
at present relatively poorly known. In this paper we explored
if parity violating elastic electron scattering can determine
not just the neutron radius, but the entire radial form of
the neutron density ρn(r) or weak charge density ρW (r) in
a model independent way. We expanded the weak charge
density ρW (r) in a model independent Fourier Bessel series.
For the medium mass neutron rich nucleus 48Ca, we find that
a practical parity-violating experiment could determine about
six Fourier Bessel coefficients ai and thus deduce the full
radial structure of both ρW (r) and the neutron density ρn(r).
The resulting ρW (r) will contain fundamental information on
the size, surface thickness, shell oscillations, and saturation
density of the neutron distribution.

Future work could optimize our model experiment to
further reduce the statistical errors by for example using
large acceptance detectors and combining information from
multiple experiments and or laboratories. Future theoretical
work exploring the range of weak charge densities to be
expected with reasonable models and microscopic calculations
would also be very useful. The measured ρW (r), combined
with the previously known charge density ρch(r), will literally
provide a detailed textbook picture of where the neutrons and
protons are located in an atomic nucleus.
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