
PHYSICAL REVIEW C 92, 014312 (2015)

Spectroscopy of quadrupole and octupole states in rare-earth nuclei from a Gogny force

K. Nomura,1 R. Rodrı́guez-Guzmán,2 and L. M. Robledo3
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Collective quadrupole and octupole states are described in a series of Sm and Gd isotopes within the framework
of the interacting boson model (IBM), whose Hamiltonian parameters are deduced from mean-field calculations
with the Gogny energy density functional. The link between both frameworks is the (β2β3) potential energy surface
computed within the Hartree-Fock-Bogoliubov framework in the case of the Gogny force. The diagonalization of
the IBM Hamiltonian provides excitation energies and transition strengths of an assorted set of states including
both positive- and negative-parity states. The resultant spectroscopic properties are compared with the available
experimental data and also with the results of the configuration mixing calculations with the Gogny force
within the generator coordinate method (GCM). The structure of excited 0+ states and its connection with
double-octupole phonons is also addressed. The model is shown to describe the empirical trend of the low-energy
quadrupole and octupole collective structure fairly well and turns out to be consistent with GCM results obtained
with the Gogny force.
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I. INTRODUCTION

The study of the equilibrium shapes and the corresponding
excitation spectra of atomic nuclei is one of the recurrent
themes in nuclear structure physics. Most of the deformed
medium-heavy and heavy nuclei exhibit reflection-symmetric
ground states. However, in some regions of the nuclear chart,
there is an onset of reflection-asymmetric shapes driven by
specific shell effects. In quadrupole deformed nuclei, a charac-
teristic feature of octupole deformation is the alternating-parity
rotational band formed by the even-spin positive parity states
and alternating odd-spin negative-parity states, connected with
each other by enhanced electric dipole transitions [1].

In the framework of the spherical shell model, octupolarity
arises as a result of the coupling between the (l,j ) orbitals in a
major shell and the unique-parity (l + 3,j + 3) intruders from
the next major shell. Within this context, illustrative examples
are the rare-earth nuclei with the proton number Z ≈ 56 and
the neutron number N ≈ 88, as well as the light actinides with
Z ≈ 88 and N ≈ 134. In the light actinides case, the coupling
of both neutron (i.e., 1g9/2 and 0j15/2) and proton (i.e., 1f7/2

and 0i13/2) single-particle states leads to octupole deformed
ground states [1,2]. A recent Coulomb excitation study has
revealed, for the first time, unambiguous evidences of static
octupole deformation in 224Ra [3].

In this work, we study the impact of octupole correlations
on the ground state and the associated low-lying collective
spectra of the nuclei 146–156Sm and 148–158Gd. We consider
both quadrupole and octupole degrees of freedom. The selected
nuclei belong to a region of the nuclear chart where octupole
correlations are expected to play an important role and, there-
fore, represent a valuable testing ground for the considered the-
oretical approximations. Indeed, the experimental observation
of octupole correlations at medium spin, as well as the crossing
of the octupole and the ground-state bands, point to the
coexistence of reflection symmetric and asymmetric structures

in both 150Sm [4] and 148Sm [5]. From the experimental
point of view, four low-lying negative-parity bands have
already been identified in 152Sm [6]. The emerging pattern
of excitations suggests a complex shape coexistence in this
nucleus. Moreover, the nucleus 152Sm has been identified [7]
as an example of the X(5) critical point symmetry [8]. The
nature of many low-lying excited 0+ states in rare-earth nuclei
has also attracted much attention. For example, 13 excited
0+ states have already been identified for 158Gd [9]. Within
the spdf -IBM framework (where IBM stands for interacting
boson model), many of the observed 0+ states have been
attributed to the coupling of two octupole phonons [10].

Keeping in mind the experimental findings mentioned
above, it is interesting and timely to consider a systematic
analysis of the quadrupole-octupole collectivity in rare-earth
nuclei. The breaking of reflection symmetry and the associated
low-lying negative-parity states have been addressed using
various theoretical frameworks: self-consistent mean-field
[11–20], algebraic [21–25], collective phenomenological
[26–33], and cluster [34–36] models. A large number of
calculations for nuclei with static and/or dynamical octupole
deformations have already been reported [12,14–20,37–39].
In particular, the nuclear energy density functional (EDF)
framework, both at the mean-field level and beyond, pro-
vides a reasonably accurate description of the properties of
the negative- and positive-parity states all over the nuclear
chart [40]. Both nonrelativistic [41–43] and relativistic [44,45]
EDFs have already been applied in both mean-field and
beyond-mean-field studies of medium-heavy- and heavy-mass
nuclei. The description of the excitation spectra and transition
rates requires the inclusion of dynamical (i.e., beyond mean-
field) correlations associated with the restoration of the broken
symmetries and/or fluctuations in the collective parameters
(i.e., generating coordinates) [19,20,40,46]. Within this con-
text, the projection of the intrinsic (i.e., symmetry-broken)
states onto good-parity ones as well as the corresponding
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configuration mixing, in the spirit of the two-dimensional gen-
erator coordinate method (GCM) [47], have been considered
recently for nuclei in the rare-earth region using the quadrupole
Q20 and octupole Q30 moments as generating coordinates [19].
For recent GCM study, based on Q30-constrained mean-field
states, the reader is also referred to Ref. [48].

In this work we first carry out (Q20,Q30)-constrained
Hartree-Fock-Bogoliubov (HFB) calculations based on the
Gogny-EDF [43]. Such calculations provide us with the
corresponding (axially symmetric) mean-field potential energy
surfaces (PESs). Subsequently, to obtain the spectrum and
wave functions of the excited states, we employ the interacting
boson model (IBM) [49]. The essence of our method is to
determine the parameters of an appropriate IBM Hamiltonian
by calculating the associated bosonic PES so that it matches
the Gogny-HFB PES. The IBM Hamiltonian resulting from
our fermion-to-boson mapping procedure is then used in
spectroscopic calculations. A similar mapping has been used
in previous studies of low-lying quadrupole states [50–52]
and shape coexistence [53]. Recently, the method [49] has
been extended to describe quadrupole-octupole correlations
and shape transitions in the light actinide and rare-earth
regions [54,55] based on the relativistic DD-PC1 EDF.

The same Gogny-EDF can be used along with beyond-
mean-field techniques to restore the broken reflection
symmetry and compute the properties of the lowest-lying
negative-parity state. The excitation energy and transition
strengths, when compared with the IBM numbers, can be
used as a benchmark to test the consistency of the mapping
procedure. Therefore, one of the goals of this study is to
assess the fermion-to-boson mapping methodology in the
description of spectroscopic properties in rare-earth nuclei.
We compare the IBM spectra and transition rates with previous
Gogny-GCM calculations for the same Sm and Gd nuclei [19],
as well as with available experimental data. Here we also
refer the reader to the previous IBM study based on the
relativistic mean-field (RMF) approximation [55]. We have
used the D1M [56] parametrization of the Gogny-EDF, which
was originally designed to better describe nuclear masses.
It has been shown [19,57–60] that the D1M parameter set
essentially retains the same predictive power as the standard
and thoroughly tested Gogny-D1S [61] one. We have also
performed a selected set of calculations based on the D1S
parametrization to examine the robustness of our predictions
with respect to the particular version of the Gogny-EDF
employed. However, as the corresponding HFB [19] and IBM
results are quite similar, in the present paper we only focus on
calculations based on the D1M parameter set.

The paper is organized as follows. In Sec. II, we briefly
outline the HFB-to-IBM mapping procedure. Next, in Sec. III,
we discuss the systematics of the (β20,β30) [62] PESs ob-
tained for the considered nuclei, as well as the parameters
of the IBM Hamiltonian. The results of the spectroscopic
calculations are discussed in Sec. IV. First, in Sec. IV A,
we present the systematics of the low-energy spectra and the
reduced transition probabilities in 146–156Sm and 148–158Gd.
We compare with available experimental data as well as with
results obtained within the Gogny-GCM approximation [19].
Next, in Sec. IV B we further illustrate the predictive power

of the mapped IBM model with a detailed discussion of the
spectroscopic properties for 150Sm (a soft nucleus along the
quadrupole and octupole directions) and 158Gd (a strongly
quadrupole deformed nucleus). To obtain some insight into
the nature of the excited 0+ states in the studied nuclei,
their systematics is discussed in Sec. IV C. In Sec. IV D,
we discuss the IBM correlation energies and compare them
with Gogny-GCM results. Finally, Sec. V is devoted to some
concluding remarks and work perspectives.

II. FRAMEWORK

In this section we briefly outline the HFB-to-IBM mapping
scheme [55]. Our starting point is a set of axially symmetric
(Q20,Q30)-constrained Gogny-HFB calculations [19]. They
provide us with the corresponding mean-field potential energy
surfaces (MFPESs) and the HFB states |�(Q20,Q30)〉 for
the nuclei 146–156Sm and 148–158Gd. For simplicity, both the
quadrupole Q20 and the octupole Q30 moments are then
translated into the standard β2 and β3 mean-field deformation
parameters.

Subsequently, the MFPESs obtained are mapped into their
bosonic counterparts, i.e., the IBM potential energy surfaces
(IBMPESs). This procedure allows us to determine the
parameters of the IBM Hamiltonian used in the spectroscopic
calculations. The IBM Hamiltonian is converted into a PES by
means of a set of coherent bosonic states and this IBMPES is
what is used to match the Gogny-HFB PES [55]. Note that the
MFPESs correspond to the total HFB energies; i.e., neither
mass parameters nor zero-point (rotational and/or vibrational)
quantum corrections are included.

The description of the quadrupole and octupole deforma-
tions as well as the positive- and negative-parity states within
the IBM framework requires both positive- and negative-parity
bosons. Here one assumes that the low-lying positive-parity
states are reasonably well described by the pairs of valence
nucleons associated with the s and d bosons, respectively.
However, negative-parity states are assumed to be described
by the coupling to octupole f bosons [63]. Therefore, our
entire IBM model space comprises the s, d, and f bosons. For
simplicity, we do not distinguish between proton and neutron
bosons. A more complete description of the low-energy
collective states would require the inclusion of the dipole p
boson that could be associated with the spurious center-of-
mass motion [22] or to the giant dipole resonance [64]. This,
however, lies out of the scope of the present paper and is left
for future work.

The sdf Hamiltonian used is given by

Ĥ = εd n̂d + εf n̂f + κ2Q̂2 · Q̂2 + κ ′
2L̂d · L̂d + κ3Q̂3 · Q̂3, (1)

where the first (second) term stands for the number operator
for the d (f ) bosons with εd (εf ) being the single d (f ) boson
energy relative to the s boson one. The third term represents
the quadrupole-quadrupole interaction with strength κ2. The
quadrupole operator is given as

Q̂2 = s†d̃ + d†s̃ + χdd [d† × d̃](2) + χff [f † × f̃ ](2), (2)

where χdd and χff are parameters. The fourth term in Eq. (1)
is the rotational one relevant for the sd space. In this case, the
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angular momentum operator L̂d reads

L̂d =
√

10[d† × d̃](1). (3)

The last term in Eq. (1) is the octupole-octupole interaction
with the strength parameter κ3. The octupole operator takes
the form

Q̂3 = s†f̃ + f †s̃ + χdf [d† × f̃ + f † × d̃](2), (4)

with χdf being a parameter.
Note that Eq. (1) does not represent the most general form

for the sdf Hamiltonian. The present form has already been
used in previous phenomenological IBM studies which have
confirmed its suitability to describe the available experimental
data. The Hamiltonian Ĥ IBM of Eq. (1) can be derived from a
microscopic octupole-octupole interaction between proton and
neutron bosons by mapping the totally symmetric state in the
IBM-2 space onto the equivalent one in the IBM-1 space [65].
We neglect the dipole-dipole interaction term L̂d · L̂f (with
L̂f = √

28[d† × f̃ ](1)), because it has been shown [25] to be
of little relevance for low-energy states.

The IBMPES is calculated as the expectation value of the
Hamiltonian Eq. (1) in the boson condensate state |φ〉 [66]

|φ〉= 1√
NB

(λ†)NB |−〉 with λ† = s† + β̄2d
†
0 + β̄3f

†
0 , (5)

where NB(=ns + nd + nf ) and |−〉 denote the total number of
bosons (i.e., half the number of valence nucleons [63]) and the
inert core, respectively. In the present study, the doubly magic
nucleus 132Sn is assumed to be the inert core. Therefore, NB

runs from 6 to 12 (7 to 13) in 146–156Sm ( 148–158Gd). For
the quadrupole case (λ = 2) the bosonic β̄2 and fermionic β2

deformations can be related as β̃2 = C2β2 [66], with C2 being
a coefficient. Here, as in previous works [54,55], we assume
that β̃3 = C3β3, with C3 being an additional coefficient.

To reduce the computational effort, it has been customary
in many of the previous phenomenological IBM calculations
to restrict the maximum number of f bosons to nmax

f = 1
in the diagonalization of the IBM Hamiltonian. However, as
shown in the next section, the microscopic PESs may exhibit
a sizable ground-state octupole deformation, which requires a
larger number of f bosons in our IBM calculations. Therefore,
both positive- and negative-parity bosons are treated on an
equal footing. As a consequence, a truncation on nmax

f is not
used and the number of f bosons can run from 0 to NB . This
also holds true for the s and d bosons. Let us also mention
that previous phenomenological studies (e.g., [67,68]) have
also suggested the need for more negative-parity bosons for a
better description of the experimental data.

The analytic IBMPES reads

E(β̄2,β̄3) = NB

1 + β̄2
2 + β̄2

3

(
ε′
s + ε′

d β̄
2
2 + ε′

f β̄2
3

) + NB(NB−1)(
1+β̄2

2+β̄2
3

)2

×
[
κ2

(
2β̄2 −

√
2

7
χddβ̄

2
2 − 2√

21
χff β̄2

3

)2

− 4κ3

(
β̄3 − 2√

15
χdf β̄2β̄3

)2]
, (6)

with

ε′
s = 5κ2 − 7κ3, ε′

d = εd + 6κ ′
2 + (

1 + χ2
dd

)
κ2 − 7

5χ2
df κ3,

and ε′
f = εf − 5

7
χ2

ff κ2 + (
1 + χ2

df

)
κ3. (7)

The IBMPES E(β̄2,β̄3) is specified by the parameters of
the Hamiltonian in Eq. (1) plus the coefficients C2 and C3.
We have determined those parameters by fitting the IBMPESs
to the Gogny-D1M MFPESs using the same procedure as
in Ref. [50]. Let us remark that, even though a simplified
Hamiltonian Eq. (1) is considered, there is still a larger number
of parameters to be determined, as compared to the sd-IBM
system. Therefore, rather than trying to fit all the parameters
at once, we first determine the ones relevant for the sd space
(εd , κ2, χdd , C2, and κ ′

2) and then those associated with the f
space as well as the ones associated with the coupling between
the two spaces (εf , κ3, χff , χdf , and C3). The L̂d · L̂d term
in Eq. (1) does not contribute to the PESs, and therefore
its strength κ ′

2 is determined independently by comparing
the fermionic and bosonic cranking moment of inertia (see
Ref. [51] for details). The (fermionic) Thouless-Valatin [69]
moment of inertia for the 2+

1 state reads

ITV = 3/Eγ . (8)

where Eγ stands for the 2+
1 excitation energy obtained from

the self-consistent cranking calculation with the constraint
〈Ĵx〉 = √

J (J + 1), where Ĵx represents the x component of
the angular momentum operator. However, the IBM moment
of inertia is computed using the coherent state |φ(β,γ )〉 and
the Schaaser-Brink [70] expression

IIBM = lim
ω→∞

1

ω

〈φ(β,γ )|L̂x |φ(β,γ )〉
〈φ(β,γ )|φ(β,γ )〉 , (9)

with ω being the cranking frequency.
Having the parameters ε′

d (=εd − 6κ ′
2), κ2, χdd , and C2

already determined from the fit of the IBMPES to the MFPES
in the sd space, the IBM moment of inertia in Eq. (9) depends
only in the parameter κ ′

2, whose value is determined so that
IIBM is equal to the ITV value at the energy minimum.

From the diagonalization of the sdf -IBM Hamiltonian,
we have obtained both the energies and the wave functions
of the spectrum, which are labeled by total spin and parity
quantum numbers. We have used the computer program
OCTUPOLE [71]. The reduced electromagnetic transition prob-
abilities B(Eλ; J → J ′) = |〈J ′||T̂ (Eλ)||J 〉|2/(2J + 1) (λ =
1,2,3) are then computed using the resulting IBM wave
functions. Here J (J ′) denotes the spin for the initial (final)
state. Of particular interest for the present study are the dipole
E1, quadrupole E2, and octupole E3 transition probabilities
defined in terms of the operators

T (E1) = e1[d† × f̃ + d† × f̃ ](1), (10)

T (E2) = e2Q̂2, (11)

T (E3) = e3Q̂3, (12)

where Q̂2 and Q̂3 are the quadrupole and octupole operators,
respectively, appearing in the IBM Hamiltonian and eλ’s
are boson effective charges which are kept constant for all
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the considered nuclei. Their values are taken from previous
phenomenological IBM studies (e1 = 0.01 eb1/2 [68], e2 =
0.13 eb [68], and e3 = 0.099 eb3/2 [23]). It has been shown
that they provide a reasonable overall description of the
experimental data. However, they are not the ones derived
microscopically. Therefore, in the following discussions, one
should always keep in mind that there is some extra freedom
in the overall scale of the calculated IBM transitions.

III. MEAN-FIELD POTENTIAL ENERGY SURFACES AND
THE PARAMETERS OF THE IBM HAMILTONIAN

In this section, we discuss the systematics of the MFPESs
and IBMPESs as well as the parameters of the IBM Hamilto-
nian obtained along the lines described in Sec. II.

The axially symmetric Gogny-D1M MFPESs are shown in
Fig. 1 for 146−156Sm and 148−158Gd. The MFPESs of some of
the Sm isotopes have already been presented in Ref. [19] as
illustrative examples. However, for the sake of completeness,
in the figure we have included all the MFPESs both for Sm and
Gd nuclei. For the sake of presentation, the plots in the figure
correspond to −0.3 � β2 � 0.5 and 0.0 � β3 � 0.2, as well
as to an energy range of 5 MeV from the absolute minimum.
We have tested that the previous ranges are enough to describe
the considered low-energy collective states and used them to
build our IBM Hamiltonian.

A spherical reflection-symmetric ground state is predicted
for the nuclei 146Sm [panel (a)] and 148Gd [panel (g)],
respectively. However, the MFPESs become soft for isotopes
with neutron numbers N = 86 and 88, indicating that the

Gogny-HFB approximation can only be considered as a
valuable starting point in such nuclei but beyond-mean-field
correlations should be taken into account [19]. Moreover, the
N = 88 isotopes exhibit the softest MFPESs with a shallow
minimum at a nonzero β3 value. One also sees that the
MFPESs become steeper along the β3 direction for isotopes
with N � 90. Similar trends have been found up to N = 88
in previous RMF calculations [37,55], based on the EDFs
PK1 [72] and DD-PC1 [73], respectively. However, in those
calculations, the octupole minima are more pronounced than
ours. In fact, the previous study with the relativistic functional
DD-PC1 [55] suggested that the PES is much softer along
the β3 direction. The same trend was found for isotopes with
N � 90.

As discussed in Ref. [19], there is no essential difference
between the overall topology of the MFPESs obtained with
the Gogny-D1M and Gogny-D1S EDFs. However, at a
quantitative level, the latter provides MFPESs with slightly
deeper absolute minima than the former. Nevertheless, such a
difference turns out to be too small to significantly affect either
the IBM parameters or the energies and wave functions of the
excited states. With this in mind, in what follows only results
based on the Gogny-D1M EDF are discussed.

In Fig. 2 we have depicted the (mapped) IBMPESs. First,
we observe that they are much flatter than the HFB MFPESs
(see Fig. 1). This is a common feature of the IBM framework
already found in previous studies [49,50]. The reason is that
IBM’s model space is rather limited and only comprises
pairs of valence nucleons. This leads to flat IBMPESs for
larger deformations. However, one should keep in mind that

FIG. 1. (Color online) Axially symmetric (β2, β3) PESs for the nuclei 146–156Sm and 148–158Gd calculated within the constrained Gogny-HFB
approach based on the D1M parametrization. The contour lines join points with the same energy (in MeV) and the color scale varies in steps
of 100 keV. The energy difference between neighboring contours is 0.5 MeV. These (β2,β3) energy surfaces are symmetric with respect to the
β3 = 0 axis. Thus, they are only plotted for β3 � 0. For each nucleus the absolute minimum is identified by an open circle.
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FIG. 2. (Color online) The same as Fig. 1 but for the mapped IBM PESs.

within the considered fermion-to-boson mapping, the topology
far away from the absolute minimum is not relevant as
long as we restrict our analysis to the low-lying collective
states. Hence, we only focus on reproducing the curvatures
of the Gogny-D1M MFPESs in the neighborhood (a 5-MeV
window) of the absolute minimum, along both the β2 and β3

directions.
Second, we note that, for N = 86 and 88 isotopes, the

MFPES predicts a shallow absolute minimum at nonzero
β3 values (Fig. 1), while in the corresponding IBMPES the
absolute minimum is found at β3 = 0 (Fig. 2). However, as
the depth of this absolute minimum in the MFPESs differs by
at most tens of keVs from the saddle point on the β3 = 0 axis,
we assume that the discrepancy of the absolute minimum point,
which is not deep enough in energy, between the MFPES and
the IBMPES is not of crucial importance for the final result.

Bearing those in mind, the IBMPESs in Fig. 2 closely
follow, for each of the considered nuclei, the basic topology as
well as the overall systematic trend of the Gogny-HFB ones
shown in Fig. 1.

In Fig. 3, the IBM parameters for the considered Sm and
Gd nuclei are plotted as functions of neutron number. As can
be observed in panels (a) and (b), the single d (εd ) and f
(εf ) boson energies decrease as functions of neutron number.
From a microscopic point of view, as already discussed in
the context of the sd-IBM-2 [63,74,75] model, the decrease
of εd could be related to the coupling of the unperturbed d
boson with other types of bosons not yet explicitly included
in the model space. Alternatively, when one derives the form
of the IBM Hamiltonian in Eq. (1) from a general sdf -IBM
Hamiltonian, several two-body terms of the general IBM
Hamiltonian, which are reduced to the kinetic energies of d
and f bosons multiplied with the boson-number-dependent

factors, are absorbed in εd and εf , thereby making the
parameters vary significantly with boson number [76].

The coupling strength of the quadrupole-quadrupole inter-
action κ2, shown in panel (c), is almost constant. A similar
trend has been found in the IBM study based on the RMF
approximation [55]. A sudden change is observed in the
parameter χff , plotted in panel (d), around N = 88 and is
correlated with the significant change observed in the MFPESs
(see Fig. 1). However, at variance with our previous sd-IBM
study in the same mass region [50], the parameter χdd [panel
(e)] is rather constant. Compared to the quadrupole-quadrupole
coupling κ2 [panel (c)], the strength of the octupole-octupole
interaction κ3 [panel (f)] exhibits a gradual decrease with
increasing neutron number.

In panel (g) of the same figure, we have plotted the strength
κ ′

2 of the L̂d · L̂d term Eq. (1). Its negative value, for all the
studied nuclei, leads to the lowering of the positive-parity yrast
states [51]. Note that κ ′

2 is not considered for the spherical
nuclei 146Sm and 148Gd. As shown below, the experimental
spectra for these nuclei do not exhibit a rotational-like structure
and, therefore, there is no obvious reason for introducing the
L̂d · L̂d term in the corresponding calculations. The parameters
χdf [panel (h)] exhibit a pronounced isotopic dependence
with a maximum around N = 88–90 which correlates well
with the octupole softness of the MFPESs around the same
neutron numbers. Both the C2 [panel (i)] and the C3 [panel (j)]
coefficients change smoothly with neutron number [55].

IV. SPECTROSCOPIC CALCULATIONS

In this section, we discuss the results of the calculations
with the IBM Hamiltonian for 146–156Sm and 148–158Gd. First,
in Sec. IV A, the systematics of the low-energy spectra and the
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FIG. 3. (Color online) The parameters of the sdf -IBM Hamiltonian Ĥ in Eq. (1), as well as the proportionality coefficients C2 and C3, are
plotted as functions of the neutron number for the considered nuclei. The parameters χdd , χff , χdf , C2, and C3 are are dimensionless.

reduced transition probabilities in 146–156Sm and 148–158Gd is
addressed. Next, in Sec. IV B, the spectroscopic properties
predicted for the nuclei 150Sm and 158Gd are discussed in
detail. The systematics of the excited 0+ states is presented
in Sec. IV C. Finally, in Sec. IV D, ground-state correlation
energies are discussed.

A. Systematics of the low-energy spectra and the reduced
transition probabilities in 146–156Sm and 148–158Gd

In Figs. 4 and 5 the low-energy positive- and negative-parity
yrast states, as calculated with the mapped sdf -IBM Hamil-
tonian are plotted for the nuclei 146–156Sm and 148–158Gd.
The theoretical results are compared with the available
experimental data taken from the NNDC compilation [77].
Because our predictions for Sm [panels (a) and (b)] and Gd
[panels (c) and (d)] isotopes are rather similar, we mainly
discuss the former.

The lowering of the energies with increasing neutron
number N is consistent with a shape transition (see Fig. 1)
to a strongly quadrupole deformed configurations. Indeed,
the ratios R4/2 ≡ E(4+

1 )/E(2+
1 ) = 2.33 and 2.38 obtained for

146,148Sm are both close to the vibrational limit, while the the-
oretical (experimental) R4/2 values for the transitional nuclei
150,152Sm are 2.82 (2.31) and 2.91 (3.01), respectively. Our
calculations predict a more pronounced rotational character
for 150Sm than expected from the experiment. However, it is
remarkable that the R4/2 value for the 152Sm is exactly the same
as the X(5) one [8]. For the heavier isotopes, our IBM calcula-
tions predict well-developed rotational bands. For example, in

FIG. 4. (Color online) The energy spectra of the lowest-lying
even-spin positive-parity states up to J π = 10+ for the considered
Sm and Gd isotopes. All the experimental data are taken from the
NNDC compilation [77].
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FIG. 5. (Color online) The same as in Fig. 4, but for the lowest-
lying odd-spin negative-parity states up to J π = 9−.

the case of 154,156Sm, we have obtained the ratios R4/2 = 3.21
and 3.25, respectively. The theoretical results agree reasonably
well with the experimental ones except for the lightest isotopes
where the energies of the higher spin states are overestimated.
The reason for the overestimation could be the too-restricted
model space and/or Hamiltonian of the IBM that is not rich
enough to reproduce the peculiar topology of the Gogny-EDF
MFPES for the lightest isotopes. We recall that the L̂d · L̂d

term is not included in 146Sm and 148Gd because it is of little
importance for these spherical nuclei [51]. One could introduce
this term phenomenologically to fix the overestimation, which
is, however, out of scope of the present work.

The Jπ = 1−, . . . ,9− states, plotted in Fig. 5, display
features characteristic of the octupole collectivity. With an
exception made for the 3− states, their excitation energies
decrease sharply for 84 � N � 90. At variance with the
experimental data, the theoretical excitation energies increase
for N > 90, which correlates well with the diminishing of the
octupole minimum depth observed in the MFPESs (see Fig. 1).
In both isotopic chains, the 3−

1 state is lower in energy than the
1−

1 one. We have also found a near degeneracy for the 1−
1 and

the 5−
1 states for N � 88–90. This octupole vibrational feature

becomes more apparent for the lighter isotopes.
In Fig. 6, we have compared the excitation energies of the

lowest 1−
1 states with the ones obtained in the framework of a

two-dimensional GCM calculations [19] also with the Gogny-
D1M EDF. The predicted IBM and GCM values are quite
similar for 84 � N � 88. In the case of the Sm isotopes both
the GCM and IBM excitation energies increase with increasing
neutron number though the former exhibit a more pronounced
change than the latter. Similar results are obtained for Gd
isotopes, with an exception made for the fact that the smallest

FIG. 6. (Color online) The excitation energies of the 1−
1 states

predicted with the mapped IBM Hamiltonian are compared with
the ones obtained in the framework of two-dimensional GCM
calculations [19] for Sm (a) and Gd (b) nuclei. In both methods,
the Gogny-D1M parametrization has been used. The experimental
energy levels are also included in the figure.

1− excitation energy is found at N = 88 (N = 90) in the GCM
(IBM) calculations.

We have studied the quantity

S(J ) = [E(J + 1) − E(J )] − [E(J ) − E(J − 1)]

E(2+
1 )

, (13)

which is sensitive to the splitting between the positive- and
negative-parity members of a rotational band. In Eq. (13), E(J )
stands for the excitation energy of the J = 0+,1−,2+,3−, . . .
state. Note that, for an ideal alternating-parity band, we would
obtain an equal energy splitting between the positive- and
negative-parity states differing by �J = 1. This, in turn, would
lead to S(J ) ≈ 0. However, a nonzero S(J ) value indicates a
deviation from a pure alternating-parity band.

In Fig. 7 we have plotted S(J ), as a function of the spin J ,
for 150,152,156 Sm which are taken as representative examples.
The experimental data for 150Sm [panel (a)] oscillate with J

FIG. 7. (Color online) Signature splitting S(J ) of 150,152,156Sm
nuclei as a function of spin J . For more details, see the main text.
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FIG. 8. (Color online) Theoretical and experimental transition
probabilities B(E3; 3−

1 → 0+
1 ) and B(E1; 1−

1 → 0+
1 ) for 146–156Sm

and 148–158Gd. The experimental data are taken from Refs. [77–80].

but become zero around J ≈ 8+. Though larger deviations
are observed in our calculations [panel (b)], their global
trend resembles the experimental one. Both theoretically and
experimentally, the deviation from S(J ) = 0 in 156Sm is more
pronounced than for 150,152Sm. This suggests a deviation from
the ideal alternating-parity band behavior and also correlates
well with the behavior of the Gogny-D1M MFPESs (see
Fig. 1).

The reduced transition probabilities B(E3; 3−
1 → 0+

1 ) and
B(E1; 1−

1 → 0+
1 ) are compared in Fig. 8 with the experimental

data [77–80]. For both isotopic chains, the predicted E3
transition rates [panels (a) and (b)] exhibit a weak dependence
on the neutron number with a maximum at N = 88–90.
The down-sloping tendency in the theoretical (IBM) E3
values observed in the heavier isotopes is consistent with the
experiment, though a smoother change with neutron number
is found for Sm isotopes. However, the E1 transition rates
[panels (c) and (d)] increase with increasing neutron number
which agrees quite well with the experiment, with an exception
made for 146Sm. The overall trend also agrees well with the one
found in previous IBM [55] and GCM [19] calculations. Note
that the discrepancy of the IBM rates with the experimental
ones are partly a consequence of the particular choice of the
IBM effective charges. No effective charges are needed within
the GCM framework [19] as all the nucleons are considered in
the wave functions.

B. Spectroscopy of the nuclei 150Sm and 158Gd

The low-lying spectrum of 150Sm is compared in Fig. 9
with the available experimental excitation energies [77]. The
band assignment has been made according to the dominant
E2 transition sequence. The IBM energies are generally more
stretched than the experimental ones. Approximate alternating
parity bands can be seen with the level ordering 7−, 8+, 9−,
10+, . . . , etc.

A noticeable deviation with respect to the experimental
data is obtained for the β-vibrational bandhead. In fact, the
experimental excitation energy of this 0+

2 state is as small as
the one for the 4+

1 state. However, in the calculations it is almost
twice higher, suggesting a too-limited IBM model space. On
the other hand, for the quasi-γ band, with the Kπ = 2+ built
on the 2+

2 state, our calculations predict the staggering (3+
γ ,4+

γ ),

FIG. 9. Comparison of the low-energy spectrum predicted within the IBM framework for the nucleus 150Sm with the available experimental
excitation energies [77].

014312-8



SPECTROSCOPY OF QUADRUPOLE AND OCTUPOLE . . . PHYSICAL REVIEW C 92, 014312 (2015)

TABLE I. Theoretical and experimental [77] B(E2) transitions
for 150Sm (in Weisskopf units). For details, see the main text.

J π
i J π

f B(E2)theor. B(E2)expt.

2+
1 0+

1 79 57.1(13)
4+

1 2+
1 112 110(17)

6+
1 4+

1 120 1.5 × 10+2(5)
8+

1 6+
1 117 1.7 × 10+2(9)

0+
β 2+

1 10 53(5)
2+

β 0+
1 1.78 0.81+26

−21

0+
β 24 1.1 × 102+4

−3

2+
1 0.038 –

4+
1 3.92 –

2+
γ 0+

1 1.18 2.1(15)
0+

β 10.2 9.1(24)
2+

1 21 –
2+

β 4.09 –
4+

1 0.064 7(3)
3+

1 2+
β 11.1 –

4+
β 2+

1 0.86 –
2+

β 11.2 1.9 × 10+2(9)
2+

γ 0.039 42(20)
3+

1 0.34 –
4+

γ 2+
1 0.14 1.4(7)

2+
β 2.1 4.1(21)

2+
γ 42 –

1−
1 3−

K=0− 109 –
5−

K=0− 3−
K=0− 70 –

7−
K=0− 5−

K=0− 84 –

(5+
γ ,6+

γ ), etc. This reflects the lack of triaxiality in the present
study. The inclusion of mean-field triaxiality as well as the
relevant terms in the mapped IBM Hamiltonian could be useful
to better describe the structure of the quasi-γ band [52]. Work
along these lines is in progress and will be reported elsewhere.

The E2 and E1 transition rates obtained for 150Sm are
compared with the experimental ones [77] in Tables I and II,
respectively. Most of the predicted E2 values agree reasonably
well with those from the experiment. Note that our calculations
account for the K = 0− band, built on the 3−

1 state, with
strong E2 transitions. Nevertheless, large discrepancies are
also found for some interband transitions. For example, the
0+

β → 2+
1 strength is considerably underestimated. Stronger

interband E2 transitions suggest a significant mixing between
different intrinsic configurations. Indeed, a recent experiment
has suggested a complex shape coexistence in 152Sm [6].
Within this context, an IBM model space larger than the
one considered in the present study may be required. A
configuration mixing associated with intruder states [53] could
also be introduced to better describe a transitional nucleus
like 150Sm. Another alternative could be the inclusion of
triaxiality to better constrain the form of the IBM Hamiltonian.
Furthermore, the value B(E2; 4+

β → 2+
γ ) = 0.039 W.u. is too

small as compared with the experimental one [42(20) W.u].
A possible reason may be that the 0+

β states as well as the
ones built on it might not be well described by the present
calculations.

TABLE II. Same as in Table I, but for the E1 transitions (in
10−3 W.u.).

J π
i J π

f B(E1)theor. B(E1)expt.

1−
K=0− 0+

1 1.1 1.4+7
−5

2+
1 0.13 2.9+14

−10

3−
K=0− 2+

1 2.5 5+4
−3

4+
1 1.8 × 10−4 5+4

−3

4+
β 3−

K=0− 2.6 –
5−

K=0− 0.24 –
4+

γ 3−
K=0− 0.087 0.27(13)

5−
K=0− 0.54 0.9(5)

5−
K=0− 4+

1 4.2 –
6+

1 5−
K=0− 0.027 –

7−
K=0− 6+

1 5.8 –
8+

1 7−
K=0− 0.15 –

9−
K=0− 8+

1 7.3 –
10+

1 9−
K=0− 0.46 –

11−
K=0− 10+

1 9.0 –

The calculated B(E1) values in Table II reveal rather strong
transitions (starting around the J > 5−) from the states of
odd-J negative-parity K = 0−

1 to those of the even-(J − 1)
positive-parity ground-state bands. This fact, as well as the
increasing B(E1; J−

K=0− → (J − 1)+
K=0+

1
) value, as a function

of J , signals the existence of an alternating parity band in
150Sm. Nevertheless, we do not consider the B(E1) value
obtained in the present calculation to be conclusive, mainly
because of the lack of the p-boson effect in our framework.
Indeed, as already pointed out in previous phenomenologi-
cal [67] and microscopic [81] studies on octupole-deformed
nuclei, the description of these E1 transitions in the IBM
framework could be improved by explicitly including the p
boson in the model space or by extending the form of the
E1 operator so as to absorb the p-boson effect in the sdf
space.

The low-lying spectrum of 158Gd, shown in Fig. 10, exhibits
an overall agreement with the available experimental data
for the lowest-lying positive- and negative-parity bands. The
1−

1 state of the lowest negative-parity band is assigned as
the bandhead of the Kπ = 0−

1 and the Kπ = 1−
1 bands in

the present calculation and in the NNDC compilation [77],
respectively.

In our calculations, the two lowest-lying positive-parity,
Kπ = 0+

1 and 2+
γ , bands are composed of states with nf ≈

0.02 and 0.06 � nf � 0.09, respectively, suggesting that they
are almost pure positive-parity bands. However, the states
in the band built on the 0+

2 (0+
β ) state are of two-f boson

(equivalently double-octupole phonon) nature with 〈n̂f 〉 ≈ 2.
The side-band energies, especially for those states in the
positive-parity β-vibrational and quasi-γ bands, are overes-
timated considerably, for similar reasons as in the 150Sm case.

In Tables III and IV, we have compared some relevant
E2 and E1 transition rates with the experimental ones [77].
Many of the calculated E2 transition rates agree well with the
data. Again, a noticeable deviation is observed for the 4+

β →
2+

γ transitions, probably for the same reason as in the 150Sm
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FIG. 10. Same as in Fig. 9 but for the nucleus 158Gd.

case. We note that the lifetime of the experimental 3−
K=1− state

adapted in Ref. [77] has nearly 25% uncertainty and that,
for that reason, the error bars for the reduced E2 transitions
4−

K=1− → 3−
K=1− and 5−

K=1− → 3−
K=1− shown in Ref. [77], as

well as in Table III, could be corrected. From Table IV one
concludes that our model gives a reasonable description of
the E1 transitions associated with states in the Kπ = 0−

1 band
whose energies are described rather nicely as well (see Fig. 10).
However, our model does not account for the E1 transitions
associated with the Kπ = 1−

1 band.

C. Excited 0+ states

Experimentally, many excited 0+ states have been iden-
tified in the low-energy excitation spectrum of 158Gd. The

TABLE III. Same as in Table I but for the nucleus 158Gd.

J π
i J π

f B(E2)theor. B(E2)expt.

2+
1 0+

1 170 198(6)
4+

1 2+
1 241 289(5)

6+
1 4+

1 260 –
8+

1 6+
1 264 3.3 × 10+2(3)

2+
γ 0+

1 3.9 3.4(3)
2+

1 7.7 6.0(7)
4+

1 0.59 0.27(4)
2+

β 0+
1 0.14 0.31(4)

2+
1 0.088 1.39(15)

4+
β 2+

γ 0.88 12.8
2+

β 93 455
3−

K=1− 1−
K=1− 105 –

3−
K=0− 1−

K=0− 146 >1.6 × 10+3

4−
K=1− 3−

K=1− 41 781(14)
5−

K=1− 3−
K=1− 189 369(6)

5−
K=0− 3−

K=0− 159 –
4−

K=1− 2−
K=1− 142 2.09 × 10+3(3)

previous phenomenological calculation within the spdf -IBM
model [10] showed that such a large number of excited 0+
states at relatively low energy can be described if the octupole
degrees of freedom are taken into account, and many of the
0+ states have been attributed to the coupling of two-octupole
phonons. Meanwhile, the emergence of a large number of
low-energy excited 0+ states can be a good signature of a
quantum phase transition [82].

To address the nature of the 0+ states resulting from the
mapped sdf -IBM Hamiltonian, we show in Fig. 11 the energy
distribution (or level scheme) of the lowest 15 0+ states and the
corresponding average values of the f -boson number operator
〈n̂f 〉 for the 146–156Sm [from panel (a) to panel (f)] and
148–158Gd [from panel (g) to panel (l)] nuclei. In the 146Sm
[panel (a)] and 148Gd [panel (g)] cases those states with an
energy higher than 8 MeV are not shown. In all the nuclei, the
0+ ground state is predominantly composed of positive-parity
(s and d) bosons as 〈n̂f 〉 < 0.5. In both isotopic chains,
for many of the nuclei with N � 90, 〈n̂f 〉 ≈ 2 for the 0+

2
state, suggesting its double-octupole phonon nature. Moreover,

TABLE IV. Same as in Table I but for the E1 transitions (in units
of 10−3 W.u.) in 158Gd.

J π
i J π

f B(E1)theor. B(E1)expt.

1−
K=1− 0+

1 1.5 0.098 443(4)
2+

1 2.8 0.096 515(6)
1−

K=0− 0+
1 4.3 3.5(12)

2+
1 2.3 6.4(21)

3−
K=1− 2+

1 0.35 0.33(10)
4+

1 3.4 0.29(8)
3−

K=0− 2+
1 6.8 >1.1

4+
1 0.74 >1.5

2−
K=1− 2+

1 4.5 < 0.078
4−

K=1− 4+
1 4.5 0.090 628(4)
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FIG. 11. (Color online) Energy distribution of the theoretical lowest 15 0+ states and expectation value of the f -boson number operator
〈n̂f 〉 for the considered Sm and Gd isotopes. Note that, concerning 146Sm (a) and 148Gd (g), the 0+ states with an energy higher than 8 MeV
are not shown.

many other 0+ states are also formed by the coupling of
positive- and negative-parity (octupole) bosons. For both
Sm and Gd chains, the 0+ states become more populated
in the lower-energy region for the heavier isotopes, where
the quadrupole-octupole coupling becomes more enhanced.
Particularly in the Gd isotopes, the level scheme for the 0+
states becomes most compressed around 152Gd [panel (i)] or

FIG. 12. (Color online) The correlation energies obtained from
the IBM and the two-dimensional (2D) GCM for 146–156Sm and
148–158Gd isotopes.

154Gd [panel (j)], where the corresponding PES is noticeably
soft in both β2 and β3 deformations [see Figs. 1(i) and 1(j)].

D. Correlation energy

In this section, we discuss the correlation energies defined
as [19,50]

ECorr = E
g.s.
HFB − E(0+

1 ). (14)

where E
g.s.
HFB represents the HFB ground-state energy and

E(0+
1 ) the one for the 0+

1 state. The IBM correlation energies
are depicted in Fig. 12 together with the ones obtained in
previous two-dimensional Gogny-D1M GCM calculations.
Results are shown in panel (a) for 146–156Sm and in panel (b)
for 148–158Gd. Though the correlation energies are different in
both approaches, the largest values of ECorr are obtained for
the lighter nuclei with N � 88 which are rather soft in the
β2 and β3 degrees of freedom. This confirms that correlations
beyond the mean-field approach can become significant in soft
nuclear systems.

V. SUMMARY

In summary, we have carried out spectroscopic calculations
aimed to describe the quadrupole and octupole collective
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states in Sm and Gd isotopes. Our starting point was a set
of Q20 − Q30 constrained HFB calculations, with the D1M
parametrization of the Gogny effective interaction, used to
produce a PES. This PES is then used to obtain the parameters
of an IBM Hamiltonian including s, d, and f bosons.
Spectral properties of both positive- and negative-parity states
associated with the reflection symmetric and asymmetric
shapes, respectively, are obtained after diagonalization of the
IBM Hamiltonian. The parameters of the IBM Hamiltonian
are determined by mapping the Gogny-HFB mean-field energy
surface onto the corresponding energy expectation value of the
boson condensate state.

The systematics of the energy spectra and transition rates,
associated with both positive- and negative-parity yrast states,
points to the onset of notable octupole correlation around
N ≈ 88, characterized by the β3-soft energy surfaces (Fig. 1)
and the corresponding negative-parity band lowering in energy
with respect to the positive-parity ground-state band (Fig. 5).
From N � 90 on, the PES no longer exhibits β3 softness,
and the corresponding negative-parity band is pushed up in
energy with respect to the ground-state band. The mean-field
β2β3 energy surface (Fig. 1), the derived parameters in the
sdf Hamiltonian (Fig. 3), the resultant energy levels (Figs. 4
and 5), and transition rates (Fig. 8) correlate very well with
each other in systematics with the number of valence nucleons.
In addition, the spectroscopic properties resulting from the
model turn out to be generally in reasonable agreement with the
systematics of the available experimental data, and also to be
consistent with the previous GCM calculation (Figs. 6 and 8)
starting from the common Gogny parametrization D1M [19].

However, an in-depth analysis of the energy spectra and the
E2 and E1 transition rates in the two characteristic cases, β2-
and β3-soft nucleus 150Sm and strongly β2 deformed nucleus
158Gd, has revealed that an improvement of the model is
required so as to give a better description not only of the

yrast states but also of the nonyrast states. For example, our
model in its current version is not able to describe well the
bandhead of side bands, particularly that of the β-vibrational
(Kπ = 0+

2 ) band (Figs. 9 and 10). A possible reason could
be that the model space used for the present work might be
rather limited to handle such a complex nuclear structure. This
would require the extension of our model space to include
configuration mixing specific to the intruder state and/or to
introduce triaxial degrees of freedom. In addition, the model
has failed in reproducing some of the E1 properties, especially
for those associated with the states in nonyrast negative-parity
bands (Fig. 10). Several solutions have been proposed that
could help to fix the problem: extension of the E1 operator
to include higher-order terms; explicit inclusion of p boson in
the model space. Improving the description of these properties
will be a topic of future study. Significance of the p-boson
effect in the E1 excitation observed in rare-earth nuclei has
been addressed in Ref. [83], though in the different context of
α clustering.

We have also analyzed the wave-function content of some
lower-lying excited 0+ states for the considering nuclei and
found that in many of the nuclei considered, the 0+

2 states can
be the consequence of the coupling of two-octupole phonons.
This could be a possible explanation for the large number of
low-energy excited 0+ states found in rare-earth nuclei.
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[79] T. Kibédi and R. H. Spear, At. Data Nucl. Data Tables 80, 35

(2002).
[80] H. Pitz, U. Berg, R. Heil, U. Kneissl, R. Stock, C. Wesselborg,

and P. V. Brentano, Nucl. Phys. A 492, 411 (1989).
[81] T. Otsuka, Phys. Lett. B 182, 256 (1986).
[82] D. Meyer, V. Wood, R. Casten, C. Fitzpatrick, G. Graw, D.

Bucurescu, J. Jolie, P. von Brentano, R. Hertenberger, H.-F.
Wirth et al., Phys. Lett. B 638, 44 (2006).

[83] M. Spieker, S. Pascu, A. Zilges, and F. Iachello, Phys. Rev. Lett.
114, 192504 (2015).

014312-13

http://dx.doi.org/10.1016/0370-2693(88)90920-3
http://dx.doi.org/10.1016/0370-2693(88)90920-3
http://dx.doi.org/10.1016/0370-2693(88)90920-3
http://dx.doi.org/10.1016/0370-2693(88)90920-3
http://dx.doi.org/10.1016/0370-2693(88)91166-5
http://dx.doi.org/10.1016/0370-2693(88)91166-5
http://dx.doi.org/10.1016/0370-2693(88)91166-5
http://dx.doi.org/10.1016/0370-2693(88)91166-5
http://dx.doi.org/10.1103/PhysRevC.58.1500
http://dx.doi.org/10.1103/PhysRevC.58.1500
http://dx.doi.org/10.1103/PhysRevC.58.1500
http://dx.doi.org/10.1103/PhysRevC.58.1500
http://dx.doi.org/10.1103/PhysRevC.70.064319
http://dx.doi.org/10.1103/PhysRevC.70.064319
http://dx.doi.org/10.1103/PhysRevC.70.064319
http://dx.doi.org/10.1103/PhysRevC.70.064319
http://dx.doi.org/10.1103/PhysRevC.71.064309
http://dx.doi.org/10.1103/PhysRevC.71.064309
http://dx.doi.org/10.1103/PhysRevC.71.064309
http://dx.doi.org/10.1103/PhysRevC.71.064309
http://dx.doi.org/10.1016/j.physletb.2005.12.016
http://dx.doi.org/10.1016/j.physletb.2005.12.016
http://dx.doi.org/10.1016/j.physletb.2005.12.016
http://dx.doi.org/10.1016/j.physletb.2005.12.016
http://dx.doi.org/10.1103/PhysRevC.77.024320
http://dx.doi.org/10.1103/PhysRevC.77.024320
http://dx.doi.org/10.1103/PhysRevC.77.024320
http://dx.doi.org/10.1103/PhysRevC.77.024320
http://dx.doi.org/10.1103/PhysRevC.81.034320
http://dx.doi.org/10.1103/PhysRevC.81.034320
http://dx.doi.org/10.1103/PhysRevC.81.034320
http://dx.doi.org/10.1103/PhysRevC.81.034320
http://dx.doi.org/10.1103/PhysRevC.86.024319
http://dx.doi.org/10.1103/PhysRevC.86.024319
http://dx.doi.org/10.1103/PhysRevC.86.024319
http://dx.doi.org/10.1103/PhysRevC.86.024319
http://dx.doi.org/10.1103/PhysRevC.85.034306
http://dx.doi.org/10.1103/PhysRevC.85.034306
http://dx.doi.org/10.1103/PhysRevC.85.034306
http://dx.doi.org/10.1103/PhysRevC.85.034306
http://dx.doi.org/10.1103/PhysRevC.88.011305
http://dx.doi.org/10.1103/PhysRevC.88.011305
http://dx.doi.org/10.1103/PhysRevC.88.011305
http://dx.doi.org/10.1103/PhysRevC.88.011305
http://dx.doi.org/10.1016/0370-2693(82)91162-5
http://dx.doi.org/10.1016/0370-2693(82)91162-5
http://dx.doi.org/10.1016/0370-2693(82)91162-5
http://dx.doi.org/10.1016/0370-2693(82)91162-5
http://dx.doi.org/10.1016/S0003-4916(86)80007-0
http://dx.doi.org/10.1016/S0003-4916(86)80007-0
http://dx.doi.org/10.1016/S0003-4916(86)80007-0
http://dx.doi.org/10.1016/S0003-4916(86)80007-0
http://dx.doi.org/10.1016/S0370-2693(01)01512-X
http://dx.doi.org/10.1016/S0370-2693(01)01512-X
http://dx.doi.org/10.1016/S0370-2693(01)01512-X
http://dx.doi.org/10.1016/S0370-2693(01)01512-X
http://dx.doi.org/10.1103/PhysRevC.81.034302
http://dx.doi.org/10.1103/PhysRevC.81.034302
http://dx.doi.org/10.1103/PhysRevC.81.034302
http://dx.doi.org/10.1103/PhysRevC.81.034302
http://dx.doi.org/10.1103/PhysRevC.85.011301
http://dx.doi.org/10.1103/PhysRevC.85.011301
http://dx.doi.org/10.1103/PhysRevC.85.011301
http://dx.doi.org/10.1103/PhysRevC.85.011301
http://dx.doi.org/10.1103/PhysRevC.89.014323
http://dx.doi.org/10.1103/PhysRevC.89.014323
http://dx.doi.org/10.1103/PhysRevC.89.014323
http://dx.doi.org/10.1103/PhysRevC.89.014323
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1016/0029-5582(58)90345-6
http://dx.doi.org/10.1016/0029-5582(58)90345-6
http://dx.doi.org/10.1016/0029-5582(58)90345-6
http://dx.doi.org/10.1016/0029-5582(58)90345-6
http://dx.doi.org/10.1103/PhysRevC.5.626
http://dx.doi.org/10.1103/PhysRevC.5.626
http://dx.doi.org/10.1103/PhysRevC.5.626
http://dx.doi.org/10.1103/PhysRevC.5.626
http://dx.doi.org/10.1016/0370-2693(75)90359-7
http://dx.doi.org/10.1016/0370-2693(75)90359-7
http://dx.doi.org/10.1016/0370-2693(75)90359-7
http://dx.doi.org/10.1016/0370-2693(75)90359-7
http://dx.doi.org/10.1016/j.physrep.2004.10.001
http://dx.doi.org/10.1016/j.physrep.2004.10.001
http://dx.doi.org/10.1016/j.physrep.2004.10.001
http://dx.doi.org/10.1016/j.physrep.2004.10.001
http://dx.doi.org/10.1016/j.ppnp.2011.01.055
http://dx.doi.org/10.1016/j.ppnp.2011.01.055
http://dx.doi.org/10.1016/j.ppnp.2011.01.055
http://dx.doi.org/10.1016/j.ppnp.2011.01.055
http://dx.doi.org/10.1016/S0375-9474(02)01019-9
http://dx.doi.org/10.1016/S0375-9474(02)01019-9
http://dx.doi.org/10.1016/S0375-9474(02)01019-9
http://dx.doi.org/10.1016/S0375-9474(02)01019-9
http://dx.doi.org/10.1088/0954-3899/39/10/105103
http://dx.doi.org/10.1088/0954-3899/39/10/105103
http://dx.doi.org/10.1088/0954-3899/39/10/105103
http://dx.doi.org/10.1088/0954-3899/39/10/105103
http://dx.doi.org/10.1103/PhysRevLett.101.142501
http://dx.doi.org/10.1103/PhysRevLett.101.142501
http://dx.doi.org/10.1103/PhysRevLett.101.142501
http://dx.doi.org/10.1103/PhysRevLett.101.142501
http://dx.doi.org/10.1103/PhysRevC.81.044307
http://dx.doi.org/10.1103/PhysRevC.81.044307
http://dx.doi.org/10.1103/PhysRevC.81.044307
http://dx.doi.org/10.1103/PhysRevC.81.044307
http://dx.doi.org/10.1103/PhysRevC.83.041302
http://dx.doi.org/10.1103/PhysRevC.83.041302
http://dx.doi.org/10.1103/PhysRevC.83.041302
http://dx.doi.org/10.1103/PhysRevC.83.041302
http://dx.doi.org/10.1103/PhysRevLett.108.132501
http://dx.doi.org/10.1103/PhysRevLett.108.132501
http://dx.doi.org/10.1103/PhysRevLett.108.132501
http://dx.doi.org/10.1103/PhysRevLett.108.132501
http://dx.doi.org/10.1103/PhysRevC.86.034322
http://dx.doi.org/10.1103/PhysRevC.86.034322
http://dx.doi.org/10.1103/PhysRevC.86.034322
http://dx.doi.org/10.1103/PhysRevC.86.034322
http://dx.doi.org/10.1103/PhysRevC.88.021303
http://dx.doi.org/10.1103/PhysRevC.88.021303
http://dx.doi.org/10.1103/PhysRevC.88.021303
http://dx.doi.org/10.1103/PhysRevC.88.021303
http://dx.doi.org/10.1103/PhysRevC.89.024312
http://dx.doi.org/10.1103/PhysRevC.89.024312
http://dx.doi.org/10.1103/PhysRevC.89.024312
http://dx.doi.org/10.1103/PhysRevC.89.024312
http://dx.doi.org/10.1103/PhysRevLett.102.242501
http://dx.doi.org/10.1103/PhysRevLett.102.242501
http://dx.doi.org/10.1103/PhysRevLett.102.242501
http://dx.doi.org/10.1103/PhysRevLett.102.242501
http://dx.doi.org/10.1016/j.physletb.2010.06.035
http://dx.doi.org/10.1016/j.physletb.2010.06.035
http://dx.doi.org/10.1016/j.physletb.2010.06.035
http://dx.doi.org/10.1016/j.physletb.2010.06.035
http://dx.doi.org/10.1103/PhysRevC.82.044318
http://dx.doi.org/10.1103/PhysRevC.82.044318
http://dx.doi.org/10.1103/PhysRevC.82.044318
http://dx.doi.org/10.1103/PhysRevC.82.044318
http://dx.doi.org/10.1103/PhysRevC.82.061302
http://dx.doi.org/10.1103/PhysRevC.82.061302
http://dx.doi.org/10.1103/PhysRevC.82.061302
http://dx.doi.org/10.1103/PhysRevC.82.061302
http://dx.doi.org/10.1103/PhysRevC.90.054311
http://dx.doi.org/10.1103/PhysRevC.90.054311
http://dx.doi.org/10.1103/PhysRevC.90.054311
http://dx.doi.org/10.1103/PhysRevC.90.054311
http://dx.doi.org/10.1016/0375-9474(84)90240-9
http://dx.doi.org/10.1016/0375-9474(84)90240-9
http://dx.doi.org/10.1016/0375-9474(84)90240-9
http://dx.doi.org/10.1016/0375-9474(84)90240-9
http://dx.doi.org/10.1016/0375-9474(78)90532-8
http://dx.doi.org/10.1016/0375-9474(78)90532-8
http://dx.doi.org/10.1016/0375-9474(78)90532-8
http://dx.doi.org/10.1016/0375-9474(78)90532-8
http://dx.doi.org/10.1016/S0370-2693(96)80003-7
http://dx.doi.org/10.1016/S0370-2693(96)80003-7
http://dx.doi.org/10.1016/S0370-2693(96)80003-7
http://dx.doi.org/10.1016/S0370-2693(96)80003-7
http://dx.doi.org/10.1016/0003-4916(88)90016-4
http://dx.doi.org/10.1016/0003-4916(88)90016-4
http://dx.doi.org/10.1016/0003-4916(88)90016-4
http://dx.doi.org/10.1016/0003-4916(88)90016-4
http://dx.doi.org/10.1016/0375-9474(80)90387-5
http://dx.doi.org/10.1016/0375-9474(80)90387-5
http://dx.doi.org/10.1016/0375-9474(80)90387-5
http://dx.doi.org/10.1016/0375-9474(80)90387-5
http://dx.doi.org/10.1103/PhysRevC.63.054306
http://dx.doi.org/10.1103/PhysRevC.63.054306
http://dx.doi.org/10.1103/PhysRevC.63.054306
http://dx.doi.org/10.1103/PhysRevC.63.054306
http://dx.doi.org/10.1103/PhysRevC.72.064302
http://dx.doi.org/10.1103/PhysRevC.72.064302
http://dx.doi.org/10.1103/PhysRevC.72.064302
http://dx.doi.org/10.1103/PhysRevC.72.064302
http://dx.doi.org/10.1016/0029-5582(62)90741-1
http://dx.doi.org/10.1016/0029-5582(62)90741-1
http://dx.doi.org/10.1016/0029-5582(62)90741-1
http://dx.doi.org/10.1016/0029-5582(62)90741-1
http://dx.doi.org/10.1016/0375-9474(86)90505-1
http://dx.doi.org/10.1016/0375-9474(86)90505-1
http://dx.doi.org/10.1016/0375-9474(86)90505-1
http://dx.doi.org/10.1016/0375-9474(86)90505-1
http://dx.doi.org/10.1103/PhysRevC.69.034319
http://dx.doi.org/10.1103/PhysRevC.69.034319
http://dx.doi.org/10.1103/PhysRevC.69.034319
http://dx.doi.org/10.1103/PhysRevC.69.034319
http://dx.doi.org/10.1103/PhysRevC.78.034318
http://dx.doi.org/10.1103/PhysRevC.78.034318
http://dx.doi.org/10.1103/PhysRevC.78.034318
http://dx.doi.org/10.1103/PhysRevC.78.034318
http://dx.doi.org/10.1103/PhysRevLett.46.710
http://dx.doi.org/10.1103/PhysRevLett.46.710
http://dx.doi.org/10.1103/PhysRevLett.46.710
http://dx.doi.org/10.1103/PhysRevLett.46.710
http://dx.doi.org/10.1103/PhysRevLett.55.276
http://dx.doi.org/10.1103/PhysRevLett.55.276
http://dx.doi.org/10.1103/PhysRevLett.55.276
http://dx.doi.org/10.1103/PhysRevLett.55.276
http://www.nndc.bnl.gov
http://dx.doi.org/10.1103/PhysRevC.14.543
http://dx.doi.org/10.1103/PhysRevC.14.543
http://dx.doi.org/10.1103/PhysRevC.14.543
http://dx.doi.org/10.1103/PhysRevC.14.543
http://dx.doi.org/10.1006/adnd.2001.0871
http://dx.doi.org/10.1006/adnd.2001.0871
http://dx.doi.org/10.1006/adnd.2001.0871
http://dx.doi.org/10.1006/adnd.2001.0871
http://dx.doi.org/10.1016/0375-9474(89)90405-3
http://dx.doi.org/10.1016/0375-9474(89)90405-3
http://dx.doi.org/10.1016/0375-9474(89)90405-3
http://dx.doi.org/10.1016/0375-9474(89)90405-3
http://dx.doi.org/10.1016/0370-2693(86)90085-7
http://dx.doi.org/10.1016/0370-2693(86)90085-7
http://dx.doi.org/10.1016/0370-2693(86)90085-7
http://dx.doi.org/10.1016/0370-2693(86)90085-7
http://dx.doi.org/10.1016/j.physletb.2006.05.007
http://dx.doi.org/10.1016/j.physletb.2006.05.007
http://dx.doi.org/10.1016/j.physletb.2006.05.007
http://dx.doi.org/10.1016/j.physletb.2006.05.007
http://dx.doi.org/10.1103/PhysRevLett.114.192504
http://dx.doi.org/10.1103/PhysRevLett.114.192504
http://dx.doi.org/10.1103/PhysRevLett.114.192504
http://dx.doi.org/10.1103/PhysRevLett.114.192504



