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The magnetic form factors of the odd-A s-d shell nuclei 17O, 25Mg, 27Al, 29Si, and 31P are studied within the
relativistic frame with single-nucleon wave functions generated using the relativistic mean field model. Single
valence-nucleon contributions to the nuclear magnetic form factors are calculated, and two sets of quenching
ratios of the nuclear magnetic form factors relative to the single valence-nucleon contributions are extracted for
each nucleus. It is found that the single valence-nucleon contributions can generally give a good approximate
description for the shapes of the nuclear magnetic form factors, including the positions of the minima and maxima,
and after the quenching ratios are applied the experimental data can be very well reproduced. The quenching
ratios are compared with those obtained within some other nuclear models, and the physical implications for
each nucleus are discussed. Calculations also show that no reasonable quenching ratios could be found for 27Al
when μexpt./μs.n. is chosen as the M1 multipole quenching ratio. This implies that the common way of choosing
μexpt./μs.n. as the M1 multipole quenching ratio for the odd-A nuclei is not always valid.
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I. INTRODUCTION

Elastic magnetic electron scattering provides a sensitive and
direct way to study the magnetic properties and outermost-
shell single-nucleon orbital shapes of nuclei. By explaining
the experimental data with electron scattering theories and
nuclear structure models, we can determine some important
magnetic properties of nuclei, such as the current transi-
tion densities, the magnetic moments, the root-mean-square
(rms) radii of the valence orbitals, and the quenching or
spectroscopy ratios of the magnetic form factors, etc. Many
researchers have made contributions in this field, and there
have been a lot of significant and instructive calculations
and discussions about nuclear magnetic form factors and
relevant topics [1–29]. However, much of the earlier research
is based on nonrelativistic nuclear structure models, which
usually contain free parameters for specific nuclei, such as
the harmonic oscillator potential model and the Woods-Saxon
potential model plus the spin-orbit interaction. These models
have played a very important and foundational role in the
development of nuclear structure theories. The calculations
of nuclear magnetic form factors based on these models
have provided much useful information and greatly promoted
further studies. Along with the development of studies of
nuclear physics, a relativistic nuclear model, now known as
the relativistic mean field (RMF) model or approximation,
was put forward in the 1970s [30,31]. This model treats
the atomic nucleus as a relativistic system based on meson
exchange nucleon-nucleon interactions [30–34], and has been
well developed, extensively studied, and widely used over the
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past years. It has been shown to be one of the most successful
nuclear structure models in describing nuclear properties. For
one thing, a lot of calculations [30–41] have shown that the
RMF model can reproduce with good precision the binding
energies, the separation energies, the rms radii of charge
density distributions, and the single-nucleon wave functions.
For another, unlike the harmonic oscillator potential model
and the Woods-Saxon potential model, the relativistic mean
field model has no free parameters for specific nuclei. In
addition, some other calculations—such as the calculations
of quasielastic electron scattering in the plane wave impulse
approximation with relativistic effects contained [42], and
in the relativistic plane wave impulse approximation and
relativistic distorted wave impulse approximation [43–46] that
uses wave functions from a relativistic mean field—have also
shown that the relativistic mean field approximation can very
well describe the shape of single-nucleon orbitals. Therefore,
it would be interesting to calculate the magnetic form factors of
nuclei within this relativistic nuclear model. The calculations
could be a good complement to the results now available,
obtained by predecessors within the other nuclear models, and
provide more useful references for further and more involved
studies.

In the present paper, we would like to calculate and discuss
the magnetic form factors of the s-d shell nuclei 17O, 25Mg,
27Al, 29Si, and 31P within the relativistic mean field model.
The nucleus 17O has a single neutron outside the doubly
closed p shell; 25Mg and 27Al, with the s-d shell nearly
half filled, have an odd number of neutrons and protons in
the 1d5/2 orbital, respectively; 29Si and 31P, with the s-d
shell also nearly half filled, have a single neutron and a single
proton in the 2s1/2 subshell, respectively; so they are the prime
examples of the odd-A nuclei in the s-d shell. Therefore, in
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view of the single-particle shell model, the magnetic form
factors of these nuclei can be calculated with the single
valence-nucleon wave functions, and the results would be
typical and representative. Furthermore, the experimental data
of these nuclei are available within a broad momentum transfer
range. Then the calculated results can be compared with the
experimental data, and the quenching ratios of the nuclear
magnetic form factors relative to the single valence-nucleon
contributions can be extracted and discussed and compared
with the results obtained within some other nuclear models.

The paper is organized as follows. Section II gives the
formalism of nuclear magnetic form factors in the relativistic
frame. Section III is devoted to the numerical results and
discussions. A summary is given in Sec. IV.

II. FORMALISM

In the relativistic frame, the single-particle wave functions
[32,47] can be expressed as

ψnκm =
[

i [G(r)/r] �κm(r̂)

−[F (r)/r] �−κm(r̂)

]
=

[
i|nκm〉
−|nκm〉

]

=
[

i
∣∣nl 1

2jm
〉

−∣∣nl
′ 1

2jm
〉
]
, (1)

where the total angular momentum quantum number j , the
orbital angular momentum quantum numbers l, l′, and the

angular quantum number κ satisfy

j = |κ| − 1

2
, (2)

l = κ, l
′ = l − 1 (κ > 0),

l = −(κ + 1), l
′ = l + 1 (κ < 0),

(3)

and the functions �κm in Eq. (1) are the spinor spherical
harmonics, which are given by

�κm =
∑
mlms

〈
lml

1
2ms

∣∣l 1
2jm

〉
Ylml

χms
. (4)

In the single-particle shell model, only the unpaired valence
nucleon contributes to the nuclear magnetic form factors. With
the magnetic multipole operator T̂

mag
LM (q), the contribution of

the single valence nucleon to the Lth multipole of the nuclear
magnetic form factors can be written as

FML(q) =
√

4π

2Ji + 1
〈Jf ‖T̂ mag

L (q)‖Ji〉, (5)

where the multipole operator T̂
mag
LM (q) [1,48,49] is defined by

T̂
mag
LM (q) =

∫
jL(qr)YM

LL(r̂) · Ĵ(r)d3r, (6)

and 〈Jf ‖T̂ mag
L (q)‖Ji〉 in Eq. (5) is the reduced matrix element

of T̂
mag
LM (q), where q is the momentum transfer, and YM

LL(r̂) are
the vector spherical harmonics [50].

With the formulas given in Refs. [32,51,52], the reduced
matrix element 〈Jf ‖T̂ mag

L (q)‖Ji〉 can be further expressed as

〈Jf ‖T̂ mag
L (q)‖Ji〉 = −(q/2Mn)〈nκ‖λ′

�
′M
L ‖nκ〉 + (q/2Mn)〈nκ‖λ′

�
′M
L ‖nκ〉 + 2〈nκ‖Q�M

L ‖n,κ〉. (7)

In Eq. (7), the Q, Mn, and λ
′
are the electric charge, mass, and anomalous magnetic moment of the valence nucleon, respectively,

and the operators �M
L and �

′M
L [32,51,52] are given by

�M
L (r) ≡ MM

LL(r) · σ , �
′M
L (r) ≡ −i

[∇ × MM
LL(r)

] · σ/q, MM
LL(r) ≡ jL(qr)YM

LL(r̂).

The single-particle reduced matrix elements in Eq. (7) can be calculated with the formulas given by Edmonds [50], Willey
[53], and Eq. (1). The integral expressions are as follows:

〈nκ‖� ′M
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⎥⎦, (8)
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and

〈nκ‖�M
L ‖nκ〉 = (−1)l

′
(

6

4π

)1/2

(2L + 1)(2j + 1)[(2l + 1)(2l
′ + 1)]1/2

×

⎧⎪⎨
⎪⎩

l
′

l L

1
2

1
2 1

j j L

⎫⎪⎬
⎪⎭

(
l
′

L l

0 0 0

) ∫
dr r2jL(qr)g(r)f (r), (10)

where g(r) = G(r)/r, f (r) = F (r)/r are the upper and lower
components of the single-nucleon Dirac-4 spinors, and they
are calculated using the relativistic mean field model with the
NL-SH parameters [35] in the present research.

III. NUMERICAL RESULTS AND DISCUSSIONS

The nuclei 17O, 25Mg, 27Al, 29Si, and 31P are typical
odd-A s-d shell nuclei with an unpaired valence nucleon
in the outermost shell, so the nuclear form factors of these
nuclei can be calculated within the single-particle shell model.
However, usually or most often, the nuclear form factors
calculated within the single-particle shell model have devi-
ations, large or small, from the experimental data because of
many-body effects—such as those of the meson exchange and
back-flow currents in the relativistic mean field—and core
polarization effects. To include these effects in calculations
and compare with experimental data, a commonly used method
is to introduce the so-called quenching ratios or spectroscopy
factors αL to the scattering multipoles. In this way, the nuclear
magnetic form factors can be expressed as

F 2
M (q) =

odd∑
L=1

α2
LF 2

ML(q)f 2
s.n.(q)f 2

c.o.m.(q), (11)

where the single-nucleon factor and center-of-mass factor
in Eq. (11) are given by fs.n.(q) = [1 + (q/855 MeV)2]−2

and fc.o.m.(q) = exp(q2b2/4A), and b = 1.0A1/6 fm is the
oscillator length. Since the quenching ratios αL are usually
unknown, Eq. (11) is actually not commonly used to calculate
the form factors directly, but to obtain the quenching ratios
αL within various different nuclear models. The quenching
ratios then can be used to investigate to what extent the
nuclear model(s) used can be applied to calculate the magnetic
properties, to study the roles played by different multipoles
in different momentum transfer regions, and to infer the
contributions of the many-body and core polarization effects

for a specific nucleus. In practice, the first quenching ratio
is usually chosen to be the ratio of the experimental nuclear
magnetic moment to the single-nucleon magnetic moment,
μexpt./μs.n., because of the limited amount of experimental
data in the very low momentum transfer region, where the M1
component of the magnetic form factors dominates. The other
quenching ratios are usually obtained along with the model
parameters, such as the radius and surface diffuseness for the
Woods-Saxon potential model and the oscillator length for the
harmonic oscillator potential model, by fitting the theoretical
form factors to the experimental data [7,15,18,19].

In the present paper, we use the relativistic mean field model
to generate the single-nucleon wave functions, so there are no
free model parameters to be fitted along with the quenching
ratios for specific nuclei. In our calculations, we assume that
the unpaired single nucleons in the ground states are in the
1d5/2 orbital for 17O, 25Mg, 27Al and in the 2s1/2 orbital
for 29Si and 31P. We calculate the single valence-nucleon
contributions and then fit them to the experimental data with
Eq. (11) in two cases: in one case, the quenching ratio α1

is fixed to μexpt./μs.n., as is the common practice, and the
other quenching ratios are set to be free parameters; in another
case, all the quenching ratios, including α1, are set to be free
parameters. Hence, two sets of quenching ratios are obtained
for each nucleus.

The best fit quenching ratios obtained in the two cases are
listed in Table I. In the table, the calculated rms radii for
the corresponding valence-nucleon orbitals [〈r2〉1/2

valence (fm)]
are also given for reference and comparison. In addition, the
calculated charge distribution rms radii [〈r2〉1/2

charge (fm)] and

the experimental charge distribution rms radii [〈r2〉1/2
expt. (fm)]

[54] are also listed in the table. It is found from the table
that the largest deviation of the calculated rms radius of
charge distribution from the experimental data is less than
0.16 fm, which is the difference between the calculated
result 〈r2〉1/2

charge = 2.9614 fm and the experimental value
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TABLE I. The best fit quenching ratios for the magnetic form factors of 17O, 25Mg, 27Al, 29Si, and 31P and the calculated rms radii for the
valence-nucleon orbitals [〈r2〉1/2

valence (fm)] in the relativistic mean field model. Besides, the calculated charge distribution rms radii [〈r2〉1/2
charge

(fm)] and the experimental charge distribution rms radii [54] [〈r2〉1/2
expt. (fm)] are also listed.

17O 25Mg 27Al 31P 29Si

α1 fixed α1 free α1 fixed α1 free α1 fixed α1 free α1 fixed α1 free α1 fixed α1 free

α1 0.990 0.887 0.447 0.333 1.304 0.716 0.405 0.526 0.290 0.532
α3 0.475 0.514 0.124 0.205 1.90×10−4 0.435
α5 0.880 0.891 0.499 0.510 0.575 0.606

〈r2〉1/2
valence (fm) 3.405 3.276 3.284 3.851 3.817

〈r2〉1/2
charge (fm) 2.7138 2.9614 2.9981 3.1674 3.0793

〈r2〉1/2
expt. (fm) [54] 2.662 3.11(5) 3.06(9) 3.19(3) 3.13(5)

3.003(11) 3.05(5) 3.187(11) 3.079(21)
3.035(2) 3.187

〈r2〉1/2
expt. = 3.11(5) fm for 25Mg, and the corresponding relative

deviation with respect to the experimental result is less than
4.94%. For the other calculated rms radii of charge distribution,
the deviations from the experimental data are all less than
0.071 fm, which corresponds to a relative deviation of 2.31%.
Therefore, for the considered nuclei, the rms radii of charge
distribution are very well reproduced within the RMF model
with the NL-SH parameters. In the following, we discuss the
results of the magnetic form factors for the considered nuclei.

A. The nuclei 17O, 25Mg, and 27Al

We obtained two sets of quenching ratios for the nucleus
17O, as have been given in Table I: one set is α1 = 0.887,
α3 = 0.514, and α5 = 0.891, and the other set is α3 = 0.475,
α5 = 0.880 with α1 fixed to μexpt./μs.n. = 0.990, where
μexpt. = −1.89379μN [55] for 17O and μs.n. = −1.9130μN

for the neutron. The values that we obtain for α3 and α5

agree with the results α3 = 0.50 ± 0.06 and α5 = 0.87 ± 0.10
obtained by Hicks [7] using the harmonic oscillator model plus
corrections for exchange current effects, and are close to the
values α3 = 0.53 ± 0.06 and α5 = 0.96 ± 0.11 obtained by
the same author using the Woods-Saxon potential model with
the meson exchange currents effects considered. In Table I, we
also give the calculated rms radius for the 1d5/2 neutron orbital:
the value is 3.405 fm, which is slightly larger than the result
3.36 fm obtained by fitting to the experimental data using the
Woods-Saxon potential model by Kalantar-Nayestanaki [17]
and a little smaller than the result (3.56 ± 0.09) fm given
by Hicks [7] using the Woods-Saxon single-nucleon wave
functions, and falls very close to the middle between the two
experimental values.

In Fig. 1, we plot the magnetic form factors of 17O. In the
figure, the solid curve shows the result of the pure contribution
of the single 1d5/2 neutron; the dashed curve denotes the
result including correction with α1 = 0.887, α3 = 0.514, and
α5 = 0.891; the dotted curve represents the result including
correction with α1 fixed to μexpt./μs.n. = 0.990, α3 = 0.475,
and α5 = 0.880, and the filled dots denote the experimental
data from Refs. [1,7,17]. It is seen from Fig. 1 that the solid
curve, i.e., the pure contribution of the single 1d5/2 neutron,

gives a good approximate description for the shape of the
experimental nuclear magnetic form factors, but the magnitude
is noticeably larger within the momentum transfer region
q = (0.5–3.0) fm−1 than the experimental data and a little
smaller in the high momentum region, q > 3.0 fm−1. However,
the contribution of the single 1d5/2 neutron is considerably
brought down or modified after the quenching ratios are
applied. The contribution of the single 1d5/2 neutron in the
momentum transfer region q = (0.5–2.5) fm−1 is properly
quenched to agree well with the experimental data, and that
in the momentum transfer region q > 2.5 fm−1 is slightly

FIG. 1. The magnetic form factors of 17O. The solid curve shows
the result of the pure contribution of the single 1d5/2 neutron; the
dashed curve denotes the result including correction with α1 = 0.887,
α3 = 0.514, and α5 = 0.891; the dotted curve denotes that including
correction with α1 fixed to μexpt./μs.n. = 0.990, α3 = 0.475, and
α5 = 0.880. The filled dots represent the experimental data from
Refs. [1,7,17].
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oversuppressed by the quenching ratios. The oversuppression
of the single-nucleon contribution in the high momentum
transfer region may be due to the underestimation of the
magnetic form factors in this region within the relativistic
mean field model. One possible reasonable explanation for
the underestimation might be found in the calculations of 17O
using the natural orbitals obtained within the coherent density
fluctuation model and containing nucleon correlation effects
given by Kadrev et al. [28]. Their results of the magnetic
form factors showed an important increase in the momentum
transfer region q = (1.5–3.5) fm−1. Since the calculations
contains no free parameters, the increase of the magnetic form
factors should be an important result in theory.

Comparing the two sets of quenching ratios obtained in the
present calculations, we can find that the values of α5, 0.891
and 0.880, are nearly equal and close to unity. This may imply
that the M1 and M3 multipoles do not contribute much to the
magnetic form factors in the high momentum transfer region;
i.e., the magnetic form factors in this region are dominated
by the M5 multipole and can be described approximately
by a single 1d5/2 neutron. The ratios α3 = 0.514 and 0.475
both indicate that the M3 multipole of the contribution of the
single 1d5/2 neutron is significantly modified to agree with the
experimental data. This may show that the meson exchange
currents and core polarization effects could not be ignored
and may bring considerable influence in the intermediate
momentum transfer region for 17O. This agrees with and
supports the calculations given by Bohannon et al. [11],
who first managed to calculate the core polarization effects
by carrying out a Hartree-Fock calculation for the nucleus
17O with a purely velocity-dependent Skyrme interaction plus
a treatment of different deformations for the spin-up and
spin-down nucleons. Their calculations led to a suppression
of the M3 multipole of the form factors and as a result
yielded the reduction of the magnetic form factors around
q = 1.0 fm−1.

We also note from Fig. 1 that either set of quenching
ratios produces a good fit of the theoretical results to the
available experimental data; however, the curve with the set
of quenching ratios with α1 = 0.887 (dashed curve) and that
with α1 = 0.990 (dotted curve) still have a small difference
around q = 0.5 fm−1. As a matter of fact, any value between
0.887 and 0.990 for α1 can produce a good fit to the available
experimental data. The appearance of the uncertainty of α1

is due to lack of enough experimental data in the very low
momentum transfer region. Nevertheless, the values of α1 can
still indicate that the M1 multipole is the dominant component
of the magnetic form factors of 17O in the low momentum
transfer region and that it is to some extent reasonable to
choose α1 = μexpt./μs.n. for 17O. However, we will see in
the following discussions that such a way of setting the first
multipole quenching ratio is not always valid.

In Fig. 2 we present the results of the nucleus 25Mg.
The solid curve denotes the result of the pure contribution
of the single 1d5/2 neutron; the dashed curve shows the
result including correction with the set of quenching ratios
α1 = 0.333, α3 = 0.205, and α5 = 0.510, and the dotted
curve indicates the result including correction with α1 fixed
to μexpt./μs.n. = 0.447, α3 = 0.124, and α5 = 0.499, where

FIG. 2. The magnetic form factors of 25Mg. The solid curve
corresponds to the contribution of the single 1d5/2 neutron; the dashed
curve corresponds to the result including correction with α1 = 0.333,
α3 = 0.205, and α5 = 0.510, and the dotted curve corresponds to that
including correction with α1 = μexpt./μs.n. = 0.447, α3 = 0.124, and
α5 = 0.499. The filled dots represent the experimental data from
Refs. [18,19].

μexpt. = −0.85545μN [55] for 25Mg and μs.n. = −1.9130μN

for the neutron. The filled dots represent the experimental data
from Refs. [18,19]. We can see from Fig. 2 that, similarly to
17O, the contribution of the single 1d5/2 neutron also gives
a close description of the shape of the experimental form
factors, but the magnitude shows a considerable deviation
from the experimental data, much larger than that of 17O.
This is mainly because 17O has a doubly magic number core
16O, while 25Mg is a nucleus with the s-d shell nearly half
filled, so its unpaired 1d5/2 orbital neutron may have a stronger
coupling to the 24Mg core. However, after the quenching
ratios are applied, the contribution of the single 1d5/2 orbital
neutron is brought down appropriately to produce a very good
agreement with experiment. Although the results from the
two sets of quenching ratios show conspicuous differences
in the momentum transfer region q = (0–1.5) fm −1, the
agreement of either calculated result with the experimental
data is quite good, especially that with the set of quenching
ratios with α1 = μexpt./μs.n. = 0.447. This again shows that it
is, to a certain degree, reasonable to choose α1 = μexpt./μs.n.

for 25Mg.
Our calculations of the magnetic form factors for 25Mg

agree with and support the results obtained by other authors.
One very important theoretical result for the magnetic form
factors of 25Mg was obtained by Moya de Guerra and
Dieperink [20] within the projected Hartree-Fock approxima-
tion using the Nilsson single-particle state functions. They
carried out an investigation of the electromagnetic form
factors of odd-A axially symmetric deformed nuclei within
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the projected Hartree-Fock approximation and gave a general
expression containing the important collective contributions
of the core nucleons. The effectiveness of this method was
well illustrated with specific calculations for 181Ta and 25Mg.
The result for 25Mg showed very good agreement with
experimental data. They predicted a reduction of the M3 form
factors by a factor 0.12 and a reduction of the M5 form factors
by a factor 0.55 with respect to the single-nucleon contribution.
The importance of the result obtained by Moya de Guerra and
Dieperink lies in that their calculations for the reduction factors
are parameter free and not fitted from the experimental data;
both reduction factor values were obtained purely from the
theory of collective rotational motion, and in this respect their
calculations are superior to ours. Our results for the quenching
ratios obtained with α1 set to μexpt./μs.n. = 0.447 are very
close to those obtained by these authors. In addition, more
general and detailed theoretical studies and discussions on the
calculations of nuclear form factors in the rotational model
were also given by Moya de Guerra [21] in 1980. Another
important result for 25Mg was given by Euteneuer et al. [19].
They obtained two sets of quenching ratios for 25Mg within a
generalized single-particle model with the magnetic moment
of 25Mg fixed to its experimental value −0.855μN . One set
of the quenching ratios is α1 = 0.455, α3 = 0.22 ± 0.13, and
α5 = 0.47 ± 0.03, which were obtained using the harmonic
oscillator wave function with the harmonic oscillator length
b = 1.831 fm, and the other set is α1 = 0.455, α3 = 0.27 ±
0.12, and α5 = 0.50 ± 0.08, which were obtained using the
Woods-Saxon wave function with the skin thickness a0 = 0.65
fm and the 1d shell separation energy fixed to −7.332 MeV.
The two sets of quenching ratios obtained by these authors
do not show much difference. For the set of quenching ratios
that we obtained with α1 fixed to μexpt./μs.n. = 0.447, the
values α1 = 0.447 and α5 = 0.499 are very close to those
given by these authors, but α3 = 0.124 is much smaller than
those given by Euteneuer et al. For the other set of quenching
ratios that we obtained with α1 set free, the values of α3 and
α5 are both close to those given by Euteneuer et al., while
the value α1 = 0.333 is a little smaller than that given the
authors. However, the agreement of the present results with
experimental data, especially that with α1 = 0.447, which
appears to reveal the trend of variation of the form factors
in the low momentum transfer region better, seems to be a
little better near the minimum than that presented in Ref. [19].
In addition, compared with 17O, the smaller quenching ratios
for 25Mg may imply that the many-body and core polarization
effects could have stronger influences on the magnetization
density distribution of 25Mg.

27Al is another s-d shell nucleus with a proton hole in the
outermost 1d5/2 subshell. Among the considered nuclei, 27Al
is the only one whose measured magnetic moment is larger
than that of the proton. Therefore, the calculation of 27Al is of
special interest, since the result will provide an opportunity to
test if it is still valid to choose μexpt./μs.n. as the first quenching
ratio for this kind of nuclei in the case that the nuclear
magnetic moment is greater than that of the valence nucleon.
Figure 3 shows a comparison between the theoretical results
and experimental data for 27Al. In the figure, the solid curve
denotes the result of the pure contribution of the single 1d5/2

FIG. 3. The magnetic form factors of 27Al. The solid curve
corresponds to the contribution of the single 1d5/2 proton; the dashed
curve corresponds to the result including correction with α1 = 0.716,
α3 = 0.435, and α5 = 0.606, and the dotted curve corresponds
to the result including correction with α1 = μexpt./μs.n. = 1.304,
α3 = 1.90 × 10−4, and α5 = 0.575. The filled dots represent the
experimental data from Refs. [1,23].

proton; the dashed curve shows the result including correction
with α1 = 0.716, α3 = 0.435, and α5 = 0.606, and the dotted
curve shows the result including correction with α1 fixed
to μexpt./μs.n. = 1.304, α3 = 1.90 × 10−4, and α5 = 0.575,
where μexpt. = 3.6415μN [55] for 27Al and μs.n. = 2.7928μN

for the proton; the filled dots represent the experimental data
from Refs. [1,23]. It can be found from Fig. 3 that the pure
contribution of the single 1d5/2 proton gives a very close
description of the shape of the experimental form factors,
and a nearly perfect agreement of the calculated result with
the available experimental data is obtained after the set of
quenching ratios α1 = 0.716, α3 = 0.435, and α5 = 0.606
are applied. However, the other set of ratios with α1 fixed
to μexpt./μs.n. = 1.304 failed to reproduce the experimental
data in the low and intermediate momentum transfer region
q = (0–2.5) fm−1. This shows that choosing μexpt./μs.n. as
the value of the M1 multipole quenching ratio is no longer
valid for 27Al. This is in sharp contrast to the cases of 17O,
25Mg, 29Si, and 31P ( 29Si and 31P will be discussed in the
following section). Nevertheless, we can still draw some useful
information from the fitted values of α5 and the results in the
high momentum transfer region. The values of α5 and the
results in the high momentum transfer region may imply that
for 27Al the M1 and M3 multipoles of the contribution of
the single 1d5/2 proton could not bring considerable effects in
the high momentum transfer region q � 2.5 fm−1, or in other
words, the M5 multipole is mainly responsible in the high
momentum transfer region.
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For 27Al, direct theoretical calculations of the nuclear
magnetic form factors containing modifications to the valence-
nucleon contributions were also performed by some re-
searchers. One good result was given in Ref. [1], which was
obtained using the matrix elements of Brown and Wildenthal
with the wave functions generated from the Woods-Saxon
potential model with r0 = 1.12 fm and a = 0.72 fm. Another
calculation was carried out by Radhi et al. [29], who calculated
the magnetic form factors of 17O, 25Mg, 27Al in terms of
the configuration mixing shell model plus core polarization
effects with the nucleon wave functions from the harmonic
oscillator potential model. They found that core polarization
effects could improve calculations in the low and intermediate
momentum transfer region, but the improvement was not large
enough to give a good agreement with the experimental data.
Their calculations also showed that, if the data in the high
momentum transfer region were well described, the valence
orbital had to be given a size smaller than that required by the
rms charge radius.

B. The nuclei 31P and 29Si

In the s-d shell, 29Si and 31P are two typical spin- 1
2 nuclei

with a single nucleon in the outermost 2s1/2 orbital in the
ground state, so they are of much interest for studying the
form factors with contributions only from the M1 multipole.
In the cases of 31P and 29Si, only the quenching ratio α1 is
needed. The quenching ratio will only shift the form factor
curve up and down and will not change the shape. Therefore,
31P and 29Si may be good cases to explore how the shapes
and intensities of the magnetization density distributions of
the odd-A nuclei are influenced by the many-body and core
polarization effects. In Table I, we have given the values of
the quenching ratio α1 for both nuclei, with one value fixed to
μexpt./μs.n. and the other fitted from the experimental data. In
Figs. 4 and 5 we plot the results of the magnetic form factors
for both nuclei. The solid curves correspond to the results
of the contributions of the single 2s1/2 proton for 31P and
the single 2s1/2 neutron for 29Si; the dashed curves show the
results including correction with α1 = 0.526 for 31P and α1 =
0.532 for 29Si; the dotted curves show the results including
correction with α1 fixed to μexpt./μs.n. = 0.405 for 31P and
μexpt./μs.n. = 0.290 for 29Si, where μexpt. = 1.13160μN [55]
for 31P and μexpt. = −0.55529μN [55] for 29Si; the filled dots
represent the experimental data from Refs. [1,22].

For 31P, it is seen from Fig. 4 that the quenching ratio
α1 = 0.526 reproduces very well the experimental data, except
for a very slight discrepancy near q = 1.5 fm −1, and that
the ratio α1 = μexpt./μs.n. = 0.405 also reproduces well the
experimental data, though the agreement is not as good
as that given by α1 = 0.526. It is worth noting that the
good agreement—the minimum and second maximum being
accurately reproduced– is reached just by a simple shift down
of the single 2s1/2 proton contribution. The shape of the
experimental form factors are nearly exactly reproduced by
the pure contribution of the single 2s1/2 proton. In view of
the plane wave Born approximation, this implies that for 31P
the shape of the magnetization density distribution in radial

FIG. 4. The magnetic form factors of 31P. The solid curve denotes
the pure contribution of the single 2s1/2 proton; the dashed curve
shows the result including correction with α1 = 0.526, and the
dotted curve shows the result including correction with α1 fixed to
μexpt./μs.n. = 0.405. The filled dots represent the experimental data
from Refs. [1,22].

space yielded by the motion of the single 2s1/2 proton could
be very close to the actual situation, and the influences of the

FIG. 5. The magnetic form factors of 29Si. The solid curve
corresponds to the pure contribution of the single 2s1/2 neutron;
the dashed curve corresponds to the result including correction with
α1 = 0.532, and the dotted curve corresponds to the result including
correction with α1 = μexpt./μs.n. = 0.290. The filled dots show the
experimental data from Refs. [1,22].
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many-body and core polarization effects should be mainly on
the intensities of the magnetization distribution.

For 29Si, the agreements between the experimental data and
the calculations with the two sets of quenching ratios, α1 =
0.532 and α1 = μexpt./μs.n. = 0.290, are neither as good as
that of 31P. The result given by α1 = 0.532 shows an obvious
deviation from the experimental data in the momentum
transfer region around q = 1.0 fm −1, and the result given
by α1 = μexp/μsn = 0.290 shows a larger deviation from the
experimental data nearly over the whole momentum transfer
range except at the minimum. This indicates that for 29Si
both the shape and intensities of the radial magnetization
density distribution yielded by the motion of the single 2s1/2

neutron have deviations from the actual situation of 29Si.
This may show that, unlike 31P, the many-body and core
polarization effects could play an important role in determining
both the shape and the intensities of the magnetization density
distribution of 29Si.

As for calculations of the magnetic form factors of 29Si
and 31P, direct theoretical calculations were also carried out
by some authors. Here, we would like to specially mention
the work of Graca et al. [8]. Unlike most calculations in
the spherical models, these authors considered 29Si in the
deformed model. Using the Nilsson wave functions they built a
connection between the deformation parameter and the nuclear
magnetic form factors. Their calculations of 29Si are in good
agreement with experimental data. In their calculations, the
quenching or reduction of the magnetic form factors with
respect to the single nucleon contribution comes out as a
natural result of the theory on nuclear collective motion.
A more general analysis was also given by these authors,
which showed that this method could be applicable to many
odd-nucleon Nilsson orbital nuclei.

Now we are on the point of finishing the discussions of the
results of 17O, 25Mg, 27Al, 29Si, and 31P. However, before
we come to an end, a few remarks should be made on the
method and results of the present research. We investigated
the magnetic form factors of 17O, 25Mg, 27Al, 29Si, and
31P within the relativistic frame with the single nucleon wave
functions generated by the relativistic mean field model, and
obtained two sets of quenching ratios for the nuclear magnetic
form factors for each nucleus and discussed the physical
implications. The results, on the one hand, show that very
good fits to the experimental magnetic form factors of the
considered nuclei can be obtained using the single valence-
nucleon wave functions from the relativistic mean field
model. This may show that the wave functions given by the
relativistic mean field model are reliable and can give a fairly
accurate description for the motion of the nucleons in nuclei.
However, on the other hand, the results may also show that
the shapes and intensities of the magnetization distributions
yielded by the single valence-nucleon wave functions, in
particular the intensities, are just an approximation to the real
nuclear magnetization distributions. The deviation is mainly
due to two reasons: one is the many-body effects, such as
those of the meson exchange and back-flow currents in the
relativistic mean field, and the other is the core polarization
effect. Apart from the two main reasons, there may be a

configuration admixtures effect for 25Mg, 27Al, 29Si, and 31P
and a deformation effect for 25Mg. All these effects are just
considered by phenomenologically introducing the quenching
ratios in the present research. This method may be applied
nearly to all the odd-A nuclei, and enables us to avoid being
brought into complicated mathematical calculations and get
a general idea that to what degree elastic magnetic electron
scattering off odd-A nuclei can be described by the single
valence nucleon. However, if we want to understand more
about the physics behind the quenching ratios, to grasp the
physical meaning, direct theoretical calculations containing
the many-body effects and/or the core polarization effects with
reasonable methods on the microscopic level must be carried
out.

As a matter of fact, many authors have made useful explo-
rations from various different considerations of the many-body
and core polarization effects to explain the deviations between
the single valence-nucleon contributions and the observed
nuclear magnetic form factors, and have acquired important
and instructive results, such as those [1,8,11,19–21,28,29]
that we have mentioned in the previous paragraphs. However,
the overall situation is that the theoretical explanations of
experiments in this respect are still not very satisfactory, and
further research work is still needed. As the quenching ratios
have shown, the deviations between the single valence-nucleon
contributions and the experimental data differ very much for
different nuclei; the many-body and core polarization effects
may need to be treated differently for each nucleus. This might
be the key point in dealing with the many-body and core
polarization effects. To find targeted and workable forms of
modification for a specific nucleus, perhaps the quenching
ratios could provide references for estimating how strong the
many-body and core polarization effects are in a specific
nucleus, on which multipole(s) these effects mainly bring
influence, and whether these effects bring changes to the
positions of the minima and maxima predicted by the single
valence nucleon. Perhaps these considerations along with the
available calculations may be beneficial to further studies. We
will try to consider incorporating the meson exchange currents
and/or core polarization effects in calculating the magnetic
form factors based on the relativistic mean field model in our
following research work and expect that some new results
could be obtained.

One more point that we would like to remark upon concerns
the calculations of the form factors using nuclear models with
free parameters such as the the harmonic oscillator potential
model and the Woods-Saxon potential model. The harmonic
oscillator potential model and the Woods-Saxon potential
model are two of the most frequently used models in nuclear
physics. In general, when the harmonic oscillator potential
model is used to calculate the nuclear properties, the value
of the harmonic-oscillator length b is usually assigned to
satisfy the requirement of the rms radius of nuclear charge
density distribution. For simplicity, in most cases, we choose
b = 1.0A1/6 fm or b = 6.44(45A−1/3 − 25A−2/3)−1/2 fm [56]
to approximately meet this requirement. However, it is not
always necessary to do so; it might be more beneficial to
take b as a free parameter in certain cases. In view of the
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plane wave Born approximation, the shape of the magnetic
form factors of an odd-A nucleus is dictated by the Bessel
functions and the rms radius of the unpaired valence-nucleon
wave function; so, in principle, a satisfactory shape for the
magnetic form factors could be obtained in the harmonic
oscillator model by adjusting the free parameter b to enable
the unpaired valence-nucleon wave function to have a proper
rms radius. Therefore, If we take b as a free parameter in
calculating the magnetic form factors of nuclei, we could
take better advantage of the model, although in this case we
may to a certain extent sacrifice the compatibility between b
and the rms radius of charge density distribution. Taking b
as a free parameter may allow the results given within the
other models to be easily repeated in the harmonic oscillator
model and compared and discussed, and, moreover, this may
provide a way to explore to what extent the shape of the
nuclear magnetic form factors may be noticeably affected
by the varying shapes of the unpaired valence-nucleon wave
function. To perform this, the calculated rms radii of the
corresponding single valence wave functions listed in Table I,
for instance, can be used as references for calculations of
the magnetic form factors in the harmonic oscillator potential
model. We could adjust b to enable the corresponding single
valence-nucleon wave functions to have the same rms radii
as those listed in Table I and calculate the magnetic form
factors and the corresponding single valence-nucleon wave
functions. Then the results of the magnetic form factors and the
corresponding single valence-nucleon wave functions from the
harmonic oscillator model and RMF model could be compared
and discussed. In this way, perhaps we could get information
about the role played by the shape of the valence nucleon wave
function in determining the nuclear magnetic form factors of
the odd-A nuclei.

IV. SUMMARY

The magnetic form factors of the s-d shell odd-A nuclei
17O, 25Mg, 27Al, 29Si, and 31P are investigated within

the relativistic frame with single-nucleon wave functions
generated using the relativistic mean field model. The single
valence-nucleon contributions to the nuclear magnetic form
factors are calculated, and two sets of quenching ratios of the
magnetic form factors relative to the single valence-nucleon
contribution are extracted for each nucleus. It is found that
the single valence-nucleon contributions can give a good
approximate description of the shapes of the nuclear form
factors, including the positions of the minima and maxima.
With the quenching ratios obtained with α1 set free, the
experimental magnetic form factors of the considered nuclei
can be reproduced quite well. With the quenching ratios
obtained with α1 fixed to μexpt./μs.n., situations appear to vary:
for 17O, 25Mg, 29Si, and 31P, the experimental data can be well
or very satisfactorily reproduced, but for 27Al the experimental
form factors could not be reproduced in the low and medium
region. This shows that choosing μexpt./μs.n. as the M1
multipole quenching ratio makes sense only to part of the
odd-A nuclei, perhaps a large part. In addition, the successful
reproduction of the experimental data of 17O, 25Mg, 27Al,
29Si, and 31P using the relativistic mean field model just
by introducing the quenching ratios indicates that the single
nucleon wave functions generated by the relativistic mean
field model are reliable. Moreover, the present calculations
have no adjustable parameters for specific nuclei, and could
be a good complement from the relativistic frame to the
available results obtained within the other nuclear models and
provide more useful references for further and more involved
studies.
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