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Curvature correction term as a constraint for the Skyrme interaction
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The curvature correction term to the surface tension is used as a criterion for the efficiency of the Skyrme
interaction in describing surface properties. Based on the nuclear equation of state, the curvature correction term
to the surface tension coefficient is calculated for 97 standard Skyrme interaction parameter sets in the vicinity
of nuclear saturation density at zero temperature. The main idea is to find those parametrizations that give the
Tolman δ correction close to the available theoretical predictions from the statistical theory. Only 59 out of 97
models give satisfactory results. Comparison of the obtained results with the results of the implementation of
different macroscopic and microscopic constraints to Skyrme parametrizations available in the literature allows
us to select four models that satisfy all the constraints.
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I. INTRODUCTION

The derivation of the equation of state (EOS) of nuclear
matter is among the most important goals and long-standing
unsolved problems in nuclear physics and astrophysics [1].
Various approaches to the description of infinite nuclear matter
exist. Among them are purely microscopic ones based on the
realistic description of the nucleon-nucleon (NN) interaction
[2], in which case the result depends not only on the chosen
interaction but also on the way many-body effects are treated.
These may be handled either by a direct description of the
tree-particle interactions or by approaches like that of the
Bruckner-Hartree-Fock method, the Dirac-Bruckner-Hartree-
Fock formalism [3,4], self-consistent Green’s functions [5],
etc.

At the same time, in describing the experimental data and
in computer simulation, the most widely used models are
those based on effective density-dependent NN and NNN
interactions rather than on realistic ones (e.g., the models
introduced by Skyrme [6] and Gogny [7]). The main problem
of such approaches is in the infinite number of possible sets
of model parameters providing satisfactory description of the
ground-state properties of stable nuclei.

A large number of various Skyrme-force parametrizations
and theoretical models attempting to describe nuclear matter
and finite nuclei in a wide range of external parameters exists.
They all were constructed under specific assumptions that
reduce their predictive power [8]. Combined with the indirect
model-dependent experimental methods used to evaluate
nuclear matter properties, it makes the selection of the realistic
sets of parameters quite a difficult task.
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Presently over 200 sets of Skyrme parameters are known
from the literature. They result from the analysis of various
observables, leading to different predictions concerning the
behavior of nuclear matter away from equilibrium. Recently,
a number of interesting and important papers systematically
checking the sets of parameters for nuclear matter constraints
appeared [8,9]. Important work on the construction of new
parametrizations with systematic variation of the parameters
to improve the precision of the results for some crucial nuclear
matter properties was done in Refs. [10–12]. Such investiga-
tions may result in the improvement of the equation of state
of nuclear matter, applicable in a wide range of parameters.
Thus, the search for model-independent constraints connected
with the specific properties of the nuclear matter is timely and
important.

Such constraints may result from the properties of the
interfaces. To start with, let us mention that the droplet model
of nuclei [13] plays a special role among macroscopic models.
It makes possible the description of average properties of
a saturated system, such as a nucleus, consisting of two
components (neutrons and protons), with account for the
boundary effects and the presence of a diffuse layer. The
surface energy and the properties of the surfaces in nuclear
matter have been studied in a number of papers [14–16].
And even though the dependence of the surface tension
(and surface energy) on the surface curvature as well as its
impact on different physical properties were also studied by
several groups of authors [17,18], still, for decades it has
remained one of the most controversial issues in mesoscopic
thermodynamics [19–21].

In studies of surface properties of nuclei with mass number
A, the account for the curvature effects is important. Within the
droplet model this requires the inclusion of additional terms
proportional to A

1
3 in any expansion concerning the nuclear

properties in terms of the fundamental dimensionless ratio,
given by r0

R
= A− 1

3 , which is the ratio of the interparticle
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spacing r0 to the nuclear radius R [13]. In these studies, effects
connected with the surface curvature are specified by the
curvature correction coefficient a3 accompanying terms of the
order A

1
3 . In statistical mechanics and in Gibbs-Tolman (GT)

thermodynamics of interfaces, it corresponds to the Tolman
length, called also the δ correction [22]. The basic parameter δ
was first introduced by Tolman [23]. It is equal to the distance
between the equimolar surface Rem and the surface of tension
R at the interphase boundary:

δ = Rem − R. (1)

According to the GT theory, the surface tension σ of the curved
interface, in the leading order approximation, can be defined
as

σ (R) = σ∞

(
1 − 2δ

R
+ · · ·

)
, (2)

where R is the droplet radius (equal to the radius of the surface
of tension [24,25]) and σ∞ is the surface tension of the planar
interface. Originally introduced for ordinary liquids, it can
be defined for any system with curved interface of a non-
negligible boundary layer [19], such as nuclei and nuclear
systems with a finite diffuse layer [26].

The first theoretical estimates of the correction term were
done by Tolman [27]. It appeared to be close to the average
interparticle distance r0. Namely, δ ∼ (0.3–0.6)r0, that, for
a nuclear systems, is r0 ∼ 0.7 fm at normal density of ρ ∼
0.17 fm−3. Present calculations from statistical mechanics
yield the Tolman length of the order of the interparticle
distance δ ∼ r0 = 1.14 fm [16]. Thus, mathematically the term

2δ
R

in Eq. (2) becomes important for the systems with R <

14 fm [ 2δ
R

> 0.1 in Eq. (2) and even more so for nuclear systems

with R ≈ 0.7A
1
3 = 0.7(277)

1
3 = <4.6 fm for heavy nuclei].

In view of the importance of the curvature correction for
nuclear systems, checking different sets of standard Skyrme
parameters as for their ability to reproduce the theoretically
predicted values for δ correction becomes an important task.
Therefore, following the idea of Ref. [9] in this work we
present an attempt to use the Tolman correction as a constraint
for different sets of Skyrme parameters.

II. THEORETICAL MODEL

In the present paper the Tolman δ corrections are calculated
for 97 different sets of Skyrme parameters known from the
literature (see Appendix A). In our analysis we included the
most popular parametrizations. From large families (e.g., BSk
and SkSC), we selected several representative members. The
Tolman length was calculated for the whole families in which
δ coincides with or is close to that calculated statistically. The
results are compared with the theoretical predictions. This
analysis is interesting as a test of various models regarding
their ability to describe interphase interfaces.

Various approaches for the evaluation of the curvature
correction exist. A method to calculate the Tolman δ correction
from the EOS of nuclear mater was introduced earlier in
Ref. [28].

In that model, one gets for δ from the EOS of symmetric
nuclear matter with isospin-independent effective mass (see
Appendix B) in the case of T = 0, at normal density ρ0,

δ = 2

3

1

ρ0
2

−33t0 − 160Wρ0
−1/3 + t3(1 + α)ρ0

α 1
12 (7(3α + 6) − 3(3α + 6)2)(

15t0 + 1
12 t3(1 + α)((3α + 6) − (3α + 6)2)

)2 σ∞, (3)

where

W = h2

10m

(
3

8πg

) 2
3
(

5 − 3m∗
m

m∗
m

)
. (4)

We use the above results to calculate corrections to 97
sets of Skyrme parameters, using them in testing various
parametrizations describing surface effects properly. Let us
recall that, following Tolman’s first estimates [27], subsequent
calculations based on statistical mechanics that use minimum
information regarding the details of the interaction about the
studied liquids but operating with dimensionless parameters
such as the size of the diffuse layer divided by the interparticle
distance (e.g., penetrable sphere model in the mean field
approximation) yield |δ| in a range from 1

3 r0 to 5
9 r0 (see

Refs. [24,29–31] and references therein). Even though the sign
of the curvature corrections reported in the literature varies in
different calculations, the absolute value is approximately the
same, varying within the distance where the density profile
faces rapid changes. The density profiles in the diffuse layer
in the dimensionless coordinates are very similar for ordinary
liquids and nuclear matter. This allows us to extend the results

of the physics of ordinary liquids to nuclear matter. Thus, with
account for the uncertainty of the theoretical values of δ, the
admissible range for the curvature corrections adopted in the
work is

|δ| = (0.3 ∼ 0.6)r0 = (0.34 ∼ 0.68) fm. (5)

In all calculations the surface tension of the semi-infinite
matter at T = 0 is calculated for the symmetric case with ρn =
ρp = 1

2ρ (without Coulomb interaction) within the restricted
extended Thomas-Fermi approach [26]. Terms up to fourth
order are considered. All the calculations include effective
mass and spin-orbit contribution. The function ρ(z) used
to minimize the surface energy is the one-parameter Fermi
function:

ρ(z) = ρ∞
1 + exp(αz)

. (6)

Our calculations yield values for σ∞ in the range 0.93–
1.21 MeV fm−2. The results of our calculation are presented
in Fig. 1.

In Table I the parametrization yielding values of δ within
the admissible range (5) and, at the same time, satisfying
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FIG. 1. (Color online) Tolman’s δ length. Solid lines show the
boundaries defined by Eq. (5); dashed line corresponds to the
extended range up to the interparticle distance.

the constraints of Ref. [9] are shown (marked with the label
“+” in the rightmost column), appended by the macroscopic
properties of the corresponding parametrizations. The label
“part” indicates that the parametrization passed the test of

Ref. [9] for all but one of the applied constraints, and the
failure for that one constraint is less than 5%.

III. RESULTS AND DISCUSSION

Only 59 parametrizations of those analyzed satisfy the
constraint on the δ corrections imposed in Eq. (5). Among them
Ska25s20 and SV-min0 satisfy also all the criteria of Ref. [9],
while Ska35s20, SkT1, SkT2, SkT3, and Skxs20 satisfy all
but one of the constraints of Ref. [9]. If one increases the
admissible range of δ up to the interparticle distance, then two
more parametrizations satisfying all the constraints of Ref. [9]
and three more satisfying all but one will pass the δ-correction
test (see Table I). At the same time, as seen in Fig. 1, many
parametrizations yield values of δ correction close to the
range allowed by Eq. (5). An interesting but not surprising
observation is that, while some of the parametrizations of the
family SkT pass the δ-constraint test, others do not, although
the parametrizations are based on the same inputs and use the
same method. This observation may suggest that some of the
parametrizations pass the test just by chance.

The main features of the parametrizations that passed the
test are shown in Table II (see Appendix C). As seen from
the table, the families with acceptable values of the Tolman
correction use finite nuclei properties connected with the
nuclear surface (e.g., surface properties of selected magic and
semimagic nuclei, surface thickness, and neutron rms radius)
as input data. At the same time, families that did not pass the
test use different input data (e.g., v070 or skz2). It should be
also noted that parametrizations elaborated for neutron matter
(e.g., the SLy family) fail to produce an acceptable curvature
correction to the surface tension in symmetric nuclear matter.

The obtained values appear negative for all chosen
parametrizations except for SV (see Fig. 1), which means that
the surface of tension is located closer to the liquid phase with
respect to the equimolar surface.

An important observation is that all parametrizations
constructed by systematic variations of the parameters (e.g.,
SV and SkS families) do pass the δ-correction test.

Attempting to find an apparent pattern of the forces’
performance in describing properties of the nuclear surfaces,
we analyzed the dependence of δ on various force parameters
and the macroscopic properties characteristic for the tested
forces. We also calculated the coupling constants found in
recent years and aimed to improve the relevance of the Skyrme
forces to different physical properties [9] and given as linear
combinations of individual parameters:

C
ρ
0 = 3

8 t0 + 3
48 t3ρ0

α,
(7)

C1
ρ = − 1

4 t0
(

1
2 + x0

) − 1
24 t3

(
1
2 + x3

)
ρ0

α.

Other combinations of the individual parameters are those pro-
viding the most compact formulation of the energy functional
and the residual interaction [32]:

b0 = t0
(
1 + 1

2x0
)
,

(8)
b3 = 1

4 t3
(
1 + 1

2x3
)
.

Unfortunately, no particular dependence of the value of the
δ correction in almost all of the force parameters, coupling
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TABLE I. Tolman δ correction and macroscopic properties for various Skyrme parametrizations. Forces below “Extended” pass the
δ-correction test with the extended range (5) up to interparticle distance.

Skyrme force δ (fm) ρ0 (fm−3) K (MeV) E0 C0
ρ (MeV fm3) Ref. [9] results

Ska25s20 − 0.74 0.1746 210.78 − 15.32 − 250.23 +
SV-min − 0.74 0.1746 210.78 − 15.32 − 250.23 +
Ska35s20 − 0.78 0.16 230 − 16 − 272.70 part
SkT1 − 0.58 0.162 201.95 − 15.81 − 240.38 part
SkT2 − 0.58 0.162 201.95 − 15.81 − 240.38 part
SkT3 − 0.58 0.162 201.95 − 15.81 − 240.38 part
Skxs20 − 0.58 0.1595 234 − 15.94 − 253.67 part

Extended
LNS − 0.74 0.1746 210.78 − 15.32 − 250.23 +
SQMC700 − 0.74 0.1746 210.78 − 15.32 − 250.23 +
MSL0 − 0.58 0.1595 234 − 15.94 − 253.67 part
SKRA − 0.58 0.1595 234 − 15.94 − 253.67 part
KDE0v1 − 0.58 0.1595 234 − 15.94 − 253.67 part

constants, or macroscopic properties was found. The only
observable correlations are in the slight increase of the absolute
value of δ with increasing t1 (Fig. 2), decreasing effective mass
(Fig. 3) and increasing absolute value of the coefficient C0

ρ

(Fig. 4).
From standard statistical analysis of the forces that pass the

curvature correction test one may suggest that with probability
0.95 the most probable values of the above parameters should
be

C
ρ
0 = −245.1 ± 3.6,

m∗ = 0.96 ± 0.02, (9)

t1 = 304.1 ± 10.2.

The standard deviations are SDC0
ρ = 13.8, SDm∗ = 0.07 and

SDt1 = 36.7. One can see from the Figs. 2–4 that there exists
a dependence of δ on t1, m∗, and C0

ρ . Even though this may
be the necessary condition for the force ability to describe

FIG. 2. Dependence of the absolute value of δ on the t1 coefficient
of the Skyrme force.

FIG. 3. Dependence of the absolute value of δ on effective mass.

FIG. 4. Dependence of the absolute value of δ on C0
ρ .
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nuclear surfaces, certainly it is not sufficient, since some of
the parametrizations, including those with δ outside our range
[Eq. (5)], produce t1, m∗, and C0

ρ within the ranges imposed
by Eq. (9). This may be an indication of some basic problem
in the Skyrme-type parametrizations, maybe connected with
the large freedom in choosing the force parameters.

IV. CONCLUSIONS

In this paper we calculated the curvature correction term
of the surface tension from the nuclear equation of state for
97 different standard Skyrme parametrizations available in the
literature. The obtained results show strong dependence of the
curvature correction term on the EOS.

To summarize, our study shows that not all the existing
parametrizations are capable of describing adequately the
interphase interfaces in nuclear matter. In spite of the con-
siderable uncertainty regarding the absolute value of δ, the
suggested constraint, even with a wide admissible range for
δ allows one to test various Skyrme forces regarding their
capacity to describe curvature effects. It should be mentioned
that better agreement is observed with the use of EOS that
account for the surface effects with respect to those that do not
(or were designed for neutron matter).

Comparison of the obtained results with the available data
on different Skyrme forces with nuclear matter constraints
suggests two parametrizations, namely Ska25s20 and SV-min,
that satisfy all constraints. For an extended admissible range
for δ, that number increases and two more parametrizations,
namely LNS and SCMC700, that come into play. It can be seen
from our study that the systematic variation of the parameters is
quite efficient, giving promising results in studies of the basic
properties of nuclear matter. At the same time, further progress
with Skyrme-type forces requires a better understanding of
the physical meaning of different parameters rather than the
introduction of new parameters.
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APPENDIX A: PARAMETRIZATIONS USED

The Skyrme parametrizations analyzed in the work are
BSk1 [33], BSk10 [34], E [10], E σ [10], FPLyon [35],
Gσ [10], KDE [36], KDE0v [36], KDE0v1 [36], LNS [37],
MSk1 [38], MSk2 [38], MSk3 [38], MSk4 [38], MSk5 [38],
MSk5* [39], MSk6 [38], MSkA [40], MSL0 [41], NRAPR
[42], PRC45 [43], RATP [44], R σ [10], SGII [45], SGO2
[46], SII [47], SIII [47], SIV [47], SK255 [48], SK272 [48],
Ska [49], Ska25s20 [9], Ska35s20 [9], SkI4 [32], SkM* [50],

SkMP [46], SkO [32], SkP [50], SKRA [51], SkS1 [11], SkS2
[11], SkS3 [11], SkS4 [11], SkSC1 [52], SkSC10 [53], SkSC2
[52], SkSC3 [52], SkSC4 [53], SkSC5 [53], SkSC6 [53],
SkSP1 [39], SkT1 [54], SkT1* [54], SkT2 [54], SkT3 [54],
SkT3* [54], SkT4 [54], SkT5 [54], SkT6 [54], SkT7 [54],
SkT8 [54], SkT9 [54], SKX [55], SKXce [55], SKXm [55],
Skxs15 [56], Skxs20 [56], Skxs25 [56], Skz2 [57], SLy4 [58],
SLy5 [58], SLy6 [58], SLy7 [58], SQMC650 [9], SQMC700
[9], SV [47], SV-bas [12], SVI [47], SV-K226 [12], SV-kap02
[12], SV-mas08 [12], SV-min [12], SV-sym32 [12], SV-tls
[12], T [10], v070 [59], Z [10], ZR1a [43], ZR1b [43], ZR1c
[43], ZR2a [43], ZR2b [43], ZR2c [43], ZR3a [43], ZR3b [43],
ZR3c [43], and Z σ [10].

APPENDIX B: EQUATION OF STATE OF
NUCLEAR MATTER

To calculate the δ correction, an EOS of nuclear matter
at low temperatures and in the high-density limit was used,
where λ3ρ � 1 (i.e., when the average de Broglie thermal
wavelength λ is larger than the average interparticle separation
ρ− 1

3 ). In this case, the EOS takes the form [60]

P (ρq,T ) =
∑

q

[
5

3
ε∗

kq(ρq,T ) − εkq(ρq,T )

]

+ t0

2

(
1 + x0

2

)
ρ2 + t3

12

(
1 + x3

2

)
(α + 1)ρα+2

− t0

2

(
x0 + 1

2

)∑
q

ρq
2

− t3

12

(
1

2
+ x3

)
(α + 1)ρα

∑
q

ρq
2, (B1)

with

εkq = m∗
q

m

1

β

2g√
π

λq
−3F 3

2
(ηq),

(B2)
ε∗

kq = 1

β

2g√
π

λq
−3F 3

2
(ηq),

where m and m∗ are the mass and effective mass, respectively;
T and ρ are temperature and density; q is the particle type

(q = proton, neutron); F is the Fermi integral; λ =
√

2π�2

m∗T is
the average de Broglie thermal wavelength; g = 2 is the spin
degeneracy factor; t0, t3, x0, x3, and α are the Skyrme force
parameters; and β = 1

T
.

APPENDIX C: METHODS AND INPUT DATA USED IN
CONSTRUCTION OF DIFFERENT SKYRME

PARAMETRIZATIONS

In Table II several representatives of Skyrme parametriza-
tions that satisfy the constraint on the δ correction are shown.
The input data and the methods used in their construction are
compared.
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TABLE II. Comparison of the methods and input data used in construction of different Skyrme parametrizations.

Skyrme forces Method Input data

KDE0v1 Simulated annealing method Ground-state properties of normal and exotic nuclei:
binding energy, charge radii and spin-orbit splitting,
radii for 1d5/2 and 1f7/2 neutron orbits in 17O and 41Ca
breathing mode energies, critical density ρcr ,
positive slope of the symmetry energy up to 3 ρ0,
enhancement factor associated with GDR, Landau parameter G′

0

LNS Bruckner-Hartree-Fock Nucleon effective mass in symmetric nuclear matter (SNM)
with two- and three-body forces and asymmetric nuclear matter (ANM), energy per
(homogeneous matter) particle in SNM and ANM as function of density and
Hartree-Fock proton neutron asymmetry;
(finite matter) constraint on the Landau parameter G0,

surface properties of selected magic and semimagic nuclei,
spin-orbit splitting p1/2–p3/2 in 16O

SV family Hartree-Fock Properties of finite nuclei (energies, radii, and surface thickness),
energies of giant resonances,
systematic variations of selected nuclear matter properties

MSkA Density-dependent Hartree-Fock Empirical binding energies and charge radii of the
closed-shell nuclei 16O, 40Ca, 90Zr, and 208Pb;
isotopes 116,124Sn and 214Pb; doubly closed 132Sn

SK255, SK272 Hartree-Fock-based random phase Nuclear binding energies, charge radii, and neutron radii;
approximation (RPA) approach rms charge radius of 208Pb; incompressibility coefficient from

relativistic and nonrelativistic mean-field-based RPA calculations
SkS family Hartree-Fock seniority Symmetric nuclear matter ground-state properties;

binding energies of 16O, 40,48Ca, 90Zr, and 208Pb;
spin-orbit splitting in 16O; surface parameter and
symmetry properties; fission barrier of 240Pu;
restrictions on Landau parameter for SkS4

SkT family Hartree-Fock; Nuclear radii and binding energies; droplet model parameters;
extended Thomas-Fermi experimental masses, charge radii, charge distribution, neutron

skin thickness, semiclassical fission barriers, and
Landau parameters

Skxs family Skyrme Hartree-Fock; Binding energies, rms charge radii, and single-particle energies;
relativistic mean-field models binding energy difference 48Ni-48Ca; charge density of 208Pb;

constraint of α = 1/6 for the density-dependent potential
E, Z, T, E σ , G σ , R σ , Z σ Hartree-Fock-Bogoliubov Binding energy, diffraction radius,

surface width of 16O, 40,48Ca, 58Ni, 90Zr, 116,124Sn, and 208Pb;
l-s splitting of the 1p level in 16O
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