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Based on Bohr model, I have presented a general formalism describing the collective motion for any deformed
system, in which the collective Hamiltonian is expressed as vibrations in the body-fixed frame, rotation of
whole system around the laboratory frame, and coupling between vibrations and rotation. Under the condition
of decoupling approximation, I have derived the quantized Hamiltonian operator. Based on the operator, I have
calculated the rotational spectra for some special octupole and hexadecapole deformed systems and shown
their dependencies on deformation. The result indicates that the contribution of octupole or hexadecapole
deformations to the lowest band is regular, while that to higher bands is dramatic. These features reflecting
octupole and hexadecapole deformations are helpful in recognizing the properties of real nuclei with octupole
and/or hexadecapole deformations coexisting with quadrupole deformations.
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I. INTRODUCTION

The theory of collective motion was developed a long
time ago. The classical case corresponds to the quadruple
deformations, which was established by Bohr in 1952 [1,2].
The Bohr Hamiltonian is very useful in describing the vibra-
tions and rotation for quadruple deformed nuclei. Especially
for the shape evolution and phase transitions [3], the Bohr
Hamiltonian is a powerful tool for investigating the critical-
point symmetries like E(5) [4], X(5) [5], Y(5) [6], and Z(5) [7].
More research on the collective motion by Bohr model can be
found in the literature [8–10] and references therein. Several
recent advances include the Bohr Hamiltonian solved with
a mass- and deformation-dependent Kratzer potential [11],
an approximate analytical formula for the energy spectrum
for a prolate γ -rigid collective Hamiltonian with a harmonic
oscillator potential corrected by a sextic term [12], and an
analytical solution of the Davydov-Chaban Hamiltonian with
a sextic potential for γ = 30◦ and its satisfactory description
for the shape phase transition in Xe isotopes in comparison
with experiment [13].

The Bohr Hamiltonian is applicable to nuclei with quadru-
ple deformations. Although the quadruple deformations are
the most frequently encountered in real nuclei, the higher
multipolar deformations are also essential for satisfactory
description of nuclear properties. The description of octupole
deformations has been a long-standing problem in nuclear
physics [14]. Theoretical calculations [15,16] predicted the
existence of octupole stable deformations and this problem
stirred considerable interest, especially in the Ce-Ba and the
Rn-Th regions. The level scheme of a few moderately or
weakly deformed nuclei, such as 64Ge [17],148Sm [18], or
233,235Ra [19] presents features that may be related to octupole
instabilities and softness of the nucleus with respect to possible
exotic octupole deformations. There has been evidence for
the existence of stable octupole deformations in the Rn-Th
region [20,21]. For example, the existence of stable octupole
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deformations in 224Ra has been verified in a recent experi-
ment [22]. Furthermore, in the region N = 92,94, octupole
correlations were observed in 150,152Ce isotopes [23,24].

These examples show that there exist certainly the octupole
deformations and/or correlations in certain regions. For the
study of collective motion involving octupole deformations,
the generalization of the Bohr Hamiltonian was explored in
Ref. [25]. Its application to the problem of octupole vibrations
in nuclei was elaborated in the review [26]. The vibrational
and rotational spectra obtained by the model reproduce
well the experimental data for some rare-earth and actinide
nuclei [27,28]. In Refs. [29,30], the analytic solutions of the
Bohr Hamiltonian involving axially symmetric quadrupole
and octupole deformations with an infinite well potential or
Davidson potential were obtained, and normalized spectra and
B(EL) ratios were found to agree with experimental data for
226Ra and 226Th. Here, B(EL) is the reduced transition rates,
its definition is given by Eq. (20) in Ref. [29]. Because it is
difficult to determine the intrinsic frame, the parametrizations
of octupole deformations were probed in Refs. [26,31–33].
Moreover, an alternative parametrization describing nuclear
quadruple and octupole deformations was introduced in
Ref. [34], and the transitional nuclei 224,226Ra, 224Th, and X(5)
nuclei 150Nd, 152Sm were studied with satisfactory results in
comparison with experiment [35,36]. Based on this model, the
stable octupole deformed nucleus 224Ra was well described
in Ref. [37]. More research on the octupole deformations and
correlations can be found in Ref. [38] and references therein.

Besides the quadruple and octupole deformations, the
hexadecapole deformations are also necessary for the under-
standing of equilibrium shapes and the fission process of super-
and hyperdeformed nuclei [39,40]. Observations of the �I =
4 bifurcation (also called �I = 2 staggering) phenomenon in
superdeformation bands [41–46] have aroused great enthusi-
asm for the study of hexadecapole deformations. Many efforts
have been devoted to the subject, with possible explanations
given in terms of the presence of a tetrahedral symmetry [47–
50] and the absence of any tetrahedral symmetry [51–60].
The parametrization of hexadecapole deformations has been
discussed in Refs. [61–63].
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In real nuclei, hexadecapole deformations always coexists
with quadrupole deformations. Therefore, it is natural to take
the quadrupole and hexadecapole degrees of freedom simulta-
neously into account [64], especially in relation to the possible
appearance of intrinsic shapes with tetrahedral or octahedral
symmetry. The tetrahedral and octahedral shapes have been
predicted by the realistic mean-field calculations [65,66]; their
experimental identification in medium- and heavy-mass nuclei
is an open problem of current interest. Recently, the tetrahedral
symmetry has been found in the light nucleus 16O [67].

From the preceding analysis, it is evident that the
quadrupole, octupole, and hexadecapole deformations have
occurred in real nuclei and produced significant effects to
nuclear properties. Hence, it is interesting to discuss the
collective motion for any deformed system. In the paper, I
present a general formalism describing the collective motion
for any deformed system. First, I give the classical Hamiltonian
of collective motion in a laboratory system, then transform it
into a body-fixed frame to separate vibrations, rotation, and
the coupling between them. Under the condition of decoupling
approximation, I derive the quantized Hamiltonian operator.
As examples, I calculate the rotational spectra for some special
octupole and hexadecapole deformed systems and analyze
the properties of rotational spectra and their dependence on
deformation.

II. THE CLASSICAL THEORY OF COLLECTIVE MOTION
FOR ANY DEFORMED SYSTEM

To describe the collective motion for any deformed system,
one can expand the surface radius of the system as

R(ϑ,ϕ) = R0

[
1 +

∑
lm

αlmYlm(ϑ,ϕ)

]
, (1)

where αlm represents the deformations deviating from the
spherical shape in the laboratory frame with the relation
α∗

lm = (−)mαl,−m and R0 is the equilibrium radius. When
αlm are regarded as variables, the Hamiltonian describing
collective motion is obtained as

H = T + V, (2)

where the kinetic energy is expressed as

T = 1

2

∑
lm

Bl|α̇lm|2, (3)

and the potential energy takes the form

V = 1

2

∑
lm

Cl|αlm|2. (4)

Here Bl and Cl are respectively the parameters reflecting
the vibrational strength and the elastic coefficient against
deformation. In the Hamiltonian H , vibrations and rotation
are entangled together. It is difficult to study collective
motion by using this H . To separate vibrations and rotation
from H , it is necessary to transform the variables in the
collective Hamiltonian from the laboratory frame (K system)
to a body-fixed frame (K ′ system) by rotation, which is

defined by

R(θi) = e−iθ2J3e−iθ1J2e−iθ3J3 , (5)

where J1, J2, and J3 are the angular momenta along the fixed
coordinate axes (K system) and θi = (θ1,θ2,θ3) are the Euler
angles characterizing the orientation of K ′ with respect to a
fixed frame of reference K . Through the rotation, the variables
αlm in the K system can be transformed into the K ′ system as

αlm =
∑
m′

Dl
mm′βlm′ , (6)

where βlm are the deformation variables in the body-fixed
frame, and Dl

mm′(θi) are the Wigner function of θi . In Dl
mm′(θi),

l is the angular-momentum quantum number and m and m′ are
the projections of angular momentum on the laboratory fixed
z axis and the body-fixed z′ axis, respectively:

Dl
mm′(θi) = 〈lm|e−iθ2J3e−iθ1J2e−iθ3J3 |lm′〉. (7)

To present the collective Hamiltonian using the variables
(βlm,θi), one can calculate the time derivative of αlm as

α̇lm =
∑
m′

[
Dl

mm′(θi)β̇lm′ + Ḋl
mm′(θi)βlm′

]
, (8)

where the time derivative of Dl
mm′(θi) is presented as

Ḋl
mm′(θi) = −i

∑
k

Dl
mk(θi)〈lk| �ω · �J |lm′〉. (9)

In Eq. (9),

ω1 = θ̇1 sin θ3−θ̇2 sin θ1 cos θ3,

ω2 = θ̇1 cos θ3+θ̇2 sin θ1 sin θ3, (10)

ω3 = θ̇3 + θ̇2 cos θ1,

are angular velocities around the axes coincide with the body
(K ′ system). Putting α̇lm into Eq. (3), the kinetic energy splits
into three parts. The first part is quadratic in β̇lm and represents
vibrations by which the body changes its shape, but retains
its orientation. The second part, quadratic in θ̇i , represents
the rotation of the body without change of shape. The third
part contains the mixed time derivatives β̇lm · θ̇i , as can be
shown from simple properties of the Dl

mm′ functions and their
derivatives. One can thus write

T = Tvib + Trot + Tcou. (11)

In Eq. (11), the vibrational energy

Tvib = 1

2

∑
lm

Bl|β̇lm|2, (12)

the rotational energy

Trot = 1

2

∑
i,j

Jijωiωj , (13)

with the moments of inertia

Jij = 1

2

∑
lmm′

Bl〈lm′|{Ji, Jj }|lm〉βlmβ∗
lm′ , (14)
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and the coupling between vibrations and rotation

Tcou =
∑

i

ωiκi, (15)

with

κi = −Im
∑
lmm′

Bl〈lm′|Ji |lm〉β̇lmβ∗
lm′ . (16)

Here the internal variables βlm are of complex number. For
simplicity, I introduce a set of real parameters alm and blm to
describe the deformations as follows:∑

l,m

βlmYlm(θ,φ)

=
∑

l

al0Yl0(θ,φ) +
∑

l,m>0

[
almY

(+)
lm (θ,φ) + blmY

(−)
lm (θ,φ)

]
.

(17)

Here the spherical harmonics

Y
(+)
lm (θ,φ) = 1√

2
[Ylm(θ,φ) + Y ∗

lm(θ,φ)],

Y
(−)
lm (θ,φ) = 1

i
√

2
[Ylm(θ,φ) − Y ∗

lm(θ,φ)]. (18)

From Eq. (17), one obtains

βl0 = al0, βl,m = alm − iblm√
2

, βl,−m = (−1)m
alm + iblm√

2
,

(19)

where m = 1,2,3, . . . ,l. Then the kinetic energy of vibrations
in the body-fixed frame becomes

Tvib = 1

2

∑
l

Bl

[
ȧ2

l0 +
∑
m>0

(
ȧ2

lm + ḃ2
lm

)]
. (20)

I use the relations

J±|lm〉 =
√

(l∓m)(l±m + 1)|l m ± 1〉,
J3|lm〉 = m|lm〉, (21)

where J± = J1±iJ2. κi and Jij are expressed as the functions
of the real variables alm and blm as

κ1 = 1

2

∑
l

Bl

{
−

√
2l(l + 1)ȧl0bl1

+
∑
m>0

ol
m(−ȧlmblm+1 + ḃlmalm+1)

+
∑
m>0

ol
−m(−ȧlmblm−1 + ḃlmalm−1)

}
, (22)

κ2 = 1

2

∑
l

Bl

{√
2l(l + 1)ȧl0al1

+
∑
m>0

ol
m(ȧlmalm+1 + ḃlmblm+1)

−
∑
m>0

ol
−m(ȧlmalm−1 + ḃlmblm−1)

}
, (23)

κ3 =
∑

l,m>0

Blm(almḃlm − ȧlmblm), (24)

J11 = 1

4

∑
l

Bl

{
2l(l + 1)a2

l0 +
√

2l(l2 − 1)(l + 2)al0al2

+2
∑
m>0

[l(l + 1) − m2]
(
a2

lm + b2
lm

)

+
∑
m>0

ol
mol

m+1(almalm+2 + blmblm+2)

+
∑
m>0

ol
−mol

−m+1(almalm−2 + blmblm−2)

}
, (25)

J22 = 1

4

∑
l

Bl

{
2l(l + 1)a2

l0 −
√

2l(l2 − 1)(l + 2)al0al2

+2
∑
m>0

[l(l + 1) − m2]
(
a2

lm + b2
lm

)

−
∑
m>0

ol
mol

m+1(almalm+2 + blmblm+2)

−
∑
m>0

ol
−mol

−m+1(almalm−2 + blmblm−2)

}
, (26)

J33 =
∑

l,m>0

Blm
2
(
a2

lm + b2
lm

)
, (27)

J12 = 1

4

∑
l

Bl

{√
2l(l2 − 1)(l + 2)al0bl2

+
∑
m>0

ol
mol

m+1(almblm+2 − blmalm+2)

−
∑
m>0

ol
−mol

−m+1(almblm−2 − blmalm−2)

}
, (28)

J13 = 1

4

∑
l

Bl

{√
2l(l + 1)al0al1

+
∑
m>0

(2m + 1)ol
m(almalm+1 + blmblm+1)

+
∑
m>0

(2m − 1)ol
−m(almalm−1 + blmblm−1)

}
, (29)

J23 = 1

4

∑
l

Bl

{√
2l(l + 1)al0bl1

+
∑
m>0

(2m + 1)ol
m(almblm+1 − blmalm+1)

−
∑
m>0

(2m − 1)ol
−m(almblm−1 − blmalm−1)

}
, (30)

where

ol
m =

√
(l − m)(l + m + 1), (31)
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and the moments of inertia are real symmetrical: Jij = Jji .
These formulas have presented a general formalism describing
the collective motion for any deformed system, where the
collective motion is treated as vibrations in the body-fixed
frame (alm and blm vibrations), rotation of whole system
about the axes of laboratory system, and the coupling between
vibrations and rotation.

The general formalism can be applied to describe the
collective motion of a classical system with any deformation.
However, it should be noticed that the variables alm and
blm are not independent of each other. Three of them have
been replaced by the Euler angles. How to remove the three
superfluous variables is a problem. For the octupole and higher
multipolar deformed systems, the problem could be solved in
many ways, too many to have an obvious and natural definition
of the body-fixed frame.

Some progress has been achieved for octupole deformed
systems. The surface radius expressed by the parameters
a3m and b3m was reparametrized by a set of biharmonic
coordinates [26,31]. In the parametrizations, the system obeys
relatively simple transformation rules under the Oh group.
Similar parametrization was finished in Ref. [32], where the
intrinsic frame was defined with four independent variables,
which is a simple combination of a3m and b3m. To remove
the off-diagonal elements of inertia tensor, in Ref. [33],
the intrinsic frame was defined by the variables (X,Y,Z,γ ).
In comparison with the present formalism, there exist the
following relations:

β33 = 1√
2
a33 − i

1√
2
b33

=
(

cos γ −
√

3

2
sin γ

)
X + i

(
cos γ +

√
3

2
sin γ

)
Y,

β32 = 1√
2
a32 − i

1√
2
b32 = 1√

2
sin γZ, (32)

β31 = 1√
2
a31 − i

1√
2
b31 =

√
5

2
sin γX + i

√
5

2
sin γ Y,

β30 = a30 =
√

5 cos γZ.

Namely,

a33 = (
√

2 cos γ −
√

3/2 sin γ )X,

b33 = −(
√

2 cos γ +
√

3/2 sin γ )Y,

a32 = sin γZ,

b32 = 0, (33)

a31 =
√

5/2 sin γX,

b31 = −
√

5/2 sin γ Y,

a30 =
√

5 cos γZ.

Putting Eqs. (33) into Eqs. (25)–(30), for a pure octupole
deformed system, one can obtain J12 = J13 = J23 = 0, and
J11, J22, and J33 fitting the results in Ref. [33]. For example,

J12 = 2
√

15a30b32 − 6a31b31 +
√

15a31b33 −
√

15a33b31

= −6

(√
5

2
sin γX

)(
−

√
5

2
sin γ Y

)

+
√

15

(√
5

2
sin γX

)(
−

√
2 cos γ −

√
3

2
sin γ

)
Y

−
√

15

(√
2 cos γ −

√
3

2
sin γ

)
X

(
−

√
5

2
sin γ Y

)
= 0.

(34)

Similarly, one can also reproduce the inertia tensor in
Refs. [29,34,38] by a correct replacement of deformation
parameters in the present formalism.

From these discussions, I have shown that there are simple
relations between the parameters in Refs. [26,31–33] and
(alm,blm) in the present formalism. Hence, the results in
these references [26,31–33] can be obtained by the present
formalism. Particularly, the present formalism is appropriate to
describe the collective motion for not only the systems defined
in Refs. [26,31–33], but also those with other deformations,
which is useful in investigating the atomic nuclei with some
special deformations.

In real nuclei, octupole deformations always coexist with
quadrupole deformations. Many studies [15,25,27–30,33–38]
have been performed for the system with the coexistence of
quadrupole and octupole deformations. The present formalism
is convenient for describing the coexistence of quadrupole and
octupole deformations. When the parameters including the
coexistence of quadrupole and octupole deformations are de-
fined properly, the Hamiltonian in Refs. [15,25,27–30,33–38]
can be obtained using the present formalism.

Similarly, hexadecapole deformations always coexist with
quadrupole deformations in real nuclei. Many studies have
been performed for the collective motion for hexadecapole
deformations coexisting with quadrupole deformations [64].
Especially for the nuclei with tetrahedral and octahedral
shapes, which have been predicted by the realistic mean-field
method [65,66] and verified in a recent experiment [67], the
present formalism is convenient for taking the quadrupole and
hexadecapole degrees of freedom simultaneously into account.
When alm and blm are reparametrized according to the scheme
in Refs. [65,66], the nuclei with tetrahedral and octahedral
shapes can be studied by the present formalism. In addition,
the pure hexadecapole deformations are also concerned. In
Refs. [61–63], the parametrization of pure hexadecapole
deformations has been discussed, and the surface radius of
the system is represented as

R(θ,φ) = R0

⎧⎨
⎩1 + a40Y40(θ,φ)

+
∑
μ>0

[
a4μY

(+)
4μ (θ,φ) + b4μY

(−)
4μ (θ,φ)

]⎫⎬⎭. (35)

Here the definitions of Y
(+)
λμ (θ,φ) and Y

(−)
λμ (θ,φ) are the

same as those in Eqs. (18). It shows that the parameters
(a40,a4μ,b4μ,μ = 1,2,3,4) are just some special sampling of
(alm and blm). To make the system obey relatively simple
transformation rules under the Oh group, this set of parameters
(a40,a4μ,b4μ) has been reparametrized with a set of bihar-
monic coordinates. Because there exists a simple relationship
between these biharmonic coordinates and (a40,a4μ,b4μ),
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it is easy to give out these results in Refs. [61–63]
using the present formalism. The present formalism is ap-
propriate for any deformed system including those defined in
Refs. [61–63,65,66] and can be used to explore the collective
motion for the system with special shape.

The preceding formalism is suitable for a classical system.
To describe the collective motion of a quantum system like
atomic nucleus, it is necessary to quantize the collective Hamil-
tonian. In the following, I derive the quantized Hamiltonian
for the collective motion with any deformation.

III. QUANTIZATION OF THE CLASSICAL HAMILTONIAN

Considering that the internal variables alm and blm in the
present formalism are not independent, one needs to remove
three superfluous variables among alm and blm to quantify
the collective Hamiltonian. For a quadruple deformed system,
one can regard a21, b21, and b22 as superfluous variables. When
a21, b21, and b22 are removed, Tcou disappears, Bohr Hamil-
tonian can be obtained conveniently by a simple quantization
procedure. For any deformed system, it is difficult for us to
pick out three superfluous variables to remove Tcou. Even an
octupole deformed system, a set of internal parameters that
make Tcou disappear is not still found up to now. Here I adopt
an approximate method to eliminate Tcou by freezing a part of
deformation parameters. From Eqs. (22)–(24), one can see, to
make Tcou disappear, there are many choices of freezing defor-
mation parameters. In the case of freezing the least deformation
parameters, the most appropriate choice of freezing deforma-
tion parameters is that al0,al2,al4, . . . ,al,l or l−1 are reserved
and the rest are removed. Then the kinetic energy becomes

T = 1
2B2

(
ȧ2

20 + ȧ2
22

) + 1
2B3

(
ȧ2

30 + ȧ2
32

)
+ 1

2B4
(
ȧ2

40 + ȧ2
42 + ȧ2

44

) + · · ·
+ 1

2

(
J1ω

2
1 + J2ω

2
2 + J3ω

2
3

)
, (36)

with the moments of inertia

J1 = 1

4

∑
l

Bl

{
2l(l + 1)a2

l0 +
√

2l(l2 − 1)(l + 2)al0al2

+
l or l−1∑
m=2,4

(
ol

mol
m+1almalm+2 + ol

−mol
−m+1almalm−2

)

+2
l or l−1∑
m=2,4

[l(l + 1) − m2]a2
lm

}
, (37)

J2 = 1

4

∑
l

Bl

{
2l(l + 1)a2

l0 −
√

2l(l2 − 1)(l + 2)al0al2

−
l or l−1∑
m=2,4

(
ol

mol
m+1almal,m+2 + ol

−mol
−m+1almal,m−2

)

+2
l or l−1∑
m=2,4

[l(l + 1) − m2]a2
lm

}
, (38)

J3 =
∑

l

Bl

l or l−1∑
m=2,4

m2a2
lm. (39)

To obtain a quantized Hamiltonian, one can write the kinetic
energy as

T = 1
2gij q̇i q̇j , (40)

where qi = a20,a22,a30,a32,a40,a42,a44, . . . ,φ1,φ2,φ3. The
metric matrix G is diagonal, i.e.,

G = [B2 B2 B3 B3 · · · J1 J2 J3], (41)

and its determinant

g = det G = B2
2B2

3 · · · J1J2J3. (42)

Because G is diagonal, G−1 can be calculated easily. By using
a usual quantized procedure, the quantized kinetic operator is
obtained as

T = −�
2

2

1√
g

∂

∂qi

G−1
ij

√
g

∂

∂qj

= − �
2

2Bi

1√
J1J2J3

∂

∂qi

√
J1J2J3

∂

∂qi

+
3∑

i=1

R2
i

2Ji

,

(43)

where qi = a20,a22,a30,a32,a40,a42,a44, . . . , and Ri = −i� ∂
∂φi

(i = 1,2,3) are the components of angular momentum in the
intrinsic frame. In the kinetic energy operator, the rotational
part has been separated. If the only quadruple, octupole,
and hexadecapole deformations are considered, with the
transformations

a20 = β2 cos γ2,

a22 = β2 sin γ2,

a30 = β3 cos γ3,

a32 = β3 sin γ3, (44)

a40 = β4 cos γ4,

a42 = β4 cos δ4 sin γ4,

a44 = β4 sin δ4 sin γ4,

the quantized kinetic operator in the curve coordinates is
obtained.

For a pure quadruple deformed system, one obtains imme-
diately

T2 = − �
2

2B2

(
1

β4
2

∂

∂β2
β4

2
∂

∂β2
+ 1

β2
2 sin 3γ2

∂

∂γ2
sin 3γ2

∂

∂γ2

)

+
3∑

i=1

R2
i

2Ji

, (45)

with

Ji = 4B2β
2
2 sin2

(
γ2 − i

2π

3

)
, (i = 1,2,3). (46)

T2 is the kinetic energy operator in Bohr Hamiltonian.
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For a pure octuple deformed system, one obtains

T3 = − �
2

2B3

[
1

β4
3

∂

∂β3
β4

3
∂

∂β3
+ 1

β2
3w(γ3)

∂

∂γ3
w(γ3)

∂

∂γ3

]

+
3∑

i=1

R2
i

2Ji

, (47)

with

w(γ3) = sin γ3

√
9 − 21 sin2 γ3 + 16 sin4 γ3, (48)

and the moments of inertia,

J1 = B3β
2
3 [1 + 8 sin2 (γ3 + γ0)],

J2 = B3β
2
3 [1 + 8 sin2 (γ3 − γ0)], (49)

J3 = 4B3β
2
3 sin2 γ3,

where γ0 = arctan
√

5/3.
For a pure hexadecapole deformed system, one obtains

T4 = − �
2

2B4

[
1

β5
4

∂

∂β4
β5

4
∂

∂β4

+ 1

β2
4 sin γ4w(γ4,δ4)

∂

∂γ4
sin γ4w(γ4,δ4)

∂

∂γ4

+ 1

β2
4 sin2 γ4w(γ4,δ4)

∂

∂δ4
w(γ4,δ4)

∂

∂δ4

]
+

3∑
i=1

R2
i

2Ji

,

(50)

with

w(γ4,δ4) =
√

J ′
1J

′
2J

′
3, (51)

and the moments of inertia

Ji = B4β
2
4J ′

i , (i = 1,2,3). (52)

Here

J ′
1 = 10 + 3

√
5 cos δ4 sin 2γ4

+(3 cos 2δ4 +
√

7 sin 2δ4 − 5) sin2 γ4,

J ′
2 = 10 − 3

√
5 cos δ4 sin 2γ4

+(3 cos 2δ4 +
√

7 sin 2δ4 − 5) sin2 γ4,

J ′
3 = (cos2 δ4 + 4 sin2 δ4) sin2 γ4. (53)

From Eq. (45), one can notice that the fourth power of
β2 appears in the first term of the kinetic energy. The same
case also appears in Eq. (47) for β3. Different from Eqs. (45)
and (47), the fifth power of β4 appears in the first term of
the kinetic energy. This is because the power of βi(i = 2,3,4)
appearing in the first term of the kinetic energy depends on
the number of degrees of freedom. For T2 and T3, only two
deformation variables (a20,a22) and (a30,a32) are taken into
account, while for T4, three deformation variables (a40,a42,a44)
are taken into account.

IV. THE ROTATIONAL SPECTRA FOR SOME SPECIAL
DEFORMED SYSTEMS

In the preceding section, I have derived the quantized
kinetic operator for multipolar deformed systems, including
the quadruple, octupole, and hexadecapole deformed systems.
When the potential against deformation is included, the quan-
tized Hamiltonian operator describing multipolar deformed
system is obtained. The Hamiltonian can be used to study
the collective motion of a quantum system with multipolar
deformations. As the Hamiltonian is complicated, here I do
not discuss in detail the solution of the general Hamiltonian.
Following Davydov’s assumption, I regard the deformation
variables as parameters and investigate the rotation of multi-
polar deformed systems, which is very interesting in studying
the rotational spectra in atomic nuclei.

To obtain the rotational spectra for some special deformed
systems, one can introduce the axially symmetrical spheroidal
wave functions

|IK±〉 =
√

2I + 1

16π2(1 + δK0)

[
DI

MK ± (−1)IDI
M,−K

]
(54)

as bases in calculating the energy spectra of rotational
Hamiltonian. As P |IK±〉 = ±|IK±〉, where P is parity
operator, I choose |IK,+〉 as bases for the positive-parity
states, and |IK,−〉 as bases for the negative-parity states.

By using Eqs. (5), (7), and (21), one obtains the equations

R2
1 |IK±〉 = 1

2 [I (I+1)−K2]|IK±〉+ 1
4oI

KoI
K+1|I,K + 2±〉

+ 1
4oI

K−1o
I
K−2|I,K − 2±〉, (55)

R2
2 |IK±〉 = 1

2 [I (I+1)−K2]|IK±〉− 1
4oI

KoI
K+1|I,K+2±〉

− 1
4oI

K−1o
I
K−2|I,K − 2±〉, (56)

R2
3 |IK±〉 = K2|IK±〉, (57)

where R1, R2, and R3 are the rotational operators around
the first, second, and third axis in the body-fixed frame,
respectively. The expression of oI

K is the same as ol
m in Eq. (31).

With the relations, the matrix elements of the rotational
operator are obtained as

〈IK ′|
3∑

i=1

R2
i

2Ji

|IK〉

= 1

4

(
1

J1
+ 1

J2

)
I (I + 1)δK ′K

+1

2

(
1

J3
− 1

2J1
− 1

2J2

)
K2δK ′K

+1

8

(
1

J1
− 1

J2

)√
1 + δK0o

I
KoI

K+1δK ′K+2

+1

8

(
1

J1
− 1

J2

)√
1 + δK ′0o

I
K−1o

I
K−2δK ′K−2. (58)

By using Eq. (58), one can study the collective rotation
for the system with the deformations al0,al2,al4, . . . ,al,l or l−1.
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FIG. 1. (Color online) Evolution of rotational spectra to γ3 for an
octupole deformed system. Here the solid, dashed, and dotted lines
with the same color represent, respectively, the first, second, and third
energy levels for these states with the same angular momentum and
parity.

Here I do not focus on the full spectrum of a deformed
nucleus with dominant quadrupole deformation. I am only
concerned about rotational spectra for the system with pure
octupole or hexadecapole deformations. Although octupole or
hexadecapole deformations always coexist with quadrupole
deformations in real nuclei, these studies can provide some in-
formation on rotational spectra for octupole and hexadecapole
deformed systems, for which the properties of atomic nuclei
with octupole or hexadecapole deformations coexisting with
quadrupole deformations are helpful to know.

Considering that the most interesting rotational spectra
are those with the lowest K , I have calculated the rotational
spectra with the lowest K for the octupole and hexadecapole
deformed systems. In Fig. 1, I have shown the variation of
rotational spectra with γ3 for an octupole deformed system.
For simplicity, I take the 2+ state as an example to analyze
the relationship between the level energy and γ3 deformation.
For the 2+ state, there are two levels. The first (lowest) 2+
level is denoted by red solid line and the second 2+ level by
red dash line. With the change of γ3, the first 2+ level varies
slowly. In the vicinity of γ3 = 0◦, the first 2+ level appears to
be a little decreasing with the decreasing γ3, while that appears
to increase a little with the increasing γ3 closing to γ3 = 90◦.
In the range of γ3 = 20◦ and 70◦, the energy of the first 2+
level is nearly a constant. The same phenomena also appear
in the first 3+ level, the first 4+ level, the first 5+ level, and
the first 6+ level. For all these levels with the same angular
momentum and parity, the lowest level is insensitive to γ3.
Different from these lowest levels, the second and third levels
in every angular momentum and parity go to infinity, with
γ3 going to zero. With the increasing of γ3, the second and
third levels appear as valleys, i.e., metastable states, which
may be the isomers of γ3 deformation. When γ3 = γ0, the
second and/or third levels appear as peaks, i.e., γ3 unstable
states. When γ3 = 90◦, a30 disappears, only a32 deformation
exists in the nuclei, the shape of this system possesses Td

symmetry, and the rotational Hamiltonian is then reduced to

FIG. 2. (Color online) Evolution of rotational spectra to γ4 for
a hexadecapole deformed system (δ is fixed to 0◦). Here, the solid,
dash, and dot lines with the same color represent respectively the first,
second, and third energy levels for these states with the same angular
momentum and parity.

a spherical top, so the rotational levels with the same angular
momentum are degenerate. In a word, the contribution of the
octupole term to the spectrum is smooth for the lowest band,
while it becomes irregular for higher bands. In real nuclei,
this contribution from the octupole term will be added to the
dominant quadrupole contribution; thus, it will most probably
result in some small deviations from the quadrupole spectrum.
However, the character of octupole spectrum can reflect the
information on the properties of real nuclei with octupole
deformations coexisting with the quadrupole deformations.

Besides the octupole deformed system, I have also cal-
culated the rotational spectra for a hexadecapole deformed
system. In Fig. 2, I demonstrate the evolution of rotational
spectra to γ4 with δ4 fixed to 0, i.e., with only a40 and a42

deformations under consideration. Over the range of γ4, the
lowest levels of even angular-momentum states are almost
independent of γ4. Only in the vicinity of γ4 = 0◦ and γ4 = 90◦
do these levels appear to be a little decreasing or increasing
with γ4. However, for these levels corresponding to the odd
and higher even angular momentum states, their energies are
sensitive to γ4. Similar to that of octupole deformation, these
levels go to infinity when γ4 goes to 0◦. With the increasing of
γ4, these levels drop quickly, but not monotonously, and appear
as a valley: metastable state, which may be the isomer of γ4

deformation; and peak, unstable state. When γ4 is added to 90◦,
a40 disappears, all the rotational levels become relatively low,
which implies that it is relatively easy to detect a42 deformation
in real nuclei.

When δ4 is fixed to 45◦, the rotational spectra varying with
γ4 is displayed in Fig. 3. Except for the lowest levels of 2+
and 4+ states, the other levels depend remarkably on γ4. Only
in the vicinity of γ4 = 0◦, the lowest levels of even angular-
momentum states keep a good structure of rotational spectra,
while the other levels go to infinity. With the increasing of γ4,
these levels corresponding to the odd and higher even angular
momentum states change dramatically. In the region around
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FIG. 3. (Color online) The same as Fig. 2, but δ4 is fixed to 45◦.

γ4 = 30◦ and γ4 = 90◦, all the levels are relatively low. In
the other region, except for the lowest levels of 2+ and 4+,
the other levels are too high, so it is difficult to detect these
levels in real nuclei. Furthermore, a sharp peak appears in these
levels, which corresponds to the γ4 unstable state. As the peak
is too high, it is impossible to detect the γ4 unstable state in
real nuclei, which is different from that in Fig. 2.

In Fig. 4, I show the variation of rotational spectra with γ4

for δ4 = 90◦. In the case where only a40 and a44 deformations
are concerned, the shape of system possesses D4h symmetry
and the corresponding moments of inertia J1 = J2. From
Fig. 4, one can see that there exists a critical point of γ4

deformation (γ c
4 ≈ 40.2◦). In the point J1 = J2 = J3, the

rotational Hamiltonian is reduced to a spherical top and the
rotational levels with the same angular momentum degenerate.
When γ4 < γ c

4 , the lowest levels of even angular-momentum
states form a good rotational spectrum although the energies
of these levels increase with the increasing γ4. However for
the odd angular-momentum states, their energies go to infinity
when γ4 goes to 0. The same case also appears in the second
and third levels of even angular-momentum states. This means
that it is difficult to detect the rotational states with odd

FIG. 4. (Color online) The same as Fig. 2, but δ4 is fixed to 90◦.

angular-momentum or the excited states with even angular
momentum in the vicinity of γ4 = 0◦. When γ4 > γ c

4 , the
energies of all the levels increase with the increasing γ4, which
shows that it is more unstable for the nuclei with a larger γ4

deformation.
Over Figs. 2–4, one can see that the contributions of

hexadecapole deformations to the lowest band are regular,
while those to higher bands are irregular. In real nuclei,
these contributions from hexadecapole deformations will be
added to those from the dominant quadrupole deformations
and will bring a bit of deviations from the energy spectrum
of quadrupole deformations. However, the feature reflecting
hexadecapole deformations will be reserved, which is useful
to know the properties of real nuclei with hexadecapole
deformations coexisting with the quadrupole deformations.

V. CONCLUSIONS

Based on the Bohr model, I have presented a general
formalism describing the collective motion for any deformed
system in which the collective Hamiltonian is expressed
as vibrations in the body-fixed frame, rotation of whole
system around the laboratory frame, and coupling between
vibrations and rotation. Under the condition of decoupling
approximation, I have derived the quantized Hamiltonian
operator. Based on the operator, I have calculated the rotational
energy for some special octupole and hexadecapole deformed
systems and shown their dependencies on deformation. In
the octupole deformed nuclei, for these states with the same
angular momentum and parity, the lowest level is insensitive
to γ3, and all the lowest levels form a regular rotational
spectrum. Different from the lowest levels, the higher levels
depend remarkably on γ3. In the vicinity of γ3 = 0◦, these
higher levels go to infinity. With the increasing of γ3, these
levels drop quickly, but not monotonously. There appear to
be peaks (unstable state) and valleys (metastable state) in
these levels over the range of γ3. These metastable states
may form the isomers of γ3 deformation. A similar case
also appears in the hexadecapole deformed system with
δ4 = 0◦. The lowest levels of even angular-momentum states
are almost independent of γ4 and form a regular rotational
band. For the odd and higher even angular-momentum states,
the corresponding levels are sensitive to γ4. They go to infinity
closing to γ4 = 0◦ and decline fast with the increasing γ4.
Similarly, there appear γ4 unstable and metastable states in the
range of γ4. For the hexadecapole deformations with δ4 fixed
to 45◦ and 90◦, the lowest levels of even angular momentum
states form regular rotational spectra in the vicinity of γ4 = 0◦.
With the increasing of γ4, these levels for the odd and higher
even angular-momentum states change dramatically. These
show that the octupole and/or hexadecapole contributions
to the lowest band are regular, while those to higher bands
are dramatic. In real nuclei, these contributions will be
added to a dominant quadrupole contribution and produce
some small influences on the energy spectrum of quadrupole
deformations. Nevertheless, these features reflecting octupole
and hexadecapole deformations are helpful in understanding
the properties of real nuclei with octupole and/or hexadecapole
coexisting with the quadrupole deformations.
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