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Background: Three-nucleon forces (3NFs) have nontrivial implications on the evolution of correlations at
extreme proton-neutron asymmetries. Recent ab initio calculations show that leading-order chiral interactions
are crucial to obtain the correct binding energies and neutron driplines along the O, N, and F chains [A. Cipollone,
C. Barbieri, and P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013)].
Purpose: Here we discuss the impact of 3NFs along the oxygen chain for other quantities of interest, such has
the spectral distribution for attachment and removal of a nucleon, spectroscopic factors, and radii. The objective
is to better delineate the general effects of 3NFs on nuclear correlations.
Methods: We employ self-consistent Green’s function (SCGF) theory which allows a comprehensive calculation
of the single-particle spectral function. For the closed subshell isotopes, 14O, 16O, 22O, 24O, and 28O, we perform
calculations with the Dyson-ADC(3) method, which is fully nonperturbative and is the state of the art for both
nuclear physics and quantum chemistry applications. The remaining open-shell isotopes are studied using the
newly developed Gorkov-SCGF formalism up to second order.
Results: We produce complete plots for the spectral distributions. The spectroscopic factors for the dominant
quasiparticle peaks are found to depend very little on the leading-order (NNLO) chiral 3NFs. The latter have
small impact on the calculated matter radii, which, however, are consistently obtained smaller than experiment.
Similarly, single-particle spectra tend to be too spread with respect to the experiment. This effect might hinder,
to some extent, the onset of correlations and screen the quenching of calculated spectroscopic factors. The most
important effect of 3NFs is thus the fine tuning of the energies for the dominant quasiparticle states, which
governs the shell evolution and the position of driplines.
Conclusions: Although present chiral NNLO 3NFs interactions do reproduce the binding energies correctly in
this mass region, the details of the nuclear spectral function remain at odds with the experiment showing too-small
radii and a too-spread single-particle spectrum, similar to what has already been pointed out for larger masses.
This suggests a lack of repulsion in the present model of NN + 3N interactions, which is mildly apparent already
for masses in the A = 14–28 mass range.
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I. INTRODUCTION

The concept of correlations is fundamental to a deep
understanding of nuclear phenomena [1]. These are generally
defined as characteristics of the nucleus that cannot be
explained in terms of a simple mean-field picture (i.e., a wave
function of Slater determinant type). These effects are often
quantified in terms of the fragmentation of the single-particle
strength observed when adding or removing a nucleon. An
intriguing feature is the persistence of dominant quasiparticle
peaks near the Fermi surface while broader resonances are
found at higher excitations. This is at the origin of the duality
between the liquid drop and the shell-model behavior of atomic
nuclei.

Historically, several electron scattering studies have pro-
vided a wealth of information on nuclear spectral functions
(see Refs. [2–9] and references therein). This has allowed
a rather complete characterization of correlations for stable
nuclei [1]. However, a similar full characterization for exotic
isotopes is still lacking. Recent data from radioactive beam
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facilities have put in evidence new phenomena such as shell
evolution with changing proton-neutron asymmetry [10] and
the insurgence of new magic numbers [11–13]. From the
theoretical point of view, some of these effects have been
explained in terms of properties of the tensor interaction
[14], and the need for contributions from three-nucleon forces
(3NFs) has also been pointed out [15]. More recently, it
has been shown that 3NFs are crucial for understanding
the neutron-rich side of the nuclear chart, in particular to
explain the oxygen dripline at 24O [16–19] and neutron-rich
Ca isotopes [20–23]. Reference [19] found that the same
mechanism responsible for the anomalous oxygen dripline also
affects N and F isotopes up to at least 29F, which is strongly
neutron rich but still not at the dripline.

Ab initio calculations of atomic nuclei have advanced
dramatically in the medium-mass region. Several approaches
such as coupled cluster [24,25], in-medium similarity renor-
malization group (IM-SRG) [26], and self-consistent Green’s
function (SCGF) [19,27] theories are now capable of approach-
ing masses up to A ≈ 100 or more. These make it possible
to fully exploit modern chiral interactions with two-nucleon
(NN ) forces and 3NFs evolved through SRG techniques [28].
Moreover, open-shell nuclei have become accessible through

0556-2813/2015/92(1)/014306(12) 014306-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.062501
http://dx.doi.org/10.1103/PhysRevLett.111.062501
http://dx.doi.org/10.1103/PhysRevLett.111.062501
http://dx.doi.org/10.1103/PhysRevLett.111.062501
http://dx.doi.org/10.1103/PhysRevC.92.014306


A. CIPOLLONE, C. BARBIERI, AND P. NAVRÁTIL PHYSICAL REVIEW C 92, 014306 (2015)

a Gorkov extension of the SCGF formalism [22,29,30], mul-
tireference IM-SRG [18,23], and Bogoliubov coupled cluster
(BCC) [31]. These ab initio studies have mainly focused on
ground-state properties, such as total binding energies and NN
separation energies. More recent works have addressed the
construction of effective shell-model interactions directly from
full NN plus 3NF Hamiltonians [32,33]. This makes it possible
to successfully address low-energy excitations directly from
first principles.

The SCGF method has the added advantage of providing
consistent optical potentials and spectral functions over the
whole energy spectrum (i.e., both close and far form the
Fermi surface). This gives comprehensive insights into the
many-body dynamics and makes it possible to address other
quantities such as giant resonances or the qualitative features
of single-particle distribution [2,34], which can require con-
sidering several major shells [27,35].

In this paper, we consider the Green’s functions of the
oxygen isotopes already obtained in Ref. [19] and extend these
calculations to the remaining even-mass—and open-shell—
isotopes, using the Gorkov-SCGF approach. We then present
first fully microscopic calculations of the evolution of the
single-particle spectral functions along a complete isotopic
chain. This gives an overall description of the evolution of
nuclear correlations between two extremes of the nuclear chart.
At the same time, it makes it possible to perform a more
thorough test of modern chiral interactions and, in particular,
we investigate the effects of initial 3NFs at NNLO.

For completeness, Sec. II discusses the relevant features
of the SCGF formalism. It reviews the links of propagators
with the spectral function and other quantities of experimental
interest. Calculations are done in an ab initio fashion and
we discuss in some detail the choice of the Hamiltonian, the
approximations taken and the expected uncertainties, when
these can be estimated. This is done in Sec. III. Section IV
discusses our results for single-particle spectra, spectroscopic
factors, and binding energies. Full three-dimensional plots
of spectral functions are discussed in the Appendix for
completeness and conclusions are drawn in Sec. V.

II. SCGF FORMALISM

Information about the single-particle dynamics is fully
contained in the one-body Green’s function, or propagator,
whose Lehmann representation reads

gαβ(ω) =
∑

n

〈
�A

0

∣∣aα

∣∣�A+1
n

〉〈
�A+1

n

∣∣a†
β

∣∣�A
0

〉
ω − ε+

n + iη

+
∑

k

〈
�A

0

∣∣a†
β

∣∣�A−1
k

〉〈
�A−1

k

∣∣aα

∣∣�A
0

〉
ω − ε−

k − iη
. (1)

In Eq. (1), |�A
0 〉 represents the ground state of A nucleons

and |�A+1
n 〉, |�A−1

k 〉 are the eigenstates of the (A ± 1)-nucleon
system. The greek indices α, β, . . . , label a complete orthonor-
mal single-particle basis, while ε+

n ≡ (EA+1
n − EA

0 ) and ε−
k ≡

(EA
0 − EA−1

k ) are one-nucleon addition and removal energies,
respectively. Note that these are generically referred to in the
literature as either “separation” or “quasiparticle” energies

although the first naming normally labels transitions involving
only (A ± 1)-nucleon ground states. We use the second
convention in the following, unless the two names are strictly
equivalent. The transition amplitudes X n

α ≡ 〈�A+1
n |a†

α|�A
0 〉

and Yk
α ≡ 〈�A−1

k |aα|�A
0 〉 give information about the strength

of the corresponding particle addition and removal processes.
The one-body Green’s function (1) is completely deter-

mined by solving the Dyson equation,

gαβ(ω) = g0
αβ(ω) +

∑
γ δ

g0
αγ (ω)
�

γδ(ω)gδβ(ω), (2)

where the unperturbed propagator g0
αβ(ω) is the initial refer-

ence state (usually a mean-field or Hartree-Fock state), while
gαβ(ω) is the correlated propagator.

A full knowledge of the self-energy 
�
αβ(ω) yields the

exact solution for gαβ(ω). However, in practical calculations
this has to be approximated and it is expanded in terms
of the propagator itself (that is, 
� = 
�[g(ω)]). Thus, an
iterative procedure is required to solve for 
�(ω) and Eq. (2)
self-consistently. The approximation schemes we employ to
calculate the self-energy are outlined in the next subsection.

The attractive feature of the SCGF approach is that gαβ(ω)
describes the one-body dynamics completely. The particle and
hole spectral functions are extracted directly from Eq. (1),
respectively:

S
p
αβ(ω) =

∑
n

(X n
α

)∗X n
β δ

[
ω − (

EA+1
n − EA

0

)]
,

Sh
αβ(ω) =

∑
k

Yk
α

(Yk
β

)∗
δ
[
ω − (

EA
0 − EA−1

k

)]
. (3)

Any one-body observable can be calculated via the one-body
density matrix ραβ , which is obtained from gαβ as follows:

ραβ ≡ 〈
�A

0

∣∣a†
βaα

∣∣�A
0

〉
=

∫ ε−
0

−∞
Sh

αβ(ω)dω =
∑

k

(Yk
β

)∗Yk
α. (4)

The expectation value of a one-body operator, Ô1B , can then
be written in terms of the Y amplitudes as

〈Ô1B〉 =
∑
αβ

O1B
αβ ρβα =

∑
k

∑
αβ

(Yk
α

)∗
O1B

α,βYk
β . (5)

Evaluating two- and many-nucleon observables requires the
knowledge of many-body propagators. In the following, we
do this by approximating the corresponding A-body density
matrices with A correlated but noninteracting propagators
[Eq. (4)]. Specifically, we use this to account for the center-
of-mass (c.m.) correction when calculating root mean square
(rms) radii,

〈r2〉 � 1

A

∑
αβ

uα 〈α|	r 2|β〉ρβα

− 1

A2

∑
αβγ δ

uαγ 〈αγ |	r1 · 	r2|βδ〉ρβαρδγ , (6)

where 	ri represents the position of particle i. The factors uα

and uαβ in Eq. (6) and the two-body correction term arise
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because the intrinsic radius is calculated with respect to the
c.m. of the system [36]. Point-matter radii are calculated by
taking u

pt-m
α = (A − 1)/A and u

pt-m
αγ = 1, while point-proton

radii are found using

upt-p
α =

{
A(A−2)+Z

ZA
if α labels a proton state,

1
A

if α is a neutron,
(7)

and

upt-p
αγ =

⎧⎪⎨⎪⎩
2A−Z

Z
if α,γ label two proton states,

A−Z
Z

if α,γ are a proton and a neutron,

−1 if α,γ are two neutrons.

(8)

To obtain charge radii, we first calculate the point-proton ones
and then account for the rms charge radii of the nucleons and
for the Darvin-Foldy relativistic correction [37],

〈
r2

ch

〉 = 〈
r2

pt-p

〉 + 〈
R2

p

〉 + N

Z

〈
R2

n

〉 + 3�
2

4m2
pc2

, (9)

with 〈R2
p〉=0.8775(51) fm2 [38] and 〈R2

n〉= − 0.1149(27) fm2

[39]. In the present calculations, the contributions of the second
term of Eq. (6) to the rms radii are �0.03 fm and decrease with
the mass number. References [19,40] have considered first-
order corrections to the approximation of A noninteracting
propagators—used to calculate this term—and found that it is
negligible in most cases as long as fully correlated densities are
used. Therefore, we conclude that Eq. (6) does not introduce
sizable errors.

The exact one-body propagator, gαβ(ω), also allows calcu-
lating the total energy by means of the extended Koltun sum
rule [41]:

EA
0 =

∑
αβ

1

2

∫ ε−
0

−∞
[ Tαβ + ω δαβ ]Sh

βα(ω)dω − 1

2
〈W 〉 . (10)

This requires only the additional evaluation of the expectation
value of the 3N interaction, 〈W 〉. Again, we approximate this
in terms of noninteracting three-body density matrices:

〈W 〉 � 1

6

∑
αβμγ δν

Wαβμ,γ δνργαρδβρνμ. (11)

The errors in this approximation have been estimated in Ref.
[19] and were found to not exceed 250 keV on the total binding
energy for 16O and 24O.

In all simulations below we subtract the spurious con-
tribution of the kinetic energy of the c.m. and work with
the intrinsic Hamiltonian H [A] = H − Tc.m.(A) = U (A) +
V (A) + W , which acquires a dependence on total number of
nucleons. The U , V , and W label one-, two-, and three-body
interactions. This implies that the particle and hole spectra
of the even-odd isotopes are recalculated separately from
H [A + 1] and H [A − 1]. They are then corrected for the c.m.
motion as

ε+
n,c.m. = ε+

n [A + 1] + EA
0 [A + 1] − EA

0 [A],

ε−
k,c.m. = ε−

k [A − 1] − EA
0 [A − 1] + EA

0 [A],
(12)

where ε±
n [A ± 1] and EA

k [A ± 1] label the poles of gαβ(ω)
and the total energies, Eq. (10), calculated from the H [A ± 1]
Hamiltonian. The overall c.m. corrections become progres-
sively smaller as A increases.

Dyson-ADC(3) and second-order Gorkov equations

Calculations with 3N interactions follows the procedure
extensively discussed in Ref. [41], which involves defining the
following medium-dependent one- and two-body interactions:

Ũαβ = Uαβ +
∑
δγ

Vαγ,βδρδγ + 1

4

∑
μνγ δ

Wαμν,βγ δργμρδν,

Ṽαβ,γ δ = Vαβ,γ δ +
∑
μν

Wαβμ,γ δνρνμ. (13)

This allows neglecting residual contributions in W that have
been found to be negligible for oxygen isotopes [42,43].
Hence, we retain only interaction-irreducible diagrams in Ũ
and Ṽ to the self-energy.

To solve Eq. (2), we express the self-energy as


�
αβ(ω) = 
αβ(∞) +

∑
i j

D†
αi

[
1

ω − (K + C)

]
i j

Djβ, (14)

where 
αβ(∞) is the correlated and energy-independent mean
field. The whole 
�

αβ(ω) is an optical potential for elastic
scattering of a nucleon off the |�A

0 〉 ground state, which also
describes the fragmentation of the particle and hole spectra
[44,45].

In Eq. (14), the matrix D couples single-particle states to
more complex intermediate configurations, while K and C are
their unperturbed energies and interaction matrices. For the
closed subshell isotopes we exploit the third-order algebraic
diagrammatic construction [ADC(3)] scheme, which is the
best compromise between computational efforts and accuracy.
This consists of the minimal choice of these matrices that
retains all self-energy diagrams up to third order. Although
ADC(3) is constrained at third order, it contains infinite order
summations of diagrams that include particle-particle and
hole-hole ladders as well as particle-hole rings. It is therefore a
fully nonperturbative approach. Generally speaking, ADC(n)
defines a hierarchy of truncation schemes of Eq. (14) for
increasing order n that allows systematic improvements of
the method [46].

Recently, SCGF theory has been extended to a Nambu-
Gorkov formulation that allows addressing truly open-shell
nuclei [29]. This has opened the possibility to calculate
ground-state properties and the one-nucleon addition and
removal spectra of midmass open-shell nuclei in a fully ab
initio fashion. As in BCS theory, one allows for an explicit
breaking of particle-number conservation that is necessary
for a proper description of pairing correlations [29,47]. This
implies introducing a grand-canonical Hamiltonian � = H −
μnN̂ − μpẐ and constraining the proton (neutron) chemical
potentials μp(μn) to recover the correct particle number on
average, A = 〈�0|Â|�0〉, where |�0〉 is the symmetry-broken
ground state. A detailed description of the theory can be found
in Refs. [29,30,48].
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In Gorkov theory one is left with a set of normal and
anomalous propagators and self-energies with similar Lehman
representations to Eqs. (1) and (14). In particular, the normal
propagator is

G11
αβ(ω) =

∑
k

{ U k
α U k∗

β

ω − ωk + iη
+ V̄k∗

α V̄k
β

ω + ωk − iη

}
, (15)

where U ,V are the transition amplitudes for reaching the states
|�k〉 by adding (removing) a nucleon to (from) |�0〉, and ωk

are the corresponding quasiparticle energies [29].
The Gorkov version of the SCGF approach makes it pos-

sible to calculate spectral functions for open-shell semimagic
systems. Its present formulation follows the ADC(n) trun-
cation scheme discussed above but has been implemented
only up to the second order. This has allowed successful
predictions of trends in binding energies [22]. However, the
ADC(2) is known to slightly underestimate binding energies
and it is not guaranteed to provide accurate predictions for
one-nucleon removal and addition energies [49], which are
instead possible with a Dyson-ADC(3) calculations. The full
extension to Gorkov-ADC(3) formalism is currently under
way [50].

III. CALCULATIONS

Calculations have been performed using NN and 3N chiral
interactions evolved to a low-momentum scale λSRG through
free space similarity renormalization group (SRG) techniques
[28]. The original NN interaction is the next-to-next-to-next-
to-leading order (N3LO) with a cutoff �NN = 500 MeV/c,
from Refs. [51,52]. For the 3N interactions we used the NNLO
with a reduced local cutoff of �3N = 400 MeV/c [43,53].
This includes the two-pion exchange contribution that was
originally proposed by Fujita and Miyazawa [54]. Low-energy
constants were set at cD = −0.2, cE = 0.098 to reproduce the
3H β decay and the binding energy of 4He. With this choice,
the binding energy of 3H is −8.32 MeV, to be compared to the
experimental value of −8.48 MeV. When we perform the SRG
transformation of the sole NN -N3LO interaction we already
obtain evolved NN + 3N interactions. We refer to this as the
“induced” Hamiltonian. Conversely, the “full” Hamiltonian is
the one obtained by also evolving the original 3NF-NNLO.
Therefore, the effects of 3NFs of the Fujita-Miyazawa type
are included in the full Hamiltonian only.

All calculations were performed in a model space of
12 harmonic oscillator (HO) shells [Nmax ≡ max(2n + l) =
11], including all NN matrix elements and limiting 3NF
ones to configurations with N1 + N2 + N3 � N3NF

max = 14. We
checked that increasing N3NF

max from 14 to 16 changes Gorkov
total binding energies by ≈500 keV. Changing the oscillator
frequency between ��HO = 20 and 24 MeV in Dyson-ADC(3)
calculations, we found up to 450 keV variations in the binding
energy of 24O. Similarly, varying λSRG in a limited range
1.88–2.0 fm−1 did not induce variations of more than 0.5%.
From these and other tests we infer a conservative theoretical
error of at most 5%, for binding energies obtained with Dyson-
ADC(3) [19]. Similar conclusions can be drawn about the pre-
diction of dominant quasiparticle peaks in the single-particle

spectrum, ε+
k and ε−

n . Varying both ��HO = 20–24 MeV
and λSRG = 1.88–2.0 fm−1, we found a maximum variation
of 310 keV for the neutron 1/2− quasihole in 24O. This
corresponds to 2% of its value, ε−

ν1/2− = −14.22 MeV. The
largest variation for proton quasiparticle energies was found
to be of 550 keV for a 5/2+ quasiparticle, mostly owing to
variations in ��HO. Therefore, we estimate theoretical errors
of �1 MeV for the Dyson-ADC(3) gaps discussed below. For
Gorkov calculations, we expect that errors on binding energies
and quasiparticle peaks will be larger owing to the simpler
many-body truncation. However, we note that Ref. [55] has
reported a remarkable independence of dominant quasiparticle
peaks on the λSRG cutoff already at second order.

In the following sections, we report the results obtained for
��HO = 24 MeV and λSRG = 2 fm−1.

IV. RESULTS

A. Spectral functions and evolution of single-particle spectra

Three dimensional plots of the full spectral function,
Eq. (3), are illustrated in the Appendix . Here we focus on
the energy distribution of the spectral strength calculated by
integrating its diagonal part over the single-particle degrees of
freedom,

S(ω) =
∑

α

Sp
αα(ω) + Sh

αα(ω)

=
∑

n

SF+
n δ

(
ω − EA+1

n + EA
0

)
+

∑
n

SF−
k δ

(
ω − EA

0 + EA−1
k

)
, (16)

which yields the energy distribution of spectroscopic factors.
Each peak corresponds to the eigenstate of a neighboring odd-
even isotope, whose energy is directly observed in nucleon
addition and removal experiments.

The particle and hole contributions to Eq. (16), calculated
with Dyson-ADC(3), are displayed in Fig. 1 for protons and in
Fig. 2 for neutrons. The nucleon addition part of the spectra are
highlighted by the shaded areas. These figures show the general
features of the correlated spectral distribution, which conserves
strong quasiparticle fragments close to the Fermi surface but
becomes heavily fragmented as one moves further away owing
to coupling to 2p1h and 2h1p (or more complex) excitations.
Quasiparticle states with positive energies are above the
one-nucleon continuum threshold (EA+1

n − EA
0 = 0 MeV) and

therefore represent states for scattering of a nucleon off the
|�A

0 〉 target. Because we assume a discrete model space in
our calculations the associated particle continuum is found
to be discretized in several peaks that become more dense
with increasing energy, reflecting the changes in the density
of states for |�A+1

n 〉. Quasihole fragments at large negative
energies correspond to highly excited |�A−1

k 〉 states and also
display a continuum portion of the spectrum. However, the
spectral strength for nucleon removal is less pronounced.
This is attributable to the fewer degrees of freedom available
to generate 2h1p configurations, and it can be equiva-
lently explained in terms of the small overlap between the
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FIG. 1. (Color online) Single-particle spectral distributions for
the addition and removal of a proton to/from closed-subshell oxygen
isotopes. States above the Fermi surface (EF ) are indicated by the
shaded areas and yield the spectra of the resulting odd-even fluorine
isotopes. The spectra below EF are for odd-even nitrogen isotopes in
the final state (this appears inverted in the plot, with higher excitation
energies pointing downward). Fragments with different angular
momentum and parity are shown with different colors, as indicated,
and the bar lengths provide the calculated spectroscopic factors. These
results are obtained from ADC(3) and the full NN + 3NF interaction
with λSRG = 2.0 fm−1.
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FIG. 2. (Color online) Same as Fig. 1 but for the addition and
removal of a neutron. Both particle (shaded areas) and hole spectra
correspond to odd-even oxygen isotopes.

(A − 1)-nucleon wave functions in the continuum and the
bound |�A

0 〉 ground state.
The fragments of the spectral distribution provide the

excitation spectrum for the neighboring odd-even isotopes.
For example, the two dominant quasihole peaks in 24O in
Fig. 2 correspond to the 1/2+ ground state and the 5/2+
excitation of 23O. Our calculated excitation energy for the
5/2+ state is 2.74 MeV, close to the experimental value of
2.79(13) MeV [64]. The 3/2+ state of 23O can be calculated
from the quasiparticle spectra of 22O. For this we obtain
5.0 MeV excitation energy, which is larger than the experi-
mental value of 4.0 MeV [62]. In both cases, the theoretical
result agrees with the ab initio configuration interaction (CI)
calculations of Refs. [32,33], which use the same NN + 3NF
full Hamiltonian. As mentioned above, satellite peaks (that
is, nondominant ones) are not necessarily well described in
nucleon-attached and nucleon-removal methods at the ADC(3)
level. This because they require leading-order configurations
of 2p1h/2h1p type or higher. The first 1/2+ excited state of 21O,
seen as a hole on 22O, is of this type and has a spectroscopic
factor ≈9% of the independent particle model. In spite of this,
the ADC(3) excitation energy is 1.78 MeV, which is again in
great agreement with CI calculations based on the same Hamil-
tonian (and slightly off the experimental value of 1.22 MeV
[65]). Instead, the calculated spectroscopic factor the the 3/2+
excited state is only <1% and this is unlikely to be converged
with respect to the many-body truncation in the ADC(3). For
this state, we obtain an excitation energy of 940 keV that
disagrees with both the experiment and the ab initio CI results,
as expected. These results give a further confirmation of the
performance of the present chiral Hamiltonian with the single
sd shell. Furthermore, we note that the comparison with Refs.
[32,33] provides a successful benchmark of the accuracy of
ADC(3) for calculating dominant quasiparticle states. We then
use the latter to discuss the single-particle structure across both
p and sd shells.

Figure 3 shows the details of the evolution of the
dominant proton quasiparticle and quasihole peaks in the
sd and p shells for increasing neutron number. These
are corrected for the effects of the c.m. motion accord-
ing to Eqs. (12). The dashed lines are obtained from the
NN + 3N -induced interaction and represent the spectrum
predicted by the initial N3LO NN force. In general, the
addition of original 3NFs (solid lines) has the effect of
consistently increasing the spin-orbit splittings between the
1/2−–3/2− and the 3/2+–5/2+ dominant peaks. The s1/2 orbit
remain largely unaffected. The overall changes introduced
by leading-order 3NFs are reported in Tables I and II
for both protons and neutrons. The evolution of quasiparticle
energies for the addition and the removal of a neutron is
displayed in Fig. 4. In this case, the 1/2− and 3/2− strength (in
the p shell) is strongly fragmented for masses above A = 20
and no clear dominant peak is predicted. The original 3NFs still
have the effect of increasing the splitting between spin-orbit
partner states. However, this is in addition to the stronger
repulsion on the d3/2 orbit that is at the origin of the anomalous
dripline at 24O [16].

Worth mentioning are the splittings between the 1/2− and
the 3/2− quasiholes in 16O. For protons, this is predicted to be
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FIG. 3. (Color online) Energy evolution of dominant proton
quasiparticle fragments around oxygen isotopes of increasing neutron
numbers. These level are for protons in the p and sd shells and refer
to the ground and excited states of odd-even nitrogen (1/2−, 3/2−)
and fluorine (5/2+, 1/2+, 3/2+). Dots (joined by dashed lines) show
ADC(3) results obtained with the induced NN + 3NF interaction.
Squares (with solid lines) refer to the full Hamiltonian, with the
leading NNLO-3NF included. The latter are the dominant peaks also
displayed in Fig. 1. In all cases λSRG = 2.0 fm−1. Experimental values
are from Refs. [56–59].

5.1 MeV by the NN + 3N -induced interaction, which is close
to the empirical value of 6.32 MeV. However, the full Hamil-
tonian increases it to 8.2 MeV, overestimating the experiment.
Exactly the same situation is found for the splitting between
corresponding neutron holes, which is also increased by 3.1
MeV owing to the original 3NF at NNLO. For comparison,
the Argonne v18 interaction that has a strongly repulsive core
predicts a separation of ≈3.1 MeV [66] for these two states, at
the NN interaction level. The corresponding Urbana IX 3NF
increases this by another 2.7 MeV predicting a splitting that
is much closer to the experiment [67]. Both 3N Hamiltonians
include two-pion terms of the Fujita-Miyazawa type and it is
therefore reasonable that they generate similar corrections.

From Tables I and II it is clear that the present NN + 3N
chiral Hamiltonians have a slight tendency to stretch the

TABLE II. Spin-orbit splittings between 1/2− and 3/2− quasi-
particle fragments. For the case of protons these are eigenstates
of the odd-even A−1N isotopes indicated in the second row. For
neutrons, they are states of odd-even A−1O, except for 14O, where
the two quasiparticles correspond to different isotopes. Results are
reported for both the NN + 3N -induced and full Hamiltonians and
�εpLS = εFULL

pLS − εIND
pLS are the contributions owing to original 3NFs

at NNLO. Experimental values are from Refs. [56,58].

εpLS = ε1/2− − ε3/2− Protons Neutrons

13N 15N 21N 23N 27N 15,13O 15O

�εpLS 2.00 3.10 2.84 4.52 3.01 3.66 3.01

εIND
pLS − 0.92 5.10 2.36 0.53 3.73 5.05 5.16

εFULL
pLS 1.07 8.21 5.20 5.05 6.74 8.71 8.24

ε
exp.
pLS 3.50 6.32 9.95 6.18

single-particle spectrum, as compared to the experimentally
observed dominant peaks. Corrections to these flaws may
come at the price of introducing extra short-range repulsion
in the NN interactions, for example through higher chiral
cutoffs. At lower resolution scales, this implies the possible
presence of relevant many-body forces at least at the 4NF
level. Reference [22] pointed out that the experimental gaps
between the sd and pf shells are overestimated for the Ca
and neighboring isotopic chains. To investigate the behavior
in the present case, we consider the separations between the
dominant 5/2+ and 1/2− fragments that is representative of
the gap between the p and sd shells. These are reported in
Table III. With the only exception of the proton gap in 14O,
we find that preexisting 3NFs have the effect of reducing the
distance between the two shells by about 2 MeV and bringing
it closer to the experiment. In spite of this, the gaps remain
consistently predicted too large by just a few MeV even when
the full Hamiltonian is used.

B. Spectroscopic factors

The quenching of spectroscopic factors (SFs) for the
dominant quasiparticle peaks can provide useful insights on
the strength of the correlations generated by the Hamiltonian.
The principal mechanisms that are responsible for these are
identified with the coupling of nucleons to high-momentum

TABLE I. Spin-orbit splittings between 3/2+ and 5/2+ quasiparticle fragments. For the case of protons these are eigenstates of the
odd-even A+1F isotopes indicated in the second row. In the case of neutrons, they are states of odd-even A±1O. Note that for neutrons and
A = 22, 24, these two levels are found across the Fermi surface and correspond to eigenstates of different isotopes. Results are reported for
both the NN + 3N -induced and full Hamiltonians and �εdLS = εFULL

dLS − εIND
dLS are the changes owing to adding the original 3NFs at NNLO.

Experimental values are from Refs. [56,57,59–63].

εdLS = ε3/2+ − ε5/2+ Protons Neutrons

15F 17F 23F 25F 29F 15O 17O 23,21O 25,23O 27O

�εdLS 1.32 1.67 2.72 3.02 2.92 2.70 1.77 3.06 3.30 2.03

εIND
dLS 3.17 5.33 1.17 1.84 4.98 6.33 5.65 5.05 5.06 6.28

εFULL
dLS 4.48 7.00 3.88 4.86 7.90 9.02 7.42 8.12 8.36 8.32

ε
exp.
dLS 5.00 3.83/3.44 5.09 8.10 6.64
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FIG. 4. (Color online) Same as Fig. 3 but for dominant neutron
fragments. Dots (joined by dashed lines) shows ADC(3) results
obtained with the induced NN + 3NF interaction. Squares (with full
lines) refer to the full Hamiltonian and the same shown in Fig. 2.
Experimental values are from Refs. [56,57,60–63].

states owing to short-range physics and with long-range effects
that include collective resonance modes and configuration
mixing at small excitation energies [35]. For short-range
correlations, we refer to the effects of the repulsive part of
the central and tensor NN interactions, typically at distances
<1 fm, traditionally used to reproduce nuclear phase shifts at
very high energies. Even for Hamiltonians that present strongly
repulsive NN cores, the effects of short-range physics is
usually found to be at most a 10% reduction with respect to the
independent particle model prediction [1]. Thus, the quenching
of SFs is mostly a consequence of low-energy physics. For the
present Hamiltonian, the SRG evolution completely removes
any quenching owing to short-range correlations.

TABLE III. Energy gaps between the dominant 5/2+ and 1/2−

quasiparticles. These give a measure of the gaps between the sd

and p shells for the AO isotopes indicated in the second row. For
the case of protons, these are particle-hole gaps and coincide with
the ground states of the corresponding odd-even A+1F and A−1N
isotopes. For neutrons, these are eigenstates of odd-even A±1O but
are not necessarily situated across the Fermi surface. Results are
reported for both the NN + 3N -induced and full Hamiltonians and
�Egap = EFULL

gap − EIND
gap are the effects of the original 3NFs at NNLO.

Experimental data are from Refs. [56–61,63].

Egap Protons Neutrons

= εA+1
5/2+

14O 16O 22O 24O 28O 14O 16O
−εA−1

1/2−

�Egap 0.61 − 2.16 − 2.03 − 2.14 − 3.64 − 1.74 − 2.20

EIND
gap 10.38 15.76 16.50 16.46 15.54 12.07 15.60

EFULL
gap 10.99 13.60 14.47 14.32 11.90 10.32 13.40

E
exp.
gap 7.41 11.53 10.02 13.33 5.24 11.52
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FIG. 5. (Color online) Calculated spectroscopic factors plotted
as a function of their separation energies. All values shown are for
transitions between two ground states and refer to the removal of a
proton (blue squares and diamonds) or a neutron (green circles and
triangles) from the isotope indicated nearby. Triangles and diamonds
highlight transitions that involve the 16O and 28O isotopes at major
shell closures. These results are for ADC(3) and the full NN + 3NF
interaction.

Because SFs are directly linked to the cross sections probed
by particle addition and removal processes, it has long been
debated whether their evolution with proton-neutron asym-
metry can explain the observed variations in the strength of
direct nucleon knockout cross sections [68,69]. The difference
between the proton and neutron separation energies is normally
taken as a measure of such asymmetry. A case of particular
interest is 14O because of the very large value of this quantity.
The present ADC(3) calculations yield substantially the same
SFs equal to 77.4% (77.2%) for the removal of a proton
(neutron) from this isotope to the ground state of 13N (13O).
Recent measurements of the (d,3He) and (d,3H) reactions are
found to be consistent with our calculations and therefore
support a near independence of correlations effects from
proton and neutron separation energies [70].

To extend the analysis to cases with larger differences
between proton and neutron numbers, we plot in Fig. 5 the SFs
for ground-state-to-ground-state transitions along the whole
chain. In general, we find values evenly spread between 70%
and 90% of the independent particle model. The smaller values
of SFs are obtained at low separation energies and involve
transitions to/from 14,22,24O. These isotopes present reduced
particle-hole neutron gaps and therefore allow for stronger
correlations at the Fermi surface. This consideration is also
consistent with previous works that clearly showed a close
correlations between the particle-hole gap at the Fermi surface
and the predicted values of SFs [27]. From this, one may infer
that the over stretched spectra reported in Tables I, II, and III
result in more modest quenchings of SFs than otherwise
expected.

By looking only at transitions that involve the doubly
closed major shells 16O and 28O, one can still identify a
correlation between SFs and nucleon separation energies. In
particular, proton orbits tend to be more deeply bound as
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the number of neutrons increases. This is attributable to the
strong components of the proton-neutron forces, which also
enhances their correlations. However, the overall dependence
on proton-neutron asymmetry is rather mild. We note that the
vicinity to the neutron dripline would require to explicitly
account for the continuum. Reference [71] found that this
effect is sizable for 24,28O and leads to further quenching
of the proton SFs. Again, this could be interpreted as a
reduced gap between the highest neutron quasihole state and
the nearby particle continuum. In this sense, the reduction of
SFs is an indirect consequence of the change in proton-neutron
asymmetry, which first affects energy gaps.

For the case of the NN + 3N -induced Hamiltonian we
find a completely similar picture, with SFs of dominant peaks
being on average slightly larger than those obtained with the
full interaction. Also in this case, stronger quenchings are
associated with increased fragmentation of nearby strength
and the narrowing of (sub-)shell gaps. Thus, we conclude that
the general effects of the original 3NFs on the quenching of
absolute SFs mainly results from the rearrangement of shell
orbits and excitation gaps.

C. Results for open shells

The present implementation of the Gorkov-GF approach
allows calculations up to the second order in the self-energy
[i.e., at the ADC(2) level]. Although this does not guarantee
the best precision for quasiparticle energies [49], it still yields
proper predictions for the trend of binding energies [22].

We plot the Gorkov-predicted binding energies for all
oxygen isotopes in Fig. 6 and compare them to the Dyson-
ADC(3) results where available. For the Dyson case, the
NN + 3N -induced Hamiltonian systematically underbinds
the full isotopic chain and predicts 28O to be bound with
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FIG. 6. (Color online) Binding energies of oxygen isotopes.
Dashed and solid lines join the results from Dyson-ADC(3) cal-
culations with the NN + 3N -induced (squares) and full (circles)
Hamiltonians. The shaded area highlights the changes owing to the
original 3NF at NNLO. The open diamonds, joined by dot-dashed
lines, are from Gorkov calculations at second order and include
open-shell isotopes. Odd-even isotopes are obtained by summing
total binging energies of the even-even systems [Eq. (10)] and the
energies for addition or removal of a neutron [Eq. (12)]. Experiment
are from Refs. [56,57,60,63,72].

respect to 24O. This is fully corrected by including the
original 3NF at leading order, which brings all results to about
3% form the experiment or closer. This is well within the
estimated theoretical errors discussed above [19]. The dot-
dashed line shows the trend of ground-state energies for the full
Hamiltonian obtained form Gorkov, which include the 18,20,26O
isotopes. This demonstrates that the fraction of binding missed
by the second-order truncation is rather constant across the
whole isotopic chain and, in the present case, of about
2–4 MeV. The result is a constant shift with respect to the
complete ADC(3) prediction and the overall trend of binding
energy is reproduced very close to the experiment. Note that
binding energies for odd-even oxygens can be calculated either
as neutron addition or neutron removal from two different
nearby isotopes. Figure 6 shows that this procedure can lead
to somewhat different results, which should be taken as an
indication of the errors owing to the second-order many-body
truncation. For the more complete Dyson-ADC(3) method and
the full Hamiltonian, these differences are never larger than
200 keV and are not visible in the plot. Our calculations with
the more accurate Dyson-ADC(3) scheme predict 28O to be
unbound with respect to 24O by 5.2 MeV. However, this value
should be slightly affected by the vicinity to the continuum
[17], which was neglected in the present work.

Figure 7 shows the analogous information for the binding
energies of the nitrogen and fluorine isotopic chains, obtained
through removal and addition of one proton. This confirms that
all considerations made regarding the effects of leading-order
3NFs on the oxygens also apply to their neighboring chains. In
particular, the repulsive effect on the d3/2 neutron orbit is key
in determining the neutron driplines at 23N and 24O. Fluorine
isotopes have been observed experimentally up to 31F but with
a 29F that is very weakly bound. Figure 7 clearly demonstrates
that this is attributable to an very subtle cancellation between
the repulsion form 3NFs and the attraction generated by one
extra proton [19].

The general qualitative features of the spectral functions
discussed in the previous sections are also found in our Gorkov
propagators but with an even more spread single-particle
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FIG. 7. (Color online) Same as Fig. 6 but for the binding energies
of nitrogen and fluorine isotopes. These are calculated as addition
or removal of a proton to and from even-even oxygen isotopes.
Experiment are from Refs. [56–58,63,72].
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tom) obtained from Dyson-ADC(3) and second-order Gorkov. Curves
are the same as in Fig. 6. The bars are experimental charge radii from
Ref. [39].

spectra. For example, the splitting among the 1/2− and 3/2−
quasihole states of 15N is found to be 10.2 MeV, compared
to the 8.2 MeV calculated in the Dyson-ADC(3) scheme (cf.
Table II). This larger value is a consequence of neglecting
the interactions between 2p1h and 2h1p configurations by
the second-order truncation. Interestingly, this splitting is
sensibly reduced in the neighboring semimagic isotopes and
it is calculated to be 4.9 MeV for 17N and 5.6 MeV for 19N.
These values refer to the separation from the first 3/2− state
close to the Fermi surface (rather than a centroid of the first few
fragments). They are sensibly smaller because the calculations
yield a fragmented p3/2 hole orbit for these nuclei. In the
Gorkov calculations, the changes in these splittings owing
to aiding the original NNLO-3NF (�εpLS) are 4.2, 0.8, and
2.2 MeV, respectively, for 15N, 17N, and 19N.

Figure 8 demonstrates the trend obtained for point-matter
and charge radii along the whole chain and compares them to
the observed charge radii for 16O and 18O. The induced 3NFs
give sizable contributions to the calculated radii, which would
be sensibly smaller if computed from the evolved NN -only
interaction [73]. Conversely, the original 3NFs cause only a
small reduction. Eventually, the radii predicted by the complete
Dyson-ADC(3) calculations and the full Hamiltonian are
smaller than the experimental charge radii by 0.2–0.3 fm. Note
that the present calculations do not account for the evolution
of operators through the SRG. However, the small radii are
consistent with the overstretched spectra discussed above. The
radii calculated with the second-order Gorkov approach give
somewhat smaller results owing to the many-body truncation.
Nevertheless, they describe the overall trend of increasing
matter radii along the whole chain, while charge radii remain
largely independent of neutron number. Note that the available
experimental data show almost equal charge radii for 16O and
17O and a slight larger value for 18O [39]. This is reminiscent
of the behavior of isotope shifts in calcium isotopes that first

increase and then decrease when going from 40Ca and 48Ca,
although more data up to 22O would be required to confirm
this. The bell shape observed in calcium isotopes is explained
by extensive shell-model calculations covering both sd and pf
shells [74,75] or by surface vibrations [76]. Such correlations
are not included in the present Gorkov formalism at second
order and therefore the flat behavior of charge radii of Fig. 8
is consistent with the many-body truncations adopted here.

V. CONCLUSIONS

We have presented a comprehensive study of the
single-particle spectral functions and ground-state properties
of oxygen isotopes based on chiral NN + 3N interactions.
Toward this goal, we performed ab initio calculations within
SCGF theory. The theoretical framework of this approach
has been reviewed highlighting the physics information
contained in the nuclear spectral function. Calculations
were performed for the closed-subshell isotopes using the
Dyson-ADC(3) many-body truncation scheme, which is
presently the state-of-the-art technique. For the open-shell
isotopes 18O, 20O, and 26O we performed calculations using
the recently introduced Gorkov formulation of SCGF, which
can be currently applied at second order.

The general features of the nuclear spectral functions have
been discussed, with particular emphasis on the quasiparticle
energies (also referred to as “separation” energies) for the
dominant peaks observed in the removal and addition of a
nucleon. The 3N interactions at NNLO have the effect of in-
creasing the spin-orbit splittings of the p and d orbits and lead
to overestimating the experiment. At the same time, the 3NFs
reduce the gaps between the p and sd major shells, improving
the agreement with data but not enough to reproduce the
empirical values. We observe that all these deficiencies might
be corrected by having extra short-range repulsion in the NN
section of the Hamiltonian. Other approaches, such as global
fittings of chiral NN + 3N forces to include medium-mass
isotopes, also hold the promise to reach proper saturation [77].
In general, it is found that the current NN -N3LO interaction
with cutoff at 500 MeV, augmented by the local 3NF-NNLO
with a 400-MeV local cutoff, tends to stretch the single-particle
spectrum too much compared to data. The corresponding
predictions for matter radii underestimate the experiment.

The conclusion that the present chiral forces overestimate
the gaps between major shells was already pointed out in
Ref. [22] for isotopic chains around Ca and suggests that these
saturate nuclear matter at slightly higher densities than the
empirical point [78,79]. Here we find that hints of the same
pathologies are seen also for the oxygen isotopes, in spite of
the fact that binding energies are nicely predicted at smaller
masses.

The calculated absolute quenchings of SFs change only
mildly with proton-neutron asymmetry. This is valid as long
as the occupied states in the single-particle spectrum are not
near to the continuum. Stronger correlations would instead be
generated by smaller particle-hole gaps in the oxygen isotopes
with closed subshells.

014306-9



A. CIPOLLONE, C. BARBIERI, AND P. NAVRÁTIL PHYSICAL REVIEW C 92, 014306 (2015)
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FIG. 9. (Color online) Diagonal part of the complete proton
spectral function [Eq. (A1)] for closed-subshell isotopes 14,16,22,24,28O.
The discretized energy peaks that appear as energy δ functions
in Eq. (3) have been smeared with Lorentzians of suitable with.
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the spectral distribution, while those above are for particle addition.
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FIG. 10. (Color online) Same as Fig. 9, but for neutrons.
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APPENDIX: PLOTS OF SPECTRAL FUNCTIONS

The diagonal part of the one-nucleon spectral function,
Eq. (3), has a straightforward physical interpretation [80,81].
Its particle part, S

p
αα(ω), is the joint probability of adding a

nucleon with quantum numbers α to the A-body ground state,
|�A

0 〉, and then to find the system in a final state with energy
EA+1 = EA

0 + ω. Likewise, Sh
αα(ω) gives the probability of

removing a particle from state α and later finding the
nucleus in an eigenfunction of energy EA−1 = EA

0 − ω. Once
transformed to coordinate or momentum representations, these
distributions give a rather intuitive picture of the single-particle
structure of a nucleus. We demonstrate this by calculating the
spectral function in coordinate basis as

S(r,ω) =
∑
α β

φα(r)
[
S

p
αβ(ω) + Sh

αβ(ω)
]
φ∗

β(r), (A1)

where φα(r) are spin-coupled HO functions. The angular and
spin dependencies in Eq. (A1) are removed by summing
over all oscillator states. This happens for all nuclei under

consideration because they have Jπ = 0+ quantum numbers
in their ground states.

The spectral functions obtained from Dyson-ADC(3) cal-
culations are displayed in Figs. 9 and 10 for protons and
neutrons, respectively. This shows the radial distribution of
the squared one-nucleon overlap wave functions at different
quasiparticle energies. The Fermi energy, EF ≡ (ε+

0 + ε−
0 )/2,

marks the separation between the hole and particle parts of the
spectral distribution. Hence, integration over all energies in
the range ω ∈ [−∞,EF ] yields the nucleon density ρ(r) [see
Eq. (4)] and further integrations over coordinate space yields
the particle number. Note that quasiparticle states for ω > 0
correspond to the continuum spectrum of the corresponding
(A + 1)-nucleon system. These are unbound states for the
scattering of a nucleon off the |�A

0 〉 ground state [44,45].
Thus, they extend to infinity in the limit of a complete single-
particle model space. In the present work, we only calculate
their projection on a truncated HO space, which cannot
be normalized to the usual asymptotic boundary conditions.
Nevertheless, the plots put in evidence the predicted location
for neutron resonances in the sd and pf shells.

It must be kept in mind that these resonances will be further
corrected in extended calculations that properly account for the
continuum. In general, these effects will be more important
the broader is the resonance, and for the present case one may
expect corrections as large as a few MeV. Importantly, the self-
energy [Eq. (14)] is a bound function which can be correctly
expanded even in a HO basis. Thus, by first transforming this
to coordinate or momentum space, it is possible to obtain a
complete optical potential and to compute scattering waves
with proper boundary conditions. This is normally done in
applications of SCGF theory to scattering [82,83].
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