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Reassessing nuclear matter incompressibility and its density dependence
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Experimental giant monopole resonance energies are now known to constrain nuclear incompressibility of
symmetric nuclear matter K and its density slope M at a particular value of subsaturation density, the crossing
density ρc. Consistent with these constraints, we propose a reasonable way to construct a plausible equation
of state of symmetric nuclear matter in a broad density region around the saturation density ρ0. Help of two
additional empirical inputs, the value of ρ0 and that of the energy per nucleon e(ρ0) are needed. The value of
K(ρ0) comes out to be 211.9 ± 24.5 MeV.
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I. INTRODUCTION

The nuclear incompressibility parameter K0 defined for
symmetric nuclear matter (SNM) at saturation density ρ0

stands out as an irreducible element of physical reality. It has
an umbilical association with the isoscalar giant monopole
resonances (ISGMR) in microscopic nuclei; it also underlies
in a proper understanding of supernova explosion in the
cosmic domain [1]. From careful microscopic analysis of
ISGMR energies with suitably constructed energy density
functional (EDF) E(ρ) in a nonrelativistic framework
as applicable to finite and infinite nuclear systems, its
value had initially been fixed at K0 � 210 ± 30 MeV [2,3]. In
microscopic relativistic approaches on the other hand, a higher
value of K0 ∼ 260 MeV was obtained [4]. After several
revisions from different corners, however, its value settled to
K0 � 230 ± 20 MeV [5–7]. It gives good agreement with the
experimentally determined centroids of ISGMR, in particular,
for 208Pb, 90Zr, and 144Sm nuclei, calculated both with nonrel-
ativistic [8,9] and relativistic [7] energy density functionals.
The near-settled problem was, however, left open with the
apparent incompatibility of the said value of K0 with the recent
ISGMR data for Sn and Cd-isotopes [6,10–17]. These nuclei
showed remarkable softness toward compression, the ISGMR
data appeared explained best with K0 ∼ 200 MeV [6].

A plausible explanation was recently put forward by Khan
et al. [18] for the apparent discrepancy. It is argued that
there may not be a unique relation between the value of
K0 associated with an effective force and the monopole
energy of a nucleus predicted by the force [19]. The region
between the center and the surface of the nucleus is the most
sensitive toward displaying the compression as manifested in
the ISGMR. The ISGMR centroid EG is related to the integral
of incompressibility [

∫
K(ρ)dρ] over the whole density

range [20]. As a result, a larger value of K(ρ0) for a given EDF
can be compensated by lower values of K(ρ) at subsaturation
densities so as to predict a similar value of ISGMR energy in
nuclei. It is seen that the incompressibility K(ρ) calculated
with a multitude of energy density functionals when plotted
against density cross close to a single density point [18], this
universality possibly arising from the constraints encoded in
the EDF from empirical nuclear observables. This crossing
density ρc[= (0.71 ± 0.005)ρ0] [21] seems more relevant as an
indicator for the ISGMR centroid. Because of the incompress-

ibility integral, the centroid seems more intimately correlated
to the derivative of the compression modulus [defined as M =
3ρK ′(ρ)] at the crossing density rather than to K0. The value of
Kc[= K(ρc)] is seen to be ∼ 35 ± 4 MeV [21]. From various
functionals, the calculated values of Mc[= M(ρc)] are found
to be linearly correlated with the correspondingly calculated
values of ISGMR centroids for 208Pb and also for 120Sn. From
the known experimental ISGMR data for these nuclei, a value
of Mc � 1050 ± 100 MeV [21] is then obtained, revised
from an earlier estimate of 1100 ± 70 MeV [18]. Using a
further assumption of a linear correlation between K0 and EG

calculated from different EDF, a value for K0 � 230 MeV
with an uncertainty of � 40 MeV is reported, the uncertainty
being inferred from the spread of K0 values obtained with the
different functionals used.

The universality of the crossing point ρc and the values of
Kc and Mc can be readily acknowledged; Mc is seen to be
well correlated to EG. The Pearson correlation coefficient r
[22] of Mc with EG for 120Sn is 0.80 and is 0.94 for 208Pb.
However, assumption of a linear correlation between K0 and
EG may not be justified, they seem to be very weakly correlated
(r = 0.67 for 120Sn and 0.79 for 208Pb) [21]. The inferred value
of incompressibility around saturation may then be called into
question. One can see that a linear Taylor expansion K0(ρ0) =
K(ρc) + (ρ0 − ρc)K ′(ρc) yields for K0 � 185 ± 14.3 MeV,
noting that K ′(ρc) = Mc/(3ρc).

The absence of a strong linear correlation between K0 and
EG calculated from different effective forces prompts one to
think that Kc and Mc alone are not sufficient to yield the
correct value of K0. Further empirical information is possibly
needed to arrive at that. In this paper, we show that with given
values of only Kc and Mc along with some time-tested values
of empirical nuclear constants, it is possible to address to a
proper assessment of the value of incompressibility K and its
density dependence. The empirical constants are the saturation
density ρ0, taken as 0.155 ± 0.008 fm−3 for SNM and the
energy per nucleon at that density e(ρ0), taken as −16.0 ±
0.1 MeV [23,24]. An acceptable value of the effective nucleon
mass m∗/m, which lies in the range m∗/m ∼ 0.8 ± 0.2 [25]
at saturation density is also used.

This paper is structured as follows. In Sec. II, we introduce
the theoretical elements to calculate the nuclear equation
of state from Kc and ρc with the aid of empirical inputs
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mentioned. Results and discussions are presented in Sec. III.
Section IV contains the concluding remarks.

II. THEORETICAL EDIFICE

We keep the discussions pertinent for SNM at any density
ρ at zero temperature (T = 0). The chemical potential of a
nucleon is given by the single-particle energy at the Fermi
surface,

μ = εF = p2
F

2m
+ U, (1)

where pF (ρ) is the Fermi momentum and U (ρ) the single-
particle potential. Assuming the nucleonic interaction to be
momentum and density dependent, the single-particle potential
separates into three parts [26]:

U = V0 + p2
F V1 + V2. (2)

The last term V2 is the rearrangement potential that arises
only for density-dependent interactions, and the second is the
momentum-dependent term that defines the effective mass m∗,

p2
F

2m∗ = p2
F

2m
+ p2

F V1, (3)

so that

1

m∗ = 1

m
+ 2V1. (4)

The energy per nucleon at density ρ is given by

e =
〈
p2

2m

〉
+ 1

2
〈p2〉V1 + 1

2
V0

= 1

2

(
1 + m∗

m

)〈
p2

2m∗

〉
+ 1

2
V0. (5)

From Gibbs-Duhem relation,

μ = e + P

ρ
, (6)

where P is the pressure. Keeping this in mind, from Eqs. (1),
(5), and (6), we get

e(ρ) = p2
F

10m

[
3 − 2m

m∗

]
− V2 + P

ρ
, (7)

where we have put 〈p2〉 = 3
5p2

F .
The density dependence of the effective mass [27] can

be cast as m
m∗ = 1 + kρ; the rearrangement potential can be

written in the form V2 = aρα . This is the form that emerges for
finite range density-dependent forces [26] in a nonrelativistic
framework or for Skyrme interactions. The quantities a, α, and
k are numbers. If m∗

m
(ρ0) is chosen, k is known.

At ρ = ρ0,P = 0, then from Eq. (7), writing for p2
F

2m
= bρ2/3

with b = ( 3
2 π2)2/3

�
2

2m
,

e0 = e(ρ0) = b

5
ρ

2/3
0 [1 − 2kρ0] − aρα

0 . (8)

Since P = ρ2 ∂e
∂ρ

, from Eq. (7) again we get

P = b

15
ρ5/3 − 1

3
bkρ8/3 − 1

2
αaρα+1 + 1

2
ρ

∂P

∂ρ
. (9)

At ρ0, this yields (since K0 = 9 ∂P
∂ρ

|ρ0 )

1

2
αaρα

0 + 1

3
bkρ

5/3
0 −

(
K0

18
+ b

15
ρ

2/3
0

)
= 0. (10)

Furthermore, Eq. (9) gives

K(ρ) = 9
∂P

∂ρ
= 2bρ2/3 − 16bkρ5/3

− 9α(α + 1)aρα + 9ρ
∂2P

∂ρ2
. (11)

Defining M = 3ρ dK
dρ

= 27ρ ∂2P
∂ρ2 , this leads, at ρ = ρc, to

9α(α + 1)aρα
c + 16bkρ5/3

c −
(

2bρ2/3
c + Mc

3
− Kc

)
= 0.

(12)

Since k is a given entity and ρc and (Mc/3 − Kc) are known,
Eqs. (8) and (12) can be solved for a and α, Eq. (10) then
gives the value of the nuclear incompressibility K0. Once
K0 is obtained, M0[=M(ρ0)] is evaluated from Eq. (12) by
choosing ρ0 for ρc. Then Q0 = 27ρ3

0
∂3e
∂ρ3 |ρ0 is also known from

M0 = 12K0 + Q0.
The structure of Eq. (9) shows that the pressure and its first

derivative are interrelated. One can then get higher density
derivatives of P or of energy e recursively from Eq. (9) as is
evident from Eq. (11). For the present, we show that

9ρ
∂3P

∂ρ3
= 9α2(α + 1)aρα−1 + 80

3
bkρ2/3 − 4

3
bρ−1/3. (13)

Since

∂3P

∂ρ3
= 6

∂2e

∂ρ2
+ 6ρ

∂3e

∂ρ3
+ ρ2 ∂4e

∂ρ4
, (14)

we find

9ρ2
0
∂3P

∂ρ3

∣∣∣∣
ρ0

= 6K0 + 2Q0 + 1

9
N0. (15)

where we have defined N0 = 81ρ4
0

∂4e
∂ρ4 |ρ0 . From Eqs. (13)

and (15), knowing K0 and Q0, N0 can be calculated. Similarly,
one can calculate the fifth density derivative of energy
(R0 = 243ρ5

0
∂5e
∂ρ5 |ρ0 ) by exploiting Eqs. (13) and (14) from

9ρ3
0
∂4P

∂ρ4

∣∣∣∣
ρ0

= 4Q0 + 8

9
N0 + 1

27
R0. (16)

These help to find the density variation of the energy and also
of the incompressibility, as is seen,

e(ρ) = e(ρ0) + 1
2K0ε

2 + 1
6Q0ε

3 + 1
24N0ε

4 + 1
120R0ε

5 + · · · ,

(17)
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where ε = ( ρ−ρ0

3ρ0
) (counting terms only up to ε5 is seen to be

a very good approximation in the density range of ∼ ρ0/4 <
ρ < 2.0ρ0, we retain terms up to them). Equations (7) and (17)
give

P (ρ)

ρ
= e(ρ0) + 1

2
K0ε

2 + 1

6
Q0ε

3 + 1

24
N0ε

4

+ 1

120
R0ε

5 − b

5
ρ2/3[1 − 2kρ] + aρα, (18)

and Eq. (9) gives

K(ρ) = 9
dP

dρ
= 18

[
P

ρ
− b

15
ρ2/3 + 1

3
bkρ5/3 + 1

2
αaρα

]
.

(19)

We have thus the equation of state (EOS) of symmetric nuclear
matter in a reasonably spread-out density domain around the
saturation density.

The incompressibility K at any density ρ can be calculated
directly from Eq. (19) or it may be calculated in terms of K(ρc)
and its higher density derivatives as

K(ρ) = K(ρc) + (ρ − ρc)K ′(ρc) + (ρ − ρc)2

2
K ′′(ρc)

+ (ρ − ρc)3

6
K ′′′(ρc) + · · · . (20)

The different derivatives can be calculated from Eq. (19).
With given values of ρ0, e0,

m∗
m

(ρ0), and ρc, one notes that
the solutions for a and α do not depend separately on Kc and
Mc but on (Mc/3 − Kc).

III. RESULTS AND DISCUSSIONS

The values of the empirical constants ρ0, e0, and m∗
m

needed
for our calculation have already been mentioned. As for the
crossing density, we choose ρc = 0.110 ± 0.0008 fm−3. With
given inputs of Mc and Kc, it should be noted that the output
values for Mc and Kc may come out to be different, but
(Mc/3 − Kc) remains invariant. With inputs Mc = 1050 MeV
and Kc = 35 MeV, the output Mc and Kc are found to be 1051.8
and 35.46 MeV, respectively. Since they are very close to the
input values, they were not tinkered with for exact matching of
the output and input values. The value of incompressibility at
ρ0 turns out to be K0 = 211.9 ± 24.5 MeV either from Eq. (19)
or (20). We note that in Eq. (20), at saturation, the value of
the second term on the right-hand side is 143.3 MeV, the third
term is 35.9 MeV, the fourth term is −3.2 MeV, the fifth term
[not shown in Eq. (20)] is 0.55 MeV and so on, which adds up
to ∼211.9 MeV.

The uncertainty in an observable X (like K,M , etc.) is
calculated from �X2 = ∑

i(
∂X
∂yi

�yi)2, where �yi are the un-
certainties in the empirically known entities yi . The sensitivity
of K0 on these entities that influence the incompressibility
most is displayed in Fig. 1. The abscissa is scaled such that 0
refers to the central value of these entities, Mc,Kc, ρc, and ρ0;
±1 refer to the extrema of their domain (±100 MeV, ±5 MeV,
±0.005ρ0, and ±0.008 fm−3 from the central values of the
entities, respectively). The value of K0 is seen to be very
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K
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)

ρ0
Mc
Kc
ρc

FIG. 1. (Color online) The sensitivity of the incompressibility
K0 at the saturation density (ρ0) on the values of the incompressibility
Kc (green dash-dotted line), its density slope Mc (red dashed line), the
crossing density ρc (blue dotted line), and the value of ρ0 (black full
line). The abscissa extends from −1 to +1. These endpoints refer to
the scaled lower and upper limits of Kc, Mc, ρc, and ρ0, respectively
(see text).

sensitive with changes in either Mc or ρ0 when all other input
entities are kept fixed. Its sensitivity to Kc or ρc is weak; on
m∗
m

or to the energy per nucleon e0, it is rather insensitive. The
near-insensitivity of incompressibility to the effective mass is
observed for Skyrme density functionals also. From the data
base for these functionals as tabulated by Dutra et al. [25], the
correlation coefficient between K0 and m∗ is calculated to be
only ∼ −0.2.
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FIG. 2. (Color online) The incompressibility and its different
density derivative as defined in the text plotted as a function of Mc.
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FIG. 3. (Color online) The nuclear EOS as a function of density.
Panels (a) and (b) show the energy per nucleon and pressure,
respectively, in a selected range around the saturation density.

The near-perfect linear correlation of K0 with Mc as seen
in Fig. 1 is very startling. From Eq. (20), one may expect
that the second- and higher-order derivatives of K(ρc) would
destroy this correlation. However, we find that both K ′′ and K ′′′
are also linearly correlated with Mc and thus K(ρ0) retains its
linear correlation with Mc. This is displayed in Fig. 2, where we
define K1 = (ρ0 − ρc)K ′(ρc), K2 = (ρ0−ρc)2

2 K ′′(ρc), and K3 =
(ρ0−ρc)3

6 K ′′′(ρc). The weak correlation between K0 and Mc that
can be inferred from the calculated correlation structure of
(Mc − EG) and (K0 − EG) in Refs. [18,21] possibly results
from the use of different EDFs in getting the various relevant
observables.

Figures 3 and 4 display the functional dependence of the
nuclear EOS on density. Figures 3(a) and 3(b) show the
energy per nucleon and the pressure, respectively; Figs. 4(a)
and 4(b) show the incompressibility and its density derivative
M , respectively. As one sees, the uncertainty in energy and
pressure grows as one moves away from the saturation density;
similarly, the uncertainty in incompressibility or its density
derivative increases with distance from the crossing density.

IV. CONCLUSIONS

To sum up, we have made a modest attempt to reassess
the value of K(ρ0) consistent with the new-found constraint
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FIG. 4. (Color online) The nuclear EOS as a function of density.
Panels (a) and (b) show the incompressibility and its density derivative
M , respectively, in a selected range around the saturation density.

on the incompressibility K(ρc) and its density slope M(ρc)
at a particular value of density at subsaturation, the crossing
density ρc. We have relied on some empirically well-known
values of nuclear constants. We have further made the
assumption of linear-density dependence of the effective
mass and the power-law dependence of the rearrangement
potential, which happens to be generally true for nonrelativistic
momentum and density-dependent interactions. In relativistic
models, the density dependence of the effective mass may not
be linear [28]. The rearrangement potential appears explicitly
there only in the case of density-dependent meson exchange
models [29].

The value of incompressibility K(ρ0) turns out to be
211.9 ± 24.5 MeV. This is somewhat lower than the current
value in vogue, K0 ∼ 230 ± 20 MeV. From recursive relations,
our method allows also estimates of higher-density derivatives
of energy or of pressure and thus helps in constructing the
nuclear EoS e(ρ) at and around the saturation density.
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