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Pairing phase transition: A finite-temperature relativistic Hartree-Fock-Bogoliubov study
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Background: The relativistic Hartree-Fock-Bogoliubov (RHFB) theory has recently been developed and it
provides a unified and highly predictive description of both nuclear mean-field and pairing correlations. Ground-
state properties of finite nuclei can accurately be reproduced without neglecting exchange (Fock) contributions.
Purpose: Finite-temperature RHFB (FT-RHFB) theory has not yet been developed, leaving yet unknown its
predictions for phase transitions and thermal excitations in both stable and weakly bound nuclei.
Method: FT-RHFB equations are solved in a Dirac Woods-Saxon (DWS) basis considering two kinds of pairing
interactions: finite or zero range. Such a model is appropriate for describing stable as well as loosely bound nuclei
since the basis states have correct asymptotic behavior for large spatial distributions.
Results: Systematic FT-RH(F)B calculations are performed for several semimagic isotopic/isotonic chains
comparing the predictions of a large number of Lagrangians, among which are PKA1, PKO1, and DD-ME2.
It is found that the critical temperature for a pairing transition generally follows the rule Tc = 0.60�(0) for a
finite-range pairing force and Tc = 0.57�(0) for a contact pairing force, where �(0) is the pairing gap at zero
temperature. Two types of pairing persistence are analyzed: type I pairing persistence occurs in closed subshell
nuclei while type II pairing persistence can occur in loosely bound nuclei strongly coupled to the continuum
states.
Conclusions: This FT-RHFB calculation shows very interesting features of the pairing correlations at finite
temperature and in finite systems such as pairing re-entrance and pairing persistence.
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I. INTRODUCTION

Over the past several decades, the thermodynamical proper-
ties of excited nuclei have drawn renewed attention due to the
advanced accurate measurements of level densities at low exci-
tation energies [1–5]. Pairing correlations play an essential role
in many fermion systems and have thus a strong influence on
nuclear structure at low excitation energies [6–10]. Pairing cor-
relations in finite systems such as nuclei or Wigner-Seitz cells,
and in infinite ones, such as in neutron star matter, may exhibit
different behaviors reflected in the specific heat and the level
density [11–15]. Moreover, the phase transition is a complex
and rich phenomenon, where pairing re-entrance in asymmet-
ric matter, in odd-nuclei, rotating nuclei, and even in doubly
magic nuclei close to the drip line may occur [6,14,16,17].
The interplay between temperature and shell effects in su-
perfluid systems, giving rise to re-entrance or its opposite
phenomenon—suppression—still remains to be studied.

The competition between temperature and pairing corre-
lations in nuclei at low excitation energies has been studied
for several decades, with the pioneering works based on finite-
temperature Bardeen-Cooper-Schrieffer (FT-BCS) theory [18]
and finite-temperature Hartree-Fock-Bogoliubov (FT-HFB)
theory [19]. It was predicted that the critical temperature
Tc for pair correlation quenching could be expressed, as in
uniform matter, as a function of the average pairing gap at zero
temperature �(0) following the relations Tc = 0.57�(0) for a
constant pairing force [18]. The more evolved Bogoliubov
approach later has been applied to finite nuclei confirming
the existence of such relations between Tc and �(0). For
the simplified degenerate model, the relation was found to

be Tc = 0.50�(0) [19], while in rare-earth transition nuclei
the interplay with deformation induces shape transitions in
the superfluid phase, leading to the ratio Tc/�(0) = 0.57
for protons and 0.63 for neutrons [20]. In addition, pairing
correlations are expected to play an important role in the
decay of compound nuclei formed in heavy-ion collisions,
as illustrated in the seminal work presented in Ref. [21]. More
recently, the BCS and HFB approaches have been extended
to self-consistent mean-field models in order to improve the
description of the pairing transition in spherical nuclei [22–24],
as well as in deformed nuclei where shape transitions have been
predicted [25–29]. In summary, the ratio Tc/�(0) lies in the
interval 0.50–0.60, where the uncertainty originates mainly
from the detailed level structure of spherical and deformed
nuclei which depends itself on models.

It is worth noticing that in most of the quoted studies, the
calculations were performed either on the harmonic oscillator
basis or within the nonrelativistic framework. Due to the
limitation of the harmonic oscillator basis in giving an appro-
priate asymptotic behavior of the single particle (s.p.) wave
functions, the nucleon densities at large distance converge
very slowly with respect to the size of the basis. The situation
becomes even more serious in the weakly bound nuclei close
to the drip line [30,31]. At present a realistic framework
is to perform the calculations in an appropriate basis that
can provide a reasonable description of both the overall and
asymptotic behaviors of the density profiles, for instance, the
Woods-Saxon (WS) basis [32,33]. In some applications, the
small component of the Dirac spinors were usually neglected
in determining the relativistic Hartree-Bogoliubov (RHB) and
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finite-temperature RHB (FT-RHB) pairing tensor [24,34].
We therefore present, in this paper, the first, as far as
we know, fully relativistic Hartree-Fock-Bogoliubov (RHFB)
calculations at finite temperature (FT-RHFB): both the large
and small components of the Dirac spinors contribute to the
pairing channel, and the contributions of the Fock terms are
naturally included. In addition, the Dirac Woods-Saxon (DWS)
basis [32] is employed to better describe weakly bound nuclei.

This paper is organized as follows. The general formalism
of the FT-RHFB theory is outlined in Sec. II. In Sec. III,
we compare the results obtained with different covariant
density functional (CDF) models [35–40] using the finite- and
zero-range pairing interactions [41,42]. Systematic FT-RHFB
calculations are performed for several isotopes/isotones.
Moreover, the questions of pairing persistence and re-entrance
phenomena with increasing temperature are addressed. Fi-
nally, the main conclusions are drawn in Sec. IV.

II. GENERAL FORMALISM AND NUMERICAL DETAILS

We briefly recall here the general features of RHFB theory
and thermodynamics and then their generalization to the finite-
temperature case.

A. RHFB framework

The relativistic Hartree-Fock (RHF) theory [35,40,43] is
designed to describe bulk and s.p. nuclear properties. The
relevant degrees of freedom are the isospin doublet nucleon
field ψn(p), the meson fields which mediate the nuclear
interactions (two isoscalar fields σ and ω, two isovector fields
ρ and π ), and the photon field (A) that accounts for the
electromagnetic interaction. A general effective Lagrangian is
constructed in terms of various currents or densities: (ψ̄τ	ψ),
where τ ∈ {1,τ } (1 stands for the isoscalar quantities and
the isospin Pauli matrix τ corresponds to the isovector ones)
and 	 denotes the Dirac matrices {1,γμ,γ5γμ,σμν}. Applying
the standard variations of the Lagrangian, one may obtain
the field equations for nucleon, meson, and photon fields
(respectively, the Dirac, Klein-Gordon, and Proca equations)
and the continuity equations leading to the Hamiltonian. With
the creation and annihilation operators (c†,c) defined from
stationary solutions of the Dirac equation, the effective Hamil-
tonianH is formally expressed in the second quantized form as

H =
∑
ij

c
†
i cjTij + 1

2

∑
ijkl;φ

c
†
i c

†
j clckV

φ
ijkl, (1)

where Tij represents the Dirac kinetic energy, and the
two-body terms Vijkl correspond to different types of
meson- (or photon-) nucleon couplings denoted by φ. In the
mean-field approximation, the energy functional E is obtained
by taking the expectation value of the Hamiltonian H on a
Slater determinant, where both the Hartree and Fock terms
are considered. The RHFB theory [44–46] is deduced by
incorporating the Bogoliubov transformation(

α

α†

)
=

(
ψ∗

U ψ∗
V

ψV ψU

)(
c

c†

)
(2)

with the RHF model. It provides a unified and self-consistent
description of both particle-hole (ph) and particle-particle
(pp) channels at the mean-field level.

B. Thermodynamics and statistical mechanics

The thermodynamical properties of a system are calculated
here in the canonical ensemble. For a statistical N -body system
at finite temperature T , the equilibrium state is obtained
from the variational principle applied to the grand-canonical
potential � [19,21,47],

�(T ,λ) = F − λN = E − T S − λN, (3)

where F is the free energy, S the entropy, E the total energy,
and λ the associated Lagrange multiplier. Namely the variation

δ� = 0 (4)

defines the density operator D with trace equal to 1, and the
grand partition function Z, respectively, read as:

D = Z−1exp{−β(H− λN)}, (5a)

Z = Tr[exp{−β(H− λN)}], (5b)

where N is the particle number operator and β = T −1. As
is conventional, the temperature T is given in energy units.
For arbitrary operator O, the thermal average over the excited
states populated at finite temperature is defined as:

〈O〉 = Tr(DO), (6)

where the trace is taken over all possible excited states. At
finite temperature, the total energy, entropy, and number of
particles are therefore expressed as

E = 〈H〉 = Tr(DH), (7a)

S = −〈lnD〉 = −Tr(DlnD), (7b)

N = 〈N〉 = Tr(DN). (7c)

C. Extension to finite temperature

The FT-RHFB theory is a straightforward generalization
of the RHFB theory that readily incorporates a statistical
ensemble of excited states. At the finite-temperature mean-
field level, the density operator is approximated by [19]:

D =
∏
α

[fαNα + (1 − fα)(1 −Nα)], (8)

where fα is the Fermi-Dirac distribution

fα = 〈Nα〉 = 1

1 + eβEα
. (9)

Notice that, for T = 0, we have fα = 0 for all states α. The
quasiparticle energy Eα is obtained as the solution of the FT-
RHFB equations, see Eq. (11).

In spherically symmetric systems the Dirac-Bogoliubov
spinors in Eq. (2) can be written as

ψUα
(rrr) = 1

r

(
iGUa

(r)
FUa

(r)σσσ · r̂rr
)

Y l
jm(r̂rr)χ 1

2
(τ ), (10a)

ψVα
(rrr) = 1

r

(
iGVa

(r)
FVa

(r)σσσ · r̂rr
)

Y l
jm(r̂rr)χ 1

2
(τ ), (10b)

where GU (V ) and FU (V ) correspond to the radial parts of
the upper and lower components, respectively, Y l

jm(r̂rr) is the
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spinor spherical harmonics, and χ 1
2
(τ ) is the isospinor. Here

the subindex α = (a,m) = (n,l,j,m) contains the quantum
numbers n (number of nodes of the upper component GU (V )),
l (orbital angular momentum), and j,m (total angular momen-
tum and its projection to the z axis).

The minimization of � with respect to D leads to the FT-
RHFB equations,∫

drrr ′
(

h(rrr,rrr ′) �(rrr,rrr ′)
−�(rrr,rrr ′) h(rrr,rrr ′)

)(
ψU (rrr ′)
ψV (rrr ′)

)

=
(

λ + E 0
0 λ − E

)(
ψU (rrr)
ψV (rrr)

)
, (11)

which are formally identical to the RHFB equations [44–46].
The Dirac Hamiltonian h(rrr,rrr ′) contains the kinetic energy hK ,
the direct local potential hD , and exchange nonlocal potential
hE ,

hK (rrr,rrr ′) = [ααα · ppp + βM]δ(rrr − rrr ′), (12a)

hD(rrr,rrr ′) = [�T (rrr)γ5 + �0(rrr) + β�S(rrr)]δ(rrr − rrr ′), (12b)

hE(rrr,rrr ′) =
[
YG(rrr,rrr ′) YF (rrr,rrr ′)
XG(rrr,rrr ′) XF (rrr,rrr ′)

]
. (12c)

In the above expressions, the local self-energies �S , �0, and
�T contain the contributions from the Hartree (direct) terms
and the rearrangement terms, which depend directly on various
local quasiparticle densities. They are the vector, scalar, and
tensor densities, respectively,

ρv(r) = 1

4πr2

∑
a

ĵ 2
a

{[
G2

Va
(r) + F 2

Va
(r)

]
(1 − fa)

+ [
G2

Ua
(r) + F 2

Ua
(r)

]
fa

}
, (13a)

ρs(r) = 1

4πr2

∑
a

ĵ 2
a

{[
G2

Va
(r) − F 2

Va
(r)

]
(1 − fa)

+ [
G2

Ua
(r) − F 2

Ua
(r)

]
fa

}
, (13b)

ρt (r) = 1

4πr2

∑
a

ĵ 2
a

{
2GVa

(r)FVa
(r)(1 − fa)

+ 2GUa
(r)FUa

(r)fa

}
. (13c)

Notice that, at the limit T = 0 where fa = 0, Eqs. (13a)–(13c)
reduce to the usual RH(F)B expressions at zero temperature,
e.g., given in Refs. [39,45]. The nonlocal self-energies XG(F )

and YG(F ) come from the Fock (exchange) terms,

X
(φ)
Ga

(r,r ′) =
∑

b

T φ
abĵ

2
b

[
(gφFVb

)rR
XG

ab (mφ ; r,r ′)(gφGVb
)r ′(1 − fb) + (gφFUb

)rR
XG

ab (mφ ; r,r ′)(gφGUb
)r ′fb

]
, (14a)

X
(φ)
Fa

(r,r ′) =
∑

b

T φ
abĵ

2
b

[
(gφFVb

)rR
XF

ab (mφ ; r,r ′)(gφFVb
)r ′(1 − fb) + (gφFUb

)rR
XF

ab (mφ ; r,r ′)(gφFUb
)r ′fb

]
, (14b)

Y
(φ)
Ga

(r,r ′) =
∑

b

T φ
abĵ

2
b

[
(gφGVb

)rR
YG

ab (mφ ; r,r ′)(gφGVb
)r ′(1 − fb) + (gφGUb

)rR
YG

ab (mφ ; r,r ′)(gφGUb
)r ′fb

]
, (14c)

Y
(φ)
Fa

(r,r ′) =
∑

b

T φ
abĵ

2
b

[
(gφGVb

)rR
YF

ab (mφ ; r,r ′)(gφFVb
)r ′(1 − fb) + (gφGUb

)rR
YF

ab (mφ ; r,r ′)(gφFUb
)r ′fb

]
. (14d)

In these expressions, T φ
ab denotes the isospin factors: δab for

isoscalar channels and 2 − δab for isovector channels, ĵ 2
b =

2jb + 1 is the degeneracy number of the corresponding energy
level, gφ represents the coupling constants, and Rab denotes
the multipole expansions of meson propagators. Equation (14)
is a generalization at finite temperature of the expressions given
in Ref. [45].

Next we consider the pairing field �(r,r ′) of Eq. (11),

�a(r,r ′) = −1

2

∑
b

V
pp
ab (r,r ′)κb(r,r ′), (15)

with the pairing interaction V pp and the pairing tensor κ . If we
take a finite-range pairing force, the pairing tensor κ will read
as

κa(r,r ′) = ĵ 2
a {[GVa

(r)GUa
(r ′) + FVa

(r)FUa
(r ′)]

+ [GUa
(r)GVa

(r ′) + FUa
(r)FVa

(r ′)]}(1 − 2fa).

(16)

Notice that the temperature dependence of the solution
(Eα; ψUα

,ψVα
) of the FT-RHFB Eq. (11) comes implicitly

through the quasiparticle densities ρv,s,t , nonlocal potentials
X(Y ), and pairing tensor κ .

For practical evaluation of the pairing correlations, an
average pairing gap is introduced and defined as the ratio of
the pairing energy over the pairing tensor,

� = Tr(�κ)

Trκ
. (17)

This quantity is calculated for neutrons (�n) and protons (�p)
separately and is discussed in detail in the next section.

The total FT-RHFB energy E of the system is calculated
with the microscopic two-body center-of-mass correction [48].
The entropy S of the system can be evaluated from

S(T ) = −
∑

α

[fα ln fα + (1 − fα) ln(1 − fα)], (18)

and the specific heat is defined by

Cv(T ) = T
∂S(T )

∂T

∣∣∣∣
N

. (19)

They correspond to the first and second derivatives of the free
energy F , respectively.
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The integrodifferential FT-RHFB Eq. (11) is solved by
using a DWS basis [32] with a radial cutoff R = 26 fm.
The numbers of positive and negative energy states in the
basis expansion for each s.p. angular momentum (l,j ) are
chosen to be 36 and 12, respectively. We have verified that this
truncation scheme provides sufficient numerical accuracy for
the description of weakly bound nuclei (Pb isotopes).

III. RESULTS AND DISCUSSION

In this section, we compare the predictions based on several
models which are determined by the model Lagrangian as well
as the pairing interaction. The latter interaction is either a finite-
range Gogny D1S interaction [41] or a density-dependent
contact interaction (DDCI) of the form [42]:

V (r,r ′) = V0
1

2
(1 − Pσ )

(
1 − ρ(r)

ρ0

)
δ(r − r ′). (20)

Notice that the DDCI requires a regularization scheme. We
have considered in this study a simple cutoff scheme, defined
to be 100 MeV in quasiparticle space, and the strength V0 is
adjusted to reproduce the same average pairing gap as that
obtained with the Gogny D1S interaction. These values of
V0 will be given with the results hereafter. The D1S pairing
interaction depends slightly on the mass: A general factor g
is therefore introduced for its strength, as in Refs. [49,50].
We consider six different model Lagrangians, which are
given in Table I. Some of the bulk properties of nuclear
matter determined by these Lagrangians are also shown. They
are generally compatible with the expected gross properties
of finite nuclei, e.g., the binding energy E/A � 16 MeV,
the saturation density ρ0 � 0.15 fm−3, the incompressibility
modulus K ∈ [220,280] MeV, and the symmetry energy J ∈
[32,39] MeV.

In the following discussion, the persistence and re-entrance
of the pairing phenomenon will be discussed and analyzed. Let
us briefly recall the unifying mechanism which is at play in
these various phenomena, recently discussed in Ref. [14]. Due
to thermal excitations, s.p. states above the Fermi energy can
be slightly populated while states below the Fermi energy can
be partially depleted. This occurs if the involved new states are
not too far in energy from the last occupied state, but it should
also be not too close, otherwise these states would already
participate to pairing correlations at zero temperature. The
typical shell gap should be around 2 MeV. The participation
of these states at finite temperature gives rise either to the
persistence of pairing correlations slightly above the usual
critical temperature for nuclei which are already superfluid at
zero temperature or to pairing re-entrance at finite temperature
for nuclei which have weak or no pairing at zero temperature.
The best nuclei, in which such a phenomenon is expected,
are those close to the drip line, as well as those located at a
subshell closure as shown in this section.

In the following subsections, we evaluate the influence of
the model on the pairing properties in hot finite nuclei, taking
124Sn as an example for testing pairing correlations. The ratio
of the critical temperature over the average pairing gap at
zero temperature Tc/�n(0) is also studied as a function of the
model, varying either the Lagrangian or the type of pairing

interaction. Finally, a more systematic study of the critical
temperature is performed on a set of semimagic nuclei.

A. Study of the ratio Tc/�n(0)

Since pairing correlations are active only around the Fermi
level, the ratio Tc/�n(0) is expected to be modified by the
effective mass which influences the s.p. level spacing to a large
extent. Notice that here the effective mass corresponds to the
nonrelativistic one M∗

NR instead of the quantity M∗
S = M + �S

that is named as the Dirac mass [40,55]. It can indeed be shown
that, in the weak-coupling limit of the BCS approximation, the
average pairing gap at the Fermi surface �F can be expressed
as [56]

�F ≈ 2εF exp[2/(NF vpair)], (21)

where εF is the Fermi energy, NF = m∗
F kF /π2 is the average

density of state in uniform matter at the Fermi energy, kF

denotes the Fermi momentum, and vpair is a constant pairing
interaction. It is clear from Eq. (21) that the pairing gap
�F is quite sensitive to the effective mass at the Fermi
energy εF . Equation (21) is obtained in infinite matter and
it provides only a qualitative understanding of the relation
between the pairing force strength and the effective mass.
In the following, we present a quantitatively precise analysis
of the correlation between the critical temperature and the
nonrelativistic effective mass in finite nuclei.

Figure 1(a) displays the evolution of the neutron pairing gap
as a function of temperature for 124Sn, a good candidate for
studying pairing correlations. We compare two Lagrangians,
PKO2 and DD-ME2 (see Table I), both with two kinds of
pairing interactions: the finite-range Gogny D1S force [41] and
the contact force DDCI [42]. The two Lagrangians PKO2 and
DD-ME2 mostly differ by their nonrelativistic effective mass
M∗

NR (see Table I), and it is observed that the average pairing
gap at zero temperature �n scales with M∗

NR, as expected from

FIG. 1. (Color online) The neutron pairing gaps in 124Sn as a
function of temperature, calculated with PKO2 (black) and DD-ME2
(blue) corresponding to different M∗

NR. In the pairing channel, we
compare finite-range D1S (filled circles) and contact DDCI (empty
circles) forces. The analytical results (dashed lines) are also shown.
Notice that here we took the factor g = 1 for the Gogny D1S force,
and for the DDCI pairing, we have taken the following values for V0

(in MeVfm−3): 335 (PKO2) and 342 (DD-ME2) for the RH(F)B and
BCS calculations. For the DDCIx force used in BCS, we took for V0

(in MeVfm−3): 526 (PKO2) and 539 (DD-ME2).
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TABLE I. Bulk properties of symmetric nuclear matter at the saturation point: density ρ0 (fm−3), binding energy EB/A (MeV), compression
modulus K (MeV), symmetry energy J (MeV), and nonrelativistic effective masses M∗

NR (M) predicted by selected RHF and RH models. The
nonrelativistic effective masses in neutron matter are also listed.

Model Interaction Ref. Symmetric matter Neutron matter

ρ0 EB/A K J M∗
NR M∗

NR(ν) M∗
NR(π )

PKA1 [43] 0.160 −15.83 229.96 36.02 0.68 0.68 0.70
RHF PKO1 [40] 0.152 −16.00 250.28 34.37 0.75 0.73 0.76

PKO2 [51] 0.151 −16.03 249.53 32.49 0.76 0.75 0.77
DD-ME2 [52] 0.152 −16.14 250.97 32.31 0.65 0.64 0.70

RH PK1r [53] 0.148 −16.27 283.68 37.83 0.68 0.64 0.72
NL3∗ [54] 0.150 −16.30 258.56 38.70 0.67 0.63 0.72

the weak-coupling expression (21). Comparing the different
types of pairing interaction (finite or zero range) for the
same Lagrangian, it is observed in Fig. 1 that the vanishing
of pairing correlations at finite temperature slightly depends
on the type of pairing force, namely with the zero-range
pairing interaction, the critical temperature Tc is slightly lower
than with the finite-range interaction. From Fig. 1, the ratio
Tc/�n(0) is obtained as 0.60 for D1S and 0.57 for DDCI. In
Ref. [57], it was shown that the dependence of the pairing
gap on the state around the Fermi energy qualitatively differs
for contact and finite-range interactions. In addition, with a
finite-range interaction, the pairing gap and the pairing tensor
have nonlocal components which cannot be simply absorbed in
the DDCI. The slight increase of the critical temperature with
the D1S interaction is therefore an effect of the finite-range
nature of the interaction, dispersing the pairing effects among
more s.p. states. For comparison, and taking Tc = 0.60�n(0)
(finite-range pairing force) and Tc = 0.57�n(0) (zero-range
pairing forces), the analytical relation [58],

�n(T ) = �n(0)

[
1 −

(
T

Tc

)m]1/2

�(T − Tc), (22)

where m = 3.32, is plotted for the DD-ME2 model [dashed
lines in Fig. 1(a)]. There is almost no difference between the
analytical model, i.e., Eq. (22), and the numerical calculations
for stable nuclei like 124Sn.

Figure 1(b) shows the neutron pairing gap calculated with
the RHF theory plus BCS pairing at finite temperature (FT-
RHF-BCS), using the same DDCI interaction as in the FT-
RHFB calculations shown in Fig. 1(a) and the modified one
(DDCIx) with enhanced pairing strength parameter V0 (see
caption for more details). It is found that, with the same DDCI
pairing interaction, the neutron pairing gaps determined by
the BCS method are reduced to about half of the Bogoliubov
results. Such a distinct difference is due to the fact that the
off-diagonal couplings, which account for about half of the
pairing correlations, are absent in the BCS pairing. As a result,
the strength parameter V0 in BCS calculations is usually larger
than in HFB, see, for instance, Ref. [59]. We have therefore
readjusted V0 in the RHF-BCS calculation at zero temperature
to obtain the same pairing gap as the RHFB prediction, leading
to the DDCIx interaction in Fig. 1(b). Applying such a simple
modification of the parameter V0 in 124Sn, the temperature
dependence of the pairing gap predicted by the FT-RHFB

and FT-RHF-BCS frameworks are almost undistinguishable.
However, this is not always true and as we will see that the
above simple renormalization of the pairing strength will not
work towards the drip line where the coupling to continuum
states becomes more and more important.

The critical temperatures is also expected to depend
on the nonrelativistic effective mass, see, for instance,
Refs. [22,25,60]. The dependence of the ratio Tc/�n(0) on
the effective mass is, however, not very well known. In Fig. 2,
we plot the ratio Tc/�n(0) as a function of M∗

NR in 124Sn,
and we compare the predictions of two pairing interactions
(finite versus zero range). The effective mass M∗

NR is obtained
with 14 CDFs (the 6 CDFs given in Table I completed
with 8 other CDFs: PKO3 [51], PKDD [53], DD-ME1 [61],
DD − MEδ [62], TW99 [63], PK1 [53], NL3 [64], and
TM1 [65]). It is found that the ratio Tc/�n(0) does not depend
much on M∗

NR. Similar analyses were also carried out to check
the relations with the incompressibility modulus K and the
symmetry energy J , but no evidence of correlation is found.
The small fluctuations observed in Fig. 2 are therefore mostly
shell effects. In conclusion, the critical temperature in stable
nuclei scales very well with the average pairing gap at zero
temperature, the shell effects contributing to a dispersion of
less than 4%.

In order to check whether the ratio Tc/�n(0) is still
constant for larger pairing strength, we have artificially varied
the pairing interaction strength and correlated the critical

FIG. 2. (Color online) The ratios Tc/�n(0) in 124Sn as a function
of the nonrelativistic effective mass M∗

NR, calculated using the FT-
RH(F)B theory with 14 parameter sets. In the pairing channel the
finite-range D1S and the contact force DDCI are employed.
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FIG. 3. (Color online) The critical temperature Tc (left axes, blue
circles) and the occupation number of continuum states Ncon (right
axes, black squares) at zero temperature in 124Sn as a function of the
neutron pairing gap calculated from PKO1 FT-RHFB with Gogny
D1S (a) and DDCI (b) pairing forces. The dashed lines correspond
to the relation Tc = 0.60(0.57)�n(0). The strength parameter of the
pairing interaction is varied to obtain different values of the pairing
gap at zero temperature.

temperature Tc with the neutron pairing gap �n(0) at zero
temperature. Figures 3(a) and 3(b), respectively, show the
results calculated with the pairing interactions D1S and DDCI
using the PKO1 Lagrangian, where the average pairing gap
�n(0) goes from 100 keV to about 3.5 MeV. At the low
pairing gap, the ratios Tc/�n(0) are consistent with the analytic
ones (dashed lines), as expected, until small deviations emerge
beyond �n(0) ∼ 2.5 MeV, where the continuum contributions
become sizable (filled squares). These results are consistent
with previous findings [24] based on a separable version of
the Gogny D1S pairing force [66] and RH Lagrangian with
PC-PK1 point coupling [67]. A simple calculation in infinite
matter with a contact pairing interaction gives a correction to
the ratio [68]

Tc

�(0)
≈ 0.57

[
1 − 1

4ω2
D

�(0)2

]
, (23)

where ωD represents the pairing window. According to
Eq. (23), the next-to-leading order correction has a negative
sign, at variance with our results in 124Sn, see Fig. 3. Notice
that for the DDCI pairing interaction, the pairing window is
about 100 MeV. The correction to the linear approximation
of Eq. (23) is therefore very small: For the maximal pairing
gap considered in this work [�(0) ≈ 4.0 MeV], the correction
represents no more than a few percentages of the linear leading
term.

In Fig. 3, the increase of the critical temperature for
�n(0) > 2.0 MeV reveals an enhancement of the thermal
pairing correlations, as well as an the important role played by
the continuum states. We remind that the next-to-the-leading
order correction appearing in the simple expression in uniform
matter (23) is negative. However, Fig. 3 shows a continuous
enhanced continuum effect with respect to the pairing gap
�n(0). To better stress the increasing contribution of the
continuum states and their role in the pairing correlations, we
have introduced the following two quantities: the cumulative

FIG. 4. Contributions, in 124Sn, of the continuum states to the
pairing number Ñcon (a) and to the neutron number Ncon (b),
normalized to their value at zero temperature, as a function of the
temperature T/0.6�(0). The results correspond to PKO1 Lagrangian
and D1S pairing interaction.

occupation number of the neutron continuum states Ncon,

Ncon =
∑

a,εa�0

∫
4πr2ρa(r)dr, (24)

and the cumulative pairing-occupation number of the neutron
continuum states Ñcon,

Ñcon =
∑

a,εa�0

∫
4πr2κa(r)dr. (25)

Here the continuum states a are determined in the T = 0
canonical basis, for simplicity [25,47], with s.p. energy εa

above the continuum threshold. The increasing role of the
continuum states at finite temperature is illustrated in Fig. 4
where the contributions to the pairing number Ñcon [Fig. 4(a)]
and to the neutron number Ncon [Fig. 4(b)] from the continuum
states in 124Sn, normalized to their values at zero temperature,
are shown. Results with a weak pairing [�n(0) = 1.3 MeV]
and with a stronger pairing [�n(0) = 3.0 MeV] are compared.
Even if in the latter case the pairing is slightly larger than the
expected value in finite nuclei, its inclusion in our analysis
helps to understand the role of the continuum states. For
the weak-pairing case, the continuum effects are very small,
see Fig. 3, and both Ncon and Ñcon drop to zero at the
expected value Tc = 0.6�(0), see Fig. 4. For the strong-pairing
case, a clear correlation is observed in Fig. 4 between the
increase of the occupation of the continuum states at finite
temperature Ncon [see Fig. 4(b)] and the persistence of the
pairing numbers Ñcon [see Fig. 4(a)]. The persistence of
pairing correlations below the critical temperature modifies
also the critical temperature, and Fig. 4(a) shows a larger
value of the quantity T/0.6�(0) where pairing correlations
in the continuum space drops to zero in the case of strong
pairing compared to the weak one. Coming back to Fig. 3,
we now understand better the correlation between the slight
deviations of Tc from the analytical behaviors and enhanced
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continuum effects for �(0) � 2.5 MeV. Since the presence of
resonance states in the continuum is a typical feature of finite
systems, the increase observed in Fig. 3, which differs from the
prediction of Eq. (23), is then expected only in finite systems.
Anticipating the results shown in the next figures, a similar
enhancement of pairing correlations in other nuclei will also
be observed, revealing here also the role of the resonant states.

B. Evolution of the critical temperature in isotopic
and isotonic chains

In this subsection, we perform a systematic analysis of
the evolution of the pairing gaps and critical temperature
along isotopic and isotonic chains of semimagic nuclei.
Through this extensive analysis, we have access to various s.p.
configurations going from stable nuclei towards weakly bound
drip-line nuclei, and we probe the pairing correlations inside
various major shells. We consider three models, PKA1, PKO1
(RHF), and DD-ME2 (RH), which have different symmetry
energies and nonrelativistic effective masses, see Table I.
Anticipating our results, we will see that these models lead
to rather different predictions for the pairing gap �.

Our results are shown for PKA1 (Fig. 5), PKO1 (Fig. 6),
and DD-ME2 (Fig. 7) models, with the pairing channel
described by the D1S interaction. In Figs. 5–7, we have rep-
resented isotopic (Ni, Sn, and Pb) and isotonic (N = 50, 82,
and 126) average pairing gap evolution as a function of N
(for isotopes) and Z (for isotones). The isotopic and isotonic
chains are bounded by the drip lines predicted by each of
the considered models and determined by the two-nucleon
separation energy. These drip lines are consistent, within a few
units of uncertainty, with predictions given by other models
obtained with Skyrme forces [69,70], Gogny forces [71,72],
and RH Lagrangians [50,73]. We have calculated the average
pairing gap at zero temperature (filled black circles) defined
from Eq. (17) and compared the calculated critical temperature
(filled blue circles) with the approximate relation, i.e., 0.6�(0)
(green curves). The arch structure of the results shown in
Figs. 5–7 reflect the presence of magic numbers where pairing
correlations completely vanish.

The PKA1 model (Fig. 5) is the most complete RHF
version of the CDF theory. It contains the ρ-N Lorentz
tensor coupling which is known to enhance the spin-orbit
splitting [43,74,75]: in many cases the subshell structure is
found to be closer to the experimental data than those predicted
by other models without the ρ-N Lorentz tensor coupling,
such as the RH approaches shown in Fig. 7. These subshell
structures are clearly visible in Figs. 5–7 since they induce
a partial quenching of the pairing gap for the associated
submagic numbers. Going towards the drip lines, a reduction
of the pairing gaps is often observed, revealing the presence
of closed-shell nuclei at or near the drip lines. For the neutron
drip line, it is the case of Sn and Pb isotopes, and for the proton
drip line, it is observed for N = 50.

We first discuss the pairing properties of finite nuclei at
zero temperature, which are influenced by the underlying
s.p. structure around the Fermi energy. For the Ni isotopes,
a subshell closure at N = 40 is predicted with PKA1 and
PKO1 Lagrangians, as expected from experiments [76], while

FIG. 5. (Color online) Comparison of �(0) (black circles),
0.60�(0) (green curves), and Tc (blue circles) in the even-even Ni,
Sn, Pb isotopes (left panels) and N = 50, 82, 126 isotones (right
panels), calculated in FT-RHFB with PKA1 and the Gogny pairing
interaction D1S.

DD-ME2 shows a more pronounced shell closure. For neutron-
rich Ni isotopes, PKA1 indicates another subshell closure
at N = 62 which is not seen with PKO1 or DD-ME2. It is,
however, beyond the present experimental limits. For the Sn
isotopes, a decrease of the pairing gap induced by subshell
closure is observed at N = 64 with PKO1 and DD-ME2
Lagrangians but not with PKA1. For Pb, a small decrease of the
pairing gap is observed at N = 138 with PKA1 and at N = 146
with PKO1 and DD-ME2. On the isotonic side, we observe a
subshell closure at Z = 40 for N = 50 with PKA1 Lagrangian
but not with PKO1 or DD-ME2. For N = 82 isotones, PKA1
predicts a well-marked shell closure at Z = 40 and a subshell
closure at Z = 34 and Z = 64, while at Z = 58 PKO1 predicts
a shell closure and DD-ME2 only a subshell closure. Finally,
for N = 126, PKO1 and DD-ME2 indicate a reduction of the
pairing gap at Z = 92, which is not confirmed by experimental
data [77] and is not present with PKA1 Lagrangian. We will see
below that these structures can have an impact on the thermal
properties.
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FIG. 6. (Color online) The same as in Fig. 5 but calculated in the
FT-RHFB theory with the effective interaction PKO1.

Turning now to the thermal properties of these isotopes
and isotones, the comparison of the calculated critical tem-
perature Tc and the approximate relation 0.60�(0) shown
in Figs. 5–7 exhibits some interesting features. The critical
temperature Tc and the approximate relation 0.60�(0) are
identical in most cases with some exceptions. In heavy nuclei
(Pb and N = 126), there are no strong deviations between
these two quantities, but they are, however, more marked in
lighter nuclei. Moreover, the cases where the exact and the
approximate values of Tc differ are correlated with either
the presence of a subshell closure or with the proximity of
the drip lines. In the case of subshell closure, the effect of
the temperature is to “wash out” the decrease of the pairing
correlations. This can be understood as the consequence of the
thermal occupation probabilities which overcome small shell
gaps. Close to the neutron drip lines, the more pronounced
effects are observed in Ni and Sn isotopes. This is also due to
the thermal occupation of close-by resonant states as discussed
in Refs. [14,78]. In the nonrelativistic Skyrme Hartree-Fock
plus BCS (SHF-BCS) approach, an enhancement of the critical
temperature was found in 140Sn using SkT6 [22]. We do not
confirm this enhancement in 140Sn with the models used in

FIG. 7. (Color online) The same as in Fig. 5 but calculated in the
FT-RHB theory with the effective interaction DD-ME2.

this work. However, it is interesting to notice that the origin of
such an enhancement found in Ref. [22] is also related to the
existence of a subshell closure.

Let us finish this subsection with some general remarks
concerning the nuclei which do not manifest any enhancement
of the critical temperature. For the Pb isotopes, as shown in
Figs. 5–7, we have not observed any marked enhancement of
the critical temperature near the drip line as in the case of
Sn isotopes. Comparing Pb and Sn, since the pairing gap for
these isotopes is decreasing near the drip line, one could have
expected to observe an enhancement of the critical temperature
in Pb as it is observed in Sn. For instance, the last occupied state
in the drip-line nucleus 266Pb is indeed found to be well bound
(ε3d3/2 < −2.0 MeV), and the lowest s.p. resonance ε2h1/2 is
found to be above 1.5 MeV. There is therefore a rather strong
gap in the neutron-rich Pb isotopes (N = 184) which prevents
the large coupling to the continuum. For the isotonic chains,
we do not find any pairing persistence phenomenon around
the drip line. This can be related to the well-developed shell
closures at Z = 50, 82, and 92 for proton-rich nuclei, which
quench the coupling to continuum states, as it would have been
expected in such exotic nuclei. In addition, the coupling to the
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continuum is weaker for protons since the Coulomb barrier
tends to localize the proton density in the nuclear interior [79].
For these reasons, the persistence phenomenon is strongly
quenched in the proton channel.

C. Pairing persistence in 68Ni and 174Sn

In this subsection, we analyze in more detail the temperature
dependence of the pairing gap for two representative nuclei,
68Ni and 174Sn. On the one hand, 68Ni is an isotope which is
slightly more neutron rich than the five stable isotopes 58−64Ni.
As shown in the previous subsection, 68Ni is considered a
subshell isotope [50,80,81], and, as a consequence, the pairing
gap at zero temperature is either reduced or strongly quenched
depending on the model, see Figs. 5–7. On the other hand,
174Sn is a very neutron-rich isotope at or close to the neutron
drip line, where the continuum effects are expected to be
remarkable [14,15,57,82]. However, since 174Sn is close to the
potentially doubly magic 176Sn (Z = 50, N = 126), a gap is
expected to be present in the s.p. structure between bound and
resonant states. These two nuclei are therefore representative
of quantum systems for which pairing at zero temperature is
weakened by the presence of a gap above the Fermi energy and
where a finite amount of temperature allows us to overcome
the gap and provokes an enhancement of pairing correlations,
giving rise to pairing persistence.

We first show the temperature dependence of the pairing
gap for 68Ni in Fig. 8(a), calculated with the FT-RHFB model
where we consider the PKO1 Lagrangian in the mean-field
channel and either Gogny D1S or DDCI interaction in the
pairing channel. The analytical model is also shown for
reference. It is found that the predictions for �n(T ) do
not practically depend on the pairing force. The critical
temperature predicted by the FT-RHFB approach is increased
with respect to the reference analytical model: the FT-RHFB
pairing gaps vanish around T = 0.90 MeV, which is 0.25 MeV
higher than the expected value (0.65 MeV). The pairing gap
predicted by FT-RHF-BCS is shown in Fig. 8(b). Surprisingly,
the pairing gap is zero if the same DDCI pairing interaction

FIG. 8. (Color online) The neutron pairing gaps in 68Ni as a
function of temperature, calculated by FT-RHFB with Gogny D1S and
DDCI pairing forces, and by FT-RHF-BCS with DDCI pairing force.
To evaluate the persistence provoked by the subshell, the analytical
results are also shown. The pairing strength V0 (in MeV fm−3) is fixed
to be 326 (DDCI) and 537 (DDCIx).

is used. An increase of the pairing strength V0 is therefore
necessary. It is also interesting to observe that the DDCIx
pairing interaction, where V0 is increased to match with the
zero temperature pairing gap obtained with FT-RHFB case,
reproduces almost exactly the temperature dependence of
the FT-RHFB case and predicts as well an increase of the
critical temperature with respect to the analytical model. The
nucleus 68Ni is a typical example of pairing persistence at
finite temperature in closed subshell (N = 40) nuclei. We
hereafter name this phenomenon type I pairing persistence.
Other examples of similar behavior are the following: 90Ni
(PKA1), 114Sn (PKO1, DD-ME2), 220Pb (PKA1), and 230Pb
(DD-ME2) for the neutron pairing gap and 90Zr (PKA1, PKO1
and DD-ME2), 140Ce (DD-ME2), and 146,190Gd (PKA1) for the
proton pairing gap.

We turn now to the analysis of the results in 174Sn. As
stated above, this is a nucleus where pairing correlations are
slightly weakened due to the proximity of shell closure. A
small amount of temperature is expected to reorganize the
level occupancy around the Fermi energy, opening more space
below the Fermi energy and producing a nonzero occupancy
of the first levels above the Fermi energy which are in the
continuum. Most of the occupied states in the continuum are
resonance states, but it is interesting to notice that a small
number of them are also nonresonant states [83]. Without
the participation of these nonresonant states, the asymptotic
behavior of the density would be ill defined and present an
unexpected gas component, as is also observed in the BCS
theory [57]. The Bogoliubov transformation couples all states
in a sub-(l,j ) space and a truncation among these states breaks
the unitarity of this transformation. To avoid the presence of
nonphysical gas component in the density profile, it is therefore
important to couple all states in the continuum within the
Bogoliubov transformation.

Figure 9(a) displays the evolution of the neutron pairing
gap as a function of temperature in 174Sn with different
Lagrangians and pairing forces. The results are very weakly
affected by the choice of the pairing interaction. The effect
induced by the choice of Lagrangian is also very small.

FIG. 9. (Color online) The neutron pairing gaps in 174Sn as a
function of temperature, calculated with PKO1 and NL3∗, using
Gogny D1S and DDCI pairing forces. The results of the analytical
model are also shown. The pairing strength V0 (in MeV fm−3) is 333
(DDCI with PKO1), 317 (DDCI with NL3∗), and 596 (DDCIx with
the PKO1 and BCS frameworks).
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We find a systematic increase of the critical temperature
(Tc ≈ 0.65–0.70 MeV) with respect to that expected from
the analytical relation (Tc ≈ 0.47 MeV), independently of the
considered model. In addition, for temperature T > 0.2 MeV,
an increase of the pairing gap is observed, which can also be
related to the thermally induced contribution of the continuum
states. We compare these results to the ones obtained with
the FT-RHF-BCS framework shown in Fig. 9(b). As already
discussed, the DDCI interaction predicts a reduced pairing
gap in BCS compared to RHFB. On the other side, the DDCIx
interaction where the pairing strength is increased to match
the T = 0 predictions of RHFB leads to an overestimation
of the critical temperature compared to the FT-RHFB case.
It shows that, in the case of the drip-line nucleus, the
RHFB calculation cannot be simply reproduced by a BCS
calculation where the pairing strength is just increased. Since
the coupling to the continuum plays a dominant role in the
persistence phenomenon in 174Sn, we hereafter call it a type
II phenomenon. From our results, it is also expected to occur
in Ni and Sn neutron-rich nuclei, Ni (N > 54 ∼ 60) and Sn
(N > 100).

D. Entropy and specific heat

We now focus on the entropy S and specific heat Cv ,
which are the first and second derivatives of the free energy F
with respect to the temperature, and thus sensitive to thermal
changes of the ground state, see, for instance, Ref. [84] and
Refs. therein. To test the sensitivity of these quantities to
the choice of different models, we select two Sn isotopes,
120Sn and 160Sn. The former is a good example of a stable
well-paired nucleus, while the latter is yet far from actual
nuclear experiments but represents an extreme case with large
isospin asymmetry.

In Fig. 10 are shown the entropy S and the specific
heat Cv as functions of the temperature calculated by the
RHF functionals PKO1 and PKO2, the RH ones with the
nonlinear self-couplings PK1r and NL3∗, and the RH one with
density-dependent meson-nucleon couplings DD-ME2. In the
pairing channel, the value of the scaling factor g (see the first

FIG. 10. (Color online) Entropy and specific heat in 120Sn as a
function of temperature, calculated using the FT-RH(F)B and FT-
RH(F) theories.

paragraph of Sec. III), is slightly modified to give identical
pairing gaps at zero temperature for the different models. In
Fig. 10(a), the entropy calculated with the pairing correlations
[labeled FT-RH(F)B] is compared to that neglecting the pairing
correlations [labeled FT-RH(F)]. At low temperature, if the
pairing effects are ignored, the entropy is found to be largely
model dependent, i.e., the model with smaller nonrelativistic
effective mass (see Table I), which leads to larger s.p. level
spacing on the average, presents smaller entropy. As the
temperature increases, and also as the pairing correlations are
switched on, the entropy becomes less model dependent.

In fact, at low temperature or without pairing correlations,
the entropy is largely determined by the few states around
the Fermi energy, and the number of the involved states is
essentially determined by the detailed s.p. spectrum which
depends on the models, therefore leading to model-dependent
entropy. Both temperature and pairing correlations can dis-
perse the particle over the states beyond the Fermi level. As
the temperature increases, and/or as the pairing correlations
are enhanced, more s.p. states will get involved to contribute
to the entropy, and the average properties such as the density
of states will become dominant, instead of a few states as in the
FT-RH(F) cases. Compared to distinctly different s.p. spectra
around the Fermi surface, the dispersions of the nonrelativistic
effective masses (see Table I) between the models are less
remarkable. However, in Fig. 10(a) it is clearly shown that
the FT-RH(F)B results are grouped by the values of the
effective masses when T � 1 MeV, which correspond to
different average densities of states. As expected, the effect
of the pairing correlations is clearly visible below the critical
temperature (Tc ≈ 0.8 MeV), inducing a strong reduction of
the entropy [see Fig. 10(a)] and singular behaviors of the
specific heat around the critical temperature as shown in
Fig. 10(b). Just above the critical temperature, we can notice
that the specific heat is not linear in T , as expected from the
Fermi gas model [85,86], and the linear dependence seems to
be found at slightly larger temperature (T > 1.5 MeV). The
nonlinearity of the specific heat around Tc might be related to
shell effects.

The results thus clearly show that the pairing correlations
contribute to the S-shaped behavior of the specific heat,
as has already been inferred from the analysis of thermal
excited nuclei in laboratory experiments [8,10,86]. A realistic
description of the smooth S-shaped behavior in finite nuclei
requires a more elaborated modeling, including, for instance,
particle number projection [7,87–89]. It is, however, shown
in Ref. [29] that the smooth S-shaped behavior may be
even washed out in some rare-earth nuclei. The results
presented in Fig. 10 should not be compared directly to the
semiexperimental data.

The situation for the neutron-rich nucleus 160Sn is more
complex, as shown in Fig. 11. The model dependence of
entropy at low temperature is reduced compared to the
case of 120Sn. Only PKO2 predictions differ from the other
models. The predictions for the critical temperature, associated
to the discontinuity in the specific heat of Fig. 11, vary
among the models to a much larger extent than what was
found in 120Sn. 160Sn is located in the region where pairing
persistence is expected to appear, see Figs. 5–7. Since this
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FIG. 11. (Color online) The same as in Fig. 10 but for 160Sn.

phenomenon is strongly related to the position of resonance
states in the continuum, we expect to observe deviations among
models predicting different positions of these states. This
model dependence therefore reveals our lack of knowledge
in extrapolating Lagrangians which have been adjusted for
less exotic nuclei.

IV. SUMMARY and CONCLUSION

In this work, we have developed, as far as we know, the
first FT-RHFB theory for spherical nuclei. The self-consistent
FT-RHFB equations are solved by using a DWS basis which
provides an appropriate asymptotic behavior for the continuum
states. We have performed systematic FT-RHFB calculations
for both stable and weakly bound nuclei and discussed their
thermal properties. The influence of the pairing interaction on
the pairing phase transition is evaluated. It is found that the
critical temperature for a pairing transition generally follows
the rule Tc = 0.60�(0) with a finite-range pairing force and
Tc = 0.57�(0) with a contact pairing force. The finite- or zero-
range nature of the pairing force, while generating different
state-dependence pairing gaps, causes only small differences
in our results. We have described the pairing persistence in
two kinds of situations: nuclei at subshell closure (type I) and
nuclei strongly coupled to continuum states which are close to
the drip line (type II). We have observed that, while a refitting
of the pairing strength could match the FT-RHF-BCS with the
FT-RHFB predictions for the pairing gap in case I, it is no
longer true in case II. This is due to the participation of the

continuum states in the second case which involve coupling of
a different nature.

We have also analyzed the influence of the interaction on
the thermal response. The results show clearly that the pairing
correlations contribute to the S-shaped behavior of the specific
heat curve and help to wash out the model dependence. For
stable nuclei the model deviations, to some extent, can be
traced back to the effective mass, since the level structure only
weakly depends on the choice of the CDF. The situation for
exotic nuclei is more complex since it is related to our lack of
knowledge in very exotic nuclei, and the pairing persistence
would have large effects on their thermal property.

In conclusion, we have illustrated the richness and com-
plexity of pairing correlations at finite temperature and in
finite systems within the FT-RHFB calculation. The discussion
of correlations beyond mean field, induced, for instance, by
particle number projection, is not addressed in this work. It
is, however, expected that the particle number projection will
contribute to an increase of the pairing correlations in the
case where they are weak [29], like in the pairing persistence
phenomenon discussed in this paper. In future work, a more
quantitative calculation will be necessary to estimate the
strength these additional correlations and how they modify the
results presented in this work. Another interesting perspective
which is suggested by this work is the possibility that similar
phenomena can be observed in other domains of physics.
For instance, it was studied whether cold atoms in a double
potential could demonstrate pairing persistence as well [90].
Finally, the application of this formalism for the prediction
of temperature evolution of pairing properties in the crust of
neutron stars [11,91,92] will be performed in the near future.
There, the thermal modification of pairing correlations could
have a large impact on the thermal relaxation of the crust [12]
and could be observed during the quiescent period of low mass
x-ray transients.
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C 88, 034314 (2013).
[16] A. Sedrakian, T. Alm, and U. Lombardo, Phys. Rev. C 55, R582

(1997).
[17] N. Q. Hung and N. D. Dang, Phys. Rev. C 84, 054324 (2011).
[18] M. Sano and S. Yamasaki, Prog. Theor. Phys. 29, 397 (1963).
[19] A. L. Goodman, Nucl. Phys. A 352, 30 (1981).
[20] A. L. Goodman, Phys. Rev. C 34, 1942 (1986).
[21] J. L. Egido and P. Ring, J. Phys. G: Nucl. Part. Phys. 19, 1

(1993).
[22] C. Reiß, M. Bender, and P.-G. Reinhard, Eur. Phys. J. A 6, 157

(1999).
[23] E. Khan, N. Van Giai, and N. Sandulescu, Nucl. Phys. A 789,

94 (2007).
[24] Y. F. Niu, Z. M. Niu, N. Paar, D. Vretenar, G. H. Wang, J. S.

Bai, and J. Meng, Phys. Rev. C 88, 034308 (2013).
[25] Y. K. Gambhir, J. P. Maharana, G. A. Lalazissis, C. P. Panos,

and P. Ring, Phys. Rev. C 62, 054610 (2000).
[26] J. L. Egido, L. M. Robledo, and V. Martin, Phys. Rev. Lett. 85,

26 (2000).
[27] B. K. Agrawal, T. Sil, S. K. Samaddar, and J. N. De, Phys. Rev.

C 63, 024002 (2001).
[28] V. Martin, J. L. Egido, and L. M. Robledo, Phys. Rev. C 68,

034327 (2003).
[29] D. Gambacurta, D. Lacroix, and N. Sandulescu, Phys. Rev. C

88, 034324 (2013).
[30] J. Dobaczewski, H. Flocard, and J. Treiner, Nucl. Phys. A 422,

103 (1984).
[31] M. Stoitsov, P. Ring, D. Vretenar, and G. A. Lalazissis, Phys.

Rev. C 58, 2086 (1998).
[32] S.-G. Zhou, J. Meng, and P. Ring, Phys. Rev. C 68, 034323

(2003).
[33] N. Schunck and J. L. Egido, Phys. Rev. C 77, 011301 (2008).
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[60] E. Yüksel, E. Khan, K. Bozkurt, and G. Coló, Eur. Phys. J. A
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