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R-matrix description of particle energy spectra produced by low-energy 3H + 3H reactions
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An R-matrix model for three-body final states is presented and applied to a recent measurement of the neutron
energy spectrum from the 3H + 3H → 2n + α reaction. The calculation includes the nα and nn interactions
in the final state, angular momentum conservation, antisymmetrization, and the interference between different
channels. A good fit to the measured spectrum is obtained, where clear evidence for the 5He ground state is
observed. The model is also used to predict the α-particle spectrum from 3H + 3H as well as particle spectra
from 3He + 3He. The R-matrix approach presented here is very general and can be adapted to a wide variety of
problems with three-body final states.
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I. INTRODUCTION

Due to the presence of three particles in the final state, the
3H + 3H → 2n + α reaction produces distributions of neutron
and α-particle energies. The neutron energy spectrum at an
effective Ec.m. of 16 keV has recently been measured in an
inertial confinement fusion experiment at the National Ignition
Facility (NIF) [1]. This paper also presented a sequential-
decay R-matrix model for the three-body state. The primary
purpose of the present paper is to fully describe this model
and to explore a broader range of assumptions for the fitting
of the neutron spectrum. We also present a prediction for the
α-particle spectrum, for which limited data exists. Finally, we
calculate the final-state energy spectra of the mirror reaction
3He + 3He and discuss some features of our approach when
one of the nuclei in the final state is much heavier than the
others.

Our model includes interactions between all pairs of nuclei
in the final state. For the 3H + 3H case, this implies the
nα interaction, including the unbound 3/2− ground and
1/2− first excited state of 5He, and the nn interaction. The
calculation also incorporates angular momentum conservation
and fermion symmetry. The latter is a particular example
of an order-of-emission effect, which give rise to various
interference phenomena. In addition, kinematic effects present
in the three-body final state are tightly integrated into the
model. These details of the model, predictions for particle
spectra, and comparisons to available experimental data are
discussed below.

The reactions 3He + 3He → 2p + α and 3H + 3He →
n + p + α, which are related by mirror or isospin symmetry
to 3H + 3H → 2n + α, are also presently under study at
inertial confinement fusion facilities. The model presented
here can be adapted to these reactions, and a prediction for the

3He + 3He → 2p + α case is given in this paper. This
R-matrix approach is very general, and additional areas where
it could be applied are discussed in the conclusion.

II. THREE-BODY KINEMATICS

The three-body final state from the 3H + 3H → 2n + α
reaction will be described using nonrelativistic kinematics [2].
With the center of mass assumed to be at rest, the kinetic
energy available in the final state is given by

Etot = Q + Ec.m., (1)

where Q = 11.332 MeV and Ec.m. is the center-of-mass (c.m.)
kinetic energy of the initial state. Here, we will assume Ec.m. =
16 keV, unless otherwise indicated. The masses of the final-
state particles are mi , where i = 1, 2, or 3, and M = m1 +
m2 + m3. Indices 1 and 2 are used for the neutrons, with index
3 used for the α particle. The momentum and kinetic energies
of the final-state particles are given in the three-body c.m.
system by pi and Ei . The relative momentum and kinetic
energy of particles i and j are

pij = μij

mi

pi − μij

mj

pj and (2)

Eij = p2
ij

2μij

, where (3)

μij = mimj

mi + mj

. (4)

Assuming the indices i, j , and k are all distinct, the relative
kinetic energy between particle i and the j -k system is given
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by Ẽi and we also have

0 = p1 + p2 + p3, (5)

Ẽi = M

mj + mk

Ei, and (6)

Etot = E1 + E2 + E3 = Ẽi + Ejk. (7)

III. R-MATRIX MODEL

The energy distribution of particles emitted by reactions
proceeding to unbound states can be described using R-
matrix methods, as presented by Barker [3]. This approach
in essence describes the particle emissions as sequential
two-body decays. Due to the low energy in the initial 3H + 3H
state, we assume it has orbital angular momentum of zero
and thus a total spin and parity of 0+. We consider here
two types of sequential decays: neutron emission to unbound
5He intermediate states and α-particle emission to unbound
neutron-neutron states. This latter type decay may also be
referred to as dineutron emission [4]. For both of these decay
types, a further complication is presented by the fact that the
amplitudes must be constructed to be antisymmetric under the
exchange of neutrons, which give rise to direct and exchange
terms [see Eqs. (22) and (23), respectively]. The R-matrix
formalism has been applied to other cases of three-body final
states with identical particles in Refs. [5–8].

We emphasize that this approach treats the intermediate
state rather carefully. The phase shifts between the particles
that make up this state are rather well known for the cases
considered here—either experimentally (nα scattering) or
theoretically (nn scattering). The R-matrix model described
below accurately incorporates these phase shifts. The inter-
action between the first particle emitted and the intermediate
state is, however, not well known, as it generally cannot be
studied independently in the laboratory. This part of the matrix
element is treated in a minimalist R-matrix approach, with just
a hard-sphere interaction, which characterizes a nonresonant
phase shift.

A. Neutron emission through 5He intermediate states

For our assumption of a 0+ initial state, both neutrons must
have the identical orbital angular momentum l. We assume the
amplitude for the process is given by

Mν1ν2 =
∑

c

uc(Ẽ1)f lJ
ν1ν2

(�1,�23), (8)

where νi are the spin projections of the neutrons and the energy
dependence is described by the R-matrix expression

uc(Ẽ1) =
[
P1P23

p1p23

]1/2

ei(ω1−�1)ei(ω23−�23)

×
∑

λ
Acλγcλ

Ecλ−E23

1 − [S23 − Bc + iP23]Rc

(9)

and the spin and angle dependence is given described by
f lJ

ν1ν2
(�1,�23). The subscripts 1, 2, and 3 refer to the first

neutron emitted, second neutron emitted, and the α particle,
respectively. The channel is labeled by c ≡ (l,J,β), where

J is the angular momentum of the intermediate state and
β indicates the decay type, which is via 5He intermediate
states in this case (β = nα). The quantity Rc is the n + α
elastic-scattering R matrix

Rc =
∑

λ

γ 2
cλ

Ecλ − E23
(10)

and Ecλ, γcλ, Acλ, and Bc are the R-matrix parameters: the
level energies, reduced width amplitudes, feeding factors,
and boundary-condition constants, respectively. The R-matrix
surface functions depend upon the channel radii, l, and energy
and include the penetration factors P1 and P23, the shift
function S23, and the hard-sphere phase shifts −�1 and −�23.
The quantities ω1 and ω23 are the Coulomb phase shifts, which
are zero in this case. Note that the penetration factors have been
divided by the corresponding momentum. This convention is
also used in Refs. [5,6] and removes two-body phase space
factors present in the penetration factors from the three-body
matrix element [7]. It should be noted that Eq. (9) is also given
in Refs. [5–8], and it is not derived here. As we will show
below, this formalism also gives energy distribution formulas
consistent with Ref. [3].

The spin and angle dependences are calculated by first
coupling a neutron with spin projection ν2 to an α particle to
form a 5He state with angular momentum quantum numbers
(J,mJ )

glJ
ν2,mJ

(�23) =
∑
m,ml

〈
lml

1

2
ν2

∣∣∣∣JmJ − m

〉
Ylml

( p̂23) (11)

and then coupling to another neutron with spin projection ν1

to form the 0+ 3H + 3H state

f lJ
ν1,ν2

(�1,�23) =
∑

mJ ,m,ml

glJ
ν2,mJ

(�23)〈JmJ Jm|00〉

×
〈
lml

1

2
ν1

∣∣∣∣Jm

〉
Ylml

( p̂1), (12)

which can be written

f lJ
ν1ν2

(�1,�23) =
∑

m,ml,m
′
l

(−1)J+m

√
2J + 1

〈
lml

1

2
ν1

∣∣∣∣Jm

〉

×
〈
lm′

l

1

2
ν2

∣∣∣∣J − m

〉
Ylml

( p̂1)Ylm′
l
( p̂23). (13)

The quantities in angled brackets are the Clebsch-Gordan
coefficients and Ylm are the spherical harmonics with �1

representing the angles (θ1,φ1) that describe the emission of
neutron 1 with momentum p1 = p1 p̂1 in the three-body c.m.
system and �23 representing (θ23,φ23) that describe the the
emission of the of neutron 2 in with momentum p23 = p23 p̂23

the rest frame of the 2–3 system. Finally, our amplitude can
be made antisymmetric under the exchange of neutrons by
adopting

Mν1ν2 =
∑

c

[
uc(Ẽ1)f c

ν1ν2
(�1,�23) − uc(Ẽ2)f c

ν2ν1
(�2,�13)

]
,

(14)

014003-2



R-MATRIX DESCRIPTION OF PARTICLE ENERGY . . . PHYSICAL REVIEW C 92, 014003 (2015)

with �2, �13, and related quantities defined analogously to
those above.

Our approach only considers n + α configurations for the
description of 5He states; this approximation is well justified
in this case because the thresholds for other configurations,
such as d + 3H, are located much higher in excitation energy.
Below neutron energies of 20 MeV, it is found that considering
l � 3 is sufficient and that one level plus a constant R∞ for
each channel allows for a good fit to be obtained. We consider
here l = 0 and 1 transitions involving the 1/2+, 1/2−, and
3/2− n + α partial waves.

The scattering of neutrons by α particles is very well studied
and R-matrix parameters are available [9]. The quality of fit to
n + α scattering observables is comparable to modern analyses
(e.g., Ref. [10]) that take into account more multichannel data.
We utilize the R-matrix parameters given in Table 2 of Ref. [9],
with R∞ replaced by a background level at very high (1000
MeV) excitation energy, which we refer to hereafter to as the
R∞ state. Both l = 1 partial waves (1/2− and 3/2−) have a
resonant states at low excitation energy, in the range which can
be populated by low-energy 3H + 3H reactions. Consequently,
these partial waves are expected to contribute significantly.
Feedings of both the important resonance state and the R∞
state are considered. We choose the boundary condition
constant for these parameters so that the level shift vanishes
for the lowest-energy state in each partial wave. The l = 0
1/2+ partial wave is nonresonant, but is included due to its low
angular momentum. We consider feeding of the 1/2+ 50-MeV
level (which is in fact a background state), but not the R∞ state.
It should be pointed out that the R∞ state for this partial wave
is unphysical, as it has γ 2

cλ < 0. Since this state contributes
little to the phase shift in the region of interest, this issue is
not a concern for the present work. The channel radius for the
n + α parameters is 3.0 fm; for n + 5He we have used 4.0 fm.

B. Dineutron emission

We consider here the emission of neutrons in a l = 0 spin
singlet state, with the orbital angular momentum of the neutron
pair with respect to the α-particle core also taken to be zero. In
this case we assume the amplitude for the process is given by

Mν1ν2 = uc(Ẽ3)
(
f 0,1/2

ν1ν2
− f 0,1/2

ν2ν1

)
, (15)

with c = (0,1/2,nn) for dineutron emission. The energy
dependence is described by the R-matrix expression

uc(E3) =
[

P3P12

p3 p12

]1/2

ei(ω3−�3)ei(ω12−�12)

×
Acγc

Ec−E12

1 − (S12 − Bc + iP12)Rc

, (16)

where the notation is analogous to that given in the previous
section and we also have assumed only a single level such
that Rc = γ 2

c /(Ec − E12). Note also that the shift function
vanishes for l = 0 neutrons and we take Bc = 0 here. Adopting
Ec = 3.119 MeV and γ 2

c = 31.95 MeV, for a channel radius
of 2.0 fm, reproduces the scattering length and effective range
of the Argonne V18 potential [11], which are −18.487 fm
and 2.840 fm, respectively. In addition, the phase shifts below

a neutron energy of 10 MeV are reproduced to within 2.5 deg
with this choice. The (nn) + α channel radius has been taken
to be 3.5 fm. The antisymmetric spin singlet state has been
generated with the aid of Eq. (13), with l = 0 and J = 1/2.
Note that the there is no angular dependence in this case.

C. Definition of particle energy spectra

Considering both dineutron emission and the sequential
emission of neutrons through 5He states, we arrive at the final
form for our matrix element:

Mν1ν2 =
∑

c

[
uc(12)f lJ

ν1ν2
(�1,�23) − uc(21)f lJ

ν2ν1
(�2,�13)

]
,

(17)

where the sum is over three nα channels and one nn channel.
The nature of the energy dependence of uc varies with the
channel type (nα versus nn); the 12 and 21 notation is used
to indicate direct (12) and exchange (21) terms. In principle,
all observables can now be calculated. Our primary interest,
however, is in calculating the particle energy spectra. The
particle distribution in the three-body c.m. system is given by

d3N

dEi d�i d�j

=
∑
ν1, ν2

∣∣Mν1ν2

∣∣2
pipjkJijk, (18)

where the product of factors pipjkJijk is the three-body phase
space [2,12], and Jijk is the Jacobian for the transformation
from the (Ẽi,�i,�jk) system to the (Ei,�i,�j ) system.

In order to extract the particle energy distributions, it is
necessary to integrate out the angular variables. This task
can be accomplished most easily by transforming to the
(Ẽi,�i,�jk) system:

dN

dEi

= M

mj + mk

dN

dẼi

= M

mj + mk

∫
d�i d�jk

d3N

dẼi d�i d�jk

(19)

= M

mj + mk

∫
d�i d�jk

Jijk

d3N

dEi d�i d�j

(20)

= M

mj + mk

∫
d�i d�jk pipjk

∑
ν1, ν2

∣∣Mν1ν2

∣∣2
. (21)

D. Evaluation of spin and angle-dependent functions

In order to proceed further, it is necessary to evaluate the
square of the matrix element, summed over spin projections.
In doing so, two types of sums arise:

W
(i)
lJ l′J ′ = (4π )2

∑
ν1, ν2

f lJ
ν1ν2

(�i,�jk)f l′J ′∗
ν1ν2

(�i,�jk) and (22)

W
(12)
lJ l′J ′ = (4π )2

∑
ν1, ν2

f lJ
ν1ν2

(�1,�23)f l′J ′∗
ν2ν1

(�2,�13), (23)

where the factors of (4π )2 have been inserted for later
convenience. The first type of term can be evaluated using
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TABLE I. The angular functions W
(i)
lJ l′J ′ given by Eq. (24) and W

(12)
lJ l′J ′ given by Eq. (29), for the partial wave combinations considered here.

l J l′ J ′ W
(i)
lJ l′J ′ W

(12)
lJ l′J ′

0 1
2 0 1

2 1 −1

0 1
2 1 1

2 − cos γjk
m1

m1+m3

p2
p13

+ p1
p13

cos δ12

0 1
2 1 3

2 −√
2 cos γjk

√
2( m1

m1+m3

p2
p13

+ p1
p13

cos δ12)

1 1
2 1 1

2 1 − p1p2
p13p23

[( p2
p1

m1
m1+m3

+ p1
p2

m2
m2+m3

) cos δ12 + 1 + m1m2
(m1+m3)(m2+m3) ]

1 1
2 1 3

2

√
2P2(cos γjk) −√

2 p1p2
p13p23

[( p2
p1

m1
m1+m3

+ p1
p2

m2
m2+m3

) cos δ12 + P2(cos δ12) + m1m2
(m1+m3)(m2+m3) ]

1 3
2 1 3

2 1 + P2(cos γjk) − p1p2
p13p23

[2( p2
p1

m1
m1+m3

+ p1
p2

m2
m2+m3

) cos δ12 + 1 + P2(cos δ12) + 2m1m2
(m1+m3)(m2+m3) ]

standard techniques (see, e.g., Ref. [13]):

W
(i)
lJ l′J ′ = [(2J + 1)(2J ′ + 1)]1/2(2l + 1)(2l′ + 1)

×
∑

k

〈l0l′0|k0〉2W 2

(
klJ ′ 1

2
; l′J

)
(−1)kPk(cos γjk),

(24)

where the W without subscripts is the Racah coefficient, Pk is
the Legendre polynomial of order k, and

cos γjk = p̂i · p̂jk. (25)

The second type of term arises from antisymmetrization
and is more complicated to evaluate, due to the fact that, as
written, it depends on two sets of angular variables that are not
independent. The angular variables are represented by the unit
vectors of the momenta. By using Eqs. (2) and (5), p̂23 and
p̂13 can be eliminated using

p̂23 = p2

p23
p̂2 + p1

p23

m2

m2 + m3
p̂1, (26)

p̂13 = p1

p13
p̂1 + p2

p13

m1

m1 + m3
p̂2, (27)

so that the expression only depends on the angular variables
p̂1 and p̂2. The spherical harmonics harmonics can then be
evaluated for these substitutions using the following addition
theorem [14]:

cl Ylm(ĉ) =
∑

λ1 + λ2 = l
ν1 + ν2 = m

aλ1bλ2〈λ1ν1λ2ν2|lm〉

×
√

4π (2l + 1)!

(2λ1 + 1)!(2λ2 + 1)!
Yλ1ν1 (â)Yλ2ν2 (b̂), (28)

where c = a + b with a = a â, b = bb̂, and c = cĉ. The
second type of term is then found to be

W
(12)
lJ l′J ′ = (−1)J+J ′

[(2J + 1)(2J ′ + 1)(2l + 1)!(2l′ + 1)!]1/2

×(2l + 1)(2l′ + 1)
∑

λ1 + λ′
1 = l

λ2 + λ′
2 = l′

λ3,λ
′
3,λ

′′
3 ,k

(
p2

p23

)λ1

×
(

m2

m2 + m3

p1

p23

)λ′
1
(

p1

p13

)λ2
(

m1

m1 + m3

p2

p13

)λ′
2

×
[

(2λ3 + 1)(2λ′
3 + 1)

(2λ1)!(2λ′
1)!(2λ2)!(2λ′

2)!

]1/2

(2λ′′
3 + 1)

×〈λ10λ′
20|λ30〉〈λ′

10λ20|λ′
30〉〈l0λ′

30|k0〉〈l′0λ30|k0〉

×

⎧⎪⎨
⎪⎩

λ1 λ′
2 λ3

λ′
1 λ2 λ′

3

l l′ λ′′
3

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

1
2 J l

J ′ 1
2 l′

l′ l λ′′
3

⎫⎪⎬
⎪⎭

×W (l′lλ3λ
′
3; λ′′

3k)(−1)λ
′
3+λ′′

3−lPk(cos δ12), (29)

where {} indicates the Wigner 9-J symbol and

cos δ12 = p̂1 · p̂2. (30)

The functions W
(i)
lJ l′J ′ are real and are invariant under the

interchange of (l,J ) and (l′,J ′), while W
(12)
lJ l′J ′ are also real and

are invariant under the interchange of (l,J ) and (l′,J ′) and
particle labels 1 and 2. These functions are tabulated in Table I
for the partial wave combinations considered here.

Due to our assumption of a J = 0 initial state, the particles
are emitted isotropically; these functions thus describe the
angular correlations between the particles. Note that the
particle distribution is a function of two variables, which can
be taken to be Ei and cos γjk . From these two quantities, all
other needed energies, momentum magnitudes, and angles can
be calculated from the kinematics relationships.

E. Calculation of particle energy spectra

We can now write

(4π )2
∑
ν1, ν2

∣∣Mν1ν2

∣∣2 =
∑
c,c′

g
(1)
cc′ + g

(2)
cc′ + g

(12)
cc′ , (31)

where

g
(1)
cc′ = uc(12) u∗

c′ (12) W
(1)
lJ l′J ′ (cos γ23) (32)

g
(2)
cc′ = uc(21) u∗

c′ (21) W
(2)
lJ l′J ′ (cos γ13) (33)

g
(12)
cc′ = −2 Re[ uc(12) u∗

c′ (21) ] W
(12)
lJ l′J ′ . (34)

If the neutrons were distinguishable, the g(1) contribution
would be the neutron 1 distribution and g(2) would be the
neutron 2 distribution. The g(12) term arises from treating the
neutron as indistinguishable fermions. In the case of neutron
emission via intermediate 5He states, we take neutron 1 to
the first neutron emitted and neutron 2 to be the second. The
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neutron energy distribution can be calculated:

dN

dEi

= M

mj + mk

1

2

∫ 1

−1
d(cos γjk) pipjk

×
[∑

c,c′
g

(1)
cc′ + g

(2)
cc′ + g

(12)
cc′

]
(35)

= dN (1)

dEi

+ dN (2)

dEi

+ dN (12)

dEi

. (36)

The first term will be called the primary distribution, the second
will be the secondary distribution, and the third will be the
exchange distribution.

If only nα channels are present, the calculation of the
primary contribution can be simplified, because uc then only
depends on Ẽ1, and Ẽ1, p1, and p23 are independent of cos γ23.
The result is

dN (1)

dE1
= M

m2 + m3
p1p23

∑
c

|uc(Ẽ1)|2, (37)

which is free from any angular correlation or interference
effects. Note also that it is in this situation that the R-matrix
energy distribution formula given in Ref. [3] is recovered.
For the α-particle energy distribution, all of the contributions
must be calculated by numerical integration, but this task is
simplified by noting that

dN (1)

dE3
= dN (2)

dE3
. (38)

If only the nn (dineutron) channel is present, the calculation
also simplifies. In this case we have

dN (1)

dEi

= dN (2)

dEi

= 1

2

dN (12)

dEi

. (39)

For the neutron energy distribution, these must be evaluated by
numerical integration, but for the α-particle energy distribution
we have

dN

dE3
= 4M

m1 + m2
p3p12|uc(Ẽ3)|2, (40)

which is also in the form given by Ref. [3].
In the general case, all three contributions to the distribution

must be calculated using numerical integration. We do note
that the overall contributions of the primary and secondary
distributions are equal, i.e.,∫ mj +mk

M
Etot

0

dN (1)

dEi

dEi =
∫ mj +mk

M
Etot

0

dN (2)

dEi

dEi. (41)

1. Spectra for channels in isolation

We will next investigate the nature of the particle energy
distributions resulting for each channel in isolation. Note that
we make no effort in this section to adjust the feeding factor
parameters of the model to fit experimental data; this is done
below in Sec. IV. For the l = 1 nα channels, we have taken
the background feeding to be zero. Each channel thus has
only a single feeding factor, which has been adjusted so that∫

dN
dEi

dEi = 10. The results are shown in Fig. 1 for the neutron
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FIG. 1. (Color online) Neutron energy distributions for each
channel considered separately. The primary, secondary, exchange,
and total are given by the dotted, dashed, dot-dashed, and solid curves,
respectively. Only the total is shown for the nn case.

energy distributions and in Fig. 2 for the α-particle energy
distributions. For the nα channels, the primary, secondary,
exchange, and total contributions are shown for neutron energy
distributions, and the primary plus secondary, exchange, and
total contributions are shown for the α-particle distributions.
For the nn channel, only the total is shown, since, as shown by
Eq. (39), the subcontributions are all proportional. It is interest-
ing to note that the interference introduced by antisymmetriza-
tion has a general tendency to be constructive in all cases
investigated. This point is discussed further below in Sec. VI.

1/2+ nα: The particle spectra for this channel are rather
featureless. Both the neutron and α-particle spectra closely
approximate elliptical energy distributions, characteristic of
uniform phase space population.

1/2− nα: The first excited state of 5He gives rise to a broad
peak in the primary neutron spectrum, while the secondary
neutron spectrum is also broad, but peaks at a lower neutron
energy. The effect of antisymmetrization is to make the overall
spectrum narrower, with relatively little strength near the
endpoints of the spectrum. The α-particle spectrum for this
channel is relatively flat, except near the endpoints.

3/2− nα: The ground state of 5He gives rise to a narrow
peak in the primary neutron spectrum near the maximum
neutron energy. The secondary neutron spectrum shows a
double-peaked feature below 2 MeV. This structure results
from the W (i) = 1 + P2(cos γjk) angular correlation between
the primary and secondary neutrons, which implies a strong
tendency for the neutrons to be emitted in the same or
opposite directions but not perpendicular to each other. Due
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FIG. 2. (Color online) α-particle energy distributions for each
channel considered separately. The primary plus secondary, ex-
change, and total are given by the dotted, dot-dashed, and solid curves,
respectively. Only the total is shown for the nn case.

to the recoil of the 5He intermediate state, this correlation
affects the secondary neutron energy distribution. This angular
correlation also gives rise to a double peak in the α-particle
energy spectrum. These effects on the particle energy spectra
due to angular correlations were understood over 50 years
ago [15,16] and were observed for the α-particle energy
spectrum at higher 3H + 3H energies [16]. Due to the relatively
small energy overlap between primary and secondary spectra,
the effect of antisymmetrization on the overall spectra is less
important for this channel.

nn: In this case, the neutron energy spectrum peaks just
below 4 MeV and has considerably less strength near the
endpoints compared to the 1/2+ nα channel, which has the
same quantum numbers. The α-particle spectrum has a very
distinctive peak near the maximum energy that is associated
with the two neutrons being emitted in nearly the same
direction with a low relative energy. Similar results for the
effect of the nn interaction on the α-particle spectrum were
found in the calculations of Lacina, Ingley, and Dorn [4].

2. Interference between channels

Another way to decompose Eq. (35) that is useful when
considering multiple channels is

dN

dEi

=
∑

c

dNcc

dEi

+
∑
c,c′

c 
= c′

dNcc′

dEi

, (42)
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FIG. 3. (Color online) Interference contributions to the neutron
energy distributions for partial wave combinations indicated.

where the second sum is due to interference effects between
channels and

dNcc′

dEi

= M

mj + mk

1

2

∫ 1

−1
d(cos γjk) pipjk

×[
g

(1)
cc′ + g

(2)
cc′ + g

(12)
cc′

]
. (43)

The channel interference contributions to the particle spec-
tra are shown in Figs. 3 and 4, for the partial wave combinations
under consideration. The same feeding factors were used as
for the calculations shown in Figs. 1 and 2. Note that the
signs of the interference contributions are determined by the
relative signs of the feeding factors. The effects are seen to
be substantial, comparable in magnitude to the single-channel
contributions. In addition, note that the contribution of these
effects, integrated over Ei , does not vanish.

IV. FITS AND COMPARISONS TO EXPERIMENTAL DATA

In this section, fits and comparisons to experimental neutron
and α-particle spectra from low-energy 3H + 3H reactions
(below Ec.m. = 100 keV) are presented.

A. Neutron spectrum

The 3H(t,2n) neutron spectrum at an effective Ec.m. of
16 keV has recently been measured at the NIF [1]. The neutrons
were detected in two liquid scintillators along separate lines
of sight located 20.1 and 22.2 m from the source, respectively.
The experiment provides raw data in the form of digitized
currents from the detectors versus time. The data from the
22.2-m detector has been presented in Fig. 2 of Ref. [1], where
the time of flight has been converted to a nominal neutron
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FIG. 4. (Color online) Interference contributions to the α-
particle energy distributions for partial wave combinations indicated.

energy and the points have been rebinned. Here we will present
additional fits to these data. The fits to the raw data utilize the
R-matrix description of the neutron spectrum for Ec.m. = 16
keV, and take into account the following effects [1]: thermal
broadening due to the Maxwell-Boltzmann distribution of
particle velocities in the plasma, neutron attenuation and
scattering between the 3H(t,2n) reaction source and the
detector, the light output response of each detector, and the
time response of each detector. Finally, the background from
the 3H(d,n) reaction, which was measured separately, was
added to the model spectra. The data fitted here are identical
to those reported in Ref. [1], except that some additional
points at longer times of flight have been included (giving
812 data points in total), and the errors on the data have
been increased by assuming that the attenuation correction
has a 20% uncertainty and that the scattering correction has a
50% uncertainty. The raw time-of-flight data that are fitted are
shown in Fig. 5; note the narrow peak near 500 ns is the peak
in the neutron spectrum from the 5He ground state.

The spectra have been fitted using the R-matrix formalism
described above, assuming various combinations of the four
channels discussed in Sec. III E 1. In addition, we have
considered nonzero background feeding factors for the 1/2−
and 3/2− nα channels, leading to a total of up 6 variable
parameters. Note that the feeding of the low-lying 1/2− and/or
3/2− states in nα channels were always fitted and that if a
feeding factor was not fitted, its value has been assumed to be
zero. The χ2

min values obtained for the various feeding factor
assumptions are presented in Table II.

Not surprisingly, the χ2
min decreases steadily as the number

of free parameters is increased. In Ref. [1], only the 1/2−

0.0
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FIG. 5. The neutron time-of-flight spectra from the 22.2-m

detector (a) and 20.1-m detector (b) used for fitting.

and 3/2− nα channels were considered. The fit presented
there is nearly identical to fit number 9 presented here,
with the very small changes arising from the changes in
the data set discussed above. The additional channels are
seen to make a substantial increase in the quality of the fit.
However, we are cautious about placing a large emphasis

TABLE II. The χ 2
min values obtained for the various feeding factor

assumptions. The presence of a
√

indicates that a particular feeding
factor was varied in the fit; a total of 812 data points were fitted.

Fit no. nα nn χ 2
min

1/2+ 1/2− 3/2−

A A1 A2 A1 A2 A

1
√ √

2165
2

√ √ √
1316

3
√ √ √

1309
4

√ √ √
1285

5
√ √ √

1095
6

√ √ √ √
867

7
√ √ √ √

996
8

√ √ √ √
660

9
√ √ √ √

1085
10

√ √ √ √
920

11
√ √ √ √

1162
12

√ √ √ √ √
659

13
√ √ √ √ √

850
14

√ √ √ √ √
660

15
√ √ √ √ √

667
16

√ √ √ √ √ √
632
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FIG. 6. (Color online) Two fits to the raw neutron spectra, plotted
as a function of the nominal neutron energy, for the 22.2-m detector
(a) and 20.1-m detector (b). It should be noted that these data, as well
as those shown in Fig. 5, still include various experimental factors
such as thermal broadening, neutron light output, and detector time
response.

on this improvement, as the neutron spectrum data contain
neutron-energy-dependent systematic errors from the scatter-
ing and attenuation corrections that may be comparable to this
improvement in fit (i.e., from χ2

min = 1085 to 632). Two of the
fits, numbers 9 and 16, are shown in Fig. 6, where the data have
been rebinned and plotted versus the nominal neutron energy.

The R-matrix parameters for fit 16 are shown in Table III.
Note that the uncertainties on the feeding factors are computed
assuming that uncertainties on the data are random and
normally distributed; as explained above this is not strictly
the case and the true uncertainties are larger (this is also

TABLE III. The R-matrix parameters for fit 16. Note that the
boundary condition parameter is B = S(Ec1) for the nα channels,
and B = 0 for the nn channel. The γcλ are defined to be the positive
square roots of γ 2

cλ and the channel radii are given in Sec. III.

Channel λ Ecλ γ 2
cλ Acλ

(MeV) (MeV)

1/2+ nα 1 50.00 12.00 −18(3)
1/2+ nα 2 1000 −40 0
1/2− nα 1 6.43 12.30 −18.2(3)
1/2− nα 2 1000 300 −306(16)
3/2− nα 1 0.97 7.55 9.86(6)
3/2− nα 2 1000 300 155(9)
nn 1 3.119 31.95 12.5(5)
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FIG. 7. (Color online) The decomposition of fit 16 into its various
channel components and the net interference contribution.

why some fits are able achieve a χ2 value, which is less
than the number of data points). The decomposition of this fit
into its various channel components and the net interference
contribution, according to Eq. (42), is shown in Fig. 7. It is
seen that the fitted 1/2− and 3/2− nα channels, and dineutron
channel, are substantial, with the 1/2+ nα channel contributing
to a lesser degree. The net interference between channels is
also non-negligible. In Ref. [1], a branching ratio for the the
1/2− and 3/2− nα channels was given, which is possible
to do if only these two channels are considered, since their
interference term is very small. In the general case, it is not
possible to determine branching ratios, due to the substantial
interference contribution.

In order to facilitate future comparisons with other ex-
periments and calculations, it is desirable to present the
neutron spectra in a deconvoluted form, i.e., with the various
efficiency, resolution, and background corrections removed.
General methods and considerations for the deconvolution of
nuclear science measurements are discussed in Ref. [17]. Any
approach to these corrections necessarily involve some model
dependence. We have deconvoluted the present measurements
by assigning a mean energy to each point (analogous to
Eq. (8) of Ref. [17]) and then applying a correction factor
to the measured yield for each point (analogous to Eq. (6) of
Ref. [17]). This procedure requires that the underlying neutron
spectrum be known in advance—for this, we use fit 16. In
practice, the fit used makes very little difference, as long as
it gives a reasonable description of the measured data. The
deconvoluted neutron spectrum data is shown in Fig. 8, where
the data from the two detectors are combined and rebinned in
energy.
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FIG. 8. (Color online) The deconvoluted neutron energy spec-
trum (points) along with fits 9 and 16 (curves).

B. α-particle spectrum

Some information about the α-particle spectrum from
the low-energy 3H + 3H reaction is available from a 1985
conference paper by Jarmie and Brown [18], where a measured
spectrum and a background spectrum are given for an incident
triton energy of 115 keV and a laboratory angle of 45◦. We have
extracted the α-particle spectrum from their Fig. 8 as follows.
The spectrum was first corrected for the background shown
along with the spectrum in their figure. Next the spectrum was
energy calibrated, using the peak from the 3H(d,α) reaction to
fix the calibration at the high-energy end of the spectrum. The
calibration assumed the channel number in the Si detector was
linear with α-particle energy with zero offset, with the energy
loss in the 30-μg/cm2 CH2 foil in front of the detector [19]
being taken into account. Finally, the spectrum was converted
to the c.m. system assuming the spectrum is isotropic in the
c.m. system. It should be noted that this spectrum should be
most reliable for the higher energies, where the background is
small and the energy calibration is well established. We finally
note that this spectrum was measured for Ec.m. = 57.5 keV,
with the beam-energy loss correction being less than 0.1 keV.

The resulting α-particle spectrum, rebinned such that each
point represents 5 channels in the raw spectrum, is shown in
Fig. 9. Also shown are the predictions from R-matrix fits 9 and
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FIG. 9. (Color online) The α-particle spectrum extracted from
Ref. [18] (points) and the predictions from fits 9 and 16 (curves).

0

25

50

75
total
1/2- nα
3/2- nα
nn

0 1 2 3 4
Eα (MeV)

-25

0

25

50

total
1/2+ nα
interference

(a)

(b)

re
la

tiv
e 

in
te

ns
ity

FIG. 10. (Color online) The decomposition of the α-particle
spectrum from the fit 16 prediction into its various channel com-
ponents and the net interference contribution.

16, where the normalizations of the fits has been adjusted to
optimize the agreement with data. It is seen that fit 16 supplies
a much better description of the spectrum than fit 9 (χ2 = 46
versus 140 for the 35 data points). The decomposition of the
fit 16 α-particle spectrum into its various channel components
and the net interference contribution is shown in Fig. 10. It
is seen that the inclusion of the dineutron channel, which
supplies spectral strength near the maximum energy, is crucial
for reproducing the spectrum.

C. Dalitz plots

A useful tool for visualizing the particle energy correlations
in a three-body final state is the Dalitz plot. As already noted,
the particle distribution given by Eq. (18) is a function of two
variables. Taking these to be any pair of particle energies Ei

and Ej , we can write

d2N

dEidEj

= M

2

[∑
c,c′

g
(1)
cc′ + g

(2)
cc′ + g

(12)
cc′

]
, (44)

where the kinematically allowed region in Ei-Ej space is an
ellipse.

The particle distribution resulting from fit 16, plotted as a
function of neutron and α-particle energies, is shown in Fig. 11.
The vertical band at En ≈ 8.7 MeV and the diagonal band in
the lower left part of the ellipse are due to the 5He ground state.
The concentration of strength at the top of the ellipse, where
Eα ≈ 3.8 MeV, is due to the dineutron.
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FIG. 11. (Color online) The particle distribution from fit 16 as a
function of neutron and α-particle energies.

The same particle distribution, plotted as a function of the
two neutron energies, is shown in Fig. 12. In this case, the
horizontal and vertical bands at En ≈ 8.7 MeV are due to
the 5He ground state and the dineutron strength appears at
En1 ≈ En2 ≈ 3.8 MeV.

V. PARTICLE SPECTRA FROM 3He + 3He

It is straightforward to adopt this approach for describing
the proton and α-particle spectra from 3He + 3He, which
is the mirror reaction to 3H + 3H → 2n + α. For the pα
channels, we utilize again the final R-matrix parameters given
by Ref. [9], which are defined using the same channel radius
and boundary condition conventions as their nα parameters
used above. For the pp channel, adopting a channel radius of
2.0 fm, Ec = 4.865 MeV, and γ 2

c = 34.61 MeV reproduces
the scattering length and effective range of the Argonne V18
potential [11], which are −7.8064 and 2.788 fm, respectively.

The calculated results for considering each channel in
isolation are shown in Figs. 13 and 14. We have assumed
Ec.m. = 165 keV and the same normalization convention was
used as for the 3H + 3H calculations shown in Figs. 1 and 2.
The results are very similar to those found for 3H + 3H. The

FIG. 12. (Color online) The particle distribution from fit 16 as a
function of the two neutron energies.
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FIG. 13. (Color online) Proton energy distributions from 3He +
3He for each channel considered separately. The primary, secondary,
exchange, and total are given by the dotted, dashed, dot-dashed, and
solid curves, respectively. Only the total is shown for the pp case.

main difference is that the 5Li ground-state peak in 3/2− pα
channel is broader than the 5He peak in the corresponding nα
channel, which simply reflects the different intrinsic widths
of the states. In addition, the α-particle energy distribution
is somewhat broader for the pp channel compared to the
corresponding nn channel.

In Fig. 15, we show a prediction for the proton spectrum,
where we have assumed the feeding factors from fit 16
to 3H + 3H neutron spectrum. The corresponding prediction
for the α-particle spectrum is shown in Fig. 16. The main
differences from the 3H + 3H case are (1) the 5Li ground state
is less prominent than the 5He ground state peak in the proton
spectrum, due to the former being broader, and (2) there is less
strength in the α-particle spectrum near the endpoint (diproton
region), due to the Coulomb barrier between the two protons
suppressing the amplitude as their relative energy approaches
zero.

It should be noted that we have ignored certain com-
plications introduced by long-ranged Coulomb force to the
three-body final state. In particular, our factorized form of the
amplitude does not correspond to an asymptotic solution to
the Schrödinger equation for three charged particles [20,21].
One can see that our amplitude does not include the effect of
the Coulomb barrier as the relative energy goes to zero for
all particle pairs. For some energy spectra and channels, this
deficiency is exposed at the highest energies in the particle
spectra, as the endpoint corresponds to the case where the
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FIG. 14. (Color online) α-particle energy distributions from
3He + 3He for each channel considered separately. The primary plus
secondary, exchange, and total are given by the dotted, dot-dashed,
and solid curves, respectively. Only the total is shown for the pp case.

other two particles recoil in the opposite direction with zero
relative energy.

An ad hoc modification to our amplitudes can be made
which restores physically reasonable behavior near the end-
points. Such an approach may be necessary for describing
experimental data in these regions. A simple procedure is to
multiply the pα amplitude given by Eq. (9) by C12C13 and the
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FIG. 15. The predicted 3He + 3He proton spectrum for Ec.m. =
165 keV.
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FIG. 16. The predicted 3He + 3He α-particle spectrum for
Ec.m. = 165 keV.

pp amplitude given by Eq. (16) by C13C23, where

Cij =
[
P0(kij aij ,ηij )

P0(kij aij ,0)

]1/2

, (45)

and kij , aij , and ηij are the wave number, channel radius,
and Coulomb parameter for particle pair ij . We have assumed
l = 0 for the penetration factor and used the same radii for
the pα and pp channels as discussed above. This modification
introduces some additional angular dependence to the matrix
element that prevents some of the simplifications based on
integrating over Legendre polynomials discussed in Sub-
sec. III E from being applicable. Otherwise, the computations
are unchanged. We find that the shapes of the calculated
spectra are little changed except near the endpoint while the
normalization (area) of the spectra are reduced by 12–17%,
depending up on the particular channel. The results with and
without this modification are shown in Fig. 17 for the 1/2+
pα channel near the endpoint, where the normalization of
the modified spectrum was adjusted to match the area of the
original spectrum.
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FIG. 17. (Color online) Proton energy distributions from 3He +
3He for the 1/2+ pα channel near the endpoint. The solid curve is
the same as shown in Fig. 13 and the dashed curve shows the effect
of including the ad hoc Coulomb correction discussed in the text.
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VI. HEAVY NUCLEI

It is instructive to consider how this formalism behaves
in heavier nuclei. In the limit that m3  m1,m2, the kine-
matic relations simplify considerably. In particular, we have
E1 + E2 = Etot, p23 = p2, p13 = p1, and cos γ23 = cos γ13 =
cos δ12. The is also substantial simplification of the angular
functions:

W
(1)
lJ l′J ′ = W

(2)
lJ l′J ′ = −W

(12)
lJ l′J ′ . (46)

If the reaction proceeds via a single channel of sequential
light-particle emission, the energy spectrum of light particles
is given by

dN

dE1
= p1p2|uc(E1) + uc(Etot − E1)|2, (47)

which is symmetric around the center of the spectrum (E1 =
Etot/2). Note also that the interference due to antisymmetriza-
tion is maximally constructive at the center of the spectrum.
This result explains the general tendency observed in Fig. 1 for
the antisymmetrization interference contribution to the neutron
spectrum to be constructive in the 3H + 3H case. This formula
was determined using the following special result for the Racah
coefficient [13] when k = 0

W

(
0lJ ′ 1

2
; l′J

)
= δJJ ′δll′√

(2J + 1)(2l + 1)
. (48)

This result also implies that the interference between channels
with distinct l and J values vanishes in this limit.

The interference between channels with distinct l and
J values can thus be interpreted to arise via the recoil of
the intermediate state. This recoil is substantial in processes
involving light nuclei such as 3H + 3H → 2n + α. In heavier
nuclei, the interference between channels is much reduced and
is found to scale ∝ 1/m3.

VII. CONCLUSIONS

A phenomenological R-matrix model for the three-body
final state of the 3H + 3H → 2n + α reaction has been pre-
sented. This approach includes a detailed treatment of the nα
and nn interactions in the final state, angular momentum con-
servation, antisymmetrization, and the interference between
different channels. This model is able to supply an excellent fit
to the 3H + 3H neutron spectrum for Ec.m. = 16 keV recently
measured at the NIF [1]. The most prominent feature in the
spectrum is a peak at En ≈ 8.7 MeV, which arises for the
3/2− 5He ground state. The strength in the spectrum at lower
neutron energies arises from the 1/2− first excited state of 5He,
1/2+ nα emission, and the nn (dineutron) emission channel.
The best fit to the spectrum includes significant strength in the
dineutron channel, but it should be noted that the distribution
of strengths in these additional channels is not well constrained
by the data (see Table II). This best fit provides a prediction for

the α-particle spectrum, which is in reasonable agreement with
an experimental spectrum that is available in the literature [18].
The agreement of the prediction with the data near the endpoint
of the α-particle spectrum provides support for the significant
dineutron channel strength present in the best fit.

Several issues could be clarified by improved experimental
data. It would be very useful to extend the 3H + 3H neutron
spectrum measurements to lower neutron energies, in order to
better constrain the fits and to possibly observe the double-
humped structured predicted below 2 MeV neutron energy
that is associated with the 5He ground state (see the 3/2−
nα panel in Fig. 1). A fully documented measurement of the
α-particle spectrum from 3H + 3H would also be valuable,
particularly if the spectrum could be measured up to the
endpoint, where the dineutron contribution is maximal. It
would also be interesting to study the dependence of the
spectrum on the energy in the entrance channel, as there is
some indication the 5He ground-state peak is more prominent
at higher entrance channel energies [22].

It is also interesting to consider the reactions 3He +
3He → 2p + α and 3H + 3He → n + p + α, which are re-
lated by mirror or isospin symmetry to 3H + 3H → 2n + α. A
prediction for the proton and α spectra resulting from 3He +
3He has been given above in Sec. V. Measurements of proton
spectra from 3He + 3He and 3H + 3He are currently being
pursued with the inertial confinement fusion technique using
the OMEGA facility at the Laboratory for Laser Energetics of
the University of Rochester [23].

On the theoretical side, it would be interesting and useful
to extend the formalism presented here to include the energy
dependence in the initial state. We expect that the methods
presented here can be applied to additional reactions or spectra
with three-body final states. For example, our approach could
be applied to the decay 16Be → 2n + 14Be, where evidence
for the dineutron has been reported [24]. Another area where
these methods could be used is the calculation of coherent
interference effects between different decay pathways to
three-body final states, which has been noted as an important
issue for understanding the total widths of states which decay
by the emission of three particles [25,26]. It must also be
acknowledged that the phenomenological R-matrix approach
presented here includes many approximations. In the future,
it is thus hoped that ab initio techniques based on nucleon-
nucleon interactions may be applied to these reactions.
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