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The integrated proton-deuteron cross section σ̃ for the case of the incident proton vector polarization pp
y and

tensor polarization Pxz of the deuteron target provides a null-test signal for time-reversal invariance violating
but P -parity conserving (TVPC) effects. We study the null-test observable σ̃ within the Glauber theory of
the double-polarized pd scattering. Full spin dependence of the ordinary strong pN scattering amplitudes and
different types of the hypothetical TVPC pN amplitudes are taken into account. We show that the contribution
from the exchange of the lowest-mass meson allowed in the TVPC interaction, i.e., the ρ meson, to the null-test
observable σ̃ is zero. The axial h1 meson exchange makes a nonzero contribution. We find that inclusion of the
Coulomb interaction does not lead to divergence of the cross section σ̃ and we calculate its energy dependence
at the proton beam energy 100–1000 MeV.
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I. INTRODUCTION

CP violation (or T -reversal invariance violation under
CPT symmetry) is required to explain the baryon asymmetry
of the universe [1]. In baryon systems violation of T invariance
has not been observed yet. CP violation established in physics
of kaons and B mesons leads to simultaneous CP and P-
invariance violation. Under the assumption of CPT-invariance
this implies existence of T-odd, P-odd interactions. These
effects are parametrized in the Standard Model by the CP
violating phase of the Cabibbo-Kobayashi-Maskawa matrix.
Another source for T -odd P -odd effects is the QCD θ term,
which can be related to electric dipole moments (EDM) of
elementary particles and atoms in their ground states.

On the contrary, time-reversal-symmetry-violating (T -
odd) P -parity-conserving (P -even) flavor-conserving (TVPC)
interactions do not arise on the fundamental level within
the standard model, although they can be generated from
the T -odd P -odd interaction by weak radiative P -parity
nonconserving corrections. However, in this case its intensity
is too low [2,3] to be observed in experiments at present.
Thus, observation of the TVPC effects would be considered as
indication of physics beyond the standard model.

The existing experimental constraints on the TVPC effects
in physics of nuclei are rather weak. So, the test of the
detailed balance performed for the reactions 27Al(p,α)24Mg
and 24Mg(α,p)27Al [4], and complemented by numerous
statistical analyses of nuclear energy-level fluctuations, leads
to the ratio of T -odd to T -even matrix elements as αT <
2 × 10−3 [5]. Another type of experiment, i.e., polarized
neutron transmission through a polarized 165Ho target, gives
αT � 7.1 × 10−4 or ḡρ � 5.9 × 10−2 [6]. Here ḡρ is the
T -odd P -even coupling constant of the charged ρ-meson
with the nucleon introduced in Ref. [7] to classify the TVPC
interactions in terms of boson exchanges. Charge symmetry
breaking determined as the difference in the scattering of
polarized protons off unpolarized neutrons �pn and polarized
neutrons off unpolarized protons �np gives αT � 8 × 10−5 (or
ḡρ < 6.7 × 10−3) [7]. One should add that indirect model-

dependent estimation based on the existing constraints on
EDM gives αT � 1.1 × 10−5 (ḡρ � ×10−3) [8]. However,
a more recent analysis showed [9] that EDM may arise via
another scenario which suggests no significant constraints on
the TVPC forces.

The integrated cross section σ̃ will be measured at
Cooler Synhrotron in Forschungszentrum Jülich (Germany)
(COSY) [10] in double polarized pd scattering with a
transverse polarized proton beam (pp

y ) and a tensor polarized
deuterium target (Pxz). This observable provides a real null
test of the TVPC forces [11]. This signal is not affected
by the initial- and final-state interaction and therefore its
observation would directly indicate time-invariance violation,
as in the case of the neutron EDM. The experiment [10] will be
performed at a beam energy of 135 MeV. This energy choice
was motivated by the theoretical analysis of the integrated
pd cross section σ̃ performed in Ref. [12]. The aim of this
experiment is to diminish the upper bound on the TVPC effects
previously obtained in the �n167Ho scattering [6] by one order
of magnitude.

The elastic channel and the deuteron breakup dp → pnp
were considered in Ref. [12] in the impulse approximation
(single scattering mechanism) for estimation of σ̃ . In the
present work we study the null-test observable σ̃ on the
basis of the generalized optical theorem using the forward
elastic pd scattering amplitude calculated within the Glauber
theory. Both the single- and double-scattering mechanisms are
considered.

The spin-dependent Glauber formalism recently developed
in Ref. [13] was applied in our previous work [14] to calculate
spin observables of the elastic pd scattering using the strong
(time-invariance-conserving and P -parity conserving) pN
scattering amplitudes as input at 135 MeV. The obtained
differential cross section, vector and tensor analyzing powers,
and spin-correlation parameters were found to be in reasonable
agreement with the existing data [15,16]. Here we generalize
this formalism to allow for TVPC pN scattering amplitudes of
several types. This generalized formalism is applied below to
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derive formulas for the null-test observable σ̃ and calculate its
energy dependence. We show that within the single-scattering
mechanism this observable is zero in the Glauber theory (for
any type of the TVPC pN interactions considered in the
general case in Ref. [17]) and, consequently, focus on the
double-scattering mechanism. We investigate the contribution
of several TVPC terms to the pN scattering amplitudes,
in particular, the ρ-meson and axial h1-meson exchanges.
In addition, we investigate the influence of the Coulomb
interaction on the σ̃ cross section not considered in Ref. [12].

The paper is organized as follows. In Sec. II we consider
the spin structure of the forward pd elastic scattering am-
plitude including the TVPC term and apply the generalized
optical theorem to derive formulas for total spin-dependent
cross sections in terms of the forward-scattering invariant
amplitudes. In Sec. III we construct the Glauber scattering
operator taking into account full spin dependence of the
elementary pN -scattering amplitudes for strong and some
other types of TVPC interactions and S and D components
of the deuteron wave function. Analytical expressions for
the TVPC forward-scattering amplitude g̃ are derived for
the double-scattering mechanism with different TVPC terms.
The influence of the Coulomb effects on the g̃ amplitude is
discussed in Sec. IV. Numerical results are shown in Sec. IV.

II. FORWARD TRANSITION OPERATOR AND
INTEGRATED CROSS SECTIONS

Time-reversal symmetry-conserving and P -parity con-
serving (TCPC or T -even P -even) interactions lead to the
following transition amplitude of the elastic pd scattering at 0
deg [18]:

e′
β

∗
M(0)T CPC

αβ eα = g1[e e′∗ − (me)(me′∗)] + g2(me)(me′∗)

+ ig3{σ [e × e′∗] − (σm)(m · [e × e′∗])}
+ ig4(σm)(m · [e × e′∗]), (1)

where e (e′) is the polarization vector of the initial (final)
deuteron, m is the unit vector along the beam momentum, σ is
the Pauli matrix, and gi (i = 1, . . . ,4) are complex amplitudes.
To the right-hand side of Eq. (1) one can add the TVPC (T -odd
P -even) term in a very general form:

e′
β

∗
M(0)T V PC

αβ eα = g̃{(σ · [m × e])(m · e′∗)

+ (σ · [m × e′∗])(m · e)}, (2)

where g̃ is the TVPC transition amplitude. To find the total
spin-dependent pd cross sections we use the generalized
optical theorem [19],

σ t
i = 4

√
π Im

Tr(ρiM(0))

Trρ̂i

, (3)

where M(0) = M(0)T CPC + M(0)T V PC is the transition oper-
ator from Eqs. (1) and (2) for the pd elastic scattering at zero
angle θ = 0, ρi is the initial spin-density matrix, and σ t

i is the
total cross section corresponding to the density matrix ρi . The
transition operator is normalized according to the following

relation with the differential cross section [13]:

dσ

dt
= 1

6
TrMM+. (4)

For the sum of Eqs. (1) and (2) one can write (see also Ref. [20])

M(0)αβ = g1δαβ + (g2 − g1)mαkβ + ig3σiεαβi + i(g4 − g3)

× σimimjεαβj + g̃σi(εzαimβmz + εzβimzmα),

(5)

where σi (i = x,y,z) are the Pauli spin matrices, εαβγ is
the fully antisymmetric tensor, and mα (α = x,y,z) are the
Cartesian components of the vector m.

The initial-state spin density matrix ρi = ρpρd is the
product of the spin density matrices for the proton

ρp = 1
2 (1 + ppσ ), (6)

where pp is the polarization vector of the proton, and for the
deuteron

ρd = 1
3 + 1

2Sjp
d
j + 1

9SjkPjk; (7)

here Sj is the spin-1 operator, pd
j and Pjk (j,k = x,y,z)

are the vector and tensor polarizations of the deuteron, and
Sjk = (SjSk + SkSj − 4

3δjk) is the spin-tensor operator. Using
Eqs. (3), (5), (6), and (7), one can find the total cross section
of the pd scattering as

σtot = σ t
0 + σ t

1pp · pd + σ t
2(pp · m)(pd · m)

+ σ t
3Pzz + σ̃pp

y P d
xz, (8)

where pp (pd ) is the vector polarization of the initial proton
(deuteron) and Pzz and Pxz are the tensor polarizations of the
deuteron. The OZ axis is directed along the m, the OY axis is
directed along the vector polarization of the proton beam pp,
and the OX axis is chosen to form the right-hand reference
frame. The following equations were found in Ref. [21] for
the TVPC:

σ t
0 = 4

3

√
π Im(2g1 + g2), σ t

1 = −4
√

πImg3,

σ t
2 = −4

√
π Im(g4 − g3), σ t

3 = 4
√

π Im(g1 − g2).

(9)

We find that the TVPC term g̃ in the forward pd elastic
scattering amplitude (2) leads to the following integrated cross
section:

σ̃ = −4
√

π Im 2
3 g̃. (10)

In Eq. (8) the terms σ t
i with i = 0,1,2,3 are nonzero only for

the TCPC (T -even P -even) interactions and the last term σ̃ is
nonzero if the TVPC (T -odd P -even) interactions occur. Thus,
the term σ̃ constitutes the null-test signal for time-reversal
invariance violating but P -parity-conserving effects. This term
can be measured in the transmission experiment [10] as a
difference of counting rates for the cases with p

p
y P d

xz > 0 and
p

p
y P d

xz < 0.
We find the following matrix elements of the TVPC

transition operator (2):〈
μ′ = 1

2 ,λ′ = 0
∣∣MT V PC

∣∣μ = − 1
2 ,λ = 1

〉 = i
√

2g̃, (11)
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〈
μ′ = 1

2 ,λ′ = −1
∣∣MT V PC

∣∣μ = − 1
2 ,λ = 0

〉 = −i
√

2g̃,

(12)

where μ (μ′) and λ (λ′) are spin projections of the initial (final)
proton and deuteron on the beam direction, respectively. The
diagonal matrix elements of the MT V PC operator are zeros.
For the operator MT CPC the corresponding matrix elements in
Eqs. (11) and (12) are identical and equal to

√
2g3.

III. SPIN-DEPENDENT GLAUBER FORMALISM WITH
STRONG AND TVPC INTERACTION

A. Hadronic and Coulomb pN interaction

Hadronic amplitudes of pN scattering are taken in a form
of [13]

MN (p,q; σ ,σN )

= AN + CNσ n̂ + C ′
NσN n̂ + BN (σ k̂)(σN k̂)

+ (GN + HN )(σ q̂)(σN q̂) + (GN − HN )(σ n̂)(σN n̂),

(13)

where q̂, k̂, and n̂ are defined as unit vectors along the vectors
q = (p − p′), k = (p + p′) and n = [k × q], respectively.
Normalization of the amplitudes AN , BN , CN , C ′

N , GN , and
HN is the same as in Ref. [13],

dσ

dt
= 1

4
TrMNM+

N , (14)

where dσ/dt is the differential cross section of the elastic pN
scattering. The Glauber formalism for the pd elastic scattering
accounting for full spin dependence of the pN amplitudes (13)
and S and D components of the deuteron wave function is
given in Ref. [13]. The unpolarized differential cross section
and analyzing powers of pd scattering calculated within this
formalism are in reasonable agreement with existing data in
the forward hemisphere at energies 250–1000 MeV [13,22].
Further development of this formalism was done in Ref. [14]
to allow for calculation of spin correlation parameters and
inclusion of the Coulomb interaction that is important at lower
energies.

We include the Coulomb interaction by adding to the
Glauber hadronic pd scattering amplitude the following pure
Coulomb amplitude of the pd scattering:

MC
pd (q) =

√
π

kpp

f C
pp(q)Sd (q/2), (15)

where f C
pp is the antisymmetric Coulomb amplitude of the pp

scattering [23]:

f C
pp(q) = f (θpp) − 1

2 (1 + σ · σ p)f (π − θpp) (16)

with

f (θpp) = − α

4vkpp sin2 θpp/2
exp

{
−i

α

v
ln sin

θpp

2
+ 2iχ0

}
;

(17)

here α is the fine structure constant, v (kpp) is the velocity
(momentum) of the proton in the c.m. pp system, and χ0 is the
Coulomb phase. The momentum q transferred in the process

pd → pd is related to the pp scattering angle θpp in the pp
c.m. as q = 2kpp sin θpp/2.

In Eq. (15) Sd (q/2) is the elastic form factor of the deuteron
which can be presented in the form [13]

Sd (q/2) = S0(q/2) − 1√
8
S2(q/2)S12(q̂; σ p,σ n). (18)

Here

S12(q̂; σ p,σ n) = 3(σ p · q̂)(σ n · q̂) − σ p · σ n (19)

is the tensor operator, σ n(σp) are the Pauli matrices acting on
the spin states of the neutron and proton in the deuteron, and
q̂ is the unit vector directed along the transferred momentum
q. The form factors S0 and S2 are related to the S and D
components of the deuteron wave function [13]:

S0(q) = S
(0)
0 (q) + S

(2)
0 (q), S2(q) = S

(1)
2 (q) + S

(2)
2 (q), (20)

where

S
(0)
0 (q) =

∫ ∞

0
dru2(r)j0(qr),

S
(2)
0 (q) =

∫ ∞

0
drw2(r)j0(qr),

(21)

S
(1)
2 (q) = 2

∫ ∞

0
dru(r)w(r)j2(qr),

S
(2)
2 (q) = − 1√

2

∫ ∞

0
drw2(r)j2(qr).

B. TVPC pN scattering amplitudes

In general, the TVPC NN interaction contains 18 different
terms [17]. We consider here only the following terms of the t
matrix of the elastic pN scattering investigated in Ref. [12]:

tpN = fN (σ · σN )(q · k)/m2
p + hN

[
(σ · k)(σN · q)

+ (σN · k)(σ · q) − 2
3 (σN · σ )(k · q)

]
/m2

p +
+ gN [σ × σN ] · [q × k]/m2

p

+ g′
N (σ − σN ) · i [q × k][τ × τN ]z/m2

p. (22)

Here σ (σN ) is the Pauli matrix acting on the spin state of
the proton (nucleon N = p,n), and τ (τN ) is the isospin
matrix acting on the isospin state of the proton (nucleon),
q = p − p′. In the framework of the phenomenological meson
exchange interaction the term g′

N corresponds to the ρ-meson
exchange, and the hN term is caused by the axial meson
exchange. As shown in Ref. [24], the contribution of the
π - and σ -meson exchanges to TVPC NN interactions is
excluded. The TVPC NN interaction potential corresponding
to h1(1170), IG(JPC) = 0−(1+−) exchange in r space has the
form [25]

Vh(r) = −GhḠhm
2
h

2πm2
N

Y1(x)[(σ 1p̄)(σ 2r̂) + (σ 2p̄)(σ 1r̂)], (23)

where Gh (Ḡh) is the ordinary (TVPC) hNN coupling
constant, mh is the h1-meson mass, p̄ = (p1 − p2)/2, r =
r1 − r2, Y1(x) = (1 + x)e−x/x2, x = mhr; σ i/2 and pi are
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the spin-operator and momentum of ith nucleon, respectively,
and ri is its r coordinate (i = 1,2). Making the Fourier
transformation of Eq. (23) we obtain the interaction potential
in p space and, therefore, find the factor hN in Eq. (22) within
the Born approximation for the tpN amplitude as the following:

hN = −iφh

2G2
h

m2
h + q2

FhNN (q2), (24)

where φh = Ḡh/Gh is the strength of the T -invariance-
violating potential of h1-meson exchange relative to the T -
conserving one, and FhNN (q2) = (�2 − m2

h)/(�2 + q2) is the
phenomenological monopole form factor in the hNN vertex.
Similarly, proceeding from the TVPC ρ-meson exchange NN
potential in r space [25–27] we find for the g′ term in Eq. (22)

g′
N = −φρ

1

2

g2
ρκ

m2
ρ + q2

FρNN (q2), (25)

where φρ = ḡρ/gρ is the ratio of the TVPC ρNN coupling
constant ḡρ to the strong one gρ , mρ is the mass of the ρ
meson, κ is the anomalous magnetic moment of the nucleon,
and FρNN is the ρNN vertex form factor.

C. The Glauber operator

The Glauber operator of the elastic pd scattering in the
general case can be written as

M(q,Q; S,σ ) =
∫∫∫

eiQr�+
d (r)O�d (r)d3r, (26)

where �d is the deuteron wave function, q is the transferred
momentum, S = (σ p + σ n)/2 is the spin operator of the
deuteron nucleons, and σ/2 is the spin operator of the incom-
ing proton. We use the deuteron wave function generated by
the NN interaction, which conserves time-reversal invariance
and P parity and has the following standard form:

�d (r; σ n,σ p) = 1√
4πr

(
u(r) + 1√

8
w(r) · S12(r̂; σ n,σ p)

)
,

(27)

where lower index n (p) refers to the neutron (proton) of the
deuteron target; u and w denote the S and D wave of the
deuteron, respectively; and the tensor operator S12(r̂; σ n,σ p)
is defined by Eq. (19).

The operator for the single- and double-scattering mecha-
nisms of pd scattering in the general case (beyond the collinear
kinematics) can be written as an expansion over the Pauli
matrices σ n, σ p and in notations of Ref. [13] takes the form

O(σ ,σ n,σ p) = U (σ ) + Vn(σ ) · σ n + Vp(σ ) · σ p

+Wij (σ ) · (σniσpj + σnjσpi), (28)

where i,j = q,n,k are indices of the projections onto direc-
tions of three orthogonal vectors q̂,n̂,k̂ introduced in Eq. (13).
The operators U , V , and W act only on the spin state of the
beam proton and do not depend on the spins and coordinates r
of the target nucleons. When making the matrix element of the
operator (28) over the deuteron wave functions (27) we obtain
from Eq. (26)

M(q,Q; S,σ ) =
∫∫∫

eiQr�+
d (r)O�d (r)d3r

= US0 + VSS
(0)
0 + [Wij {Si,Sj } − Wii]S

(0)
0 − 1√

2
US12(Q̂; S,S)S2

− 1√
8
S12(Q̂; V,S)S(1)

2 +
√

8 WiiS12(Q̂; S,S)S(1)
2 − 1√

2
S12(Q̂; V,S)S(2)

2 − 1

2
VSS

(2)
0 +

−WiiS12(Q̂; S,S)S(2)
2 − 2 WiiS

(2)
0

−
√

2 Wij [{Si,Sj }S12(Q̂; S,S) + S12(Q̂; S,S){Si,Sj }]S(1)
2

+ 1

16π
Wij

∫
d3r

1

r2
eiQrw2 S12(r̂; σ n,σ p){Si,Sj }S12(r̂; σ n,σ p). (29)

Here we use the notations V = Vp + Vn and
{Si,Sj } = SiSj + SjSi ; the form factors S0(Q),S2(Q),
S

(0)
0 (Q),S(2)

0 (Q),S(1)
2 (Q), and S

(2)
2 (Q) are defined in

Eqs. (20), (21); and the tensor operators S12(Q̂; V,S)
and S12(Q̂; S,S) are defined in Eq. (19). In Eq. (29) summation
is performed over repeating indexes i,j . To make the
integration over directions of the vector r in Eq. (29), we used
the following relation [28]:∫∫

d�r exp (−iQr)Tl(r̂) = 4πjl(Qr)(−i)lTl(Q̂), (30)

where jl(x) is the spherical Bessel function, T2(n̂) =
(σ p · n̂)(σ n · n̂) − 1

3 (σ p · σ n), T0(n̂) = σ p · σ n; and n̂, Q̂,

and r̂ are unit vectors along n, Q and r,
respectively.

Equation (29) is a generalization of Eq. (18) from
Ref. [13]. The difference from Ref. [13] consists in two
following respects. First, the operators U , V, and Wij

contain not only T -even P -even terms but T -odd P -even
terms as well. Second, we present in Eq. (29) all terms
allowed within the Glauber theory, whereas in Ref. [13]
small spin-dependent terms (of the order higher than two
in definitions of Ref. [13]) were neglected. These terms are
small at high energies about 1 GeV but may be important
at lower energies ∼100 MeV, corresponding the COSY
experiment [10].
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D. Differential spin observables

Vector analyzing powers Ay and spin correlation coeffi-
cients Ci,j , Cij,k of the elastic pd scattering are calculated
as

Ap
y = TrMσyM

+/TrMM+,

Ad
y = TrMSyM

+/TrMM+,

Cxz,y = TrMSxzσyM
+/TrMM+, (31)

Cy,y = TrMSyσyM
+TrMM+,

Cx,z = TrMSxσzM
+/TrMM+,

Cz,x = TrMSzσxM
+/TrMM+,

where M is the transition operator given by Eq. (26). Details
of these calculations in terms of invariant amplitudes are
described in Ref. [14].

IV. NULL-TEST SIGNAL OF TVPC INTERACTIONS

Equation (29) gives the single-scattering pd amplitude if
one put Q = q/2, where q is the momentum transferred in
the pd scattering. Within the Glauber theory the amplitude
of the single-scattering mechanism is proportional to the
on-shell tpN (q) amplitude. At zero scattering angle the TVPC
amplitude (22) vanishes, and therefore the corresponding
pd-scattering amplitude and total cross section σ̃ of pd
scattering are equal to zero in the single-scattering Glauber
approximation. Furthermore, the f term in Eq. (22) gives
zero contribution within the Glauber theory both for the single
and double scattering, because for the on-shell pN scattering
involved in multistep scattering (28), one has (q · k) = 0. For
the same reason, the component of the h term proportional
to σNσ vanishes in Eq. (22) too. The rest g′, g, and h
terms contribute to the double-scattering forward pd-elastic
amplitude.

The double-scattering amplitude is given by integration of
Eq. (29) over Q ≡ q′ [13]

M (d) = i

2π3/2

∫∫
d2q ′M(q,q′; S,σ ). (32)

According to Eq. (11), in order to get the TVPC g̃ amplitude
one has to calculate the matrix element of the operator given
by Eq. (32) at q = 0 over definite initial |μ,λ〉 and final |μ′,λ′〉
spin states:

g̃ = 1

(2π )3/2

∫
d2q ′

〈
μ′ = 1

2
,λ′ = 0

∣∣∣∣M(q = 0,q′; S,σ )

∣∣∣∣μ
= −1

2
,λ = 1

〉
. (33)

When considering the double-scattering mechanism, in addi-
tion to three vectors {k̂,q̂,n̂} defined after Eq. (13) it is conve-
nient to introduce two more sets of orthonormal unit vectors
{k̂j ,q̂j ,n̂j } for the first (j = 1) and second (j = 2) collision
as was done in Ref. [13]. At zero scattering angle we have
q1 = −q2 = −q′, where q1 (q2) is the transferred momentum
in the first (second) collision; n1 = −[k × q′], n2 = [k × q′],
k1 = k2 = k + q′. In the eikonal approximation vectors q and

d d

p

n
p p

n

n p

d

p

n

n

n

p

p p

(a) (b)

FIG. 1. Double-scattering mechanism with TVPC (black circle)
and T -even P -even (open circle) charge-exchange pn interaction.

q′ are orthogonal to k and we assume k1 = k2 = k [13]. The
Cartesian projections for unit vectors can be written in terms
of components of the two-dimensional vector q′ = (q ′

x,q
′
y)

(OZ axis is directed along k) as n̂1x = q ′
y/q

′, n̂1y = −q ′
x/q

′,
n̂1z = 0.

A. g′ term

Nonzero matrix elements of the isospin operator connected
with the g′ term in Eq. (22) are

〈n,p|[τ × τN ]z|p,n〉 = −i2, 〈p,n|[τ × τN ]z|n,p〉 = i2.

(34)

Therefore, the g′ term contributes only to the charge exchange
transitions. Two allowed double-scattering amplitudes with
one TVPC and another T -even P -even pN interaction are
depicted in Fig. 1. Within the operator formalism these two
terms can be evaluated in the following way. For pure T -even
P -even (TCPC) interactions the transition operator for the
charge-exchange mechanism of the pd → pd process has the
form [29]

Oc
T CPC = − 1

2 [Mc(q2)Mc(q1)], (35)

where Mc(q) = Mn(q) − Mp(q) is the transition operator for
the strong charge-exchange pn → np amplitude that is equal
to the np → pn amplitude. We note that according to Eq. (34),
for the TVPC NN interaction with the g′ terms the amplitude
pn → np differs from the amplitude np → pn by the sign.
In order to get the TVPC operator of the charge-exchange
pd scattering, we make in Eq. (35) the replacement Mc(q) →
Mc(q) + Tc(q), where the index c means either pn → np or
np → pn and Tc is the TVPC charge-exchange NN -scattering
operator, normalized as MN in Eq. (13) and related to the tpN

operator given by Eq. (22) as

TpN = mN

4
√

πkpN

tpN . (36)

Furthermore, we neglect the terms of the second order in Tc as
compared to the first order and omit the T -even term ∼ McMc.
As a result, the TVPC charge-exchange operator takes the form

Oc
T V PC = − 1

2 [Mnp→pn(q2)Tpn→np(q1)

+ Tnp→pn(q2)Mpn→np(q1)]. (37)

For further evaluation it is convenient to use Mnp→pn =
Mpn→np = Mn − Mp. Under the sign of the integral over q′ in
Eq. (33), the operator (37) is not changed after the substitution
q1 ↔ q2. In order to find the operators U , Vp, Vn, and Wij

introduced in Eq. (28), it is convenient to add to the right side
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of Eq. (37) the term Oc
T V PC(1 ↔ 2) and divide the obtained

sum by the factor of 2:

Oc
T V PC = fI + fII , (38)

where

fI = − 1
4 [(Mn(q2)Tpn→np(q1)

+ Tnp→pn(q2)Mn(q1)) + (q1 ↔ q2)],

fII = 1
4 [Mp(q2)Tpn→np(q1)

+ Tnp→pn(q2)Mp(q1) + (q1 ↔ q2)]. (39)

Using Eqs. (13) and (34) and symmetry in respect to the
replacement (q1 ↔ q2), we find that AN , BN , GN , and HN

terms cancel in operators fI and fII :

fI = g′

�
[Cn(σ · n̂1)(σ n − σ p) · n1

−C ′
n(σ n · n̂1)(σp · n1) + C ′

nn1n̂1],
(40)

fII = g′

�
[Cp(σ · n̂1)(σp − σ n) · n1

−C ′
p(σ p · n̂1)(σ n · n1) + C ′

pn1n̂1],

where

� = 4
√

πmNkpN . (41)

Making the sum fI + fII we find the operators U,V, and Wij

in Eq. (28) for the g′ term as the following:

U = g′

�
(C ′

n + C ′
p)n1n̂1,

Vp = (Cp − Cn)(σ · n1)n̂1, Vn = (Cn − Cp)(σ · n1)n̂1,

Wij = −g′

�
(C ′

n + C ′
p)n1i n̂1j , Wii = −g′

�
(C ′

n + C ′
p)n1n̂1.

(42)

One can see from Eqs. (42) that V = Vp + Vn ≡ 0. Further-
more, taking into account the relation Vpσ p + Vnσ n = VS,
we find that for the g′ term the operator Eq. (28) does not
depend on the spin of the proton beam σ . As a result the
transition operator given by Eq. (29) is diagonal with respect
to spins of the proton beam. According to Eq. (11), it means
that the contribution of g′ term to the TVPC amplitude g̃ is
equal to zero. We emphasize that this result is true for the S and
D components of the deuteron wave function and for all spin
terms in the transition amplitude (29) allowed in the Glauber
formalism.

It is easy to find that this result is valid for the nd scattering
too.

B. h and g terms

The TVPC interaction corresponding to the h and g terms
in Eq. (22) occurs both in the pp and pn elastic scattering.
Following Refs. [29] [see Eq. (2.7) in it] and [13] we consider
the symmetric O

(d)
+ and antisymmetric O

(d)
− parts of the

operator Q(d):

Q
(d)
+ = 1

2 [(Tpp(q1) + Mp(q1)(Tpn(q2) + Mn(q2))

+ (Tpn(q2) + Mn(q2))(Tpp(q1) + Mp(q1)],

Q
(d)
− = 1

2 [(Tpp(q1) + Mp(q1)(Tpn(q2) + Mn(q2))

− (Tpn(q2) + Mn(q2))(Tpp(q1) + Mp(q1)]. (43)

According to Refs. [29] and [13] the matrix elements of the
antisymmetric operator Q

(d)
− over the spin S = 1 states of

the deuteron are negligible and therefore we drop this term.
In the operator Q

(d)
+ one can neglect terms of the second order

in the TVPC interaction (∼ TppTpn) as compared to the first
order TpN and should omit the pure T -even terms ∼ MpMn.
Thus, the double-scattering TVPC operator consists of the
following four terms:

Q
(d)
+ = 1

2 [Tpp(q1)Mn(q2) + Mn(q2)Tpp(q1)

+ Tpn(q2)Mp(q1) + Mp(q1)Tpn(q2)]. (44)

As in the case of g′ term, it is convenient to add to the right
side of Eq. (44) the term O

(d)
+ (1 ↔ 2) and divide the obtained

sum by the factor of 2.
For the h term we find the operators U,V , and Wij in

Eq. (28) for the forward double scattering as

U = 0, Vp = 0, Vn = 0, Wii = 0, (45)

Wij = 1

�
{C ′

n(q ′)hp(q ′)[σk1n̂2iq1j + σq1k1j n̂2i]

+C ′
p(q ′)hn(q ′)[σk1n̂2j q1i + σq1k1i n̂2j ]},

Wij {Si,Sj } = C ′
nhp + C ′

phn

�
{(σk1)[(n̂2S)(q1S) + (q1S)(n̂2S)]

+ (σq1)[(k1S)(n̂2S) + (n̂2S)(k1S)]}. (46)

In Eq. (28) in this case only the operator Wij depends on the
beam proton spin and, therefore, gives nonzero contribution to
g̃. The matrix elements over the proton spin states are〈

μ′ = +1

2

∣∣∣∣Wij {Si,Sj }
∣∣∣∣μ = −1

2

〉
= (C ′

nhp + C ′
phn)( − q ′

x + iq ′
y)[SzSxq

′
y − SzSyq

′
x

− q ′
ySxSz + q ′

xSySz]
k2

�|n1| . (47)

For the deuteron spin matrix elements of the operator M

one has 〈λ′ = 0|M|λ = 1〉 = −(Mzx + iMzy)/
√

2. Finally the
spin matrix element in the S-wave approximation is the
following:〈

μ′ = 1

2
,λ′ = 0

∣∣∣∣M(q = 0,q′; S,σ )

∣∣∣∣μ = −1

2
,λ = 1

〉

= − ik√
2

(C ′
nhp + C ′

phn)q ′

�
S

(0)
0 (q ′). (48)

For the g term we have got

U = 0, Vp = 0, Vn = 0, Wii = 0,

Wij {Si,Sj } = C ′
ngp + C ′

pgn

�
{(n̂2 · S)([n1 × σ ] · S)

+ ([n1 × σ ] · S)(n̂2 · S)}. (49)
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Furthermore, using the proton spin matrix element〈
μ′ = 1

2

∣∣([n1 × σ ] · S
∣∣μ = − 1

2

〉 = (−iq ′
y + q ′

x)Szk, (50)

we find in the S-wave approximation〈
μ′ = 1

2
,λ′ = 0

∣∣∣∣M(q = 0,Q; S,σ )

∣∣∣∣μ = −1

2
,λ = 1

〉

= ik√
2

(C ′
ngp + C ′

pgn)q ′

�
S

(0)
0 (q ′). (51)

The operator (28) does not depend on the deuteron state.
Therefore, the contribution of the D component does not
change the factor C ′

nhp + C ′
phn in Eq. (48) and the factor

C ′
ngp + C ′

pgn in Eq. (51). The D component can contribute
due to the last two terms in Eq. (29) with Wij caused by
interference with the S wave and by the w2 term. According to
analysis performed in Ref. [13], at energies ∼100 MeV the D-
wave contribution as well as the spin-dependent pN -scattering
amplitudes are less important than the S-wave contribution
and spin-independent pN amplitudes. Therefore, we postpone
investigation of the D-wave contribution to the next paper.

C. g̃ amplitude

Thus, the double-scattering mechanism with TVPC inter-
action from Eq. (22) leads to the following result for the g̃
amplitude in the S-wave approximation:

g̃ = i

4mpπ

∫ ∞

0
dqq2S

(0)
0 (q)[C ′

n(q)(gp − hp)

+C ′
p(q)(gn − hn)]. (52)

V. NUMERICAL RESULTS AND DISCUSSION

The main aim of this study is to analyze the null-test signal
σ̃ within the Glauber theory. In order to demonstrate capability
of the Glauber model at energies of the planned COSY
experiment [10] we calculated several spin observables of the
pd scattering at 135 MeV in comparison with the existing data.
The results of our calculations for the unpolarized differential
cross section, vector Ay and tensor Aij analyzing powers, and
spin correlations parameters Ci,j , Cij,k given in Eqs. (31) are
in reasonable agreement with the available experimental data
and/or Faddeev calculations [15,16] at 135 and 250 MeV in the
forward hemisphere (θcm < 30◦). Some of these calculations
are shown in Fig. 2. We also found that Coulomb effects
taken into account as explained above improve agreement
with the data on the nonpolarized differential cross section
and vector analyzing powers A

p
y and Ad

y at these energies
at small angles θcm � 20–30◦. The obtained results lead us
to the conclusion that the Glauber theory is quite suitable
for studying the null-test signal for TVPC effects in the pd
scattering because the corresponding signal is not affected by
the strong background of T -even P -even interactions.

The previous study of the null-test signal in pd scattering
was performed in Ref. [12]. The integrated cross section
σ̃ was calculated within an approach accounting separately
for the elastic channel and the deuteron breakup pd → pnp
estimated within the single-scattering approximation. The
double-scattering mechanism was not considered. Extension
of the calculation in Ref. [12] to higher energies above the
pion threshold is questionable because the meson production
is not taken into account in Ref. [12]. In contrast, our approach
based on the optical theorem is more general and allows one
to overcome these drawbacks. In particular, we find that the σ̃
observable is determined by the double-scattering mechanism.
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FIG. 2. (Color online) Results of our calculation [14] of the spin observables Cxz,y (a), Cz,x (b), Cy,y (c), and Cx,z (d) for the pd elastic
scattering in comparison with the data [16] at 135 MeV: without (dashed line) and with the Coulomb interaction included (full).
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Our main result obtained within the Glauber theory is
formulated by Eq. (52) for the null-test signal. It is worth
noting that in our approach only the amplitude C ′

N appears in
Eq. (52). Some other T -even P -even pN amplitudes, which
were found in Ref. [12] to contribute to the TVPC null-test
signal, are absent in Eq. (52). There are two other points worth
mentioning in relation to Eq. (52). First, the g′ term makes
a zero contribution to g̃ and this result is true in the general
case when both the S and D components of the deuteron wave
function are taken into account. Therefore, an exchange by the
lightest meson, that is the ρ meson, is allowed in a general case
in the TVPC NN interaction [7] and, as expected, makes the
most important contribution to the TVPC NN interaction but
does not contribute to the null-test signal σ̃ . Contribution of
other heavier mesons is usually expected to be less important
due to the NN repulsive core at short distances between
nucleons. A microscopic T -violating optical potential for the
nucleon-nucleus interaction was derived in Ref. [27] starting
from the T -violating ρ-meson interaction between nucleons.
This potential and the corresponding coupling constant of the
ρ meson to the nucleon ḡρ is widely used [6,7] as a measure
of intensity of the TVPC effects. However, as we have shown,
for the nucleon-deuteron scattering this parameter cannot be
applied strightforwardly as a scale of the TVPC interactions.

Strong suppression of the contribution of the ρ meson as
compared to the axial h1 meson was found numerically in the
Faddeev calculations [25] of the null-test signal for the nd
scattering at 100 keV, but no explanation of this result was
offered. We suppose that the cause for this suppression is the
same spin-isospin structure of the scattering amplitude, which
leads to the vanishing ρ-meson contribution in the Glauber ap-
proach. A qualitative explanation of the vanishing contribution
of the TVPC charge-exchange amplitude for the TCPC terms
C ′

N is the following. For the strong (TCPC) interaction, the
charge-exchange amplitude Mpn→np(q) appearing in Fig. 1(a)
coincides with the charge-exchange amplitude Mnp→pn(q) in
Fig. 1(b). In contrast, for the TVPC interaction caused by the g′
term, the corresponding charge-exchange amplitudes have the
opposite signs due to Eqs. (34). The corresponding deuteron
vertices are the same in Figs. 1(a) and 1(b). Taking into account
the symmetry with respect to the substitution q1 ↔ q2 under
the sign of the integral over q′ and keeping in mind that spin
dependence of the strong NN scattering amplitudes with the
C ′

N term is identical to that for the TVPC g′ term, we find
that the double-scattering amplitude in Fig. 1(a) differs from
that in Fig. 1(b) only by the sign. Therefore, the sum of these
diagrams for the C ′

N and g′ terms is zero.1

The second point is connected with the role of the Coulomb
interaction in the cross section σ̃ . Being a T -even P -even inter-
action, the Coulomb pp scattering cannot generate the TVPC
amplitude g̃ within the single-scattering mechanism; therefore

1The TVPC nucleon-nucleon interaction with the g′ term can give
a nonzero contribution to the pd and nd scattering if this interaction
is included into the deuteron wave function. This is evident from
Fig. 1 if these TVPC effects are included only into the first (second)
deuteron vertex in both Figs. 1(a) and 1(b), but not included into the
upper vertices. This dynamics will be investigated in a special paper.

its contribution to g̃ is zero in this approximation. In order to
include the Coulomb interaction within the double-scattering
mechanism of the Glauber theory, one should replace the pure
hadronic T -even P -even pp amplitude Mp given in Eq. (13)
by the sum Mp + f̃ C

pp, where f̃ C
pp is the properly normalized

Coulomb pp-scattering amplitude (16). It is evident from the
spin structure of this amplitudes that the Coulomb term is
added to the spin-independent term Ap, Ap → Ap + f̃ C

pp and
double-spin terms Bp, Gp, Hp but does not enter into the
single-spin terms Cp and C ′

p. However, all amplitudes Ap,
Bp, Gp, Hp are excluded from the above derived formula for
the TVPC amplitude (52) due to the specific spin structure of
Eq. (2). As was noted in Sec. IV B the latter statement is also
true if the D wave of the deuteron is taken into account. The
only factor in Eq. (52) which contains the Coulomb effects is
C ′

p(q). This is because the Coulomb scattering pp amplitude
enters into the spin-independent term Ap, which, in turn, enters
into the amplitude C ′

p with the relativistic correction factor
q/2mp [30] (mp is the nucleon mass) C ′

p = Cp + iAp
q

2mp
.

When substituting this amplitude C ′
p into Eq. (52) and making

integration over the transferred momentum q, one can see that
due to the presence of the factor ∼q3 in the integrand the
singularity of the Coulomb amplitude (17) at θpp = 0 does not
lead to divergence of the g̃ amplitude.

Energy dependence of σ̃ is calculated here for the h
term in units of the unknown hNN coupling constant φh =
Ḡh/Gh with G2

h/4π = 1.56 and mh = 1.17 GeV [25]. For
the monopole form factor FhNN we used � = 2 GeV [12].
The pN scattering amplitudes CN and AN were calculated
using the scattering analysis interactive dial-in system (SAID)
database [31]. The results obtained with and without allowance
for Coulomb effects are shown in Fig. 3. One can see that
the magnitude of σ̃ smoothly decreases with increasing beam
energy. This is caused be the energy dependence of the
strong T -even P -even pN -scattering amplitude. The role of
the Coulomb interaction in the null-test signal σ̃ is rather

0 200 400 600 800 1000
 T  [MeV]

10-2

10-1

σ T
V

P
C
 /φ

h [m
b]

h -term

pd

FIG. 3. The calculated energy dependence of the TVPC cross
section |̃σ | for the h term in units of the constant φh = Ḡh/Gh for
mh = 1.17 GeV, � = 2 GeV in hN by Eq. (24) with the Coulomb
interaction included (dashed line) and excluded (full). The dot-dashed
curve is obtained at � → ∞, m2

h + q2 → m2
h without accounting for

the Coulomb effects.
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unimportant in the considered interval of energies (Fig. 3). At
a beam energy 135 MeV we obtain σ̃ = 0.039φh mb and σ0 =
78 mb. Assuming the accuracy of the experiment allows us to
measure the ratio σ̃ /σ0 at the level ∼10−6, the bound on φh can
be achieved as φh � 0.002. If we neglect some details of the
phenomenological h exchange and put FhNN = 1 and (m2

h +
q2)−1 → m2

h in Eq. (24), the energy dependence of σ̃ corre-
sponds to the dot-dashed curve in Fig. 3. In this case we obtain
at 135 MeV σ̃ = 0.063φh mb and, therefore, at the same accu-
racy of the experiment the bound is φh � 0.0012. The g term
leads to a very similar energy dependence. Figure 3 shows that
the TVPC cross section σ̃ increases with decreasing energy.
Perhaps, at energies below∼50 MeV the sensitivity of the ex-
periment [10] to the TVPC effects is higher. However, at these
low energies the applicability of the Glauber theory to the spin
observables of the pd scattering is not validated, and therefore
rigorous calculations like the Faddeev ones are needed.

Let us consider possible false effects in the planned
experiment [10]. One source of these effects is connected
with the non-zro vector polarization of the deuteron pd

y �= 0
directed along the vector polarization of the proton beam
p

p
y . In this case the term σ1p

p
y pd

y in Eq. (8) contributes to
the asymmetry corresponding to the cases of p

p
y P d

xz > 0 and
p

p
y P d

xz < 0, which is planned to be measured in the TRIC
experiment [10]. According to our calculation, at a beam
energy of 135 MeV the total cross sections are σ t

0 = 78.5 mb,
σ t

1 = 3.7 mb, σ t
2 = 17.4 mb, and σ t

3 = −1.1 mb. Therefore,
the ratio r = σ t

1/σ
t
0 is ≈ 0.05. If the TRIC project is going

to measure the ratio RT = σ̃ /σ0 with an uncertainty about
�10−6 (upper limit for RT ), one can find from the obtained
ratio r that the vector polarization of the deuteron pd

y has
to be less than ≈2 × 10−6. When making this estimation, we
assume that the background-to-signal ratio is pd

y σ t
1/σ̃ ∼ 10−1.

The total hadronic polarized cross sections σi (i = 0,1,2,3)
are calculated here using the optical theorem. The Coulomb

effects for these observables can be taken into account along
the line of Ref. [32] using the beam acceptance angle.

VI. CONCLUSION

Using the representation of Ref. [18] for the forward elastic
pd scattering amplitude and including the phenomenological
TVPC term in the most general form, we show on the basis
of the optical theorem that this term generates an extra spin-
dependent total cross section of the pd scattering.

This additional term is zero if the TVPC interaction
is absent and nonzero only in the presence of the TVPC
interaction. Earlier this conclusion was found in different
representations [11,12]. Obviously, this null-test signal for
T -invariance violation is not affected by the initial- or/and
final-state interactions, because it is derived from a genuine
pd-scattering amplitude considered beyond the perturbation
theory. Furthermore, using the Glauber theory we show
that (i) the TVPC interaction caused by the ρ-meson ex-
change does not contribute to the null-test observable σ̃ and
(ii) the Coulomb interaction does not lead to divergence of this
observable. Numerical calculation of the energy dependence
of σ̃ shows that the choice of ∼100 MeV made in Ref. [10]
is more preferable than ∼1 GeV. If the cross section σ̃ will be
measured with the planned accuracy [10], the bounds on T -odd
coupling constants of the NN interaction can be achieved as
φh � (1 ÷ 2) × 10−3.
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