
PHYSICAL REVIEW C 92, 014001 (2015)
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The longest-range part of the nuclear force from the one-pion exchange governs the energy dependence of
the scattering amplitude in the near-threshold region and imposes correlations between the coefficients in the
effective range expansion. These correlations may be regarded as low-energy theorems and are known to hold
to a high accuracy in the neutron-proton 3S1 partial wave. We generalize the low-energy theorems to the case of
unphysical pion masses and provide results for the correlations between the coefficients in the effective range
expansion in this partial wave for pion masses up to Mπ ∼ 400 MeV. We discuss the implications of our findings
for the available and upcoming lattice-quantum-chromodynamics simulations of two-nucleon observables.
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I. INTRODUCTION

The dependence of the nuclear forces and, more generally,
nuclear observables upon the fundamental parameters of the
Standard Model such as the light quark masses is one of the
open problems in contemporary theoretical physics. Being a
fascinating question on its own, it has attracted considerable
attention on the theory side and was shown to play an important
role for various phenomena in nuclear, astro-, and particle
physics. In particular, Bulgac et al. have speculated about an
intriguing possibility of the appearance of a bound state in
the 3P 0 neutron-proton partial wave in the so-called chiral
limit of quantum chromodynamics (QCD) corresponding to
massless up and down quarks [1]. Such a scenario would
clearly have far reaching consequences for nuclear physics.
Another interesting observation was made in Ref. [2], where
the proximity of the physical quark masses to the critical
trajectory for an infrared renormalization group limit cycle of
QCD was pointed out and conjectured to be responsible for the
success of Efimov’s program for describing the three-nucleon
problem; see also Ref. [3] for a follow-up study along this line.

The quark mass dependence of the nuclear force plays an
important role for constraining certain types of extensions of
the Standard Model. In particular, many such theories allow for
the parameters of the Standard Model such as the light quark
masses to vary over time. The knowledge of the quark mass
dependence of the nuclear force combined with the theory
of Big Bang nucleosynthesis (BBN) and the observed nuclear
abundances allow one to constrain a possible variation of quark
masses at the time of BBN [4,5].

Recently, this topic has experienced renewed interest
in connection with the anthropic considerations in nuclear
physics [6]. In particular, the second 0+ state of 12C,
the so-called Hoyle state, is well known to play a crucial
role for a formation of life-essential elements such as 12C
and 16O in hot, old stars because of its closeness to the
4He - 8Be threshold [7]. Changing its excitation energy of
ε = 379.47(18) keV, measured with respect to the triple-α
threshold, by more than ∼25% was shown to strongly decrease
the production rate of either 12C or 16O [8,9]. The Hoyle state

is, therefore, viewed as a promising candidate to address the
fine-tuning problem of the fundamental constants of nature in
connection with the anthropic principle. The sensitivity of the
energy difference ε to a variation of the light quark masses was
recently analyzed within an ab initio framework of nuclear
lattice simulations [10,11]. This theoretical approach makes
use of a discretized formulation of chiral effective field theory
(EFT) combined with the Monte Carlo method to perform
Euclidean time evolution of an A-nucleon state; see Ref. [12]
for a review article. Presently, by far the dominant source of
the theoretical uncertainty in this calculation is related to the
lack of knowledge of the quark mass dependence of the nuclear
force or, more precisely, of the nucleon-nucleon (NN) S-wave
scattering lengths.

While the ultimate answer to the question of quark mass
dependence of hadronic observables is eventually to be
provided by lattice QCD, one can gain useful insights into
this topic within the framework of chiral EFT. During the past
two decades, this theoretical approach was developed into a
powerful tool to derive nuclear two- and many-body forces
and the corresponding current operators in a systematically
improvable and model-independent way; see Refs. [13,14]
for recent review articles. It exploits the symmetry and
symmetry-breaking pattern of QCD to formulate an appro-
priate EFT in terms of pions and nucleons [and possibly
of the �(1232) isobar] which are the relevant degrees of
freedom for low-energy nuclear physics in the nonstrange
sector. The resulting effective Lagrangian was used to analyze
hadronic observables in the Goldstone-boson and single-
nucleon sectors as well as nuclear forces and the corresponding
current operators by means of the chiral expansion, i.e., a
perturbative expansion in powers of the pion mass Mπ and
three-momenta of external particles. In particular, for the
two-nucleon force, this expansion was pushed to next-to-next-
to-next-to-next-to-leading order [15,16] and demonstrated to
provide very accurate description of low-energy NN scattering
observables and the deuteron properties [15,17]. Notice that
while the number of the relevant low-energy constants (LECs)
in the effective Lagrangian grows with an increasing order of
the calculation, the large amount of available experimental data
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on low-energy proton-proton and neutron-proton scattering
observables make their determination unproblematic.

Given its reliance on the spontaneously broken approximate
chiral symmetry of QCD, chiral EFT provides, at least in
principle, a suitable theoretical framework to address quark
mass dependence of the nuclear forces in a systematic way;
see Refs. [2–5,10,11,18–24] for recent studies along this
line and Refs. [1,25] for related calculations at the more
phenomenological level. Clearly, the major complication
which prevents one from being able to perform accurate
chiral EFT calculations of few- and many-nucleon systems at
unphysical values of the quark masses is the lack of knowledge
of the corresponding LECs. Quark mass dependence of
the short-range interactions induced by integrating out the
momentum scale associated with real pion production was
discussed in Ref. [26]. Further complications emerge from the
appearance of a finite cutoff in the calculations. This feature
is unavoidable if the one-pion exchange potential is iterated
in the nonrelativistic Lippmann-Schwinger equation to all
orders. Such an approach relies on implicit renormalization
which makes it difficult in practice to control the quark mass
dependence of short-range operators in a systematic way.
Notice that the above-mentioned complications can be avoided
by treating the exchange of pions in perturbation theory using,
e.g., the approach proposed by Kaplan, Savage, and Wise
(KSW) [27]; see Ref. [19] for studies along this line and
Ref. [23] for calculations using a closely related approach with
dibaryon fields. The perturbative treatment of the one-pion
exchange within this framework was, however, shown to be
inadequate in spin-triplet channels of NN scattering [28,29].

Recently, an attempt was made to overcome the above-
mentioned difficulties associated with the unknown quark
mass dependence of the short-range part of the nuclear
force by employing a resonance saturation hypothesis for
contact NN operators [5]. It is well known that the LECs
accompanying the NN contact interactions can be understood
at a semiquantitative level in terms of the exchange of heavy
mesons in the sense of resonance saturation [30]. Using
unitarized chiral perturbation theory and the information
provided by lattice-QCD simulations to determine the pole
positions of the relevant resonances as functions of the quark
masses and assuming the validity of the resonance saturation
picture at unphysical pion masses allows one to predict the
quark mass dependence of the contact operators and to carry
out chiral extrapolations in the NN sector. This strategy was
followed in Ref. [5] up to next-to-next-to-leading order in
chiral EFT within the Weinberg power counting scheme.
It was, in particular, found that the deuteron is likely to
become less bound at larger values of the light quark mass.
These findings are in good agreement with the ones achieved
in Ref. [25] using a more phenomenological approach by
considering a set of Argonne models for NN interaction. A
detailed comparison of these results with the available earlier
chiral EFT calculations both within the Weinberg and the
KSW power counting schemes can be found in Ref. [5]. We
emphasize, however, that modeling the Mπ dependence of
the contact interaction, as done in Ref. [5], provides a sub-
stantial source of uncertainty which was not estimated in that
work.

Finally, chiral extrapolations of the NN S-wave scattering
lengths and the deuteron binding energy were considered in
Ref. [31] using the chiral EFT formulation of Ref. [32]. In
this approach, the leading-order (LO) NN scattering amplitude
is obtained by solving the three-dimensional integral equation
introduced originally by Kadyshevsky [33]. This equation is an
example of three-dimensional integral equations which satisfy
relativistic elastic unitarity. Clearly, the Kadyshevsky equation
turns into the usual Lippmann-Schwinger equation upon
taking the nonrelativistic limit of the two-nucleon propagator.
An important feature of the Kadyshevsky equation for the LO
NN scattering amplitude is its renormalizability. In particular,
all ultraviolet divergences generated by iterations can be
explicitly absorbed into redefinition of the NN derivative-
less contact interaction. This feature allows one to remove
the ultraviolet cutoff when calculating the amplitude and to
avoid the above-mentioned complications emerging in the
nonrelativistic framework with a finite cutoff. Assuming that
the contributions of the M2

π dependent short-range operators
are suppressed relative to the derivative-less, M2

π independent
contact terms, the quark mass dependence of the S-wave
phase shifts at LO emerges entirely from the propagator in
the one-pion exchange potential. The resulting parameter-free
predictions in the spin-triplet neutron-proton channel are in
very good agreement with the calculations reported in Ref. [5].
Also the Mπ dependence of the 1S0 scattering length agrees
qualitatively with the one reported in that paper.

While all above-mentioned studies [5,25,31], which are
carried out using somewhat different theoretical approaches,
predict less attraction in the deuteron channel for increasing
values of the light quark masses, the available lattice-QCD
simulations seem to indicate an opposite trend. The first
pioneering calculation of NN scattering in the framework of
lattice QCD was carried out two decades ago by Fukujita
et al. [34] within the quenched approximation and using pion
masses of Mπ � 550 MeV and heavier. Ten years later, the
first fully dynamical lattice-QCD calculation of the NN S-wave
scattering length at pion masses of Mπ � 350 MeV, 490 MeV,
and 590 MeV were reported in Ref. [35]. This study found
smaller values of the 3S1 scattering length (corresponding to a
stronger bound deuteron) but was inconclusive of its sign.
Notice further that similarly to the calculation reported in
Ref. [34], the authors of Ref. [35] did not address volume
dependence. Recently, binding energies of light nuclei have
been calculated in 3-flavor QCD at Mπ � 390 MeV [36]
and Mπ � 800 MeV [37] as well as in 2 + 1-flavor QCD at
Mπ � 510 MeV [38]; see also Ref. [39] for a quenched QCD
calculation of the same observables. These fully dynamical
lattice-QCD calculations found a considerably stronger bound
deuteron at these large pion masses; see Sec. IV for more
details. Notice further that the NPLQCD Collaboration also
extracted the values of the effective range and the first
shape coefficient at the pion mass of Mπ � 800 MeV [40].
On the other hand, the HAL QCD Collaboration found no
bound state in the NN 3S1-3D1 channel by carrying out
3-flavor QCD simulations at pseudoscalar meson masses of
469 . . . 1171 MeV and employing a different approach by
making use of the two-nucleon potential at the intermediate
step of the calculation [41]. Very recently, Yamazaki et al.
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have performed 2 + 1-flavor QCD calculations of light nuclei
at pion mass of Mπ � 300 MeV [42]. They found the deuteron
to be even stronger bound at Mπ = 300 MeV compared to their
earlier study [39] at Mπ � 510 MeV. We further emphasize
that the preliminary results of the NPLQCD Collaboration at
Mπ � 430 MeV [43] also suggest the deuteron to be stronger
bound as compared to the physical case. The current situation
with the lattice-QCD results obtained by different groups is
thus not completely clear although there seems to be a common
trend towards stronger bound deuteron and other light nuclei
at values of the light quark masses larger than the physical
ones.

In this paper we address the quark mass dependence of
low-energy NN scattering observables from the point of view
of low-energy theorems (LETs). These theorems establish
model-independent relations between the coefficients in the
effective range expansion (ERE) which are determined by
the long-range part of the nuclear force governed by the
pion exchange. We generalize the LETs to unphysical pion
masses and discuss their accuracy and the validity range with
respect to the variation in Mπ . We apply the LETs to provide
relations between the coefficients in the ERE in the 3S1 partial
wave for pion masses up to Mπ � 400 MeV. Our results open
the way for nontrivial consistency checks of the existing and
upcoming lattice-QCD calculations (see also Ref. [24] for a
related discussion). As an example of a possible application,
we employ a linear with respect to Mπ extrapolation of the 3S1

effective range suggested in Ref. [40] to predict the resulting
Mπ dependence of the scattering length, shape parameters, and
the deuteron binding energy. The obtained results agree well
with the lattice-QCD calculations reported in Refs. [36,38,43].
We also use the LETs to predict the values of the scattering
length, effective range, and the shape parameters using the
deuteron binding energies calculated at Mπ = 300 MeV [42],
Mπ = 390 MeV [36], and Mπ = 430 MeV [43] which can be
tested on the lattice by calculating the phase shifts.

Our paper is organized as follows. In Sec. II we discuss
in detail the meaning of the LETs and provide results at the
physical value of the pion mass in the 1S0 and 3S1 channels.
A generalization of the LETs to unphysical values of the
pion mass in the 3S1 partial wave is considered in Sec. III.
Implications of these findings for lattice-QCD results are
addressed in Sec. IV. The main results of our work are
summarized in Sec. V.

II. LOW-ENERGY THEOREMS FOR THE
PHYSICAL PION MASS

Long-range interactions are responsible for the near-
threshold left-hand singularities of the partial-wave scattering
amplitude and control its energy dependence [28,44]. In
particular, they impose correlations between the coefficients
in the effective range expansion which can be regarded as
low-energy theorems. In the following, we discuss in some
detail the meaning of the LETs following the lines of Refs. [45–
47] and using the framework of nonrelativistic quantum
mechanics which is appropriate for analyzing low-energy
NN scattering. For a related discussion on reconstructing
the scattering amplitude in the physical region based on the

discontinuities across the left-hand cuts and employing the
unitarity constraints, see Refs. [48,49] and references therein.

Consider two nonrelativistic particles of mass m interacting
via some short-range potential V . The corresponding S matrix
for an uncoupled channel with the orbital angular momentum
l is parametrized in terms of a single phase shift δl and can be
written in terms of the T matrix as

Sl = e2iδl (k) = 1 − i

(
km

8π2

)
Tl(k), (2.1)

where k denotes the scattering momentum in the center-of-
mass system (CMS). In the complex energy plane, the partial-
wave scattering amplitude and thus also the T -matrix possess a
so-called unitarity cut, a kinematic singularity from two-body
unitarity. The unitarity cut starts from the branch point at the
threshold (E = 0) and goes to positive infinity. Furthermore,
there are singularities associated with the interaction mecha-
nism and located at the negative real axis. In particular, in the
case of the Yukawa potential (∼exp(−Mr)/r) corresponding
to an exchange of a meson of mass M , the amplitude has
a left-hand cut starting at k2 = −M2/4. Bound and virtual
states reside as poles at the negative real axis (k = i|k| and
k = −i|k| for bound- and virtual-state poles, respectively)
while resonances show up as poles at complex energies. The
cut structure of the nucleon-nucleon scattering amplitude in the
absence of long-range electromagnetic potentials is visualized
in Fig. 1.

It is useful to express the T matrix in terms of the so-called
effective range function Fl(k) ≡ k2l+1cotδl(k) via

Tl(k) = −16π2

m

k2l

Fl(k) − ik2l+1
. (2.2)

Contrary to the scattering amplitude, the effective range
function does not possess the kinematic unitarity cut and can
be shown to be a real meromorphic (i.e., analytic except for
poles) function of k2 near the origin k = 0 for nonsingular
potentials of a finite range [50,51]. It can, therefore, be Taylor
expanded about the origin leading to the well-known effective
range expansion (ERE) which has the form,

k2l+1cotδl(k) = −1

a
+ 1

2
rk2 + v2k

4 + v3k
6 + v4k

8 + . . . ,

(2.3)
where a and r refer to the scattering length and the effective
range, respectively, while vi denote the so-called shape
parameters. The convergence radius of the ERE is bounded
from above by the lowest-lying left-hand singularity associated
with the potential. In particular, given that the longest-range
part of the strong nuclear force is from the one-pion-exchange
potential (OPEP), the ERE for NN scattering is expected to
converge for energies up to |Elab| ∼ M2

π/(2mN ) = 10.5 MeV.
Notice that the actual convergence range of the ERE might
be smaller if the effective range function possesses poles
corresponding to zeros of the scattering amplitude whose
positions are determined by the strength of the interaction.
Such a situation emerges, for example, when phase shifts
change the sign. The problem of decreasing the applicability
range of the ERE can be easily avoided if the Taylor expansion
is replaced by, e.g., Pade approximants; see Ref. [52] for
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FIG. 1. (Color online) Cut structure of the partial-wave nucleon-nucleon scattering amplitude in the complex energy plane in the absence
of electromagnetic interactions. The cross refers to a possible bound state.

a related discussion. Furthermore, we emphasize that a
generalization of the above considerations to coupled channels
such as, e.g., the 3S1-3D1 channel in neutron-proton scattering is
straightforward and amounts mainly to replacing the amplitude
by a 2 × 2 matrix; see Ref. [53] for more details.

The framework of the ERE can be generalized to the case
in which the potential is given by a sum of long-range (rL ∼
M−1

L ) and short-range (rS ∼ M−1
S � M−1

L ) potentials, VL and
VS , respectively. Following van Haeringen and Kok [54], one
can define the modified effective range function FM

l via

FM
l (k2) ≡ RL

l (k) + k2l+1∣∣f L
l (k)

∣∣ cot
[
δl(k) − δL

l (k)
]
. (2.4)

In this equation, f L
l (k) denotes the Jost function defined

according to f L
l (k) ≡ f L

l (k,r)|r=0 with f L
l (k,r) being the

Jost solution of the Schrödinger equation corresponding to
the potential VL, i.e., the particular solution that fulfils

lim
r→∞ e−ikrfl(k, r) = 1. (2.5)

Furthermore, δL
l (k) denotes the phase shift associated with the

potential VL and the quantity RL
l (k) can be computed from

f L
l (k,r) as follows:

RL
l (k) =

(
− ik

2

)l 1

l!
lim
r→0

[
d2l+1

dr2l+1
rl f

L
l (k, r)

f L
l (k)

]
. (2.6)

Here and in what follows, the superscript “L” indicates that
the quantity of interest can be calculated solely from the long-
range part of the potential VL. As proven in Ref. [54], the
modified effective range function FM

l (k2) does not contain the
left-hand singularities associated with the long-range potential
and reduces, per construction, to the ordinary effective range
function Fl(k2) in the case of VL = 0. It is a real meromorphic
function in a much larger region set by r−1

S as compared to
Fl(k2). In particular, for Yukawa-type potentials, the region in
which the modified effective range function is meromorphic
is set by |k| < MS/2. Similarly to the ERE, one can Taylor
expand the function FM

l (k2) near the origin via

FM
l (k2) = − 1

aM
+ 1

2
rMk2 + vM

2 k4 + vM
3 k6 + vM

4 k8 + . . . .

(2.7)

This expansion is referred to as the modified effective range
expansion (MERE).

The most frequently used application of the above frame-
work concerns proton-proton scattering. In that case, the long-
range interaction is from the Coulomb potential VL(r) = α/r
with α being the fine structure constant. The left-hand cut

starts directly at the threshold so that the ERE has zero radius
of convergence. Notice further that the Jost solution and,
consequently, the function RL

l (k) can be calculated analytically
for the case of the Coulomb potential. For example, for l = 0
and the repulsive Coulomb potential, the modified effective
range function takes the following well-known form:

FM
0 (k2) ≡ FC(k2) = C2

0 (η) k cot[δ(k) − δC(k)] + 2k η h(η),

(2.8)

where the Coulomb phase shift is δC ≡ arg �(1 + iη) and the
quantity η is given by

η = m

2k
α. (2.9)

Furthermore, the functions C2
0 (η) (the Sommerfeld factor) and

h(η) read

C2
0 (η) = 2πη

e2πη − 1
, and h(η) = Re[	(iη)] − ln(η).

(2.10)

Here, 	(z) ≡ �′(z)/�(z) denotes the digamma function. For
more details on the analytic properties of the scattering
amplitude and related topics the reader is referred to the review
article [55].

We are now in the position to clarify the meaning of the
LETs. Assuming that the functions Fl(k2) and FM

l (k2) do not
possess discrete poles in their meromorphic regions, the size
of the coefficients in the ERE and MERE (except for the
scattering length) is expected to be governed by the scales
ML and MS associated with the lowest left-hand singularities;
see [44] for a related discussion. If the long-range interaction
is known, the quantities f L

l (k), RL
l (k), and δL

l (k) entering
the right-hand side of Eq. (2.4) can be calculated explicitly.
Using the MERE, truncated at a given order to approximate
the function FM

l (k2), and inverting Eq. (2.4) then allows
one to express the phase shift δl(k) in terms of the known
quantities f L

l (k), RL
l (k), and δL

l (k) and the first coefficients
in the MERE which parametrize physics associated with the
short-range interaction. For example, at LO, the modified
effective range function is approximated as FM

l (k2) � −1/aM .
Thus, using a single piece of information about the short-range
interaction in the form of aM or, equivalently, the usual
scattering length1 a allows one to predict all coefficients in

1Note that aM is directly related to the scattering length a via
Eq. (2.4). Similarly, the modified effective range rM can be calculated
using a and r as input.
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the ERE. These predictions are accurate up to corrections
emerging from the second term in the MERE. The MERE for
FM

l (k2) thus provides a systematically improvable expansion
of the subthreshold parameters entering Eq. (2.3) in powers of
ML/MS . The resulting correlations between the subthreshold
parameters at each fixed order in this expansion are referred to
as LETs. For an example of an exactly solvable model, which
allows one to get analytical insights into the meaning of the
LETs, the reader is referred to Ref. [45].

We are now in the position to address the LETs for S-
wave neutron-proton scattering. Here and in what follows, we
restrict ourselves to the case of exact isospin symmetry and
neglect the long-range electromagnetic interactions between
the neutron and proton. The longest-range part of the nuclear
force is from the OPEP which in momentum space has the
form,

V1π (	q ) = − g2
A

4F 2
π

	σ1 · 	q 	σ2 · 	q
	q 2 + M2

π

τ 1 · τ 2, (2.11)

where 	q ≡ 	p ′ − 	p is the momentum transfer of the nucleon
while 	σi (τ i) denote the spin (isospin) Pauli matrices of the
nucleon i. Furthermore, gA and Fπ refer to the axial vector
coupling of the nucleon and pion decay constant, respectively.
Throughout this work, we adopt the values of Fπ = 92.4 MeV,
gA = 1.267 for these constants at the physical value of the
pion mass M

phys
π ≡ (2Mπ± + Mπ0 )/3 = 138.03 MeV. Upon

performing Fourier transform, one obtains the well-known
coordinate-space expression for the long-range part of the
OPEP, namely

V1π (	r ) = M3
π

12π

g2
A

4F 2
π

τ 1 · τ 2

×
[
S12

(
1 + 3

Mπr
+ 3

(Mπr)2

)
+ 	σ1 · 	σ2

]
e−Mπ r

Mπr
,

(2.12)

where S12 is the usual tensor operator, S12 ≡ 3(	σ1 · 	r )(	σ2 ·
	r )/r2 − 	σ1 · 	σ2. Notice that the above potential describing
pointlike nucleons interacting via one-pion exchange is sin-
gular and thus cannot be directly employed in the calculation
of the LETs using the quantum mechanical framework outlined
above.2 One possible way to overcome this complication is to
apply a properly regularized version of the OPEP. For example,
one can employ a coordinate-space regularization procedure
introduced in Refs. [57,58] or a closely related method used
in Refs. [15,17]. These approaches are analogous to the
Pauli-Villars regularization and maintain, per construction,
the analytic structure of the amplitude in the sense that
nonanalyticities induced by the regulator appear at momenta

2It should, however, be understood that the expressions for the OPEP
in Eqs. (2.11) and (2.12) become meaningless at short distances where
effects from finite nucleon size cannot be neglected; see Ref. [56] for
a related discussion. Furthermore, while the OPEP clearly dominates
the interaction between the nucleons at large distances, the two-pion
exchange potential becomes comparable in size to the OPEP at
distances smaller than r ∼ 2 fm.

k � �. Here, � refers to the momentum scale associated with
the regulator which in such an approach should be chosen of
the order of the breakdown scale in the problem [45,59]. The
properly regularized OPEP can then be used to compute the
Jost solution by solving the Schrödinger equation and to work
out the LETs for NN scattering.

Instead of using the approach described above, we employ
here the modified version of Weinberg’s chiral EFT proposed
in Ref. [32] to work out the LETs for NN scattering.
This momentum-space framework is more convenient for
performing numerical calculations of the LETs and, as already
mentioned in the introduction, has an advantage of being well
suited for carrying out chiral extrapolations beyond the LETs.

Within the modified Weinberg EFT approach of Ref. [32],
the LO amplitude is obtained by solving the Kadyshevsky
equation [33] which, for the case of the fully off-shell
kinematics, takes the form,

T (p0, 	p ′, 	p )

= V ( 	p ′, 	p ) +
∫

d3q V ( 	p ′,	q ) G(p0,q) T (p0,	q, 	p),

(2.13)

where G(p0,q) is the free Green’s function,

G(p0,q) = m2
N

2(2 π )3

1(	q2 + m2
N

)(
p0 −

√
	q2 + m2

N + iε
) .

(2.14)

Further, 	p ( 	p ′) is the incoming (outgoing) three-momentum of

the nucleon in the center-of-mass frame, p0 =
√

	k2 + m2
N with

mN denoting the nucleon mass and 	k being the corresponding
three-momentum of an incoming (on-mass-shell) nucleon. The
integral equation (2.13) is solved numerically in the partial-
wave basis.

In this work, we are interested in the 1S0 and the cou-
pled 3S1-3D1 channels of neutron-proton scattering. In both
cases, the LO potential is given by the OPEP specified in
Eq. (2.11) accompanied by a momentum-independent contact
interaction, whose strength is adjusted to reproduce the S-
wave scattering length. We regularize the integral equation
by introducing an ultraviolet momentum cutoff � and take
the limit � → ∞ when calculating the phase shifts. Notice
that contrary to the nonrelativistic framework based on the
Lippmann-Schwinger equation, this is a legitimate procedure
because the LO integral equation is renormalizable in the sense
that all divergences emerging from its iterations are absorbable
into redefinition of the LO contact interaction. Once the phase
shifts are calculated, we extract the effective range and the
shape parameters numerically by matching the truncated ERE
to the effective range function. Given that the calculated
S-wave scattering amplitudes fulfill elastic unitarity, correctly
reproduce the first left-hand cut from the OPEP, and match the
experimental value at the threshold (given by the scattering
length), the resulting predictions for r and vi are equivalent to
the LO LETs discussed above in the context of the MERE. We
emphasize, however, that employing the cutoff-independent
framework of Ref. [32] is not crucial for testing the LETs
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FIG. 2. (Color online) Correlations between the inverse scatter-
ing length a−1, effective range r , and the first three shape parameters
v2, v3, and v4 induced by the one-pion exchange interaction in
the 1S0 (left panel) and 3S1 (right panel) channels. Solid rectangles,
diamonds, open triangles, and circles correspond to the values of r ,
v2, v3, and v4, respectively, extracted from the Nijmegen partial-wave
analysis [53,60]. The results in the 3S1 partial wave correspond to the
Blatt-Biedenharn parametrization of the S matrix [61].

in NN scattering. A more conventional nonrelativistic chiral
EFT approach based on the Lippmann-Schwinger equation
and utilizing a finite ultraviolet cutoff is equally well suited
for this purpose.

The LO LETs for the 1S0 and the 3S1 channels have already
been addressed in Ref. [32]. In Fig. 2, we show the LO LET
predictions for the effective range and the first three shape
parameters as functions of the inverse scattering length which
is an input parameter in our calculations. Here and in what
follows, the results in the 3S1 partial wave correspond to the
Blatt-Biedenharn parametrization of the S matrix [61]. To
avoid the appearance of large and small numbers, we use
dimensionless quantities by multiplying the coefficients in
the ERE with the corresponding powers of the pion mass.
As expected, the predicted dimensionless coefficients appear
to be of a natural size for a fairly large range of values of
the scattering length. Notice further that the limit a → ±∞,
which describes the situation in which there is a zero-energy
bound state, does not lead to any peculiarities in r and vi .
In both channels, one observes a clear tendency for r and
vi to become unnaturally large in magnitude in the regions
of 1/(aMπ ) � −0.5 and 1/(aMπ ) � 1. We found that the
unnaturally large values of r and vi for 1/(aMπ ) � 1 are from
the appearance of a pole in the effective range function at
relatively low positive energy. The pole position corresponds
to the energy at which the corresponding phase shift crosses
zero. For example, for 1/(aMπ ) � 1.4, the pole in the 3S1

effective range function is located at k � 60 MeV which is
already within its meromorphic region. For larger values of
1/(aMπ ), the pole moves towards the threshold so that the
values of the r and vi are actually governed by the pole
position rather than by Mπ . As already emphasized above,
the appearance of a pole in the effective range function can
be easily accommodated by replacing the Taylor expansion of
Fl(k2) by, e.g., the Pade approximation. On the other hand,
the case 1/(aMπ ) � −0.5 corresponds to the absence of a
bound state and, given the natural value of the scattering

length, it might already describe a perturbative regime of NN
scattering. For weakly interacting systems, it is easy to see
analytically (by making use of the Born approximation) that
the coefficients in the ERE do not scale anymore with the
range of the interaction. This is because of the appearance of
an additional dimensionless small parameter associated with
the weakness of the interaction.

The predictions for r and vi based on the LO LETs
and corresponding to the experimentally observed values
of the scattering lengths are compared in Fig. 2 with the
empirical numbers from Refs. [53,60] based on the Nijmegen
partial-wave analysis (PWA). We also collect various avail-
able results for the LETs in the 1S0 and 3S1 channels in
Table I. The results for the LO LETs shown in the table
are taken from Ref. [32]. While the predicted values of r
and vi do reproduce the empirical values in the 3S1 channel
quite accurately, the agreement in the 1S0 partial wave is, at
best, on a qualitative level. This pattern can be understood as
follows. Naively, the accuracy of the LO LET is expected to
be set by the ratio EL/ES , where EL (ES) denotes the energy
corresponding to the branch point of the left-hand cut from the
long-range interaction (branch point of the first left-hand cut
in the scattering amplitude which is not correctly described by
the employed approximation for the interaction). Therefore,
given that we do not take into account the two-pion exchange
potential in our calculations and thus cannot describe correctly
the second left-hand cut, one may expect the LO LETs to
be accurate at the level of ∼25%. In fact, the accuracy of
the LO LETs in the 3S1 partial wave appears even to be
somewhat higher.3 This is presumably because of the fact,
that we actually include the parts of the second and higher
left-hand cuts (see Fig. 1) which are associated with iterations
of the OPEP. In fact, according to the chiral power counting,
such iterative contributions to the scattering amplitude are
expected to be more important than the irreducible two- and
more-pion exchange potentials. On the other hand, the low
accuracy of the LETs in the 1S0 channel is a consequence
of the weakness of the OPEP projected on that partial wave.
The strong tensor part of the OPEP, which accompanies the
operator S12 in Eq. (2.12), does not contribute to spin-singlet
partial waves. The weakness of the OPEP in the 1S0 channel
is evidenced by the fact that the phase shift corresponding to
the long-range OPEP reaches only about 12.6◦ at maximum,
which has to be compared with max[δ1S0 (k)] ∼ 65◦ in the
real world.

We also list in Table I, for the sake of completeness,
the predictions obtained within the KSW framework [27]
which relies upon a perturbative treatment of the OPEP.
These results are taken from Ref. [28] and show very large
deviations from the empirical values. This shows that the
perturbative treatment of the OPEP in these channels is not
appropriate.

3The large relative deviation for the first shape parameter should
not be taken too seriously because of its unnaturally small value.
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TABLE I. Various available results for the low-energy theorems for the neutron-proton 1S0 and 3S1 partial waves as described in the text.
The results in the 3S1 partial wave correspond to the Blatt-Biedenharn parametrization of the S matrix [61].

a (fm) r (fm) v2 (fm3) v3 (fm5) v4 (fm7)

Neutron-proton 1S0 partial wave
LO, Ref. [32] Fit 1.50 −1.9 8.6(8) −37(10)
NLO, nonperturbative C2, Ref. [62] Fit Fit −0.61 . . . − 0.55 5.1 . . . 5.5 −30.8 . . . − 29.6
NLO KSW, Ref. [28] Fit Fit −3.3 18 −108
Empirical values, Ref. [53] −23.7 2.67 −0.5 4.0 −20

Neutron-proton 3S1 partial wave
LO, Ref. [32] Fit 1.60 −0.05 0.82 −5.0
NLO, this work Fit Fit 0.06 0.70 −4.0
NLO KSW, Ref. [28] Fit Fit −0.95 4.6 −25
Empirical values, Ref. [63] 5.42 1.75 0.04 0.67 −4.0

In Ref. [62], the subleading contact interaction C2(p2 +
p′2) was taken into account in the 1S0 channel within the
framework of Ref. [32], both perturbatively and nonpertur-
batively. Given that the long-range interaction included in that
work is entirely given by the OPEP, the resulting predictions
for the shape parameters, which are listed in Table I for the
case of the nonperturbative treatment of C2, are equivalent
to the next-to-leading-order (NLO) LETs. Notice that the
nonperturbative inclusion of the subleading contact interaction
necessarily results in a residual subtraction scale dependence
of the amplitude which is why the predictions for v2,3,4 are
shown within a range of values; see Ref. [62] for more details.
While a significant improvement is observed in the description
of all vi , the convergence is clearly somewhat slow in this
channel. We find that the accuracy of the LETs in the 1S0

channel is insufficient for the purpose of providing constraints
on the available lattice-QCD results. For this reason, we
will concentrate in the following entirely on the spin-triplet
channel.

While the LETs in the 3S1 channel appear to be fairly
accurate already at LO as far as one is concerned with
predicting the values of r and vi from the scattering length,
their accuracy is still insufficient for extracting the deuteron
binding energy using the effective range as input, as we intend
to do in the next sections. This is because of the function
r(a−1) being somewhat flat in the relevant region of values
of 1/(aMπ ), which tends to magnify the uncertainty in the
value of a−1 extracted from r . Notice that the observed nearly
quadratic dependence of r on a−1 may be related to the
universal behavior of this function found for van der Waals–
like interactions [64]; see also Ref. [65] for a related discussion.
In addition, the deuteron binding energy depends, to a good
accuracy, quadratically on a−1, so that the error in the value
of the binding energy is further magnified. For example, using
the LO LETs together with the experimentally observed value
of the effective range r = 1.75 fm as input, one extracts a =
7.2 fm and Bd = 1.1 MeV which is two times smaller than
the experimentally observed value of Bd � 2.22 MeV. To deal
with this issue, we extend the LETs in the 3S1 channel to NLO
by taking into account a subleading short-range interaction
whose strength is adjusted to reproduce the experimentally
observed value of the effective range. Notice that contrary to
the 1S0 channel, where the long-range part of the OPEP is

nonsingular and a nonperturbative inclusion of the subleading
contact interaction can be carried out semianalytically in a
close analogy to pionless EFT (see Ref. [62] for more details),
we are unable to treat the subleading contact interactions
nonperturbatively in spin-triplet channels without, at the same
time, destroying the explicit renormalizability feature of the
scattering amplitude. A perturbative inclusion of the NLO
short-range terms will be discussed in detail in a subsequent
publication. Here, to avoid possible shortcomings from the
perturbative treatment of the subleading short-range terms, we
follow a different approach and employ resonance saturation
to model higher-order contact interactions by means of a
heavy-meson exchange. In particular, we use for the NLO
potential,

VNLO = V1π (	q ) + C0 + β
	σ1 · 	q 	σ2 · 	q
	q 2 + M2

, (2.15)

where the heavy-meson mass M is set M = 700 MeV and the
strength β is adjusted to reproduce the empirical value of the
effective range. In agreement with the arguments given above,
we have verified that the results for the LETs are insensitive
to details of the short-range interaction. In particular, the
deviation in the results caused by using the sigma-like scalar
potential instead of the tensor one in Eq. (2.15) for the
subleading short-range interaction is negligibly small. The
subleading short-range interaction is only needed to describe
the second term in the MERE ∼rM which appears, in
addition to aM , as an input parameter in our calculation.
The employed form of the NLO potential ensures that the
corresponding scattering amplitude is renormalizable so that
the NLO calculations can be carried out in the same way as at
LO. The predicted values of the shape parameters after fixing
the values of C0 and β are listed in Table I and, as expected,
show a clear improvement as compared with the LO results.
In fact, the NLO LETs appear to be accurate at the level of a
few percent (except for v2).

III. LOW-ENERGY THEOREMS FOR UNPHYSICAL
PION MASSES

The LETs discussed in the previous section can be straight-
forwardly generalized to the case of nonphysical quark (or
pion) masses. The main effect from changing the pion mass,
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FIG. 3. (Color online) Quadratic polynomial regression fits to lattice-QCD data for the pion decay constant Fπ , nucleon mass mN ,
and the nucleon axial-vector coupling constant gA. Lattice data for Fπ and mN (gA) correspond to the 2 + 1 flavor simulations of the
Budapest-Marseille-Wuppertal collaboration using Wilson fermions [66] and 2 and 2 + 1 + 1 flavor simulations reported in Ref. [67] (Ref. [68])
using twisted mass fermion ensembles. For details of the simulations and analyses see the above-mentioned references. Solid circles without
error bars show the experimentally measured values. The dashed lines depict our fit results to the lattice data and the experimental values while
the shaded bands correspond to the 67% confidence levels of the interpolations.

as far as the analytic structure of the amplitude is concerned,
corresponds to shifts of the branch points of the left-hand
cuts from one-, two-, and more-pion exchange (see Fig. 1).
This effect originates from the explicit pion mass dependence
in the pion propagator. Next, one needs to account for the
change in the discontinuity across the left-hand cuts caused by
the Mπ dependence of the strength of the OPEP, namely the
ratio gA/Fπ . To account for this effect, we make use of the
lattice-QCD results for the Mπ dependence of these quantities
(see Fig. 3). In particular, we performed quadratic polynomial
regression fits (as functions of M2

π ) of the results from the
2 + 1 flavor simulations by the Budapest-Marseille-Wuppertal
(BMW) collaboration for Fπ [66] and from the 2 and 2 + 1 + 1
flavor simulations reported in Ref. [68] for gA; see also
Ref. [69] for recent lattice-QCD calculations of this quantity.
In our fits, we included lattice-QCD data for pion masses
up to Mπ = 500 MeV. Furthermore, we enforced the fits to
go through the experimental value for a given quantity at
the physical value of the pion mass. The results of our fits
together with the 67% confidence region are shown in Fig. 3.
Notice that the observed tendency of lattice-QCD results for
the axial charge of the nucleon to somewhat underestimate
the experimental value may indicate that certain systematic
corrections have not been properly taken into account in
these studies. We expect this issue to be clarified in the near
future, when more results near the physical point will become
available and the statistical uncertainties of the simulations
will be improved. Notice further that we did not include
all available lattice-QCD results in our fits because this will
unlikely improve the accuracy of the interpolations. Especially
for the pion decay constant, the uncertainty of the interpolation
of the lattice-QCD results is very small and can be safely
neglected at the accuracy level of our calculations.

Next, one also has to account for the pion mass dependence
of the nucleon mass. Here, we follow the same strategy
as for Fπ and gA and employ a quadratic interpolation of
the recent lattice-QCD results for mN (M2

π ) of the BMW

collaboration [66] (see Fig. 3). We emphasize that our fits of the
Mπ dependence of Fπ , gA and mN are not intended to provide
correct chiral extrapolations of these quantities to the chiral
limit but serve exclusively to enable a smooth interpolation of
the available lattice-QCD results.

Using the above results for the pion mass dependence of Fπ ,
gA and mN together with the explicit Mπ dependence in the
pion propagator allows us to describe the discontinuity across
the first left-hand cuts from the OPEP for arbitrary values of
the pion masses. Thus, we can immediately generalize the LO
LETs by calculating r and vi as functions of the (inverse)
scattering length at unphysical values of the pion mass. The
resulting predictions are shown by the various thick lines in
Fig. 4 for Mπ = 50, 100, 150, 200, 300, and 400 MeV. Notice
that contrary to chiral EFT extrapolations, we do not make
here any assumptions about the quark mass dependence of the
included derivative-less short-range interaction ∝ C0, which
is traded into the dependence of the calculated observables on
the value of the scattering length. In particular, we perform
calculations with different pion masses as if we lived in
different worlds, in which the physical value of the pion mass
were Mπ = 50, 100, . . . MeV. Thus for each given pion mass
the value of C0 is adjusted to reproduce the given value of
the scattering length used as input. In this sense, our results
are more general than the ones obtained for the 1S0 and 3S1

channels in Ref. [31] at LO within the modified Weinberg
approach, where the dependence of the short-range interaction
on Mπ was neglected in agreement with the estimation based
on naive dimensional analysis (NDA).

To extend these results to NLO, we need to specify the Mπ

dependence of the subleading short-range interaction which is
modeled via resonance saturation; see Eq. (2.15). While this
effect would be suppressed in the chiral EFT approach if one
assumes the validity of NDA for short-range interactions, we
decided to estimate it to stay as model independent as possible.
Specifically, we assume that the M2

π dependence of the strength
β of the short-range interaction is within the envelope built by
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FIG. 4. (Color online) Correlations between the inverse scattering length a−1, effective range r , and the first three shape parameters v2, v3,
and v4 in the 3S1 partial wave induced by the one-pion exchange interaction. Various thick lines show the predictions of the LO LETs while
light-shaded bands (hardly visible for small Mπ ) between thin lines depict the results of NLO LETs and reflect the estimated uncertainty from
unknown Mπ dependence of the subleading short-range interaction as explained in the text.

the lines which go through the physical point and describe a
±50% change in the value of β for Mπ = 500 MeV, i.e.,

1 − δβ

∣∣∣∣∣
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�M2
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β(Mπ )

β
(
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π

)

� 1 + δβ

∣∣∣∣∣
M2

π − (
M

phys
π

)2

�M2
π

∣∣∣∣∣, (3.1)

with δβ = 0.5 and �M2
π ≡ (M2

π − (Mphys
π )2)|Mπ =500 MeV. Note

that such an estimation is justified for the considered
quantities such as gA, Fπ , and mN , as can be seen from
Fig. 3.

Our NLO LETs predictions for the effective range and the
shape parameters viewed as functions of the inverse scattering
length are visualized in Fig. 4 by the light-shaded bands.
These bands correspond to the variation of β at a given
value of Mπ according to Eq. (3.1). For pion masses below
Mπ � 200 MeV, one observes a small difference between the
predictions based on LO and NLO LETs whose size can be
viewed as an estimation of the accuracy of the LO LETs.
Also, the employed variation of β is essentially invisible for
such values of the pion mass. For heavier pions, both the
differences between the LO and NLO LETs as well as the
uncertainty in the results associated with the Mπ dependence
of β start to increase. As shown in this figure, one cannot
expect to have accurate predictions for pion masses above
Mπ � 400 MeV. Notice that decrease in the predictive power
of the LETs is to be expected for heavier pions because of the
decreasing separation between the soft and hard scales in the
problem.

IV. IMPLICATIONS FOR LATTICE-QCD CALCULATIONS

We are now in the position to confront the LETs with the
available lattice-QCD results in the NN sector. In Table II, we
list the published lattice-QCD results for the S-wave scattering
parameters and energies of the bound states together with the
experimental data. We do not show in the table the results
from Ref. [35] where volume dependence was not addressed.
Unfortunately, lattice calculations in the NN sector focus
so far mainly on the binding energies and do not provide
information on the scattering parameters. An exception is the
work of Ref. [40], which provides, in addition to the binding
energies, also the values of the scattering length, effective
range, and even the first shape parameter at the pion mass
of Mπ � 800 MeV. Clearly, such heavy pion masses are out
of reach of the LETs. On the other hand, the authors of
Ref. [40] conjectured that the quantity Mπr may exhibit a
nearly linear dependence on the pion mass. The suggested
linear interpolation between the physical point and the lattice
result has the form [40],

Mπr ∼= A(3S1)+B(3S1)Mπ, where A(3S1) = 0.726+0.065
−0.059

+0.072
−0.059,

B(3S1) = 3.70+0.42
−0.47

+0.42
−0.52 GeV−1, (4.1)

and is visualized in the left panel of Fig. 5. While we cannot
judge on the validity of the suggested linear dependence
of the quantity Mπr on the pion mass based on the LETs
alone, we can test its compatibility with the lattice-QCD
results for the deuteron binding energy available for pion
masses within the validity range of the LETs. Specifically, we
employ the effective range r(Mπ ) from Eq. (4.1) instead of the
scattering length to fix the Mπ dependence of the short-range
interaction by adjusting the value of C0 in Eq. (2.15) and
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TABLE II. Available experimental and infinite-volume lattice-QCD data for nucleon-nucleon scattering parameters and bound state energies
in the 1S0 and 3S1 channels at various values of the pion mass.

Mπ = 138 MeV Mπ = 300 MeV [42] Mπ = 390 MeV [36] Mπ = 510 MeV [38] Mπ = 800 MeV [40]

The 3S1 channel
Bd [MeV] 2.224 14.5(0.7)(+2.4

−0.7) 11(05)(12) 11.5(1.1)(0.6) 19.5(3.6)(3.1)(0.2)
a (fm) 5.42 Not given Not given Not given 1.82(+0.14

−0.13)(+0.17
−0.12)

r (fm) 1.75 Not given Not given Not given 0.906(+0.068
−0.075)(+0.068

−0.084)

The 1S0 channel
Bnn [MeV] – 8.5(0.7)(+2.2

−0.4) 7.1(5.2)(7.3) 7.4(1.3)(0.6) 15.9(2.7)(2.7)(0.2)
a (fm) −23.7 Not given Not given Not given 2.33(+0.19

−0.17)(+0.27
−0.20)

r (fm) 2.67 Not given Not given Not given 1.130(+0.071
−0.077)(+0.059

−0.063)

make predictions for the scattering length, shape parameters,
and the deuteron binding energy. Our results for the deuteron
binding energy Bd , the ratio γd/Mπ , where γd = √

BdmN is
the deuteron binding momentum, the ratio a/r , and the first
three shape parameters M3

πv2, M5
πv3, and M7

πv4 are visualized
in Fig. 6. In this figure, the dark shaded bands result from
the variation of the constant β specified in Eq. (3.1) and
reflect the uncertainty of the NLO LETs.4 The light-shaded
bands correspond to the resulting uncertainty which emerges
from the theoretical uncertainty at NLO and the errors of
the linear interpolation of Mπr(Mπ ) [see the left panel of
Fig. 5 and Eq. (4.1)] added in quadrature. Notice that we
also show in Fig. 6 the preliminary lattice-QCD result of the
NPLQCD collaboration at Mπ = 430 MeV [43]. Remarkably,
the linear Mπ dependence of Mπr suggested in Ref. [40]
indeed appears to describe very well the common trend of
the lattice-QCD results for the deuteron binding energy at
intermediate pion masses. Also the NPLQCD Collaboration
results of Ref. [40] for Bd , γd/Mπ , a/r , and M3

πv2 at the
pion mass of Mπ = 800 MeV can be well described by
further extrapolating our results to heavier pion masses without
introducing any strong curvature. Assuming the validity of
Eq. (4.1) for pion masses below the physical one, we conclude
that the deuteron becomes unbound for Mπ ∼ 50 MeV. It is
also interesting to notice that the scattering length and the
shape parameters show strong variations with the pion mass
around and below the physical point. This nontrivial behavior
is driven by the long-range physics associated with the pion
exchange and is, in principle, testable in lattice QCD. The
obtained results for the quantities γd/Mπ and a/r , which
probe the amount of fine tuning in the NN system, suggest
that the physically realized value of the quark mass is close
to the point, which separates the strong fine-tuning regime
characterized by the rapidly growing scattering length from
the regime featuring a fairly small amount of fine tuning with
a/r = 2 . . . 3 within the large range of pion masses.

4Note that employing the scalar subleading potential in Eq. (2.15)
instead of the tensor one yields the results which are well within the
dark shaded band for all quantities except for the parameter v3 which
is relatively small and appears to be slightly outside of this band for
Mπ > 250 MeV.

We emphasize that the observed agreement between the
predicted Mπ dependence of the deuteron binding energy and
lattice-QCD results is a nontrivial consequence of the assumed
extrapolation of Mπr . To illustrate this point, we consider an
alternative scenario by assuming that Mπr is a linear function
of M2

π rather than of Mπ . Notice that while a linear in Mπ

dependence seems to be natural for NN observables, such a
scenario cannot be excluded a priori. Using the lattice-QCD
result of Ref. [40] for Mπr at the pion mass of Mπ = 800 MeV,
the resulting interpolation formula takes the form,

Mπr ∼= C(3S1)+D(3S1)M2
π , where C(3S1) =1.149+0.009

−0.009
+0.011
−0.009,

D(3S1) = 3.95+0.45
−0.49

+0.45
−0.55 GeV−2; (4.2)

see the right panel of Fig. 5. The resulting LET predictions
for the deuteron binding energy are shown in Fig. 7. The
assumed quadratic dependence on Mπ is clearly in conflict
with the lattice-QCD results and, therefore, appears to be
highly unlikely. Interestingly, the shape parameters seem to
be more robust with respect to the variation of the functional
form of r(Mπ ) and show a qualitatively similar behavior in
both scenarios.

Finally, as a last application of the LETs, we use the quoted
values of the deuteron binding energy to predict the scattering
length, effective range, and the first three shape parameters
at pion masses of Mπ = 300 MeV, Mπ = 390 MeV, and
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of the quantity Mπr in the 3S1 partial wave according to Eq. (4.1) as
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and the first three shape parameters in the 3S1 partial wave assuming the linear Mπ dependence of the effective range specified in Eq. (4.1) and
visualized in the left panel of Fig. 5. Dark-shaded bands show our estimation of the uncertainty of the NLO LETs because of the unknown Mπ

dependence of the subleading short-range interaction specified in Eq. (3.1); light-shaded bands depict the uncertainty in the linear extrapolation
of the effective range used as input, as shown in the left panel of Fig. 5.

Mπ = 430 MeV where lattice-QCD results are already avail-
able. Our results for the coefficients in the ERE are collected in
Table III. In the case of the preliminary NPLQCD calculation
at Mπ = 430 MeV, the values for the deuteron binding energy
and the errors are extracted from a corresponding plot of
Ref. [43]. These results may serve as useful consistency
checks for the already published lattice-QCD results if the
corresponding lattice data can be used to extract, in addition

to the deuteron binding energy, also information about the
scattering parameters.

V. SUMMARY AND CONCLUSIONS

The quark mass dependence of the low-energy NN scatter-
ing observables is investigated using the low-energy theorems
which establish model independent relations between the
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FIG. 7. (Color online) NLO LET predictions for the pion mass dependence of the deuteron binding energy, the ratio γd/Mπ , the ratio a/r ,
and the first three shape parameters in the 3S1 partial wave assuming the linear M2

π dependence of the effective range specified in Eq. (4.2) and
visualized in the right panel of Fig. 5. For notations see Fig. 6.
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TABLE III. Predictions for the scattering length, effective range, and shape parameters based on the lattice-QCD
results for the deuteron binding energy. The first two errors correspond to the ones of the lattice-QCD results for
the binding energy. The last quoted error is our estimation of the uncertainty of the NLO LETs associated with the
unknown Mπ dependence of the subleading short-range interaction as described in the text.

Mπ = 300 MeV [42] Mπ = 390 MeV [36] Mπ = 430 MeV [43]

aMπ 3.59(+0.07
−0.05)(+0.07

−0.18)(0.03) 4.93(+1.21
−0.60)(+∞

−1.09)(+0.07
−0.09) 4.62(+0.19

−0.17)(+0.36
−0.27)(+0.10

−0.14)

rMπ 1.70(0.01)(+0.01
−0.04)(0.03) 2.22(+0.20

−0.12)(+1.13
−0.25)(+0.08

−0.10) 2.27(+0.04
−0.05)(+0.08

−0.07)(+0.10
−0.14)

v2M
3
π 0.23(0.01)(0.01)(+0.02

−0.01) 0.50(+0.06
−0.05)(+0.24

−0.10)(+0.07
−0.09) 0.58(+0.02

−0.02)(+0.03
−0.03)(+0.10

−0.13)

v3M
5
π 0.11(0.01)(0.01)(0.01) 0.40(+0.15

−0.09)(+0.82
−0.16)(+0.06

−0.07) 0.46(+0.04
−0.03)(+0.06

−0.05)(0.12)

v4M
7
π −0.04(0.01)(+0.03

−0.01)(0.01) −0.03(+0.05
−0.13)(+0.09

−0.33)(+0.11
−0.10) 0.14(+0.00

−0.01)(+0.00
−0.01)(+0.15

−0.16)

coefficients in the effective range expansion governed by
the long-range one-pion exchange potential. To clarify the
meaning of the LETs, we employed the modified effective
range expansion [54] to parametrize the short-range physics
in a systematic way. Using the knowledge of the long-range
interaction together with the MERE truncated at a given order
allows one to calculate all coefficients of the ERE within a
systematically improvable expansion in powers of the ratio of
the long- and short-range scales. The explicit treatment of the
left-hand cuts in the partial-wave scattering amplitudes from
the long-range pionic forces results in correlations between
the coefficients in the ERE which are regarded as the LETs.

In this work we considered the LETs for NN scattering in the
3S1 and 1S0 channels. At leading order in the above-mentioned
expansion, the short-range physics is parametrized solely in
terms of the modified scattering length. Therefore, to obtain
LETs at LO, we considered two nucleons interacting via
the OPEP supplemented by two contact interactions without
derivatives, whose strengths were adjusted to reproduce the
scattering length in each of these channels. The NN scattering
amplitude was calculated by solving the Kadyshevsky equa-
tion which is exactly renormalizable at this order [32]. In the
3S1 channel, the predicted values of the effective range and
the shape parameters agree well with the empirical values
extracted from the Nijmegen PWA [63] already at LO. On
the other hand, the OPEP projected onto the 1S0 partial wave
is very weak, so that the LETs show much less predictive
power in that channel. We, therefore, restricted ourselves to
the spin-triplet channel in this paper. To further increase the
accuracy of our predictions, we extended the calculations to
NLO LETs by including the subleading short-range interaction
and tuning its strength to reproduce the effective range. The
resulting predictions for the shape parameters in the 3S1

partial wave are found to be accurate at the level of a few
percent.

As a next step, we generalized the LETs in the 3S1 channel to
study correlations between various low-energy observables at
unphysical pion masses up to Mπ � 400 MeV. To this aim, we
made use of the available lattice-QCD results for the pion mass
dependence of the pion decay constant, nucleon axial vector
coupling and the nucleon mass. The predicted correlations
between the low-energy NN parameters at unphysical pion
masses open the way for nontrivial consistency checks of the
ongoing and upcoming lattice-QCD calculations in the NN
sector and might also be useful for reducing the systematic
uncertainty.

As an application, we extracted the low-energy parameters,
namely the scattering length, effective range and first three
shape parameters, from the lattice-QCD calculations of the
deuteron binding energy at the pion masses Mπ = 300
MeV [42], 390 MeV [36] and 430 MeV [43]. Our predictions
illustrate the importance of a simultaneous extraction of the
scattering parameters in addition to the binding energies in
lattice-QCD simulations of the NN system.

As another application, we applied the LETs to predict the
Mπ behavior of the binding energy, scattering length and shape
parameters based on the linear Mπ dependence of the effective
range Mπr suggested in Ref. [40]. We found that the predicted
shape of the binding energy as a function of Mπ is in good
agreement with the general trend of the lattice-QCD data. We
also found that the scattering length and the shape parameters
show strong variations with the pion mass around and below
the physical point. This nontrivial behavior is driven by the
long-range physics associated with the pion exchange and is,
in principle, testable in lattice QCD.

While our analysis establishes correlations between NN
low-energy parameters, it does not provide extrapolation of
lattice-QCD results to the physical point. The possibility of
carrying out chiral extrapolations of NN scattering observables
and the deuteron binding energy by extending the chiral EFT
analysis of Ref. [31] beyond the LO will be discussed in a
subsequent publication.
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