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Isospin quartic term in the kinetic energy of neutron-rich nucleonic matter

Bao-Jun Cai and Bao-An Li*

Department of Physics and Astronomy, Texas A&M University-Commerce, Commerce, Texas 75429-3011, USA
(Received 3 March 2015; revised manuscript received 11 June 2015; published 2 July 2015)

The energy of a free gas of neutrons and protons is well known to be approximately isospin parabolic with a
negligibly small quartic term of only 0.45 MeV at the saturation density of nuclear matter ρ0 = 0.16 fm−3. Using
an isospin-dependent single-nucleon momentum distribution including a high (low) momentum tail (depletion)
with its shape parameters constrained by recent high-energy electron scattering and medium-energy nuclear
photodisintegration experiments as well as the state-of-the-art calculations of the deuteron wave function and the
equation of state of pure neutron matter near the unitary limit within several modern microscopic many-body
theories, we show for the first time that the kinetic energy of interacting nucleons in neutron-rich nucleonic
matter has a significant quartic term of 7.18 ± 2.52 MeV. Such a large quartic term has broad ramifications in
determining the equation of state of neutron-rich nucleonic matter using observables of nuclear reactions and
neutron stars.
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Introduction. To determine the equation of state (EOS)
of isospin-asymmetric nuclear matter (ANM) has been a
longstanding goal in the fields of both nuclear physics and
astrophysics [1]. Usually one uses the so-called empirical
parabolic law for the energy per nucleon, i.e., E(ρ,δ) =
E0(ρ) + Esym(ρ)δ2 + O(δ4), where ρ = ρn + ρp and δ =
(ρn − ρp)/ρ are the nucleon density and isospin asymmetry
of the system in terms of the neutron and proton densities ρn

and ρp, respectively. The isospin quadratics of the ANM EOS
has been verified to high accuracies from symmetric (δ = 0)
up to pure neutron (δ = 1) matter by most of the available
nuclear many-body theories using various interactions, see,
e.g., Ref. [2]. Nevertheless, it has been shown consistently in
a number of studies that for some physical quantities relevant
to understanding the properties of neutron stars, such as the
proton fraction at β equilibrium, the core-crust transition
density, and the critical density for the direct URCA process
to happen, even a very small coefficient Esym,4(ρ) of the
isospin quartic term in the EOS can make a big difference [3].

Here we concentrate on examining the isospin quadratics
of the kinetic EOS. For many purposes in both nuclear physics
and astrophysics, such as simulating heavy-ion collisions [4]
and determining critical formation densities of different charge
states of � resonances in neutron stars [5], one has to know sep-
arately the kinetic and potential parts of the EOS. While neither
any fundamental physical principle nor the empirical parabolic
law of the EOS requires the kinetic and potential parts of the
EOS to be quadratic in δ individually, in practice especially
in most phenomenological models the free Fermi gas (FFG)
EOS is often used for the kinetic part and then the generally
less known potential EOS is explored by comparing model
predictions with experimental data. It is well known that the
FFG model predicts a kinetic symmetry energy of Ekin

sym(ρ0) ≈
12.3 MeV and a negligibly small quartic term of Ekin

sym,4(ρ0) =
Ekin

sym(ρ0)/27 ≈ 0.45 MeV at ρ0 = 0.16/fm3. However, nu-
clear interactions, in particular the short-range repulsive core
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and tensor force, lead to a high (low) momentum tail (deple-
tion) in the single-nucleon momentum distribution above (be-
low) the nucleon Fermi surface [6–9]. Much progress has been
made recently both theoretically and experimentally in quan-
tifying especially the nucleon high momentum tails (HMTs)
in ANM, see, e.g., Refs. [10–14]. In this work, using isospin-
dependent nucleon HMTs constrained by recent high-energy
electron scattering and medium-energy nuclear photodisinte-
gration experiments as well as the state-of-the-art calculations
of the deuteron wave function and the EOS of pure neutron
matter (PNM) near the unitary limit within several modern mi-
croscopic many-body theories, we show that the kinetic ANM
EOS has a significant quartic term of Ekin

sym,4(ρ0) = 7.18 ± 2.52
MeV, which is about 16 times the FFG model prediction.

Isospin dependence of single-nucleon momentum distribu-
tion with a high momentum tail in neutron-rich matter. Guided
by well-known predictions of microscopic nuclear many-body
theories, see, e.g., reviews in Ref. [15], and recent experimental
findings [10–13], we describe the single-nucleon momentum
distribution in ANM using

nJ
k (ρ,δ) =

{
�J + βJ I

(|k|/kJ
F

)
, 0 < |k| < kJ

F ,

CJ

(
kJ

F /|k|)4
, kJ

F < |k| < φJ kJ
F .

(1)

Here, J = n,p is the isospin index, kJ
F = kF(1 + τ J

3 δ)1/3

is the transition momentum [13] where kF = (3π2ρ/2)1/3

and τn
3 = +1, τ

p
3 = −1. The main features of nJ

k (ρ,δ) are
depicted in Fig. 1. The �J measures the depletion of the
Fermi sphere at zero momentum with respect to the FFG
model prediction while βJ is the strength of the momentum
dependence I (|k|/kJ

F ) [16–18] of the depletion near the Fermi
surface. The jump ZJ

F of the momentum distribution at kJ
F ,

namely, the “renormalization function,” contains information
about the nucleon effective E-mass and its isospin de-
pendence [19]. Specifically, ZJ

F = nJ
kJ

F −0
− nJ

kJ
F +0

= M/M
J,∗
E ,

where M
J,∗
E /M ≡ [1 − ∂V /∂ω]−1 with V and ω being the

real part of the single-particle potential and energy [6,20],
respectively.
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FIG. 1. Sketch of the single-nucleon momentum distribution with
a high momentum tail.

The amplitude CJ and cutoff coefficient φJ determine the
fraction of nucleons in the HMT via

xHMT
J = 3CJ

(
1 − 1

φJ

)
. (2)

The normalization condition [2/(2π )3]
∫ ∞

0 nJ
k (ρ,δ)dk =

ρJ = (kJ
F )3/3π2 requires that only three of the four parameters,

i.e., βJ , CJ , φJ , and �J , are independent. Here we choose the
first three as independent and determine the �J from

�J = 1 − 3βJ(
kJ

F

)3

∫ kJ
F

0
I

(
k

kJ
F

)
k2 dk − 3CJ

(
1 − 1

φJ

)
. (3)

Suggested by the finding within the self-consistent Green’s
function (SCGF) theory [21] and the Brueckner-Hartree-Fock
(BHF) theory [22] that the depletion �J has an almost linear
dependence on δ in the opposite directions for neutrons
and protons, we expand all four parameters in the form
YJ = Y0(1 + Y J

1 δ). Then, the total kinetic energy per nucleon
in ANM

Ekin(ρ,δ) = 1

ρ

2

(2π )3

∑
J=n,p

∫ φJ kJ
F

0

k2

2M
nJ

k (ρ,δ) dk (4)

would obtain a linear term in δ of the form

Ekin
1 (ρ) = 3

5

k2
F

2M

[
5

2
C0φ0

(
φn

1 + φ
p
1

)

+ 5

2
C0(φ0 − 1)

(
Cn

1 + C
p
1

) + 1

2
�0

(
�n

1 + �
p
1

)
+ 5β0

(
βn

1 + β
p
1

)
2k5

F

∫ kF

0
I

(
k

kF

)
k4dk

]
, (5)

where M is the nucleon mass. To ensure that Ekin
1 (ρ) vanishes

as required by the neutron-proton exchange symmetry of the
EOS, we require that �n

1 = −�
p
1 , βn

1 = −β
p
1 , Cn

1 = −C
p
1 , and

φn
1 = −φ

p
1 , i.e., more compactly YJ = Y0(1 + Y1τ

J
3 δ).

Constraining the parameters of the single-nucleon momen-
tum distribution. It is well known that the nucleon HMT
from deuteron to infinite nuclear matter scales, see, e.g.,
Refs. [23–27], leading to constant per nucleon inclusive (e,e′)
cross sections for heavy nuclei with respect to the deuteron for
the Bjorken scaling parameter xB between about 1.5 and 1.9;

see, e.g., Ref. [28] for a recent review. Systematic analyses
of these inclusive experiments and data from exclusive two-
nucleon knockout reactions induced by high-energy electrons
or protons have firmly established that the HMT fraction in
symmetric nuclear matter (SNM) is about xHMT

SNM = 28% ± 4%
and that in PNM itis about xHMT

PNM = 1.5% ± 0.5% [12–14,29].
The C/|k|4 shape of the HMT for both SNM and PNM

is strongly supported by recent theoretical and experimental
findings. The HMT for deuteron from variational many-body
calculations using several modern nuclear forces decreases as
|k|−4 within about 10% and in quantitative agreement with
that from analyzing the d(e,e′p) cross section in directions
where the final state interaction suffered by the knocked-
out proton is small [12]. The extracted magnitude CSNM =
C0 of the HMT in SNM at ρ0 is C0 ≈ 0.15 ± 0.03 [12]
(properly rescaled considering the factor of 2 difference in the
adopted normalizations of nk here and that in Refs. [12,29]).
Rather remarkably, a very recent evaluation of medium-energy
photonuclear absorption cross sections has also presented clear
and independent evidence for the C/|k|4 behavior of the HMT
and extracted a value of C0 ≈ 0.172 ± 0.007 [10] for SNM
at ρ0 in very good agreement with that found in Ref. [12].
In the following, we use C0 ≈ 0.161 ± 0.015 from taking the
average of the above two constraints. With this C0 and the value
of xHMT

SNM given earlier, the HMT cutoff parameter in SNM is
determined to be φ0 = (1 − xHMT

SNM /3C0)−1 = 2.38 ± 0.56.
Very interestingly, the 1/|k|4 behavior of the HMT nucleons

is identical to that in two-component (spin-up and -down)
cold fermionic atoms first predicted by Tan [30] and then
quickly verified experimentally [31]. Tan’s general prediction
is for all two-component fermion systems having an s-wave
contact interaction with a scattering length a much larger than
the interparticle distance d which has to be much longer
than the interaction range re. At the unitary limit when
|kFa| → ∞, Tan’s prediction is universal for all fermion
systems. Since the HMT in nuclei and SNM is known to
be dominated by the tensor force induced neutron-proton
pairs with the a ≈ 5.4 fm and d ≈ 1.8 fm at ρ0, as noted in
Refs. [10,12], Tan’s stringent conditions for unitary fermions
is obviously not satisfied in normal nuclei and SNM. The
observed identical 1/|k|4 behavior of the HMTs in nuclei and
cold atoms may have some deeper physical reasons deserving
further investigations. Indeed, a very recent study on A(e,e′p)
and A(e,e′pp) scattering has shown that the majority of the
short-range correlation (SRC)-susceptible n-p pairs are in the
3S1 state [32]. On the other hand, because of the unnaturally
large neutron-neutron scattering length ann(1S0) = −18.8 fm,
it is known that PNM is closer to the unitary limit [33]. The
EOS of PNM can thus be expanded as [34]

EPNM(ρ) � 3

5

(
kPNM

F

)2

2M

[
ξ − ζ

kPNM
F ann

− 5ν

3
(
kPNM

F ann

)2

]
, (6)

where kPNM
F = 21/3kF is the transition momentum in PNM,

ξ ≈ 0.4 ± 0.1 is the Bertsch parameter [35], and ζ ≈ ν ≈ 1
are two universal constants [36].
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FIG. 2. (Color online) EOS of PNM obtained from Eq. (6)
(dashed red band) and that from next-leading-order (NLO) lattice
calculation [37] (blue solid points), chiral perturbative theories [38]
(green band), quantum Monte Carlo simulations (QMC) [39,40]
(magenta band and purple stars), and effective field theory [33].

Shown in Fig. 2 is a comparison of the EOS of PNM
obtained from Eq. (6) (dashed red band) with several state-
of-the-art calculations using modern microscopic many-body
theories. At densities less than about 0.01 fm−3, as shown
in the inset, Eq. (6) is consistent with the prediction by the
effective field theory [33]. In the range of 0.01 fm−3 to about
0.02 fm−3, it has some deviations from predictions in Ref. [33]
but agrees very well with the NLO lattice simulations [37].
At higher densities up to about ρ0, it overlaps largely with
predictions by the chiral perturbation theories [38] and the
quantum Monte Carlo simulations [39,40]. In addition, recent
studies on the spin-polarized neutron matter within the chiral
effective field theory including two-, three-, and four-neutron
interactions indicate that properties of PNM are similar to
those of the unitary Fermi gas at least up to ρ0 far beyond
the scattering-length regime of ρ � ρ0/100 [41]. Overall, the
above comparison and studies clearly justify the use of Eq. (6)
to calculate the PNM EOS up to about ρ0.

Both the HMT and EOS can be experimentally measured
independently and calculated simultaneously within the same
model. Tan has proven in great detail that the two are directly

related by the so-called adiabatic sweep theorem [30]. It is
valid for any two-component Fermi systems under the same
conditions as Eq. (6) near the unitary limit. For PNM, it can
be written as

CPNM
n

(
kPNM

F

)4 = −4πM
d(ρEPNM)

d(a−1)
. (7)

While the results shown in Fig. 2 justify the use of Eq. (6) for
the EOS of PNM up to about ρ0, indeed, to the best of our
knowledge there is currently no proof that Eq. (7) is also valid
in the same density range as Eq. (6). Thus, it would be very
interesting to examine the validity range of Eq. (7) using the
same models as those used to calculate the EOS. In this work,
we assume that Eqs. (6) and (7) are both valid in the same
density range. Then, the strength of the HMT in PNM can be
readily obtained as

CPNM
n ≈ 2ζ/5π + 4ν/

[
3πkPNM

F ann
(1

S0
)] ≈ 0.12. (8)

Noticing that CPNM
n = C0(1 + C1), we can then infer that

C1 = −0.25 ± 0.07 with the C0 given earlier. Next, after
inserting the values of xHMT

PNM and CPNM
n into Eq. (2), the

high momentum cutoff parameter for PNM is determined
to be φPNM

n ≡ φ0(1 + φ1) = (1 − xHMT
PNM /3CPNM

n )−1 = 1.04 ±
0.02. It is not surprising that the φPNM

n is very close to unity
since only about 1.5% of the neutrons are in the HMT in
PNM. Subsequently, using the φ0 determined earlier, we get
φ1 = −0.56 ± 0.10.

The two parameters β0 and β1 in βJ = β0(1 + β1τ
J
3 δ)

depend on the function I (|k|/kJ
F ) which is still model

dependent. To minimize the model assumptions and evaluate
the dominating terms in the kinetic EOS, in the following we
shall first use a momentum-independent depletion of the Fermi
sea as in most studies in the literature. The HMT parameters CJ

and φJ evaluated above remain the same. Then, we examine
the maximum correction to each term in the kinetic EOS by
using the largest values of β0 and β1 allowed and a typical
function I (|k|/kJ

F ). Not surprisingly, the corrections are all
small.

Isospin dependence of kinetic EOS of ANM. The kinetic
EOS can be expanded in δ as

Ekin(ρ,δ) = Ekin
0 (ρ) + Ekin

sym(ρ)δ2

+Ekin
sym,4(ρ)δ4 + O(δ6). (9)

The coefficients evaluated from Eq. (4) using the nJ
k (ρ,δ) in

Eq. (1) with βJ = 0 are

Ekin
0 (ρ) = 3

5
EF(ρ)

[
1 + C0

(
5φ0 + 3

φ0
− 8

)]
, (10)

Ekin
sym(ρ) = 1

3
EF(ρ)

[
1 + C0(1 + 3C1)

(
5φ0 + 3

φ0
− 8

)
+ 3C0φ1

(
1 + 3

5
C1

)(
5φ0 − 3

φ0

)
+ 27C0φ

2
1

5φ0

]
, (11)

Ekin
sym,4(ρ) = 1

81
EF(ρ)

[
1 + C0(1 − 3C1)

(
5φ0 + 3

φ0
− 8

)
+ 3C0φ1(9C1 − 1)

(
5φ0 − 3

φ0

)

+ 81C0φ
2
1

(
9φ2

1 − 9C1φ1 − 15φ1 + 15C1 + 5
)

5φ0

]
. (12)
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In the FFG where there is no HMT, φ0 = 1, φ1 = 0,
and thus 5φ0 + 3/φ0 − 8 = 0, the above expressions reduce
naturally to the well-known results of Ekin

0 (ρ) = 3EF(ρ)/5,
Ekin

sym(ρ) = EF(ρ)/3, and Ekin
sym,4(ρ)/Ekin

sym(ρ) = 1/27, where
EF(ρ) = k2

F/2M is the Fermi energy.
For the interacting nucleons in ANM with the momen-

tum distribution and its parameters given earlier, we found
that Ekin

0 (ρ0) = 40.45 ± 8.15 MeV, Ekin
sym(ρ0) = −13.90 ±

11.54 MeV, and Ekin
sym,4(ρ0) = 7.19 ± 2.52 MeV, respectively.

Compared to the corresponding values for the FFG, it is seen
that the isospin-dependent HMT increases significantly the
average kinetic energy Ekin

0 (ρ0) of SNM but decreases the
kinetic symmetry energy Ekin

sym(ρ0) of ANM to a negative
value qualitatively consistent with the findings of several recent
studies of the kinetic EOS considering short-range nucleon-
nucleon correlations using both phenomenological models and
microscopic many-body theories [42–47]. However, it was
completely unknown before if the empirical isospin parabolic
law is still valid for the kinetic EOS of ANM when the isospin-
dependent HMTs are considered. Very surprisingly and inter-
estingly, our calculations here show clearly that it is broken
seriously. More quantitatively, the ratio |Ekin

sym,4(ρ0)/Ekin
sym(ρ0)|

is about 52% ± 26%, which is much larger than the FFG
value of 3.7 %. We also found that the large quartic term
is mainly due to the isospin dependence of the HMT cutoff
described by the φ1 parameter. For example, by artificially
setting φ1 = 0, we obtain Ekin

sym(ρ0) = 14.68 ± 2.80 MeV and
Ekin

sym,4(ρ0) = 1.12 ± 0.27 MeV which are all close to their
FFG values.

Considering short-range nucleon-nucleon correlations but
assuming that the isospin parabolic approximation is still
valid, some previous studies have evaluated the kinetic
symmetry energy Ekin

sym by taking the difference between
the kinetic energies of PNM and SNM, i.e., subtracting
the Ekin

0 from Ekin
PNM. This actually approximately equals

Ekin
sym(ρ0) + Ekin

sym,4(ρ0) = −6.71 ± 9.11 MeV in our current
work. This value is consistent quantitatively with the Ekin

sym(ρ0)
found in Ref. [29] using the parabolic approximation.

Corrections due to the momentum-dependent depletion of
the Fermi sea. To estimate corrections due to the momentum
dependence of the depletion very close to the Fermi surface,
i.e., a finite βJ , we consider a widely used single-nucleon
momentum distribution parametrized in Ref. [25] based on
calculations using many-body theories. For |k| � 2 fm−1, it
goes like ∼e−α|k|2 with α ≈ 0.12 fm2. At ρ0 since αk2

F ≈ 0.21,
e−α|k|2 ≈ 1 − α|k|2 + O(|k|4) is a good approximation in the
range of 0 < |k| < kJ

F . Thus, we adopt a quadratic function
I (|k|/kJ

F ) = (|k|/kJ
F )2. The constants in the parametrization

of Ref. [25] are absorbed into our parameters �J and βJ .
Then Eq. (3) gives us �J = 1 − 3βJ /5 − 3CJ (1 − 1/φJ ).
Specifically, we have β0 = (5/3)[1 − �0 − 3C0(1 − φ−1

0 )] =
(5/3)[1 − �0 − xHMT

SNM ] for SNM. Then using the predicted
value of �0 ≈ 0.88 ± 0.03 [9,22,23] and the experimental
value of xHMT

SNM ≈ 0.28 ± 0.04, the value of β0 is estimated to
be about −0.27 ± 0.08. Similarly, the condition βJ = β0(1 +
β1τ

J
3 δ) < 0, i.e., nJ

k is a decreasing function of momentum
towards kJ

F , indicates that |β1| � 1.

First of all, a finite value of βJ is expected to affect the
“renormalization function” ZJ

F . For SNM, we have Z0
F =

1 + 2β0/5 − C0 − xHMT
SNM = 0.45 ± 0.07 (0.56 ± 0.04) in the

presence (absence) of β0. For ANM, however, the ZJ
F depends

on the less constrained value of β1. It is worth noting that
the latter also determines the neutron-proton effective E-mass
splitting which has significant effects on isovector observables
in heavy-ion collisions [48], and a study is underway to further
constrain the value of β1 using data from heavy-ion reactions.

Contributions from a finite βJ to the first three terms of the
kinetic EOS are

δEkin
0 (ρ) = 3

5
EF(ρ0)

4β0

35
, (13)

δEkin
sym(ρ) = 1

3
EF(ρ0)

4β0(1 + 3β1)

35
, (14)

δEkin
sym,4(ρ) = 1

81
EF(ρ0)

4β0(1 − 3β1)

35
. (15)

With the largest magnitude of β0 = −0.35, we examine in
Fig. 3 the corrections to the Ekin

sym(ρ0) and Ekin
sym,4(ρ0) as

functions of β1 in its full range allowed. In this case the
maximum effects of the finite βJ are revealed. It is seen
that the correction on the Ekin

sym,4(ρ0) is negligible while the
correction on the Ekin

sym(ρ0) is less than 2 MeV. Considering the
corrections due to the finite β0 and β1 and their uncertainties,
we finally obtain Ekin

0 (ρ0) = 39.77 ± 8.13 MeV, Ekin
sym(ρ0) =

−14.28 ± 11.59 MeV, and Ekin
sym,4(ρ0) = 7.18 ± 2.52 MeV.

We notice here that the δ6 term was also consistently evaluated
and was found to be negligibly small at ρ0.

Summary and discussion. In summary, using an isospin-
dependent single-nucleon momentum distribution including
a high (low) momentum tail (depletion) with its shape
parameters constrained by the latest results of several relevant
experiments and the state-of-the-art predictions of modern
microscopic many-body theories, we found for the first
time that the kinetic EOS of interacting nucleons in ANM
is not parabolic in isospin asymmetry. It has a significant

FIG. 3. (Color online) Corrections to the Ekin
sym(ρ0) and Ekin

sym,4(ρ0)
as functions of β1 with β0 = −0.35.
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quartic term of 7.18 ± 2.52 MeV while its quadratic term is
−14.28 ± 11.60 MeV at saturation density of nuclear matter.

To this end, it is necessary to point out the limitations of our
approach and a few physical implications of our findings. Since
we fixed the parameters of the nucleon momentum distribution
[Eq. (1)] by using experimental data and/or model calculations
at the saturation density, the possible density dependence of
these parameters is not explored in this work. The density
dependence of the various terms in the kinetic EOS is thus only
due to that of the Fermi energy as shown in Eqs. (10)–(12). In
this limiting case, the slope of the kinetic symmetry energy, i.e.,
Lkin = 3ρ0∂Ekin

sym(ρ)/∂ρ|ρ=ρ0 = −27.81 ± 23.08 MeV while
that of the FFG is about 25.04 MeV.

The SRC-reduced kinetic symmetry energy with respect
to the FFG prediction has been found to affect significantly
not only our understanding about the origin of the sym-
metry energy but also several isovector observables, such
as the free neutron/proton and π−/π+ ratios in heavy-ion
collisions [29,49,50]. However, to our best knowledge, an
investigation on the possible effects of a large isospin quartic
term on heavy-ion collisions has never been done, while its
effects on the properties of neutron stars have been studied
extensively [3]. Of course, effects of the quartic and quadratic
terms should be studied together within the same approach. To
extract from nuclear reactions and neutron stars information
about the EOS of neutron-rich matter, people often parametrize
the EOS as a sum of the kinetic energy of a FFG and a
potential energy involving unknown parameters up to the
isospin-quadratic term only. Our findings in this work indicate

that it is important to include the isospin-quartic term in
both the kinetic and potential parts of the EOS. Moreover,
to accurately extract the completely unknown isospin-quartic
term E

pot
sym,4(ρ)δ4 in the potential EOS it is important to

use the kinetic EOS of quasiparticles with reduced kinetic
symmetry energy and an enhanced quartic term due to the
isospin dependence of the HMT. Most relevant to the isovector
observables in heavy-ion collisions, such as the neutron-proton
ratio and differential flow, is the nucleon isovector potential.
Besides the so-called Lane potential ±2ρE

pot
sym(ρ)δ where

the E
pot
sym(ρ) is the potential part of the symmetry energy

and the ± sign is for neutrons/protons, the E
pot
sym,4(ρ)δ4 term

contributes an additional isovector potential ±4ρE
pot
sym,4(ρ)δ3.

In neutron-rich systems besides neutron stars, such as nuclear
reactions induced by rare isotopes and peripheral collisions
between two heavy nuclei having thick neutron skins, the
latter may play a significant role in understanding the
isovector observables or extracting the sizes of neutron skins
of the nuclei involved. We plan to study the effects of
the isospin-quartic term in the EOS in heavy-ion collisions
using the isospin-dependent transport model [4] in the near
future.
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