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K̄ + N → K + � reaction and S = −1 hyperon resonances
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The K̄ + N → K + � reaction is studied for center-of-momentum energies ranging from threshold to 3 GeV
in an effective Lagrangian approach that includes the hyperon s- and u-channel contributions as well as a
phenomenological contact amplitude. The latter accounts for the rescattering term in the scattering equation
and possible short-range dynamics not included explicitly in the model. Existing data are well reproduced and
three above-the-threshold resonances were found to be required to describe the data, namely, the �(1890),
�(2030), and �(2250). For the latter resonance we have assumed the spin-parity of JP = 5/2− and a mass of
2265 MeV. The �(2030) resonance is crucial in achieving a good reproduction of not only the measured total
and differential cross sections but also the recoil polarization asymmetry. More precise data are required before a
more definitive statement can be made about the other two resonances, in particular, about the �(2250) resonance
that is introduced to describe a small bump structure observed in the total cross section of K− + p → K+ + �−.
The present analysis also reveals a peculiar behavior of the total cross-section data in the threshold energy region
in K− + p → K+ + �−, where the P and D waves dominate instead of the usual S wave. Predictions for the
target-recoil asymmetries of the K̄ + N → K + � reaction are also presented.

DOI: 10.1103/PhysRevC.91.065208 PACS number(s): 13.75.Jz, 13.60.Rj, 13.88.+e, 14.20.Jn

I. INTRODUCTION

Hadron spectroscopy is an essential part of the investigation
to understand the nonperturbative regime of quantum chromo-
dynamics (QCD). In principle, an ab initio approach to hadron
resonance physics can be provided by lattice QCD simulations.
In particular, the spectra of excited baryons observed in the
recent lattice simulations [1,2] hold the promise of explaining
the rich dynamics in the resonance energy region in the near
future. Once quark masses drop towards more reasonable
values and finite volume effects are fully under control,
a close comparison to experimental data will be possible.
Other approaches such as the dynamical Dyson-Schwinger [3],
constituent quark models [4,5], and the Skyrme model [6] also
generate resonance spectra. Unitarized chiral perturbation the-
ory also provides a complementary picture of some of the low-
lying resonances [7,8]. To compare these theoretical results
with the experimental data, a reliable reaction theory capable
of identifying resonances and extracting the corresponding
resonance parameters is required. Such reaction theories,
based on a coupled-channel approach, have been developed
at various degrees of sophistication and are being improved
[9–16]. So far, most of the experimentally extracted baryon
resonances come from the pion-induced reaction experiments,
especially the πN scattering, and about 16 nucleon resonances
and 11 � resonances have been identified [17]. A number of �
and � baryons, which are particles with strangeness quantum
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number S = −1, have been also discovered [17]. A review on
the status of baryon spectroscopy is given, e.g., in Ref. [18].

Although the multistrangeness baryons (S < −1) have
played an important role in the development of our un-
derstanding of strong interactions, and thus should be an
integral part of any baryon spectroscopy program, the current
knowledge of these baryons is still extremely limited. In
fact, the SU(3) flavor symmetry allows as many S = −2
baryon resonances, called �, as there are N and � resonances
combined (∼27); however, until now, only eleven � baryons
have been discovered [17]. Among them, only three [ground
state �(1318)1/2+, �(1538)3/2+, and �(1820)3/2−] have
their quantum numbers assigned.1 This situation is mainly
due to the fact that multistrangeness particle productions have
relatively low yields. For example, if there are no strange
particles in the initial state, � is produced only indirectly
and the yield is only of the order of nanobarns in the
photoproduction reaction [19], whereas the yield is of the
order of microbarns [20] in the hadronic K̄-induced reaction,
where the � is produced directly because of the presence of
an S = −1 K̄ meson in the initial state. The production rates
for � baryons with S = −3 are much lower [21].

The study of multistrangeness baryons has started to attract
renewed interest recently. Indeed, the CLAS Collaboration at
Thomas Jefferson National Accelerator Facility (JLab) plans
to initiate a � spectroscopy program using the upgraded
12-GeV machine and measure exclusive � photoproduction

1The parity of the ground state � has not been measured explicitly
yet, but its assignment is based on quark models and SU(3) flavor
symmetry.
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for the first time [22]. Some data for the production of
the � ground state, obtained from the 6-GeV machine, are
already available [19]. They were analyzed by some of
the present authors [23,24] within an effective Lagrangian
approach. J-PARC is going to study the � baryons via the
K̄ + N → K + � process (which is the reaction of choice
for producing �) in connection to its program proposal
for obtaining information on � hypernuclei spectroscopy. It
also plans to study the π + N → K + K + � reaction as
well as � production [25,26]. At the Facility for Antiproton
and Ion Research (FAIR) of GSI Helmholtzzentrum für
Schwerionenforschung, the reaction p̄ + p → �̄ + � will be
studied by the PANDA Collaboration [27]. Quite recently,
lattice QCD calculations of the baryon spectra, including those
of � and � baryons, have also been reported, for example,
in Refs. [1,2].

In the present work, we concentrate on the production
of S = −2 � and, in particular, on the production reaction
process of the ground state �,

K̄(q) + N (p) → K(q ′) + �(p′), (1)

where the arguments indicate the corresponding particle’s
on-shell four-momentum. This reaction has been studied
experimentally mainly throughout the 1960s [28–37], which
was followed by several measurements made in the 1970s and
1980s [38–44]. The existing data are rather limited and suffer
from large uncertainties. The total cross section and some of
the differential cross-section data are tabulated in Ref. [20].
We shall return to the discussion of these experimental data
later on. Early theoretical attempts to understand the above
reaction are very few and can be found in Refs. [45–49]. Recent
calculations are reported by Sharov et al. [50] and Shyam et al.
[51]. The former authors have considered both the total and
differential cross sections as well as the recoil polarization data
in their analysis, while the latter authors have considered only
the total cross-section data, although they too have predicted
the differential cross sections, mentioning that they found
it difficult to use the differential cross-section data [37] for
several reasons. Although the analyses of Refs. [50,51] are
both based on very similar effective Lagrangian approaches,
the number of S = −1 hyperon resonances included in the
intermediate state are different. While in Ref. [50] only
the �(1385) and �(1520) are considered in addition to
the above-threshold �(2030) and �(2250) resonances,2 in
Ref. [51] eight of the 3- and 4-star � and � resonances with
masses up to 2.0 GeV have been considered. While the authors
of Ref. [50] pointed out the significance of the above-threshold
resonances, the authors of Ref. [51] have found the dominance
of the subthreshold �(1520) resonance. Reaction (1) has been
also considered quite recently by Magas et al. [52] within the
coupled-channels unitarized chiral perturbation approach in
connection to the issue of determining the parameters of the
next-to-leading-order interactions. The authors of Ref. [52]
have added the �(2030) and �(2250) resonances into their
calculation to improve the fit quality to the total cross-section
data. Just recently, the Argonne-Osaka group [53] reported

2The production threshold energy for the reaction of Eq. (1) is about
1813 MeV.

applying their dynamical coupled channels approach to K̄-
induced two-body reactions for center-of-momentum (c.m.)
energies up to W = 2.1 GeV. In the reported work, both the
total and differential cross sections were calculated, but the
extracted resonance parameter values are not yet available.

We note here that the proper identification of resonances
and the reliable extraction of their parameters requires de-
tailed knowledge of the analytic structures of the scattering
amplitude that, to date, can only be obtained through a full
coupled-channel treatment, such as that of Ref. [53]. However,
because the currently available data in the K� channel are
scarce and of low quality, they do not provide sufficient
constraints for the model parameters to permit an in-depth
analysis of that channel [53]. In this context, we mention that a
coupled-channel partial-wave analysis of K̄-induced reactions
up to W = 2.1 GeV has also been performed recently by the
Kent State University group [54,55] which includes the K̄N ,
π�, π�, π�(1520), π�(1385), K̄∗N , and K̄� channels, but
not the K� channel.

Some of the model-independent aspects of the reaction
(1) have been studied recently by the present authors [56,57].
In the present work, we perform a model-dependent analysis
of the existing data between threshold and a c.m. energy of
3 GeV based on an effective Lagrangian approach that
includes a phenomenological contact amplitude which
accounts for the rescattering contributions and/or unknown
(short-range) dynamics that have not been included explicitly
into the model. While the tree-level model presented here
is not very sophisticated, it captures the essential aspects of
the process in question. As such, the use of a simplified yet
efficient model is particularly well suited for a situation, such
as for the reaction (1), where scarce and poor data prevent a
more detailed and complete treatment. The present study is
our first step toward building a more complete reaction model
capable of reliably extracting the properties of hyperons from
the forthcoming experimental data, in addition to providing
some guidance for planning future experiments. One of
the purposes of the present work is to search for a clearer
evidence of the S = −1 hyperon resonances in reaction (1).
However, we emphasize that our main interest here lies not so
much in the accurate extraction of S = −1 hyperon resonance
parameters, but in an exploratory study to learn about the
pertinent reaction mechanisms and, in particular, to identify
the resonances that come out to be most relevant for the
description of the existing � production data. In fact, with the
exception of the �(2250) resonance, whose mass was adjusted
slightly to better reproduce the observed bump structure in the
total cross section in the charged � production, the masses
and widths of the resonances incorporated here are taken from
other sources, as explained in Sec. III below. Only the product
of the coupling constants and the cutoff parameters in the
corresponding form factors are adjusted in the present work.

The investigation of reaction (1) also impacts the study of
� hypernuclei, where the elementary process of Eq. (1) is an
input for the models of hypernuclei productions [49,58–60].
As mentioned before, there is a proposed program at J-PARC
and eventually at GSI-FAIR to obtain information about the
spectroscopy of � hypernuclei through the antikaon-induced
reactions on nuclear targets. Establishing the existence and
properties of � hypernuclei is of considerable importance for
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a number of reasons and the study of reaction (1) is an essential
step to this end.

The present paper is organized as follows. In Sec. II, our
model for describing reaction (1) is presented, with some
technical details supplied in the appendix. In Sec. III, the
results of our model calculations are presented and discussed.
Section IV contains our summary and conclusions.

II. MODEL DESCRIPTION

The reaction amplitude, T , describing a two-body process
like the reaction (1) is, in general, given by the Bethe-Salpeter
equation,

T = V + V G0T , (2)

where V stands for the (two-body) meson-baryon irreducible
(Hermitian) driving amplitude and G0 describes free relative
meson-baryon motion. Note that the above equation repre-
sents, in principle, a coupled-channels equation in meson-
baryon channel space. It can be recast into the pole and the
nonpole parts as

T = T P + T NP, (3)

where the nonpole part T NP obeys

T NP = V NP + V NPG0 T NP (4)

with
V NP ≡ V − V P (5)

denoting the one-baryon irreducible (non-pole) part of the
driving amplitude, V . Here, V P stands for the one-baryon
reducible (pole) part of V in the form of 3

V P =
∑

r

|F0r〉 S0r 〈F0r | , (6)

where F0r and S0r = (p2
r − m2

0r + i0)−1 stand for the so-called
bare vertex and bare baryon propagator, respectively. The
summation runs over the baryons in the intermediate state,
each specified by the index r . The four-momentum and the
bare mass of the propagating baryon are denoted by pr and
m0r , respectively. As can be seen in Fig. 1, V P is the sum
of the s-channel Feynman diagrams corresponding to bare
baryon propagations in the intermediate state. The pole part of
the reaction amplitude T P in Eq. (3) is given by

T P =
∑
r ′r

|Fr ′ 〉 Sr ′r 〈Fr | , (7)

where the so-called dressed vertex reads

|Fr ′ 〉 = (1 + T NPG0) |F0r ′ 〉 , 〈Fr | = 〈F0r | (1 + G0 T NP),

(8)

and the dressed propagator Sr ′r is written as

S−1
r ′r = S−1

0r δr ′r − �r ′r , (9)

with
�r ′r = 〈F0r ′ | G0 |Fr〉 (10)

3The bra and ket notation here is used only as a quick visual cue to
identify incoming and outgoing vertices, respectively. They are not
to be taken as Hilbert space states in the usual sense.

Ms

N(p)

K̄(q)

Ξ(p′)

K(q′)

Λ,Σ +

Mu

+

Mc

FIG. 1. Diagrams describing the amplitude (11) in the present
calculation. The labeling of the external legs of the s-channel
diagram, Ms , follows the reaction equation (1); the labels apply
correspondingly also to the external legs of the u-channel diagram,
Mu, and the contact term, Mc. The intermediate hyperon exchanges,
� and �, indicated for Ms also appear in Mu. The details of the
contact amplitude, Mc, are discussed in Sec. II.

denoting the self-energy.
In the present work we shall make the following ap-

proximations to the reaction amplitude in Eq. (3). First,
we approximate the pole part of the reaction amplitude,
T P, by the s-channel Feynman amplitude, Ms , specified
by effective Lagrangians and phenomenological Feynman
propagators. Here, the dressed resonance coupling constants,
dressed masses as well as the corresponding widths are
parameters either fixed from independent sources or adjusted
to reproduce the experimental data. The meson-baryon-baryon
vertices are obtained from the effective Lagrangians given
in the appendix; the phenomenological Feynman propagators
for dressed baryons are also found there. Note that, here, the
resonance couplings in the dressed propagators are ignored.

Second, the nonpole part of the reaction amplitude T NP is
approximated as follows:

(i) Since there is no meson-exchange t-channel process in
the present reaction, unless the exchanged meson is an
exotic one with strangeness quantum number S = 2,
V NP of the reaction is approximated by the u-channel
Feynman amplitude, Mu, constructed from the same
effective Lagrangians and Feynman propagators used
to construct the s-channel Feynman amplitudes.

(ii) The rescattering term V NPG0 T NP in T NP of Eq. (4)
and other effects not explicitly included in the present
approach are accounted for by a phenomenological
contact term, Mc, which is specified below. This
contact term will be discussed in more detail later.

With the approximations described above, the reaction
amplitude in the present work is given by

T = Ms + Mu + Mc , (11)

where Ms and Mu are the amplitudes from the s- and u-channel
Feynman diagrams, respectively; both amplitudes include
the ground-state hyperons as well as some of the S = −1
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hyperon resonances in the intermediate state. Figure 1 shows
a diagrammatic representation of Ms , Mu, and Mc.

The amplitude for the reaction of Eq. (1) can be decomposed
into spin-nonflip and spin-flip contributions. Their respective
partial-wave decomposed forms read4

M++ = M−−

= 1

4π

∑
L,T

[
(L + 1) M

T J+
L (p′,p) + LM

T J−
L (p′,p)

]
×PL( p̂ · p̂′) P̂T , (12a)

M+− = −M−+

= 1

4π

∑
L,T

[
M

T J+
L (p′,p) − M

T J−
L (p′,p)

]
×P 1

L( p̂ · p̂′) P̂T , (12b)

where initial and final momenta are as in Fig. 1. The indices
s ′,s = ± in Ms ′s stand for spin up (+) and spin down (−) of
the final (s ′) and initial (s) states quantized along the incoming
momentum direction p̂, and J± ≡ L ± 1

2 (for L = 0, the

corresponding J− terms are zero). MT J±
L are diagonal elements

of the more general partial-wave amplitudes introduced in
Ref. [57] (where full technical details can be found). The
Legendre and associated Legendre functions are denoted by
PL(x) and P 1

L(x), respectively,5 with argument p̂ · p̂′ = cos θ ,
where θ is the scattering angle. The total angular momentum,
orbital angular momentum, and total isospin of the meson-
baryon state are represented by J,L, and T , respectively.
P̂T stands for the isospin projection operator onto the total
isospin 0 or 1 as T = 0 or T = 1, respectively. Explicitly,
P̂T =0 = (3 + τ 1 · τ 2)/4 and P̂T =1 = (1 − τ 1 · τ 2)/4.

The phenomenological contact amplitude, Mc, is now
decomposed in terms of spin amplitudes similar to Eqs. (12)
as well. Following the essential idea of Ref. [61], the
corresponding contact term contributions are parameterized as

Mc ++ = Mc −−

=
∑
L,T

gLT
1

(
p′

�S

)L

exp

(
−αT

L

p′2

�2
S

)

×PL( p̂ · p̂′)P̂T , (13a)

Mc +− = −Mc −+

=
∑
L,T

gLT
2

(
p′

�S

)L

exp

(
−βT

L

p′2

�2
S

)

×P 1
L( p̂ · p̂′)P̂T , (13b)

4There are in total four spin matrix elements to describe
the reaction (1). However, only two of them, corresponding
to the spin-nonflip and spin-flip processes, are independent due to the
reflection symmetry about the reaction plane for parity conserving
processes. See Ref. [57] for more detailed discussions. Note that
Ref. [57] contains typographical errors in Eqs. (A3b), (A3c), (A4a),
(A5c), and (A6e). Each of these equations should be multiplied by an
overall factor of −1.

5Here, the phase convention for the associated Legendre function is
such that P 1

1 (x) = sin(x).

with gLT
1 ≡ aT

L exp (iφT L
a ), gLT

2 ≡ bT
L exp (iφT L

b ), and αT
L ,

βT
L being constants to be fitted. φT L

x for x = a,b is the
complex phase angle parameter which renders the contract
amplitude, Mc, complex and �S is a typical scale parameter
of the reaction at hand. The momentum dependence of the
partial-wave matrix elements given above is particularly well
suited for hard processes, which have a large momentum
transfer and whose amplitudes are expected to be independent
of energy and nearly constant apart from the centrifugal
barrier effects. Though reaction (1) is not a very hard process,6

the p′L dependence nonetheless captures the essence of the
behavior of the amplitude at low momentum in the final state.
For further details, we refer to Ref. [61]. The exponential
factor in Eq. (13) is simply a damping factor to suppress the
high momentum behavior introduced by p′L.

It should be noted that our phenomenological contact
term, Mc, can only account for effects with a smooth energy
dependence. Effects from, for example, dynamically generated
resonances and/or channel couplings [62–65], etc., that exhibit
a strong variation of the amplitude as a function of energy
cannot be described by the contact term.

The amplitudes Ms , Mu, and Mc must be added up to obtain
the total scattering amplitude of Eq. (11). To ensure that there is
no ambiguity in the relative phase of Ms + Mu and Mc caused
by different Feynman rules, we give an explicit calculation of
Ms and Mu for �(1116) in the appendix.

Standard effective Lagrangian approaches include tree-
level s-, u-, and t-channel diagrams, without phenomenolog-
ical contact terms. Apart from crossing symmetry demands,
the inclusion of the u-channel amplitude, Mu, in particular,
is necessary to reproduce the backward peaking of the
differential cross sections. (See Sec. III.) In fact, there are
a number of � and � resonances (cf. Table I) that may
contribute to this reaction. However, it happens that the
u-channel resonance contributions, especially from many of
the subthreshold resonances, also give rise to a total cross
section which keeps increasing with energy in the present
reaction process. This feature is not supported by the data,
which reach a peak and then fall off as a function of energy.
Thus, one needs a dynamical mechanism to suppress this rise
in energy.

The effective Lagrangian approaches of Refs. [50,51] have
introduced phenomenological mechanisms for dealing with
this problem that are very similar in spirit albeit somewhat
different in technical detail. In both approaches, the rise of the
u-channel resonance diagrams was suppressed with functions
that smoothly cut off their contributions at high energies.7

While the respective procedures generally provide satisfactory
agreement with the data, they both violate crossing symmetry
even at the tree-level.

6For example, the momentum transfer of this reaction at threshold
is about 200 MeV.

7According to a private communication by one of the authors of
Ref. [51], the form factor given in Eq. (3) of that work only applies
to the s channel; the u channel was suppressed instead by the form
factor given in Eq. (5) of Ref. [66].
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TABLE I. The � and � hyperons listed by the Particle Data Group [17] (PDG) as three- or four-star states. The decay widths and branching
ratios of higher-mass resonances (mr > 1.6 GeV) are in a broad range, and the coupling constants are determined from their centroid values.
In the present work, the masses (mr ) and widths (
r ) of the hyperons as given in this table have been used, except for the �(2250) resonance.
For the latter resonance, see the text.

� states � states

State mr (MeV) 
r (MeV) Rating |gN�K | State mr (MeV) 
r (MeV) Rating |gN�K |
�(1116) 1/2+ 1115.7 **** �(1193) 1/2+ 1193 ****
�(1405) 1/2− 1406 50 **** �(1385) 3/2+ 1385 37 ****
�(1520) 3/2− 1520 16 ****
�(1600) 1/2+ 1600 150 *** 4.2 �(1660) 1/2+ 1660 100 *** 2.5
�(1670) 1/2− 1670 35 **** 0.3 �(1670) 3/2− 1670 60 **** 2.8
�(1690) 3/2− 1690 60 **** 4.0 �(1750) 1/2− 1750 90 *** 0.5
�(1800) 1/2− 1800 300 *** 1.0 �(1775) 5/2− 1775 120 ****
�(1810) 1/2+ 1810 150 *** 2.8 �(1915) 5/2+ 1915 120 ****
�(1820) 5/2+ 1820 80 **** �(1940) 3/2− 1940 220 *** <2.8
�(1830) 5/2− 1830 95 **** �(2030) 7/2+ 2030 180 ****
�(1890) 3/2+ 1890 100 **** 0.8 �(2250) ?? 2250 100 ***
�(2100) 7/2− 2100 200 ****
�(2110) 5/2+ 2110 200 ***
�(2350) 9/2+ 2350 150 ***

In our model calculations, we also see the same undesirable
rise of u-channel contributions if we leave out contact terms.
We interpret this to mean that the rescattering term V NPG0 T NP

of the nonpole T matrix in Eq. (4) would be responsible
for providing the cancellation for the increasing u-channel
resonance amplitudes. We account here phenomenologically
for these in detail very complex dynamics by introducing
contact terms, and our results in Sec. III will show that this will
indeed allow us to treat both s- and u-channel contributions
consistently and at the same time avoid the high-energy
u-channel contributions.

In general, it seems that the problem has two scales,
corresponding to long-range and short-range dynamics. The
latter is, of course, sensitive to the form factors used at the
meson-baryon vertices to account for the composite nature of
the hadrons, and the use of phenomenological contact terms
seems to be warranted to account for additional structure
effects. Problems with two scales have been addressed in the
past, where some authors have introduced two form factors,
one soft and other hard, to mimic such effects [67]. Also, in
effective field theories the unknown short-range dynamics is
accounted for by contact terms.

III. RESULTS

In this section, we present our results for the reaction
K̄ + N → K + � in different isospin channels. More specif-
ically, we investigate the reactions K− + p → K+ + �−,
K− + p → K0 + �0, and K− + n → K0 + �− considering
all the available data on the total and differential cross sections
as well as recoil polarization asymmetries.

Before we present our results, we briefly remark on the
experimental data considered in this work, i.e., total cross
sections, differential cross sections, and recoil polarization
asymmetries. These data come from different sources [30–
34,36,37,40] and are available in various forms. Some of them

are not in the tabular (numerical) form that can be readily used
but are given only in graphical form or as parametrization in
terms of the Legendre polynomial expansions. In Ref. [50],
Sharov et al. have carefully considered the data extraction
from these papers. We have checked that the extracted data are
consistent with those in the original papers within the permitted
accuracy of the check. In the present work, we use these data,
and no cross sections resulting from the expansion coefficients
are considered here.

As mentioned before, there are a number of 3- and 4-star
� and � resonances, including those low-mass subthreshold
ones that contribute, in principle, to reaction (1). A list of
these hyperon resonances and some of their properties is
shown in Table I. However, apart from the ground state
�(1116) and �(1193), the required information for most of
these resonances on the resonance parameters, such as the
coupling strength (including their signs) to � and/or N , are
largely unknown. Therefore, the strategy adopted in this work
is to consider these parameters as fit parameters and consider
the minimum number of resonances required to reproduce
the existing data. In particular, we have considered only
those resonances that give rise to a considerable contribution
to the cross section within a physically reasonable range
of the resonance parameter values. More specifically, during
the fitting procedure, resonances were added one by one to
the model and the quality of fit was checked. It should be
mentioned that we have also checked the influence of various
combinations of resonances at a time (and not just one by
one) to the fit quality. The resonances kept in the presented
calculation were those that increased the quality of the fit by a
noticeable amount with the variation in χ2 per data points N ,
namely, δχ2/N > 0.1. An example of this procedure is shown
in Table II where the results of adding one more resonance
to the current model, as specified later, is shown. We see that
some of these resonances improve the fit quality of the total
cross section but not the other observables or even worsen
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TABLE II. Variation in χ 2 per data point N , δχ 2/N , obtained when adding one more resonance to the current model (specified in Table III).
A negative δχ 2/N corresponds to an improvement in the result. The quantity δχ2

i /Ni corresponds to δχ 2/N evaluated for a given type of
observable specified by index i = σ (total cross section), dσ (differential cross section), and P (recoil asymmetry). N = Nσ + Ndσ + NP

denotes the total number of data points. Furthermore, δχ2
i /Ni is given for the charged �− (δχ 2

−/N−) and neutral �0 (δχ 2
0 /N0) production

processes, separately. The last column corresponds to δχ2/N of the global fit considering all the data of both reaction processes. The last row
corresponds to χ 2

i /Ni of the current model.

K̄− + p → K+ + �− K̄− + p → K0 + �0

Y added δχ 2
σ /Nσ δχ 2

dσ /Ndσ δχ 2
P /NP δχ 2

−/N− δχ 2
σ /Nσ δχ 2

dσ /Ndσ δχ 2
P /NP δχ 2

0 /N0 δχ 2/N

�(1405) − 0.01 0.03 0.00 − 0.01 0.03 0.00 0.02 0.01 0.00
�(1600) − 0.02 0.00 − 0.01 − 0.01 0.02 0.00 0.02 0.01 0.00
�(1670) − 0.01 0.00 0.00 0.00 0.02 0.00 0.02 0.01 0.00
�(1800) 0.00 0.01 0.00 0.00 − 0.01 0.00 0.01 0.00 0.00
�(1810) − 0.01 − 0.01 0.00 − 0.01 0.02 0.00 0.02 0.01 0.00
�(1520) − 0.06 0.02 0.00 0.00 − 0.05 − 0.01 0.00 − 0.02 0.00
�(1690) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
�(1820) − 0.08 0.01 0.01 0.00 − 0.07 0.00 − 0.02 − 0.02 − 0.01
�(1830) − 0.05 0.01 0.01 0.00 0.00 0.02 0.02 0.01 0.00
�(2110) − 0.02 0.02 0.01 0.01 − 0.03 − 0.01 − 0.03 − 0.02 0.00
�(2100) − 0.08 0.04 0.03 0.02 − 0.04 − 0.02 − 0.01 − 0.03 0.01
�(1660) − 0.02 0.00 0.00 0.00 − 0.01 0.01 0.00 0.01 0.00
�(1750) − 0.01 0.01 0.00 0.00 − 0.01 0.01 0.00 0.00 0.00
�(1670) − 0.01 0.00 − 0.01 0.00 0.02 0.01 0.01 0.01 0.00
�(1940) 0.02 0.00 0.01 0.00 0.01 − 0.01 0.01 − 0.01 0.00
�(1775) − 0.01 0.01 0.04 0.01 − 0.02 0.00 − 0.02 − 0.01 0.00
�(1915) 0.01 − 0.01 0.00 − 0.01 − 0.03 0.00 0.00 − 0.01 − 0.01

χ 2
σ /Nσ χ 2

dσ /Ndσ χ 2
P /NP χ 2

−/N− χ 2
σ /Nσ χ 2

dσ /Ndσ χ 2
P /NP χ 2

0 /N0 χ 2/N

1.53 1.64 1.89 1.65 0.88 1.06 1.74 1.10 1.49

the fit quality slightly. We have not included these resonances
into our model because the total cross sections suffer from
relatively large uncertainties.

Whenever appropriate, for each resonance considered in
this work, the corresponding coupling constants gKYN and
gKY� were constrained in such way that the sum of the
branching ratios βY→KN and βY→K� does not exceed unity.
Because, within our model, the data are sensitive only to
the product of the coupling constants gKYNgKY�, setting
|gKYN | = |gKY�| for the purpose of estimating the individual
branching ratios, and only for this purpose, is a simple way
of keeping our coupling constant values within a physically
acceptable range. Admittedly, the currently existing data are
limited and suffer from large uncertainties; thus an accurate
determination of the resonance parameters is not possible at
this stage. For this, one needs to wait for more precise data,
possibly including more spin polarization data. In this regard,
the multistrangeness baryon spectroscopy program using the
antikaon beam at J-PARC will be of particular relevance. For
the ground states �(1116) and �(1193), the corresponding
coupling constants are estimated based on the flavor SU(3)
symmetry relations [23].

It should be mentioned that, in principle, the coupling
constants gKYN and gKY� are complex quantities owing to
the dressing mechanism of the resonance vertex as given by
Eq. (8). In the present work, we restrict them to be pure real
to reduce the number of free parameters and for the sake
of simplicity. Note that the complex phases of the coupling
constants are not arbitrary in that they are constrained by

unitarity of the scattering amplitude [68], a feature that is
absent in the amplitude based on a tree-level approximation,
as mentioned in the introduction. However, we found that
fit quality was not improved when we ignored theoretical
constraints and simply allowed for complex phases in the
coupling constants. A simple and proper way of accounting
for unitarity within an effective Lagrangian approach, such
as the present one, is being developed by one of the present
authors and will soon be available elsewhere.

The phenomenological contact amplitude, Mc, contains two
sets of free parameters, {gLT

1 ,αT
L } and {gLT

2 ,βT
L }, to be fixed

by adjusting to reproduce the experimental data for a given
set of {L,T } as shown in Eq. (13). In order to reduce the
number of free parameters, we have assumed the parameter
αT

L to be equal to βT
L and independent on T and L, i.e., αT

L =
βT

L = α. The scale parameter �S has been fixed as �S =
1 GeV. Note that the phenomenological contact amplitude
can and should be complex in principle, since it accounts for
the rescattering contribution (V NPG0 T NP) of the non-pole T
matrix which is complex in general. Accordingly, the coupling
strength parameters gT

1 and gLT
2 are complex quantities. In

order to reduce the number of free parameters, we take their
phases to be independent of L and T , so that φT L

a = φa and
φT L

b = φb for all sets {L,T }. Also, in the present calculation,
we find that it suffices to consider partial waves up to L = 2
in the contact amplitude to reproduce the existing data.

The resonances included in the present model calculations
and the corresponding resonance parameters are displayed in
Table III as well as the parameters of the phenomenological
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TABLE III. Fitted parameter values of the current model. For the details of the resonance parameters, see the appendix. For the contact
amplitude, see Eq. (13). The entries in boldface are taken from Ref. [23] and they are not fit parameters. Here, it is assumed that φT L

a = φa and
φT L

b = φb, in addition to αT
L = βT

L = α.

Y gNYK λNYK g�YK λ�YK � (MeV)

�(1116) 1
2

+ − 13.24 1.0 3.52 1.0 900

�(1193) 1
2

+
3.58 1.0 − 13.26 1.0 900

gNYKg�YK � (MeV) L a0
L (fm) a1

L (fm) b0
L (fm) b1

L (fm) φa φb

�(1890) 3
2

+
0.11 900 0 0.28 − 1.19

�(1385) 3
2

+
18.76 900 1 3.23 − 4.84 − 3.40 0.61

�(2030) 7
2

+
0.49 900 2 3.06 21.07 9.40 − 2.28

�(2250) 5
2

− − 0.033 900 �S = 1 GeV α = 3.60 0.22 − 0.16

contact term, Mc. We do not give the associated uncertainties
here because they are not well constrained. In the present
calculation, resonances with J � 7/2 were considered. The
masses and the total widths of the resonances are taken
to be those quoted in PDG [17] and are given in Table I,
except for the mass of the �(2250) resonance. Currently,
the �(2250) resonance is not well established and has a
three-star status [17]. In fact, the PDG does not even assign
the spin-parity quantum numbers for this resonance. The
analyses of Ref. [39] provide two possible parameter sets,
one with JP = 5/2− at about 2270 ± 50 MeV and another
with JP = 9/2− at about 2210 ± 30 MeV. In the present work
we have assumed �(2250) to have JP = 5/2− with the mass
of 2265 MeV, the primary reason being that the total cross
section in K− + p → K+ + �− shows a small bump structure
at around 2300 MeV, which is well reproduced in our model

with these parameter values. For the corresponding width, we
have adopted the value quoted in PDG as shown in Table I.

All parameters of the present model calculation are de-
termined as described above and we now present the results
obtained from our model. The overall fit quality is quite good
with χ2 per degree of freedom = 1.55 or χ2/N = 1.49, as
displayed in Table II. There, we also show the partial χ -squared
values χ2

i /Ni evaluated for a given type of observable specified
by the index i as explained in the caption of Table II. In
Fig. 2 we show the results for the total cross section in
the charged � production reaction from the proton target,
K− + p → K− + �−, for the c.m. energies up to W = 3 GeV.
Figure 2(a) displays the total contribution, which reproduces
the data rather well. The dynamical content of the present
model is also shown in the same figure. We find that the contact
term rises quickly from threshold, peaks at around 2.1 GeV,
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FIG. 2. (Color online) Total cross section for the K− + p → K+ + �− reaction. (a) The solid blue (gray) line represents the result of
the full calculation of the present model. The red (gray) dashed line shows the combined � hyperon contributions. The magenta (dark gray)
dash-dotted line shows the combined � hyperon contributions. The brown (very dark gray) dotted line shows the combined � and � hyperon
contributions. The green (gray) dash-dash-dotted line corresponds to the contact term. (b) The solid red (gray) line represents the combined
� hyperon contributions, that is the same as the red dashed line in panel (a). The dotted and dashed lines show the �(1116) and �(1890)
contributions, respectively. (c) The solid magenta (dark gray) line represents the combined � hyperon contributions, that is the same as the
magenta dash-dotted line in panel (a). The dotted, dashed, dot-dashed, and dot-dot-dashed lines show the contributions from �(1193), �(1385),
�(2250), and �(2030), respectively. The experimental data (black circles) are the digitized version as quoted in Ref. [50] from the original
work of Refs. [29–34,36–39,41–43].
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FIG. 3. (Color online) Same as Fig. 2 for the K− + p → K0 + �0 reaction. The experimental data (black circles) are the digitized version
as quoted in Ref. [50] from the original work of Refs. [30,37–40,43].

and falls off slowly as energy increases. It dominates the cross
section except for energies very close to threshold and above
∼2.7 GeV, where the hyperon resonance contributions are
comparable. The � hyperon contributions are strongest near
threshold and falls off very slowly as energy increases. The �
hyperon contributions are relatively small over the entire en-
ergy range considered, except in the interval of 2.0−2.3 GeV,
where it becomes comparable to the � contribution. Near
threshold, there is a strong destructive interference between
the contact term and (mainly) the � hyperon contributions.
At higher energies, the data indicates an existence of a bump
structure at W ∼ 2.3 GeV. Our model reproduces this feature
via delicate destructive and constructive interferences of the
contact term and the hyperon resonance contributions. We
also mention that we have explored the possibility of a much
smaller contact amplitude contribution than shown in Fig. 2(a)
considering various different sets of hyperon resonances from
Table I; however, we were unable to find a solution with a fit
quality comparable to that of Fig. 2(a).

Figure 2(b) displays the individual � hyperon contri-
butions. We see that the ground state �(1116) is, by far,
the dominant contribution, which is due to the tail of the
corresponding u-channel process. Analogously, the individual
� hyperon contributions are shown in Fig. 2(c). Here, the
relatively small cross section near threshold is due to the
destructive interference between the �(1192) and �(1385).
The enhancement of the cross section in the energy interval
of 2.0−2.3 GeV is mostly due to the �(2030) resonance.
The �(2250) leads to a little shoulder in the total �
contribution. We note that any non-negligible contribution
from the hyperons for energies above ∼2.3 GeV is due to
the u-channel processes.

In Fig. 3, we show the total cross-section results for the
neutral � production process, K− + p → K0 + �0. Here,
the data are of such poor quality that they impose much less
constraint on the model parameters than the corresponding
data in the charged �− production. The resulting dynamical
content shown in Fig. 3(a) is similar to that for the charged
�− production discussed above; i.e., it is largely dominated

by the contact term. However, we see a quite different feature
in the � and � resonance contributions as compared to that
for the charged �− production [cf. Fig. 2(a)]. One notable
difference between the charged and neutral � production
reactions considered here is that the u-channel � hyperon
contribution is absent in the �0 production case. Also, the
relative contribution of the � hyperons is much larger in the
neutral �0 production than in the charged �− production,
especially in the near-threshold region.

Figures 3(b) and 3(c) show the individual hyperon contribu-
tions. As mentioned before, due to the absence of the u-channel
� exchange in the neutral �0 production, the �(1116) contri-
bution is insignificant, leading to a negligible contribution of
the � hyperons. Due to the isospin factors here, the �(1192)
and �(1385) hyperons interfere constructively, especially near
the threshold. Recall that, for charged �− production, these
hyperons interfere destructively [cf. Fig. 2(c)].

In Fig. 4 we illustrate the amount of the above-threshold
resonance contributions of the present model to the total cross
sections. We do this by comparing the full results shown in
Figs. 2(a) and 3(a) to the result found by switching off one
resonance at a time. We see in Fig. 4(a) that the largest effect
of �(2030) on the cross sections is in the range of W ∼ 2.0
to 2.4 GeV. This resonance is clearly needed in our model
to reproduce the data. It also affects the recoil polarization,
as will be discussed later. It should be mentioned that this
resonance also helps reproduce the measured K+�− invariant
mass distribution in γ + p → K+ + K+ + �− [24], by filling
in the valley between the two bumps in the invariant mass
distribution that would appear without it; such a feature clearly
is not observed in the data [19]. The �(1890) affects the total
cross section in the range of W ∼ 1.9 to 2.1 GeV, and the
�(2250)5/2− contributes around W ∼ 2.2 GeV, where it is
needed to reproduce the observed bump structure. A more
accurate data set is clearly needed for a more definitive answer
about the roles of the �(1890) and �(2250) resonances.
Figure 4(b), for the neutral �0 production, also shows a similar
feature observed in the �− case for the �(2030) resonance.
Here, the influence of the �(2250)5/2− is smaller and that of
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FIG. 4. (Color online) Total cross-section results with individual resonances switched off (a) for K− + p → K+ + �− and (b) for K− +
p → K0 + �0. The blue (gray) lines represent the full result shown in Figs. 2 and 3. The red (gray) dashed lines which almost coincide with
the blue lines represent the result with �(1890) switched off. The green (gray) dash-dotted lines represent the result with �(2030) switched
off and the magenta (dark gray) dash-dash-dotted lines represent the result with �(2250)5/2− switched off.

the �(1890) is hardly seen. Recall that there is no u-channel
� contribution in the neutral �0 production.

The results for differential cross sections in both
K− + p → K+ + �− and K− + p → K0 + �0 are shown
in Figs. 5(a) and 5(b), respectively, in the energy domain up to
W = 2.8 GeV for the former and up to W = 2.5 GeV for the
latter reaction. Overall, the model reproduces the data quite
well. As in the total cross sections, the data for the neutral �0

production are fewer and less accurate than for the charged
�− production. In particular, the �0 production data at W =

2.15 GeV seems incompatible with those at nearby energies,
and the present model is unable to reproduce the observed
shape at backward angles. It is clear from Figs. 5(a) and 5(b)
that the charged channel shows a backward peaked angular
distributions, while the neutral channel shows enhancement
for both backward and forward scattering angles (more
symmetric around cos θ = 0) for all but perhaps the highest
energies. In the charged �− production, both the resonance and
contact amplitude contributions are backward-angle peaked
and, as the energy increases, get smaller at forward angles. In
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FIG. 5. (Color online) Kaon angular distributions in the center-of-mass frame (a) for K− + p → K+ + �− and (b) for K− + p →
K0 + �0. The blue (gray) lines represent the full model results. The red (gray) dashed lines show the combined � hyperon contributions. The
magenta (dark gray) dash-dotted lines show the combined � hyperon contributions. The green (gray) dash-dash-dotted line corresponds to the
contact term. The numbers in the upper right corners correspond to the centroid total energy of the system W . Note the different scales used.
The experimental data (black circles) are the digitized version as quoted in Ref. [50] from the original work of Refs. [31–34,36,37] for the
K− + p → K+ + �− reaction and of Ref. [30,36,37,40] for the K− + p → K0 + �0 reaction.
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FIG. 6. (Color online) Partial wave decomposition of the total cross section and the angular distribution for K− + p → K+ + �−. (a) Total
cross section sectioned by contributions from each partial wave L. The red (gray, very bottom) shaded area indicates the S-wave contribution,
while the green (gray, second from bottom) area corresponds to the P -wave contribution. Magenta (dark gray, second from top) indicates the
D-wave contribution and maroon (dark gray, top) the F -wave contribution. (b) K+ angular distribution: the solid blue (gray) lines are the full
results, while the dotted green (gray) lines represent the sum of S + P waves, the red (gray) dashed lines represent the S + P + D waves and
the dash-dotted magenta (dark gray) lines represent the S + P + D + F waves. For lower energies, the S + P + D waves already saturate the
full cross-section results so that the F - and higher-wave contributions cannot be distinguished from the full result.

�0 production, both the � resonance and contact amplitude
contributions also exhibit an enhancement for forward angles.
Note that the � resonance contribution here is negligible due
to the absence of the u-channel process. The interference
pattern in the forward angular region depends on energy. At
lower energies the interference is constructive and it becomes
destructive at higher energies. The behavior of the angular
distributions in terms of the partial waves will be discussed
later in connection with the results of Figs. 6(b) and 8(b).

The partial-wave content of the cross sections for the
charged �− production process arising from the present model
is shown in Figs. 6(a) and 6(b). As can be seen in Fig. 6(a),
the total cross section is dominated by the P and D waves in
almost the entire energy range considered, even at energies
very close to threshold where one sees a strongly rising
P -wave contribution. The S-wave contribution is very small.
This peculiar feature is caused by the ground state �(1116),
whose contribution cancels to a large extent the otherwise
dominant S-wave contribution close to threshold, in addition
to enhancing the P -wave contribution. One way of probing
the S-wave content close to threshold in a model-independent
manner is to look at the quantity σ/p′ as a function of p′2,
where p′ is the relative momentum of the final K� state. The
reason being that, for hard processes, the partial-wave reaction
amplitude behaves basically like p′L for a given orbital angular
momentum L as mentioned in Sec. II. This leads to

σ

p′ = c0 + c1p
′2 + c2p

′4 + · · · , (14)

with expansion constants cL. Figure 7 illustrates this point.
Although the existing experimental data are of poor quality,
they reveal the general features just mentioned. In particular,
for the charged �− production process, the data indicate a

linear behavior of σ/p′ close to threshold, implying a strong
P -wave contribution. Our present model result is consistent
with this behavior. It is also consistent with the observation
made in Ref. [53] that the low-energy behavior of the total
cross sections in the π�, η�, and K� channels does not seem
to follow the usual S-wave dominance.

The corresponding results for the neutral �0 production are
also shown in Fig. 7. There, the scattered data are consistent

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

p′2  (GeV)
2

0

100

200

300

400

500

σ/
p′

   
 (

μb
 / 

G
eV

) Ξ 0
 production

Ξ −
 production

FIG. 7. (Color online) Ratio of the measured total cross section
σ and the final state K� relative momentum p′ as a function of p′2.
The blue (gray) square data correspond to K− + p → K+ + �−,
while the red (gray) circle data correspond to K− + p → K0 + �0.
The blue (gray) solid and red (gray) dashed curves are the present
model results corresponding to K− + p → K+ + �− and K− +
p → K0 + �0, respectively.
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FIG. 8. (Color online) Same as in Fig. 6 but for K− + p → K0 + �0.

with S-wave dominance, a feature exhibited by our model as
well [see also Fig. 8(a)]. In Fig. 6(a), we also see a small
F -wave contribution above W ∼ 2.0 GeV that helps saturate
the total cross section. Note that since our contact term includes
partial waves only up to L � 2, the F -wave contribution is
entirely due to the hyperon resonances. The enhancement of
the D-wave contribution around W = 2.3 GeV as well as
the little shoulder in the P -wave contribution are due to the
�(2250) hyperon. Of course, the partial-wave contributions
are mainly constrained by the differential cross section and
they are shown in Fig. 6(b). As mentioned before, the shape
of the angular distribution is backward-angle peaked and the
cross sections are very small at forward angles. This behavior
is a direct consequence of the very significant interference
between the P and D waves. This can be seen by expanding the
cross section in partial waves. Considering the partial waves
through L = 2 and following Ref. [57], the differential cross
section may be expressed as

dσ

d�
= |α02|2 + [|α1|2 + 2 Re(α02α̃

∗
2 )] cos2 θ

+|α̃2|2 cos4 θ+(|β1|2 + |β̃2|2 cos2 θ ) sin2 θ

+2 Re[α02α
∗
1 +α1α̃

∗
2 cos2 θ+β1β̃

∗
2 sin2 θ ] cos θ, (15)

where the coefficients αL (βL) provide a linear combination
of the partial-wave matrix elements corresponding to the
spin-nonflip (spin-flip) process with a given orbital angular
momentum L [see Eq. (12)]. Here, α02 ≡ α0 − 1

3 α̃2, α̃2 ≡ 2
3α2,

and β̃2 ≡ 3β2. In the above equation, the last term on the
right-hand side involving an interference between the P and
D waves is an odd function in cos θ , while the first term in
square brackets is an even function. These two terms cancel
to a large extent at forward angles while at backward angles
they add up. Note that these partial waves are comparable in
strength as shown in Fig. 6(a) so that their interference term

leading to an odd function part can largely cancel the even
term at forward angles.

Figures 8(a) and 8(b) display the partial wave content in the
cross sections for the neutral �0 production process. In contrast
to the charged �− production, here one sees that the largest
contribution to the total cross section is the D wave, and the
P wave is largely suppressed, which is a direct consequence
of the shape of the observed angular distribution whose partial
wave contributions are shown in Fig. 8(b). There, compared
to that for charged �−, one sees a more symmetric angular
shape about cos θ = 0 that is dominated by the D wave. The
present model reproduces the observed behavior of the K0

angular distribution by suppressing the P -wave contribution
as can be easily understood from Eq. (15). The rather drastic
suppression of the P wave can be better seen in Fig. 8(a). For
energies very close to threshold, the cross section is dominated
by the S wave as seen also in Fig. 8(a).

The results for the recoil polarization asymmetry multiplied
by the cross section are shown in Fig. 9 in the energy
interval of W = 2.1 to 2.5 GeV. Overall, we reproduce the
data reasonably well. We also find that the results shown at
W = 2.11 GeV are still significantly affected by �(2030). This
corroborates the findings of Ref. [50]. We recall that the recoil
asymmetry is proportional to the imaginary part of the product
of the spin-nonflip matrix element (Mss) with the complex
conjugate of the spin-flip matrix element (Ms ′s with s ′ 	= s)
[57], so that it vanishes identically unless these matrix elements
are such that their product has a nonvanishing imaginary part.
We can therefore expect the recoil polarization to be sensitive
to the complex nature of the reaction amplitude, in particular
to the phenomenological contact amplitude, Mc, introduced in
the present model. Indeed, if one forces the coupling strength
parameters, gLT

1 and gLT
2 in Eq. (13), to be pure real during

the fitting procedure, the χ2
P /NP deteriorates, e.g., from 1.89

to 2.26 for the K− + p → K+ + �− reaction, although the
quality of fit for cross sections is nearly unchanged.
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FIG. 9. (Color online) The recoil asymmetry multiplied by the
cross section, P dσ

d�
, for both the K− + p → K+ + �− and K− +

p → K0 + �0 reactions. The blue (gray) solid lines represent the
full results of the current model. Data are from Refs. [33,37].

In Fig. 10, we show the present model predictions for the
target-beam asymmetries, Kxx and Kxz, multiplied by the
unpolarized cross section, i.e., dσ

d�
Kxx and dσ

d�
Kxz for both

the charged �− and neutral �0 production processes. These
observables are related to the spin-rotation parameter β [69] by
tan β = −Kxz/Kxx . Note that these target-recoil asymmetries,
together with Kyy , are the only three independent double-
spin observables in the reaction of Eq. (1) as discussed in
Ref. [57]. Indeed, the only two other nonvanishing target-recoil
asymmetries are related by Kzz = Kxx and Kzx = −Kxz.8 We
mention that dσ

d�
Kxx is proportional to the difference of the

magnitude squared of the spin-nonflip and spin-flip matrix
elements, while dσ

d�
Kxz is proportional to the real part of the

product of the spin-nonflip matrix element with the complex
conjugate of the spin-flip matrix element. Therefore, unlike
the recoil asymmetry, these spin observables do not vanish
even if the reaction amplitude is pure real or pure imaginary.
This means that they are, like the cross section, much less
sensitive to the complex nature of the phenomenological
contact amplitude.

8Note that the symmetry of the reaction leads to Kyy = π�

independent on the scattering angle θ [56,57]. Here, π� stands for
the parity of the produced � which is taken to be π� = +1 for the
ground state �. Also, Kxx = Kzz|cos θ=±1 = π�. The target asymmetry
is identical to the recoil asymmetry in the present reaction. Therefore,
we exhaust all the independent observables available in the reaction
processes considered here.

To gain some insight into the angular dependence exhibited
by these target-recoil asymmetries in Fig. 10, we express them
in terms of partial waves with L � 2, which gives
dσ

d�
Kxx =|α02|2 + [|α1|2 + 2 Re(α02α̃

∗
2 )] cos2 θ

+ |α̃2|2 cos4 θ − (|β1|2 + |β̃2|2 cos2 θ ) sin2 θ

+ 2 Re[α02α
∗
1 + α1α̃

∗
2 cos2 θ − β1β̃

∗
2 sin2 θ ] cos θ,

(16a)

dσ

d�
Kxz = 2 Re[α02β

∗
1 + (α1β̃

∗
2 + α̃2β

∗
1 ) cos2 θ

+ (α02β̃
∗
2 + α1β

∗
1 ) cos θ + α̃2β̃

∗
2 cos3 θ ] sin θ.

(16b)

Note that the only difference between dσ
d�

Kxx given above
and differential cross section given by Eq. (15) is the sign
change of the terms involving βL. These terms are, however,
proportional to sin2 θ . Therefore, this spin observable behaves
like the differential cross section at very forward and backward
angles, where sin2 θ 
 1. At cos θ = 0, the difference is due to
the term of ±|β1|2, which is a P -wave contribution in the spin-
flip amplitude. Now, if we ignore the P -wave contribution—
which is relatively very small in the neutral �0 production
nearly over the entire energy region considered as seen in
Fig. 8(a)—it is immediately seen that Eq. (16a) involves only
terms that are symmetric about cos θ = 0. We see in Fig. 10(b)
that dσ

d�
Kxx exhibits roughly this symmetry.

For dσ
d�

Kxz, Eq. (16b) reveals a rather complicated angular
dependence in general, and no particular feature is apparent
in the results shown in Fig. 10, especially for the charged
�− production process. Neglecting the P -wave contribution,
Eq. (16b) reduces to dσ

d�
Kxz = Re[(α02 + α̃2 cos2 θ )β̃∗

2 ] sin 2θ ,
which is roughly the angular dependence exhibited in
Fig. 10(b).

The present model predictions for the K− + n → K0 +
�− reaction are shown in Fig. 11. Here, the experimental
data are extremely scarce, and they were not included in the
present fitting procedure. Nevertheless, the current model is
seen to predict those few data quite reasonably. Both the total
and differential cross sections exhibit a very similar feature to
those of the K− + p → K+ + �− reaction with a noticeable
small enhancement in the differential cross sections as seen
in Fig. 11(b) for forward angles near cos θ = 0 in K− + n →
K0 + �−. We see, however, some bigger differences in the
individual amplitude contributions, more clearly seen in the
total cross sections that are given in Fig. 11(a). There, the �
hyperon contribution is larger than the � contribution over
the entire energy region up to W ∼ 2.3 GeV, in particular,
at low energies near threshold. This is due to the absence of
the strong destructive interference between the �(1385) and
�(1192) (not shown), since the latter hyperon contribution
is suppressed to a large extent compared to the case of K− +
p → K+ + �−. Moreover, there is a constructive interference
with the � hyperon, which makes the sum of the hyperon
contributions relatively large in the low-energy region.

For completeness, we also show in Fig. 12 results for the
KL + p → K+ + �0 reaction. Within the present model, the
cross sections for this process simply differ by a factor of
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FIG. 10. (Color online) Target-recoil asymmetries Kxx (green [gray] dashed curves) and Kxz (blue [gray] solid curves) as defined in
Ref. [57] multiplied by the cross sections for the reactions (a) K− + p → K+ + �− and (b) K− + p → K0 + �0. The numbers in the upper
right corners represent the total energy of the system W in units of GeV.

1/2 from those shown in Fig. 11 for the K− + n → K0 + �−
reaction. We show the KL results here because the creation
of a high-intensity KL beam currently being contemplated
[70] may open up an entire new and exciting field of hyperon
spectroscopy.

IV. CONCLUSION

In this work we have presented our analysis on the
reaction of K− + N → K + � within an effective Lagrangian
approach that includes a phenomenological contact term to
account for the final-state-interaction rescattering contribution
of the reaction amplitude in the Bethe-Salpeter equation
and for other possible (short-range) dynamics that are not

explicitly taken into account in the model. By introducing
this phenomenological contact term, we avoid the problems
found in the usual implementations of tree-level effective
Lagrangian approaches that need to phenomenologically
suppress u-channel contributions dominating the high-energy
behavior [50,51]. In addition to the ground states �(1116)
and �(1193), the present model also includes the �(1890),
�(1385), �(2030), and �(2250) resonance contributions.

The available total and differential cross sections, as well as
the recoil asymmetry data, in both the K− + p → K+ + �−
and K− + p → K0 + �0 processes are well reproduced by
the present model. We have found that the above-threshold
resonances �(1890), �(2030), and �(2250) are required to
achieve a good fit quality for the data. Among them, the
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FIG. 11. (Color online) Same as Figs. 2(a) and 5 for the K− + n → K0 + �− reaction. The experimental data are from Refs. [30,38].
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FIG. 12. (Color online) Same as Figs. 2(a) and 5 for the KL + p → K+ + �0 reaction.

�(2030) resonance is the most critical one. This resonance
affects not only the cross sections but also the recoil asym-
metry. In addition, it also brings a model calculation of
Ref. [24] into agreement with the observed K+�− invariant
mass distribution in � photoproduction [19]. The �(1890) is
also required to improve the fit quality in the present model,
especially in the energy dependence of the total cross sections
of the charged �− production around W = 1.9 GeV. The total
cross-section data in the charged �− production seems to
indicate a bump structure at around W = 2.3 GeV, which is
accounted for by the �(2250) resonance with JP = 5/2− and
a mass of 2265 MeV in the present model. More accurate
data are required before a more definitive answer can be
provided for the role of these two resonances. In this regard,
the multistrangeness hyperon production programs using an
intense antikaon beam at J-PARC are of particular relevance
in providing the much needed higher precision data for the
present reaction.

The present analysis also reveals a peculiar behavior of the
total cross-section data in the threshold-energy region of the
K+�− production channel, where the higher partial waves (P
and D) dominate instead of the usual S wave (cf. Fig. 7). If
this behavior of the cross-section data is corroborated in future
experiments, it will cast serious doubts on the validity of model
calculations that neglect higher partial waves even for energies
very close to threshold. This peculiar low-energy behavior of
the total cross section in the K̄-induced reaction seems to be
present also in the π� and η� production channels, in addition
to the K� channel [53].

Apart from the recoil asymmetry, we have also predicted
the target-recoil asymmetries for which there are currently
no experimental data. In contrast to the recoil polarization—
which is small—these observables are quite sizable and
may help impose more stringent constraints on the model
parameters. In principle, one requires the four independent
observables calculated here to completely determine the
reaction amplitude [57]. Of course, measurements of the spin

obervables, in particular, are challenging experimentally by
any standard, but one may exploit the self-analyzing nature of
the produced hyperon to help extract these observables [57,71].
For the target-recoil asymmetry measurements, one requires
a polarized target in addition to spin measurements of the
produced �. Polarized targets available at some of the world’s
major laboratories combined with the availability of intense
beams make measuring these spin observables no longer
out of reach. In fact, various single- and double-polarization
observables in photoproduction reactions are currently being
measured at major facilities such as JLab, the Bonn electron
accelerator (ELSA) and the Mainz Microtron (MAMI), aiming
at so-called complete experiment sets in order to model-
independently determine the photoproduction amplitudes.

While it may perhaps not be entirely clear which role
any particular resonance plays for the K− + N → K + �
reaction, the present and other calculations based on effective
Lagrangians [50,51], and also the unitarized chiral perturba-
tion approach [52], seem to agree that some S = −1 hyperon
resonances are required to reproduce the existing data. To pin
down the role of a particular resonance among them requires
more precise and complete data, in addition to more complete
theoretical models. In any case, the present reaction is very
well suited for studying S = −1 hyperon resonances.

Finally, the present work is our first step toward building
a more complete reaction theory to help analyze the data and
extract the properties of � resonances in future experimental
efforts in � baryon spectroscopy. This is a complementary
work to that of a model-independent analysis performed
recently by the same authors [57] and will also help in
analyzing the data to understand the production mechanisms
of � baryons.
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APPENDIX

In this appendix, we give the effective Lagrangians and
phenomenological dressed baryon propagators from which the
s- and u-channel amplitudes, Ms and Mu discussed in Sec. II,
are constructed. We follow Refs. [23,24,72–74] and consider
not only the spin-1/2 ground state � and � but also their
respective excited states with spin up to 7/2. In the following
we use the notations for the isodoublet fields

N =
(

p
n

)
, � =

(
�0

−�−

)
,

(A1)

K =
(

K+

K0

)
, Kc =

(
K̄0

−K−

)
,

and for the isotriplet fields

� =
⎛
⎝�+

�0

�−

⎞
⎠. (A2)

We also introduce the auxiliary operators in Dirac space

D
1/2(±)
B ′BM ≡ −
(±)

(
±iλ + 1 − λ

mB ′ ± mB

/∂

)
, (A3a)

D3/2(±)
ν ≡ 
(∓)∂ν , (A3b)

D5/2(±)
μν ≡ −i
(±)∂μ∂ν , (A3c)

D7/2(±)
μνρ ≡ −
(∓)∂μ∂ν∂ρ , (A3d)

where 
(+) ≡ γ5 and 
(−) ≡ 1. Here, mB stands for the mass
of the baryon B. The parameter λ has been introduced to
interpolate between the pseudovector (λ = 0) and the pseu-
doscalar (λ = 1) couplings. Note that in the above equation
the order of the subscript indices in D

1/2(±)
B ′BM is important, i.e.,

D
1/2(±)
B ′BM 	= D

1/2(±)
BB ′M .

The effective Lagrangians for spin-1/2 hyperons � and �
(or their resonances) are, then, given by

L1/2(±)
�NK ≡ g�NK �̄

(
D

1/2(±)
�NK K̄

)
N + H.c. , (A4a)

L1/2(±)
�NK = g�NK �̄ · (

D
1/2(±)
�NK K̄

)
τN + H.c. , (A4b)

L1/2(±)
��Kc

= g��Kc
�̄

(
D

1/2(±)
��K Kc

)
� + H.c. , (A4c)

L1/2(±)
��Kc

= g��Kc
�̄ τ

(
D

1/2(±)
��K Kc

) · � + H.c., (A4d)

where the superscripts ± refer to the positive (+) and negative
(−) relative parity of the baryons. Flavor SU(3) symmetry
relates the coupling constants among the members of the octet
JP = 1/2+ ground-state baryons and JP = 0− pseudoscalar

mesons and we have

g�NK = −g8
1 + 2α√

3
, (A5a)

g�NK = g8(1 − 2α) , (A5b)

g��Kc
= −g8

1 − 4α√
3

, (A5c)

g��Kc
= −g8 , (A5d)

where the empirical values are g8 = gNNπ = 13.26 and α =
0.365, where α is the F/D mixing parameter defined as α =
F/(D + F ).

For spin-3/2 hyperons, we have

L3/2(±)
�NK = g�NK

mK

�̄ν
(
D3/2(±)

ν K̄
)
N + H.c. , (A6a)

L3/2(±)
�NK = g�NK

mK

�̄
ν · (

D3/2(±)
ν K̄

)
τN + H.c. , (A6b)

L3/2(±)
��Kc

= g��Kc

mK

�̄
(
D3/2(±)

ν Kc

)
�ν + H.c. , (A6c)

L3/2(±)
��Kc

= g��Kc

mK

�̄τ
(
D3/2(±)

ν Kc

) · �ν + H.c. , (A6d)

where mK denotes the kaon mass. For spin-5/2 hyperons
[24,75],

L5/2(±)
�NK = g�NK

m2
K

�̄μν
(
D5/2(±)

μν K̄
)
N + H.c. , (A7a)

L5/2(±)
�NK = g�NK

m2
K

�̄
μν · (

D5/2(±)
μν K̄

)
τN + H.c. , (A7b)

L5/2(±)
��Kc

= g��Kc

m2
K

�̄
(
D5/2(±)

μν Kc

)
�μν + H.c. , (A7c)

L5/2(±)
��Kc

= g��Kc

m2
K

�̄τ
(
D5/2(±)

μν Kc

) · �μν + H.c. (A7d)

And, for spin-7/2 hyperons, we have [24,75]

L7/2(±)
�NK = g�NK

m3
K

�̄μνρ
(
D7/2(±)

μνρ K̄
)
N + H.c. , (A8a)

L7/2(±)
�NK = g�NK

m3
K

�̄
μνρ · (

D7/2(±)
μνρ K̄

)
τN + H.c. , (A8b)

L7/2(±)
��Kc

= g��Kc

m3
K

�̄
(
D7/2(±)

μνρ Kc

)
�μνρ + H.c. , (A8c)

L7/2(±)
��Kc

= g��Kc

m3
K

�̄τ
(
D7/2(±)

μνρ Kc

) · �μνρ + H.c. (A8d)

The coupling constants in the above Lagrangians corre-
sponding to � and � resonances are free parameters adjusted
to reproduce the existing data. For those resonances considered
in the present work, they are given in Table III.

In the present work, all the meson-baryon-baryon vertices
are obtained from the above Lagrangian. In addition, each
vertex is multiplied by an off-shell form factor given by

f
(
p2

r ,mr,�r

) =
(

n�4
r

n�4
r + (

p2
r − m2

r

)2

)n

, (A9)

where p2
r and mr are the square of the 4-momentum and mass

of the exchanged hyperon, respectively. The cutoff parameter
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�r is chosen to have a common value �r ≡ � = 900 MeV
for all the MBr vertices in order to keep the number of free
parameters to a minimum. Also, we choose n = 1.

For the propagators of the dressed hyperons, we could in
principle adopt the forms used in our previous work [24,72–
74]. However, in view of the limited amount of currently
available data for the present reaction and the rather poor
quality of these data, here we adopt the simpler forms as given
in the following. For a spin-1/2 baryon propagator, we use

S1/2
r (pr ) = 1

/pr
− mr + i 
r

2

, (A10)

where 
r is the baryon width assumed to be constant,
independent of energy. For a stable (ground-state) baryon,

r → ε with ε being positive infinitesimal.

For spin-3/2, the dressed propagator reads in a schematic
matrix notation

S3/2
r (pr ) = 1

/pr
− mr + i 
r

2

�, (A11)

where � is the Rarita-Schwinger tensor with elements

�μν = −gμν + 1

3
γ μγ ν + 2pμpν

3m2
r

+ γ μpν − pμγ ν

3mr

.

(A12)
Similarly, the propagator for a spin-5/2 resonance is given by

S5/2
r (pr ) = 1

/pr
− mr + i 
r

2

�, (A13)

where the elements of � are [75]

�
β1β2
α1α2

= 1
2

(
ḡ

β1
α1

ḡ
β2
α2

+ ḡ
β2
α1

ḡ
β1
α2

) − 1
5 ḡα1α2

ḡβ1β2

− 1
10

(
γ̄α1

γ̄ β1 ḡ
β2
α2

+ γ̄α1
γ̄ β2 ḡ

β1
α2

+γ̄α2
γ̄ β1 ḡ

β2
α1

+ γ̄α2
γ̄ β2 ḡ

β1
α1

)
, (A14)

with

ḡμν ≡ gμν − pμpν

m2
r

, γ̄ μ ≡ γ μ − pμ/p

m2
r

. (A15)

The propagator for a spin-7/2 resonance is given by

S7/2
r (pr ) = 1

/pr
− mr + i 
r

2

�, (A16)

where the elements of � are [75]

�
β1β2β3
α1α2α3

= 1

36

∑
P (α),P (β)

(
ḡ

β1
α1

ḡ
β2
α2

ḡ
β3
α3

− 3

7
ḡ

β1
α1

ḡα2α3
ḡβ2β3

− 3

7
γ̄α1

γ̄ β1 ḡ
β2
α2

ḡ
β3
α3

+ 3

35
γ̄α1

γ̄ β1 ḡα2α3
ḡβ2β3

)
, (A17)

and the summation runs over all possible permutations of
{α1,α2,α3} and of {β1,β2,β3}.

To avoid an ambiguity in the relative phase between Ms +
Mu and Mc in Eq. (11), we provide here the explicit expressions
for the amplitudes Ms and Mu for the �(1116) exchange in
the K−(q) + N (p) → K+(q ′) + �−(p′) reaction, i.e.,

M�
s = ū�( p′) 
s

�−K+�(q ′) S
1/2
� (ps) 
s

�K−N (q) uN ( p), (A18a)

M�
u = ū�( p′) 
u

�−K−�(q) S
1/2
� (pu) 
u

�K+N (q ′) uN ( p), (A18b)

where the nucleon index N stands for the proton and �
stands for �(1116); the baryon Dirac spinors are normalized
covariantly, ūBuB = 1, the intermediate four-momenta are
ps = p + q and pu = p − q ′, and the vertices are given as


s
�K−N (q) = g�NK γ 5

(
λ − 1 − λ

m� + mN

/q

)
fs, (A19a)


s
�K+�(q ′) = g��K γ 5

(
λ + 1 − λ

m� + m�

/q
′
)

fs, (A19b)


u
�K+N (q ′) = g�NK γ 5

(
λ + 1 − λ

m� + mN

/q
′
)

fu, (A19c)


u
�K−�(q) = g��K γ 5

(
λ − 1 − λ

m� + m�

/q

)
fu, (A19d)

where λ describes the linear interpolation between pseu-
doscalar (λ = 1) and pseudovector (λ = 0) couplings; the
off-shell form factors are given by [see Eq. (A9)]

fs = f
(
p2

s ,m�,��

)
, (A20a)

fu = f
(
p2

u,m�,��

)
, (A20b)

and the values of g�NK , g��K , and λ are found in Table III.
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