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Flavor dependence of baryon melting temperature in effective models of QCD
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Subatech, UMR 6457, IN2P3/CNRS, Université de Nantes, École de Mines de Nantes, 4 Rue Alfred Kastler, F-44307 Nantes, France

(Received 16 February 2015; revised manuscript received 29 April 2015; published 25 June 2015)

We apply the three-flavor (Polyakov-)Nambu-Jona-Lasinio model to generate baryons as quark-diquark bound
states using many-body techniques at finite temperature. All the baryonic states belonging to the octet and
decuplet flavor representations are generated in the isospin-symmetric case. For each state we extract the melting
temperature at which the baryon may decay into a quark-diquark pair. We seek for an evidence of the strangeness
dependence of the baryon melting temperature as suggested by the statistical thermal models and supported by
lattice quantum chromodynamics results. A clear and robust signal for this claim is found, pointing to a flavor
dependence of the hadronic deconfinement temperature.
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I. INTRODUCTION

Experiments at the relativistic heavy-ion collider and the
large hadron collider (LHC) have shown that a quark-gluon
plasma (QGP) is produced during the first stages of a
relativistic heavy-ion collision. The QGP is the phase of quan-
tum chromodynamics (QCD) at high temperature or density
where quarks and gluons are not color-confined into hadrons.
From this QGP phase, the produced fireball undergoes a
transition to the hadronic phase at a given hadronization
temperature.

At nearly vanishing baryochemical potential the phase
transition to the hadronic state is known to be a crossover
[1]. Experimentally it is known that at the so-called chemical
freeze-out temperature, which at vanishing chemical potential
is close to the hadronization temperature, the hadrons are in
statistical equilibrium. This is the result of a fit of the hadron
abundances in the framework of a statistical model [2,3].
This fit determines the chemical freeze-out temperature and
describes the multiplicity of almost all nonresonant hadrons
with an astonishing precision. After chemical freeze-out the
hadrons still interact but the chemical composition of the
hadron gas remains (almost) unchanged. Results from high
energetic central Pb + Pb collisions at LHC show that the
freeze-out temperatures extracted by thermal fits [4] are
close to the crossover temperature predicted by lattice-QCD
studies [5].

A natural question to ask is whether the freeze-out condi-
tions depend on the hadron species, i.e., if the chemical freeze-
out temperature depends on flavor. Thermal fits presented in
Ref. [4] show a tension when fitting the different baryonic
species with a common freeze-out temperature, suggesting that
the chemical freeze-out temperature for nonstrange baryons is
smaller (around 16 MeV) than that for strange baryons [3,4]. In
Refs. [6–8] it is shown that thermal fits with two independent
freeze-out temperatures (for nonstrange and strange hadrons)
provide a better description of the hadronic yields and
considerably reduce the χ2 (per degree of freedom) of the
fit. This holds for a wide range of collision energies between√

sNN = 6.27 GeV and
√

sNN = 2.76 TeV. In particular,
for Pb + Pb collisions at LHC with

√
sNN = 2.76 TeV the

difference between the two freeze-out temperatures is around
15 MeV [6].

If this is the case, one may suggest that the hadronization
temperature also depends on the strangeness content of
the hadron. This idea was brought up quite recently by
the authors of Ref. [9]. In this reference, the strangeness
dependence of the crossover temperature was studied with
continuum-extrapolated results of lattice-QCD calculations.
The conclusion was that the crossover temperature (measured
by the maximum of a susceptibility ratio) is about 15 MeV
larger for strange hadrons than for those composed by light
quarks. This difference is in surprisingly good accordance with
the results from statistical-thermal fits of ALICE abundances,
even if the two physical processes (hadronization and chemical
freeze-out) are conceptually distinct.

In this paper we study the flavor dependence of the
hadronization temperature by using one of the simplest
effective models for strong interactions. The Nambu-Jona-
Lasinio (NJL) model is an effective model for low-energy
QCD where the gluonic fields are integrated out and the
basic interaction consists of a four-quark contact vertex.
Although the gluon dynamics is absent in this model, some
of the gluonic features can be reproduced by the so-called
Polyakov-Nambu-Jona-Lasinio (PNJL) model.

This effective model lacks true confinement. However,
hadrons can be thought of as dynamically generated states
from multiquark rescattering, thus providing a nonperturbative
mechanism for an effective confinement. The properties of
these hadrons (masses and widths) can be obtained by solving
the Bethe-Salpeter (BS) equation (for mesons) and the Fadeev
equation (for baryons) with some approximations. Many
approaches have been applied in which meson and baryon
properties at zero temperature have been computed within the
NJL and PNJL models [10–14]. These models can be extended
to finite temperatures and densities. Such an extension allows
for calculating the “Mott temperature,” the temperature at
which hadrons are not bound anymore, because they can melt
into a quark and a diquark.

Our aim is to find the Mott temperature for several hadrons
within the three-flavor NJL and PNJL models, and extract
conclusions about its dependence on the strangeness content
of the hadrons. In Sec. II we introduce the NJL and PNJL
Lagrangians and provide a short remainder on how a meson can
be effectively described as a bound state of a quark-antiquark
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pair. In Sec. III we use the Bethe-Salpeter equation for two
quarks to generate diquarks and extract their properties as a
function of the temperature. In Sec. IV we apply the Fadeev
equation to generate baryons as bound states of quarks and
diquarks. We will present the baryon masses as a function
of temperature up to the melting (or Mott) temperature. We
consider all baryons belonging to the octet and decuplet
flavor representations in the isospin limit (up and down
quarks with equal masses). Finally, in Sec. V we present
our conclusions, summary, and outlook. We also include six
appendixes with technical details, so keep this paper as much
self-contained as possible: In Appendix A we detail the Fierz
transformation for the NJL Lagrangian and discuss different
versions found in the literature. Next, in Appendix B we
shortly define the thermal functions needed in the calculation
of the quark condensate and the meson or diquark polarization
function. Appendix C is devoted to the simplification of the
Bethe-Salpeter equation for diquarks and provide the flavor
matrices for the different diquark sectors. In Appendix D we
reduce the Fadeev equation for baryons to a tractable form
using the “static approximation.” In Appendix E we present the
projectors on the physical baryon states belonging to the octet
and decuplet flavor representations. Finally, Appendix F is
devoted to the simplification of the quark-diquark polarization
function, providing useful expressions.

II. NAMBU-JONA-LASINIO MODEL FOR QUARKS

A. Effective Lagrangian

The NJL model [10,11,15,16] describes the low-energy
interactions of quarks by a four-fermion contact vertex. Being
an effective model of QCD it respects the symmetries of
the underlying theory, in particular the UV (1) ⊗ SUV (Nf ) ⊗
SUA(Nf ) global symmetries of the massless QCD Lagrangian.
The UV (1) symmetry leads to the baryon number conservation,
while the chiral symmetry SUV (Nf ) ⊗ SUA(Nf ) is sponta-
neously broken down to SUV (Nf ) at low temperatures. The
UA(1) symmetry is broken by the axial anomaly.

The form of the NJL Lagrangian is motivated by QCD.
Consider the quark-antiquark current-current scattering in the
t channel, mediated by a dressed gluon. The gluon propagator
gives a factor 1/(t − m2

g), with mg being the dressed gluon
mass. In the limit of low momentum transfer one can neglect t
in comparison with the gluon mass, thus producing an effective
contact interaction among quarks. In this way, the gauge fields
disappear from the theory and all what remains is an effective
coupling g between quarks, related to the strong coupling
constant and to the gluon mass.

For three flavors, the resulting effective interaction La-
grangian reads

L = −g
∑
a′

∑
ij

(ψ̄i γ μT a′
ψi) (ψ̄j γμT a′

ψj ), (1)

where i,j = 1, . . . ,Nf = 3 are flavor indices and a′ =
1, . . . ,N2

c − 1 are color indices with T a′
being the color

generators, which for Nc = 3 they are represented by the
Gell-Mann matrices,

T a′ = λa′
, (2)

with the standard normalization,

trc (T a′
T b′

) = 2δa′b′
, (3)

where trc denote the trace in color space.
After performing a Fierz transformation [10,11] this La-

grangian can be reexpressed in a convenient way to describe
the qq, q̄q̄ and q̄q scattering. Using the Fierz transformation
described in Appendix A we first obtain the q̄q sector of the
effective theory, which will allow us to describe mesons. For
instance, the pseudoscalar sector of the interacting Lagrangian
(A4) reads (all repeated indices are to be summed)

Lq̄q = G
(
ψ̄i iγ5 τ a

ij ψj

)(
ψ̄k iγ5 τ a

kl ψl

)
, (4)

where a = 1, . . . ,N2
f − 1 and G is a coupling constant,

proportional to the original g in Eq. (1). In this work, we will
take G as a free parameter to be fixed by comparing our results
with the experimental hadron spectrum. The flavor generators
τ a follow the normalization,

tr (τ aτ b) = 2δab. (5)

For Nf = 3 they can be represented by the Gell-Mann
matrices.

The axial anomaly is responsible for the UA(1) breaking
and gives rise to the observed η − η′ mass splitting. To account
for this effect in the our model, we complement the NJL q̄q
Lagrangian in Eq. (4) with the ’t Hooft Lagrangian:

LH = −H det
ij

[ψ̄i (I − γ5)ψj ] − H det
ij

[ψ̄i (I + γ5)ψj ], (6)

where H is an additional unknown coupling and I is the
identity matrix in Dirac space. For Nf = 3 this Lagrangian
represents a six-point fermion interaction, which is effectively
projected onto a four-fermion interaction by using the mean-
field approximation [10,11]. Using the same approximation,
the quark masses obey the gap equation,

mi =mi0 − 4G〈ψ̄iψi〉 + 2H 〈ψ̄jψj 〉〈ψ̄kψk〉, j,k �= i; j �= k

(7)

with mi0 being the bare quark mass for flavor i, and the quark
condensate defined as

〈ψ̄iψi〉 = −iNc trγ

∫
d4k

(2π )4
Si(k), (8)

with the trace acting in Dirac space. We represent by Si the
dressed quark propagator,

Si(k) = 1

k/ − mi

. (9)

The final expression for the quark condensate in the NJL model
is shown in Appendix B.

B. Medium effects

To calculate the hadron properties at finite temperature, we
use the imaginary time formalism with the prescription,∫

d4k

(2π )4
→ iT

∑
n∈Z

∫
d3k

(2π )3
, (10)
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with T the temperature and k0 → iωn the fermionic Matsubara
frequencies iωn = iπT (2n + 1).

To account for the finite baryonic density we can introduce
a quark chemical potential by adding to the Lagrangian the
term,

Lμ =
∑
ij

ψ̄i μij γ0 ψj , (11)

where μij = diag (μu,μd,μs) contains the quark chemical
potentials (which can be alternatively expressed in terms
of the baryon, charge, and strangeness chemical potentials,
μB,μQ,μS). In this work we will restrict ourselves to a
vanishing chemical potential μu = μd = μs = 0.

C. Polyakov-NJL model

In the NJL Lagrangian, the gluon fields have been integrated
out of the fundamental theory. However, one can still introduce
a source of gluonic effects through the Polyakov line,

L(x) = P exp

(
i

∫ β

0
dτA4(τ,x)

)
, (12)

where β = 1/T , P is the path-ordering operator, and A4 =
iA0 the temporal component of the gluon field in Euclidean
space (with Aμ = gsA

μ
a Ta). The order parameter of the

deconfinement phase transition (in the absence of quarks)
is chosen to be the Polyakov loop �, which is the thermal
expectation value,

� = 1

Nc

trc〈L〉, (13)

where the trace in taken in color space. To account for
deconfinement effects via the Polyakov loop, an effective
potential U(�,�̄,T ) is added to the effective NJL Lagrangian
L → L − U . U is a function of the Polyakov loop and its
complex conjugate, which are taken to be homogeneous fields.
The form of the effective potential is inspired by the Z3 center
symmetry [17],

U(T ,�,�̄)

T 4
= −b2(T )

2
�̄� − b3

6
(�3 + �̄3) + b4

4
(�̄�)2,

(14)

with

b2(T ) = a0 + a1
T0

T
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

. (15)

The parameters a0,a1,a2,a3,b3,b4, and T0 are fitted from
the pure-gauge lattice-QCD equation of state at zero chemical
potential [17]. The numerical values of our parameters are
given in Table I. Following the reasoning of Ref. [18] we
have considered the running of T0 with the number of flavors.

As a consequence, we have modified the original parameter
T0 = 270 MeV for the Yang-Mills case (Nf = 0) to a value of
T0 = 190 MeV for our case (Nf = 2 + 1).

This model is called the Polyakov-Nambu-Jona-Lasinio
model and was widely used in similar studies as ours, e.g.,
for QCD thermodynamics [17] or generation of bound states
[19–21].

The PNJL grand-canonical potential reads

PNJL(�,�̄,mi,T ) = U(T ,�,�̄) + 2G
∑

i

〈ψ̄iψi〉2

− 4H
∏

i

〈ψ̄iψi〉 − 2Nc

∑
i

∫
d3k

(2π )3
Ei

− 2T
∑

i

∫
d3k

(2π )3
[ trc log(1 + Le−Ei/T )

+ trc log(1 + L†e−Ei/T )], (16)

with Ei =
√

k2 + m2
i . Using the mean-field approximation one

has [19]

trc log(1 + Le−Ei/T )

= log(1 + 3(� + �̄e−Ei/T )e−Ei/T + e−3Ei/T ), (17)

trc log(1 + L†e−Ei/T )

= log(1 + 3(�̄ + �e−Ei/T )e−Ei/T + e−3Ei/T ). (18)

We minimize the grand-canonical potential with respect to the
order parameters: �,�̄,〈ψ̄iψi〉,

∂PNJL

∂�
= 0,

∂PNJL

∂�̄
= 0,

∂PNJL

∂〈ψ̄iψi〉 = 0. (19)

The last equation provides the expression for the quark
condensate in the PNJL model,

〈ψ̄iψi〉 = −2Nc

∫
d3k

(2π )3

mi

Ei

[1 − f +
� (Ei) − f −

� (Ei)], (20)

with

f +
� (Ei) = (� + 2�̄e−Ei/T )e−Ei/T + e−3Ei/T

1 + 3(� + �̄e−Ei/T )e−Ei/T + e−3Ei/T
, (21)

f −
� (Ei) = (�̄ + 2�e−Ei/T )e−Ei/T + e−3Ei/T

1 + 3(�̄ + �e−Ei/T )e−Ei/T + e−3Ei/T
. (22)

For Nf = 3, the gap relation (7) and the first two equations
in (19) form a system of five coupled equations. The system
needs to be solved numerically to obtain the value of the
Polyakov loop (and its conjugate) and the quark masses. In the
isospin limit, two equations are degenerate giving mu = md

TABLE I. Parameters of the NJL and PNJL model used in this study. In the isospin limit we have mq0 = mu0 = md0.

Parameter mq0 ms0 � G H GDIQ GDIQ,V

Value 5.5 MeV 134 MeV 569 MeV 2.3/�2 11/�5 1.56 G −0.639 GDIQ

Parameter a0 a1 a2 a3 b3 b4 T0

Value 6.75 −1.95 2.625 −7.44 0.75 7.5 190 MeV
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FIG. 1. (Left panel) Light and strange quark condensates (for both NJL and PNJL models) and Polyakov loop as a function of the
temperature. In the legend, u and s stand for 〈ψ̄uψu〉(T )/〈ψ̄uψu〉(T = 0) and 〈ψ̄sψs〉(T )/〈ψ̄sψs〉(T = 0), respectively. (Right panel) Chiral and
deconfinement susceptibilities as a function of temperature. Their maxima show the chiral and deconfinement transition temperatures. In this
panel, the labels u,d , and � stand, respectively, for χ〈ψ̄uψu〉(T ),χ〈ψ̄sψs 〉(T ), and χ�(T ).

(and 〈ψ̄uψu〉 = 〈ψ̄dψd〉). In addition, at vanishing chemical
potential one has � = �̄, which is evident from our equations.

In the left panel of Fig. 1 we show the temperature depen-
dence of the light and strange quark condensates, 〈ψ̄uψu〉 and
〈ψ̄sψs〉, for both NJL and PNJL models. In addition, we also
show the Polyakov loop as a function of T . These quantities
serve as order parameters of the chiral and deconfinement
phase transitions. The transition temperature can be defined
as the point at which the susceptibility (derivative of the order
parameter) peaks. In the right panel of Fig. 1 we plot the
dimensionless chiral susceptibilities defined as

χ〈ψ̄uψu〉 ≡ 1

T 2

d〈ψ̄uψu〉
dT

, χ〈ψ̄sψs 〉 ≡ 1

T 2

d〈ψ̄sψs〉
dT

. (23)

The maximum of the susceptibility will indicate the chiral
transition temperature. They read T〈ψ̄uψu〉 = 246/262 MeV
(NJL/PNJL) and T〈ψ̄sψs 〉 = 238/255 MeV (NJL/PNJL). We
also show the deconfinement susceptibility defined as

χ� ≡ T
d�

dT
, (24)

whose maximum gives the approximate position of the
deconfinement transition temperature T� = 181 MeV.

D. Mesons as bound states of q̄q

To obtain the meson propagator one must solve the BS
equation for the quark-antiquark scattering amplitude i + j̄ →
m + n̄ (Latin subindices will denote quark flavor and barred
indices antiquark flavor) in the random-phase approximation
(RPA):

T ab
ij̄ ,mn̄

(p2) = Kab
ij̄ ,mn̄

+ i

∫
d4k

(2π )4
Kac

ij̄ ,pq̄
Sp

(
k + p

2

)
× Sq̄

(
k − p

2

)
T cb

pq̄,mn̄(p2), (25)

where a,b denotes the meson flavor channel. The kernel K
reads

Kab
ij̄ ,mn̄

= a
ij̄

2Kab ̄b
n̄m, (26)

with the vertex factors containing color, flavor, and spin
matrices,

a
ij̄

= (
Icolor ⊗ τ a

ij̄
⊗ �

)
, (27)

as well as a combinatorial factor of 2. The Dirac structure—
whose indices we have omitted in our BS equation—can be
chosen to be � = {1,iγ5,γ

μ,γ5γ
μ} for scalar, pseudoscalar,

vector, and axial-vector mesons, respectively.
The addition of the ’t Hooft term to the NJL Lagrangian

breaks flavor symmetry at the mean-field level of the coupling
constants. The resulting flavor-dependent couplings in the q̄q
sector Kab are combinations of the G and H couplings [10].
In the pseudoscalar sector, the nonzero couplings read [10,22]

K00 = G + H

3
(〈ψ̄uψu〉 + 〈ψ̄dψd〉 + 〈ψ̄sψs〉), (28)

K11 = K22 = K33 = G − H

2
〈ψ̄sψs〉, (29)

K44 = K55 = G − H

2
〈ψ̄dψd〉, (30)

K66 = K77 = G − H

2
〈ψ̄uψu〉, (31)

K88 = G − H

6
(2〈ψ̄uψu〉 + 2〈ψ̄dψd〉 − 〈ψ̄sψs〉), (32)

K03 = K30 = H

2
√

6
(〈ψ̄uψu〉 − 〈ψ̄dψd〉), (33)

K08 = K80 = −H

2
√

6
(〈ψ̄uψu〉 + 〈ψ̄dψd〉 − 2〈ψ̄sψs〉), (34)

K38 = K83 = − H

2
√

3
(〈ψ̄uψu〉 − 〈ψ̄dψd〉). (35)

Notice that they are diagonal in flavor space except for the (0-
3-8) subsystem. These nondiagonal couplings will eventually
bring a π0 − η0 − η8 mixing [10], which should be solved in
the coupled-channel basis. In the isospin limit (mu = md ) the
π0 is decoupled from the system, but mixing is still present in
the η0 − η8 subspace. In a diagonal basis, this fact accounts
for the η − η′ mixing, providing the mass splitting between
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FIG. 2. Pseudoscalar meson masses as a function of the temperature for vanishing chemical potential in the NJL (left panel) and PNJL
(right panel) models.

these two states. Note that in the absence of the ’t Hooft term,
the mixing disappears.

Introducing the function tab(p2),

T ab
ij̄ ,mn̄

(p2) = a
ij̄

tab(p2)̄b
n̄m, (36)

the solution of the BS equation is a matrix in flavor space,

tab(p2) =
[

2K

1 − 2K�(p2)

]ab

, (37)

where the polarization function �ab(p2) is defined as

�ab(p2) = i

∫
d4k

(2π )4
trγ

[
̄a

j̄ i
Si

(
k + p

2

)
b

ij̄
Sj̄

(
k − p

2

)]
.

(38)

In Appendix B we provide a simplified expression for this
function at finite temperature.

The poles of tab(p2) represent the mesonic states, which are
bound states of the q̄q scattering. One can perform a Taylor
expansion of the function t−1,ab(p2) around the pole p2 = m2

M ,

t−1,ab(p2) = t−1,ab
(
m2

M

) + ∂t−1,ab(p2)

∂p2

∣∣∣∣
p2=m2

M

(
p2 − m2

M

)

+ · · · � − 1

2mM

∂�ab(p2)

∂p

∣∣∣∣
p2=m2

M

(
p2 − m2

M

)
,

(39)

where we have used that t−1,ab(m2
M ) = 0 at the pole position.

Defining the effective coupling,

g2
M→q̄q ≡ 2mM

∂�ab(p2)
∂p

∣∣∣
p2=m2

M

, (40)

we show that tab(p2) can be identified with the meson
propagator,

tab(p2) = −g2
M→q̄q

p2 − m2
M

. (41)

Therefore, the equation,

1 − 2Kab�ab
(
p2 = m2

M

) = 0, (42)

gives the meson mass mM in the appropriate flavor channel
(and spin channel by selecting �).

If the generated state has a mM larger than the sum of
quarks masses, it is possible for this meson to decay into
a quark-antiquark pair. In this case the polarization function
(38) becomes complex and the pole acquires an imaginary part.
Considering the variable p2 as complex one can identify the
mass and the decay width with the real and imaginary parts
of the pole position. In this way one can obtain the meson
masses and decay widths as a function of temperature and/or
chemical potential. A detailed discussion about this procedure
is provided at the end of Appendix B.

The parameters we use in this work are partially based on
the findings of Ref. [23]. For the NJL model in the isospin
limit we have seven parameters. The extension to the PNJL
model introduces another seven parameters (fixed from the
thermodynamics of pure-gauge QCD in the lattice [17]). All
of them are summarized in Table I.

Using the parameter set in Table I we obtain the following at
T = 0: the light-quark condensate 〈ψ̄uψu〉 = −(241.3 MeV)3,
the pion decay constant fπ = 92.2 MeV, the pion mass mπ =
134.8 MeV, the kaon mass mK = 492.1 MeV, the η − η′ mass
splitting of 475.5 MeV, the proton mass 932.0 MeV, and the
� baryon mass 1221.4 MeV.

Our results for pseudoscalar and vector meson masses are
summarized in Figs. 2 and 3, respectively, where we include
the results from both the NJL and the PNJL models.

In Table II we present the masses of the pseudoscalar and
vector mesons at zero temperature, as well as the Mott tem-
peratures for all of them, defined as the temperature at which

mM (TMott) = mp(TMott) + mq̄(TMott), (43)

with mp and mq̄ the masses of the quark and antiquark that
compose the meson.

Notice that for each mesonic state a different Mott temper-
ature is found; note also the large difference between the Mott
temperatures within the NJL and the PNJL models. Given the
uncertainties of our model one could argue that a common
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FIG. 3. Vector meson masses as a function of the temperature for vanishing chemical potential in the NJL (left panel) and PNJL (right
panel) models.

Mott temperature may work for them all. Alternatively one
might claim that more precise data are necessary to establish an
eventual difference of the Mott temperature of pions and kaons,
for instance. However, note that the φ meson has a very large
Mott temperature, not consistent with the rest. This fact makes
the φ meson impossible to accommodate in a global picture of
common hadronization conditions. This would manifest itself
in a larger φ/π ratio than the expected for a production at a
common temperature, as seen experimentally in Ref. [25].

III. DIQUARKS

A second Fierz transformation can convert the original
NJL interaction into Lagrangian that describes the interaction
among quarks [11]. Their bound states, diquarks, belong to
a nonsinglet color representation and are not experimentally
observable states. However, they will be important for the
construction of baryons.

It is important to fix the different diquark channels we
consider. In color space, we neglect the sextet representation
(3c ⊗ 3c = 3̄c ⊕ 6c) because the members of this representa-
tion cannot be combined with an additional quark to form
colorless baryons (in addition, this channel is known to be
repulsive). In flavor space, diquarks from both 3̄f and 6f

representations can take part in the baryon structure, but they
should be appropriately combined with the spin structure to
have a total antisymmetric wave function [14,26]. A summary
of the different allowed channels is shown in Table III. All
the allowed combinations can be alternatively obtained by
applying a Fierz transformation to the original color-current

TABLE II. Masses at T = 0 and Mott temperatures for the
pseudoscalar and vector mesons in the NJL and PNJL models. For
the η′ meson we find a finite decay width already at T = 0. All units
are given in MeV.

Meson π K η η′ ρ K∗ ω φ

Mass at T = 0 135 492 512 987 723 866 723 998
Mass (PDG [24]) 136 495 548 958 775 892 782 1020
TMott (NJL) 267 271 245 0 234 250 234 372
TMott (PNJL) 282 286 262 0 253 266 253 382

Lagrangian into the qq sector [11]. All the terms emerging
from the Fierz transformation, exactly match all the different
terms shown in Table III (see further discussion and final
Lagrangian in Appendix A).

As we will see later, only the low-lying diquarks of each
spin (scalar and axial-vector ones) will be used to form
baryons. This is so because of the fact that the masses of
the pseudoscalar and vector diquarks will be higher than
the experimental baryon masses and already unstable at zero
temperature. For this reason we only detail here the Lagrangian
describing the scalar diquark sector,

Lqq = GDIQ (ψ̄iγ5CτAT A′
ψ̄T )(ψT Ciγ5τ

AT A′
ψ), (44)

and the one for the axial diquark sector,

Lqq = GDIQ,V (ψ̄γ μCτST A′
ψ̄T )(ψT CγμτST A′

ψ), (45)

where GDIQ and GDIQ,V are coupling constants (related to the
original g but taken here as free parameters) and C = iγ0γ2

represents the charge-conjugation operation. Finally, we have
denoted by τA and τS the antisymmetric and symmetric flavor
matrices, respectively, and by T A′

the antisymmetric color
matrices. In particular, the presence of the latter reflects that
the diquarks cannot be color singlets.

The BS equation for the quark-quark scattering in the RPA
approximation reads

T ab
ij,mn(p2) = Kab

ij,mn + i

∫
d4k

(2π )4
Kac

ij,pq Sp

(
k + p

2

)
× Sc

q

(p

2
− k

)
T cb

pq,mn(p2), (46)

TABLE III. Different diquarks belonging to different sectors. �

denotes the spin structure associated with the qq vertex.

Color Flavor J P � Denomination

6S Not considered here

3̄A 6S 1+ γμ Axial
3̄A 3̄A 0+ iγ5 Scalar
3̄A 3̄A 0− I Pseudoscalar
3̄A 3̄A 1− γμγ5 Vector
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where Sc(p) ≡ C−1ST (−p)C denotes the charge-conjugated
quark propagator, with T the transposed operator (not to be
confused with the temperature).

Details concerning the simplification of this equation are
given in Appendix C. In terms of the function tab(p2),

T ab
ij,mn(p2) = a

ij tab(p2) ̄b
nm, (47)

we can express the solution of the BS equation as

tab(p2) = 2GDIQ

1 − 2GDIQ�ab(p2)
, (48)

with the quark-quark polarization function of Eq. (C6).
For the spin-1 channels the polarization function contains

a transverse term and a longitudinal term,

�ab
μν = �ab

⊥ Tμν + �ab
‖ Lμν, (49)

where we have defined the projectors,

Tμν = gμν − pμpν

p2
, Lμν = pμpν

p2
. (50)

The solution of the spin-1 diquark masses involves the
transverse component of the polarization function �ab

⊥ (p2) =
1
3T μν�ab

μν . For axial diquarks this fact directly comes from the
vector current conservation, but for vector diquarks this result
still holds [27].

The function tab(p2) reads

tab(p2) =
[

2GDIQ,V

1 − 2GDIQ,V �⊥(p2)

]ab

, (51)

where the coupling constant GDIQ,V for vector and axial
diquarks is, in principle, related to GDIQ by the Fierz transfor-
mation. However, we will take it here as a free parameter to
be fixed by a fit to the baryon masses.

Again, the poles of the tab(p2) functions are identified with
dynamically generated diquarks in their respective flavor and
spin channel. The diquark mass, mDIQ, is obtained by the
solution of the equations 1 − 2GDIQ�ab(m2

DIQ) = 0 for spin
zero diquarks and 1 − 2GDIQ,V �ab

⊥ (m2
DIQ) = 0 for spin one

diquarks.
In Fig. 4 we present our results for scalar and axial diquark

masses, which will be used to model baryons in the next
section. Scalar diquarks are represented by square brackets
[q1q2] and axial diquarks by parenthesis (q1q2). From Fig. 4
it is possible to read off the Mott temperature for the different
states (defined as the temperature at which the mass of the
bound state equals the sum of the quark masses). Beyond
this temperature, a diquark thermal width is generated, which
represents the probability of the diquark to decay into a pair
of quarks.

For completeness, we also present our results for the
pseudoscalar {q1q2} and vector 〈q1q2〉 diquarks in Fig. 5. As
we have anticipated, at T = 0 these states have a finite thermal
decay width which excludes a role in forming stable baryons at
low temperatures. For this reason, we will neglect these states
hereafter.

We now turn to the PNJL model and show the results for
the scalar and axial diquark masses with the parameter set
presented in Table I. In Fig. 6 we show the diquark masses
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FIG. 4. Scalar diquark (upper panel) and axial diquark (lower
panel) masses as a function of the temperature for vanishing chemical
potential in the NJL model. For comparison, the thermal quark masses
are also shown. q stands for light quark (q = u = d).

as a function of temperature at zero chemical potential. In
this case, the quark masses are more stable as a function
of the temperature, generating a systematically larger Mott
temperature in comparison with the NJL model. At T = 0 the
masses obtained from the NJL and PNJL models coincide,
providing a consistency check.

In Table IV we present a summary of Mott temperatures
(with precision of 1 MeV) for the different states in the NJL
and in the PNJL model. The PNJL model shows higher melting
temperatures in all cases. From this table one already sees a
hint for the flavor dependence of the hadronization (Mott)
temperature. This temperature increases with the strangeness
content of the diquark.

Assuming the pole dominance of the diquark propagation,
we can expand the tab(p2) function around its pole to obtain
[11]

tab(p2) = − g2
[qq]→qq

p2 − m2
DIQ

. (52)

Taking the diquark to be at rest (p = 0) the effective coupling
g2

[q1q2]→q1q2
is defined as

g2
[q1q2]→q1q2

= 2mDIQ

∂�ab(p0)
∂p0

∣∣∣
p0=mDIQ

. (53)
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FIG. 5. Pseudoscalar diquark (upper panel) and vector diquark
(lower panel) masses as a function of temperature for vanishing
chemical potential in the NJL model. Notice that the diquark masses
are always higher than the combined mass of their constituents.
Therefore, they are unstable against decay to two quarks.

For the axial diquarks we find in the pole approximation,

tab,μν(p0,0) = g2
(q1q2)→q1q2

p2
0 − m2

DIQ

(
gμν − pμpν

m2
DIQ

)
, (54)

with

g2
(q1q2)→q1q2

= −2mDIQ

∂�ab
⊥ (p0)
∂p0

∣∣∣
p0=mDIQ

. (55)
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FIG. 6. Scalar diquark (left panel) and axial diquark (right panel) masses as a function of temperature for vanishing chemical potential in
the PNJL model.

TABLE IV. Mott (or melting) temperature for the different scalar
[q1q2] and vector axial (q1q2) diquarks in the NJL as well as in the
PNJL model.

Diquark NJL TMott (MeV) PNJL TMott (MeV)

[qq] 256 272
[qs] 273 287
(qq) 212 234
(qs) 233 251
(ss) 307 319

We now present our results for the effective couplings of
the scalar and axial diquarks as a function of the temperature
at vanishing chemical potential. The NJL results are given in
Fig. 7 and those for the PNJL model in Fig. 8. Notice that
the Mott temperature clearly coincides in these plots with the
value at which the effective coupling vanishes.

IV. QUARK-DIQUARK BOUND STATES

In the last two sections we have explored the concept
of “hadronization” as a dynamical generation of bound
states from quark and antiquark scattering. This idea—quite
successful for the generation of mesons and diquarks—can
be pushed forward to describe baryons as bound states of
a quark and a diquark. For Nf = 3 we will consider both
the octet and decuplet flavor representations of baryons.
Scalar diquarks (those belonging to flavor 3̄ representation)
and axial diquarks (6) will be used to build up the baryon
octet and decuplet states, respectively, according to the
decomposition,

3 ⊗ (3̄ ⊕ 6) = (1 ⊕ 8) ⊕ (8 ⊕ 10). (56)

Notice that the members of the octet also contain nonzero
contribution from the axial diquarks. However, previous results
at zero temperature have shown that the contribution is almost
negligible [12]. For simplicity, we will neglect the axial
diquark contribution to the baryon octet.
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FIG. 7. Effective diquark-quark-quark coupling, defined in Eq. (53) for the scalar diquarks (left panel) and in Eq. (55) for the axial diquark
(right panel) as a function of temperature in the NJL model.

The starting point to describe baryons is the Fadeev
equation [13,28]:

X
j̄,α
j (P 2,q) −

∫
d4k

(2π )4
L

j̄k̄,αβ
jk (P 2,q,k)Xk̄,β

k (P 2,k)

∣∣∣∣
P 2=M2

B

= 0,

(57)

where the baryon wave function is denoted by X
j̄,α
j and it

carries a quark index (j ), diquark index (j̄ ), and a possible
spin index α.

The kernel reads [13]

L
j̄k̄,αβ
jk (P 2,q,k) = Gγβ

kk̄
(P 2,q)Zk̄j̄,αγ

jk (q,k), (58)

with a first term which accounts for the free quark and diquark
propagators (see right panel of Fig. 9),

Gγβ

kk̄
(P 2,q) = Sk(P/2 + q) it

γβ

k̄
(P/2 − q), (59)

and a second term,

Z
k̄j̄,αγ
jk (q,k) = 

k̄,γ
jl Sl(−q − k) 

j̄,α
lk , (60)

which represents an interaction with an exchanged quark
(displayed in the left panel of Fig. 9).

We do not attempt here to justify the form of the Fadeev
equation (57) and we refer the reader to the original papers
[13,26] to learn the rigorous derivation and know more details.

Nevertheless, we can provide a simple motivation for
Eq. (57): If we denote by G(P 2) the full baryon propagator,
one can form a Dyson equation by taking G as the leading
order approximation (free propagation), and then considering
Z as the elementary interaction (see Fig. 10).

The Dyson equation can be symbolically written as

G = G + GZG, (61)

whose solution reads

G = G
1 − GZ

. (62)

The baryon masses are now extracted as the poles of the baryon
propagator, so one needs to solve G−1X(P 2 = M2

B) = 0,
where X is the baryon wave function. Explicitly,

(1 − GZ)X
(
P 2 = M2

B

) = 0, (63)

at P 2 = M2
B , which is a simplified version of the more

complete Eq. (57).
The technical simplification of the Fadeev equation is given

in Appendix D. There, we apply the “static approximation”
for the exchanged quark [13]. This amounts to neglecting the
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FIG. 8. Same as Fig. 7 but for the PNJL model.
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Z k̄j̄,αγ
jk (q, k) =

α j̄ k

γj k̄

Sl(−q − k) Gγβ
kk̄ (P, q) =

βγ

Sk(P/2 + q)

itk̄(P/2 − q)

FIG. 9. (Left panel) Effective coupling in the Fadeev equation which contains a quark exchange. (Right panel) Two-particle (quark+diquark)
propagator in the Fadeev kernel.

exchanged momentum in Z with respect to the quark mass
ml . This approximation was intensively used in other works
resulting a very good approximation (the estimated uncertainty
is around 5% as quoted in [13]).

As shown in Appendix D the Fadeev equation can be
recasted into a Dirac-like equation for the baryon wave
function evaluated at the baryon mass. For a particular baryon
channel BB ′ (we denote by B,B ′ the physical baryon in the
initial and final state), the equation to be solved reads

[gαβδBB ′ − MBB ′,αβ (P 2)]|P 2=m2
B

= 0, (64)

with the matrix (in both flavor and spin spaces) MBB ′,αβ

introduced in Eq. (D7),

MBB ′,αβ (P ) ≡ 2

ml

∫
d4q

(2π )4
P†,B

j j̄
PB ′

k̄k
τ k̄
j l τ

j̄
lk �μ�μ

× Sk

(
P

2
+ q

)
it

αβ

k̄

(
P

2
− q

)
. (65)

For the members of the baryon octet, MBB ′
simplifies to (D9)

MBB ′
(P ) = 2

ml

P†,B
j j̄

PB ′
k̄k

τ k̄
j lτ

j̄
lk �kk̄(P ), (66)

where the flavor matrices τ are given on the top of Table VI,
the projection matrices P are given in Appendix E, and the
quark-diquark polarization function is defined as

�kk̄(P ) ≡ −
∫

d4q

(2π )4
Sk(P − q) itk̄(q). (67)

For the baryon decuplet the matrix MBB ′,αβ reads (D11)

MBB ′,αβ = 8

ml

P†,B
j j̄

PB ′
k̄k

τ k̄
j lτ

j̄
lk �

αβ

kk̄
(P ), (68)

where the flavor matrices for axial diquarks are given in the
bottom of Table VI and the projection matrices are also given
in Appendix E. The quark-diquark polarization function is

= +

FIG. 10. Dyson equation for the baryon propagator G = G +
GZG.

defined as

�
αβ

kk̄
(P ) ≡

∫
d4q

(2π )4
Sk(P − q) it

αβ

k̄
(q), (69)

where its final expression is given in Appendix F.
In summary, the baryon masses are obtained by solving

Eq. (64) with the matrix MBB ′
defined in (66) for the members

of the baryon octet and in (68) for the members of the decuplet.
The results for the masses and the extraction of the melting
temperature for the different states are given in the next section.

V. RESULTS AND CONCLUSIONS

Our results for the baryon masses at finite temperature in
both the octet and decuplet representations are shown in Fig. 11

temperature (MeV)
0 50 100 150 200 250 300

m
as

s 
(M

eV
)

0

200

400

600

800

1000

1200

1400

Ξ

Σ

Λ
p

temperature (MeV)
0 50 100 150 200 250 300

m
as

s 
(M

eV
)

0

200

400

600

800

1000

1200

1400

1600

1800

Ω
*

Ξ
*

Σ
Δ

FIG. 11. Baryon masses as a function of temperature for vanish-
ing chemical potential in the NJL model.
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FIG. 12. Baryon masses as a function of temperature for vanish-
ing chemical potential in the PNJL model.

for the NJL model. The results using the PNJL model are
presented in Fig. 12. We summarized all the baryon masses in
vacuum (T = 0) in Table V.

The masses are given as a function of temperature for
vanishing chemical potential. As baryons are considered as
quark-diquark bound states, the definition of the deconfine-
ment temperature is slightly modified to take into account
the possibility of diquark melting. The “deconfinement”
temperature may be a genuine Mott temperature TMott(baryon),
i.e., when the baryon mass equals the sum of quark and diquark
masses. Nevertheless, it can also happen that the diquark
melts at a lower temperature TMott(diquark) < TMott(baryon).
Therefore, we define the baryon deconfinement temperature
as the minimum of the two:

Td ≡ min{TMott(baryon),TMott(diquark)}, (70)

TABLE V. Masses at T = 0 and Mott temperature for the
different baryons in the octet and decuplet representations for both
NJL and PNJL models. All units are given in MeV.

Baryon p � � � � �∗ �∗ 

Mass at T = 0 932 1078 1152 1269 1221 1366 1512 1658
Mass (PDG) [24] 939 1116 1193 1318 1232 1383 1533 1672
TMott (NJL) 234 252 156 272 200 211 219 275
TMott (PNJL) 254 269 195 287 223 231 239 288

excluding the possibility that the three-quark system is stable
when the diquark becomes unstable.

Baryon masses are plotted up to this temperature, which
is summarized in Table V for all the baryon states. Beyond
Td the baryon mass becomes complex and, in principle, one
should perform an analytical continuation of the Matsubara
frequencies to nonreal energies. This is beyond the scope of
this work.

Comparison with previous results [21,29–31] show a
similar trend for all the masses. In particular the surprisingly
low melting temperature for � baryon is also captured by
[29,30] where, in addition, the melting temperature of proton
is slightly larger than the �, as opposed to our case. In
Refs. [21,31] the decuplet is shown for the first time. However,
in these works the Dirac structure of the Dirac equation (D7) is
simplified by taking the trace in the quark-diquark polarization
function (with no further justification for this step). In addition,
the transverse nature of the axial diquark propagator is omitted.
In spite of this fact, the trend for the baryon octet coincides
with our results, also in the larger mass of the � with respect
to the proton. The decuplet sector is also similar to ours.

In the decuplet sector we find a hierarchy based on the
strangeness content, i.e., the Tc increases with the number of
constituent strange quarks of the baryon. In this respect the
first baryon that melts is the �, whereas the  has the largest
Mott temperature.

The main conclusion of this work is the evident flavor
dependence of the deconfinement temperature of baryons.
On the qualitative level, our result is quite robust because
of the fact that the relative temperatures remain similar for
both NJL and PNJL models. On the quantitatively side, the
Mott temperatures are strongly dependent on the model (NJL
or PNJL) used, and in both cases they seem to overestimate
the standard values for the freeze-out temperatures obtained
by the thermal fits.

Statistical models applied to ALICE data predict a lower
chemical freeze-out temperature for proton in comparison with
the that for states with multistrangeness (� and ). Within
our approximation, our findings agree with this claim being
the proton temperature 38 MeV (33 MeV) less than the �
temperature in the NJL (PNJL) model. This fits well to the
experimental findings in [4].

In addition, we find that the temperature of the � and
 baryons are surprisingly similar, in accordance with the
thermal-statistical model result [4]. In our scheme, this result
is totally nontrivial, because of the fact that the internal baryon
structure is entirely different for the two states, because we
have different kinds of constituent diquarks.

In summary, we have applied the NJL and PNJL models, to-
gether with different many-body techniques—Bethe-Salpeter
and Fadeev equations—to generate diquarks and baryons,
respectively. The parameters of the models are fitted to agree
with the low-lying states in the respective channel (GDIQ fitted
to reproduce the proton mass and GDIQ,V to the � baryon
mass), being the mass of other baryon predictions of the
models.

Extending the method to finite temperature we were able
to predict the temperature dependence of baryon masses
for all the physical states belonging to the flavor octet and
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decuplet representations. We find a strong dependence on
the melting (or deconfinement) temperature depending on the
flavor content of the baryons. In a qualitative way, our findings
coincide with the suggested results on the statistical thermal
model on ALICE data [4], and supported by lattice-QCD
results by [9].
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APPENDIX A: FIERZ TRANSFORMATION

The Fierz transformation allows us to convert the original
NJL Lagrangian in Eq. (1)—based on the color-current
interaction—into a Lagrangian where the fermion fields are
reordered to account for interactions in different color, flavor,
and spin sectors.

Even if the Fierz transformation is a well-known tool [32],
some differences in its application can be found in the context
of the NJL model. The Fierz transformation itself is based
on algebraic identities in flavor, color, and spin spaces. It is
therefore unique once Nf and Nc are fixed. However, there are
at least two methods to obtain the transformed Lagrangian.

The first method requires two different Fierz transforma-
tions [11] to obtain all the mesonic and diquark contributions.
A Fierz transformation transforms the original color-current
interaction to the “exchange sector” containing the q̄q inter-
action in both color singlet and color octet representations. In
color space the transformation reads

N2
c −1∑

a′=1

T a′
i ′j ′T

a′
k′l′ = 2

N2
c − 1

N2
c

δi ′l′δk′j ′ − 1

Nc

N2
c −1∑

a′=1

T a′
i ′l′T

a′
k′j ′ . (A1)

To study physical mesons, one considers the first term,
while the second term is simply neglected. A second Fierz
transformation is applied to the color-current interaction to

generate the qq sector in both color antitriplet and sextet
representations:

N2
c −1∑

a′=1

T a′
i ′j ′T

a′
k′l′ = Nc − 1

Nc

∑
S ′

T S ′
i ′k′T

S ′
l′j ′ − Nc + 1

Nc

∑
A′

T A′
i ′k′T

A′
l′j ′ ,

(A2)

where S ′ and A′ run over the symmetric and antisymmetric
members of the color representation, respectively. For Nc = 3,
S ′ = 1,3,4,6,8, and A′ = 2,5,7. The first term is neglected as
it contains a repulsive diquark interaction and is not useful to
generate colorless baryons.

The second method makes use of only one Fierz transfor-
mation [14,33] which follows from the principle of obtaining
only attractive-color interactions. With this prescription, the
final Lagrangian for both mesons and diquarks is obtained by
a single Fierz transformation in color space:

N2
c −1∑

a′=1

T a′
i ′j ′T

a′
k′l′ = Nc − 1

2Nc

δi ′l′δj ′k′ − 2

Nc

∑
A′

T A′
i ′k′T

A′
l′j ′ . (A3)

In the right-hand side of Eq. (A3), the first term produces
the Lagrangian for mesons in the color singlet representation,
and the second one the Lagrangian for diquarks in the color
antitriplet-color representation. No sign of any q̄q interaction
in the color octet and of the qq one in the color sextet is seen.
As claimed, these channels are not needed to obtain physical
mesons and the baryonic states.

Notice that the numerical factors appearing in front of
the Fierzed Lagrangian depend on the choice of the method.
Therefore, they present different values for the coupling
constants. However, we remind the reader that we are treating
these couplings as free parameters to be fixed by reproducing
the hadron masses. For this reason the two methods are
equivalent, if the coupling constant is considered as a free
parameter.

In this work we will use the conventions given in Ref. [11]
and generate all possible interactions in the qq and in
the q̄q sectors. The terms which we obtain are in exact
correspondence with the irreducible representations of the
flavor and color group products.

For the meson sector the Fierz-transformed Lagrangian reads [11] (we suppress the flavor indices i,j )

Lex = 2(N2
c − 1)

Nf N2
c

g[ (ψ̄ψ)2 + (ψ̄iγ5ψ)2 − 1

2
(ψ̄γ μψ)2 − 1

2
(ψ̄γ μγ5ψ)2 ]

+ N2
c − 1
N2

c
g[ (ψ̄τ aψ)2+(ψ̄ iγ5τ

aψ)2−1
2

(ψ̄γ μτ aψ)2−1
2

(ψ̄γ μγ5τ
aψ)2 ]

− 1

Nf Nc

g[ (ψ̄T a′
ψ)2 + (ψ̄iγ5T

a′
ψ)2 − 1

2
(ψ̄γ μT a′

ψ)2 − 1

2
(ψ̄γ μγ5T

a′
ψ)2 ]

− 1

2Nc

g[ (ψ̄τ aT a′
ψ)2 + (ψ̄iγ5τ

aT a′
ψ)2 − 1

2
(ψ̄γ μτ aT a′

ψ)2 − 1

2
(ψ̄γ μγ5τ

aT a′
ψ)2 ], (A4)

where a = 1, . . . ,N2
f − 1 and a′ = 1, . . . ,N2

c − 1. It is not difficult to check that the different terms match with the representations
spanned by

(3 ⊗ 3̄)c ⊗ (3 ⊗ 3̄)f ⊗ {1,iγ5,γμ,γ5γμ}. (A5)
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The second row (in bold font) will be of interest to produce the physical mesons. In particular, the second term is the relevant
one for the pseudoscalar mesons (π,K , and η).

Performing the second Fierz transformation one obtains the diquark sector [11]:

Lqq = Nc + 1

2Nc

g

[
(ψ̄ iγ5CτATA′

ψ̄T)(ψTCiγ5τ
ATA′

ψ) + (ψ̄CτAT A′
ψ̄T )(ψT CτAT A′

ψ)

− 1

2
(ψ̄γ μγ5CτAT A′

ψ̄T )(ψT Cγμγ5τ
AT A′

ψ)−1
2

(ψ̄γ μCτ STA′
ψ̄T)(ψTCγμτ STA′

ψ)

]

− Nc − 1

2Nc

g

[
(ψ̄iγ5CτST S ′

ψ̄T )(ψT Ciγ5τ
ST S ′

ψ) + (ψ̄CτST S ′
ψ̄T )(ψT CτST S ′

ψ)

− 1

2
(ψ̄γ μγ5CτST S ′

ψ̄T )(ψT Cγμγ5τ
ST S ′

ψ) − 1

2
(ψ̄γ μCτAT S ′

ψ̄T )(ψT CγμτAT S ′
ψ)

]
, (A6)

where the indices A,A′ refer to the antisymmetric members
of the flavor and color representations, respectively, and the
indices S,S ′ to the symmetric elements of the flavor and color
representations. In this way, the Fierz transformation in the qq
sector generates the eight possible terms consistent with the
direct product of

A[(3 ⊗ 3)c ⊗ (3 ⊗ 3)f ⊗ {1,iγ5,γμ,γ5γμ}], (A7)

where A denotes the antisymmetrization operator to respect
the Pauli principle for the exchange of two quarks. In Eq. (A6)
we highlight the two terms giving rise to the scalar and axial
diquark discussed in this work when forming baryons.

APPENDIX B: QUARK CONDENSATE AND MESON
POLARIZATION FUNCTION

For completeness, we include here some reduced expres-
sions for the quark condensate in Eq. (8) and the meson
polarization function in Eq. (38). For practical reasons we
remind the reader of the A and B0 functions introduced in
Refs. [22,34]. These functions are convenient for implement-
ing numerically the momentum integrations for the thermal
averages.

For vanishing chemical potentials, the function A is defined
as

A(mi,T ,�) ≡ 16π2T
∑

n

∫
d3k

(2π )3

1

(iωn)2 − E2
i

, (B1)

with the quark energy Ei =
√

k2 + m2
i and the fermionic

Matsubara frequencies iωn = i(2n + 1)πT . This function
naturally appears when computing the quark condensate
defined in Eq. (8):

〈ψ̄iψi〉 = Nc

mi

4π2
A(mi,T ,�). (B2)

Performing the Matsubara summation [35] one obtains

A(mi,T ,�) = −16π2
∫

d3k

(2π )3

1

2Ei

[1 − 2nF (Ei)]

= 4
∫ �E

mi

dEi

√
E2

i − m2
i [nF (Ei) − nF (−Ei)],

(B3)

where nF (Ei) = (eEi/T + 1)−1 is the Fermi-Dirac distribution
function and �E =

√
�2 + m2

i . For the PNJL model one
simply replaces Eq. (B2) by Eq. (20).

The function B0 is defined as

B0(mi,mj ,iνm,p,T ,�)

= 16π2T
∑

n

∫
d3k

(2π )3

1

(iωn)2 − E2
i

1

(iωn − iνm) − E2
j

,

(B4)

with Ei =
√

k2 + m2
i and Ej =

√
(k − p)2 + m2

j . It naturally
appears in the quark-(anti)quark loop function, when com-
puting the diquark (meson) polarization function. After per-
forming the Matsubara summation, the Matsubara frequency
iνm is analytically continued to real values of the energy
with the prescription iνm → p0 + iε For instance, the pion
polarization function (mi = mu, mj = md ) can be expressed
as a combination of the A and B0 functions as

�ud (p0,p,mu,md,T ,�)

= − Nc

4π2
{A(mu,T ,�) + A(md,T ,�)

+ [(mu − md )2 − p2
0 + p2]B0(mu,md,p0,p,T ,�)}.

(B5)

In the case of a pion at rest, p = 0, one can perform the
Matsubara summation and finds

B0(mi,mj ,p0,0,T ,�) =
∑
σ=±

σ
[
Bσ

0 (mi,mj , − σp0,T ,�)

+Bσ
0 (mj,mi,σp0,T ,�)

]
, (B6)

where

� B±
0 (mi,mj ,p0,T ,�)= 2

p0
P.V.

∫ �E

mi

dEi

√
E2

i −m2
i

nF (±Ei)

Ei −E0
,

(B7)
� B±

0 (mi,mj ,p0,T ,�)

= 2π

p0

√
E2

0 −m2
i nF (±E0)�(�E−E0)�(E0−mi), (B8)

with E0 ≡ −(p2
0 + m2

i − m2
j )/(2p0).
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Let us briefly discuss some of the prescriptions to define
the mass and decay width of the mesons and diquarks.

These generated states are identified with the poles of the
scattering amplitude tab(p2), or Eq. (42). We can distinguish
those states that are generated below and above the two-quark
mass threshold, that is, those which cannot decay into a pair of
quarks and those in which this decay channel is open because
their mass is larger than the combined mass of the constituents.

In the first case we talk of “bound states” (the decay width
is exactly zero). For them, the polarization function is a real
function (B0 does not develop any imaginary part) and the pole
is generated on the real axis of the p0 plane (in the first Riemann
sheet). The real value of p0 is associated with the mass of the
bound state. In the second case we denote them as “resonances”
(a finite decay width is generated), the polarization function is
now complex [Eq. (B8) is nonzero] and the pole emerges at a
complex p0 (in the second Riemann sheet). The imaginary part
of the pole can be related to the decay width of the resonance.

At finite temperature, the variable p0 = iνm is strictly a
Matsubara frequency. If a bound state is generated, then
one can simply make the standard analytical continuation
to real energies iνm → p0 + iε and find the value of the
generated mass by solving 1 − 2Kab�ab(p0) = 0, with real
�ab(p0). However, for a resonant state, one must analytically
continue the Matsubara frequency to complex energies and
find the pole in the second Riemann sheet. As this procedure
might be cumbersome (in particular for cases with several
coupled channels, where additional Riemann sheets must be
considered), approximate methods are used (see, for instance,
[19]).

One introduces the spectral density ρ(p0,p) (see [36], for
instance) as the imaginary part of the bound state/resonance
propagator,

ρab(p0,p) = − 1

π
Imtab(p0,p)

= 1

π

Im�ab(p0,p)

[(2G)−1 − �ab(p0,p))2 + (Im�ab(p0,p)]2
,

(B9)

where the Matsubara frequencies have been analytically
continued to real energies. Therefore, the spectral function
is a real function of real argument.

Note that taking p = 0, using the pole approximation and
the optical theorem we can check that the spectral function is
proportional to the scattering amplitude squared evaluated on
the real axis,

ρab(p0,0) = − 1

π
Imtab(p0,0) ∝ |T |2(p0,0). (B10)

Thus, whenever the scattering amplitude presents a pole, this
is reflected into the spectral function as a peak. If the pole is
not far from the real axis (Imp0 � Rep0), the real part of p0 at
the pole position coincides with the maximum of the spectral
function. Therefore, the mass can be defined as the position
of the spectral density maximum. If, in addition, Im�ab(p0)
is a smooth function of p0 [36] around the peak, it can be
approximated by a Lorentzian shape, with a width [19,36],

� = −Im�ab(p0). (B11)

In this approximation, one defines the decay width of the
resonance as the Lorentzian width �.

However, this approximation might break down if the pole
position is far away from the real axis, and in particular, if
the many-body equation presents coupled channels: a broad
resonance can be hidden by another pole with more strength
in this channel, several poles might appear very close in the
complex plane producing a combined shape of the the spectral
function, a new threshold opens close to the resonance (Flatté
effect) blurring the Lorentzian shape, etc.

As in this paper we are not interested in a precise extraction
of the decay widths but only in the temperature at which
they become nonzero, we use an intermediate prescription
described in Ref. [22,34]. In this case one makes the analytical
continuation to real energies (after having performed the
Matsubara summation) but considers a complex p0 in the
factor in front of the B0 function in Eq. (B5). This prescription
provides a complex polarization function of complex argument
and one has direct access to the mass (m = Rep0) and decay
width (� = −2Imp0) of the resonant state.

APPENDIX C: BETHE-SALPETER EQUATION FOR
QUARK-QUARK SCATTERING

The Bethe-Salpeter equation for the qq scattering
[12,23,37] in the scalar channel reads Eq. (46)

T ab
ij,mn(p2) = Kab

ij,mn + i

∫
d4k

(2π )4
Kac

ij,pq Sp

(
k + p

2

)
× Sc

q

(p

2
− k

)
T cb

pq,mn(p2). (C1)

We can pull out all the vertex factors by defining the diquark
propagator tab,

T ab
ij,mn(p2) = a

ij t
ab(p2)̄b

nm, (C2)

where

a
ij = T a′ ⊗ τ a

ij ⊗ �C, (C3)

with � = iγ5γμ for scalar and axial diquarks, respectively,
C = iγ0γ2 being the charge conjugation operator.

The kernel is taken from the Fierzed NJL Lagrangian of
Eq. (44),

Kab
ij,mn = a

ij 2GDIQ ̄b
nm, (C4)

where the 2 is a combinatorial factor arising when attaching
the external legs to the vertex and GDIQ must be substituted
by GDIQ,V for axial diquarks. Note that we neglect any
contribution from the ’t Hooft Lagrangian as there is no flavor
singlet in this channel and its effects are expected to be much
suppressed (there is a small effect around 4 %, discussed in
Ref. [12]).

In terms of the amplitude t(p2) we can express the solution
of the BS equation for scalar diquarks,

tab(p2) = 2GDIQ

1 − 2GDIQ�ab(p2)
, (C5)
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with the polarization function,

�ab(p2) = i

∫
d4k

(2π )4
Tr

[
̄a

jiSi(k + p/2)b
ijS

T
j (p/2 − k)

]
,

(C6)

where the trace is to be taken in color, flavor, and Dirac spaces.
For axial diquarks, the amplitude involves the transverse part
of the polarization function [cf. Eq. (49)],

tab(p2) = 2GDIQ,V

1 − 2GDIQ,V �ab
⊥ (p2)

. (C7)

For the scalar case one has

�ab(p2) = trc(T a′
T b′

) τ a
jiτ

b
ij i

∫
d4k

(2π )4
trγ

×
[
iγ5Si

(
k + p

2

)
iγ5CST

j

(p

2
− k

)
C−1

]
. (C8)

The color factor is common to all diquarks in the antitriplet
color representation, where the generators can be taken as [12]

(T a′
)j ′k′ = iεa′j ′k′ . (C9)

The color factor reads

trc(T a′
T b′

) = −
∑
k′l′

εa′k′l′εb′l′k′ = 2δa′b′
, (C10)

which means that the color of the diquark does not change
in the propagation. From now on we will suppress the color
indices.

Using the identity,

CST
i

(p

2
− k

)
C−1 = Si

(
k − p

2

)
, (C11)

we can express the polarization function as

�ab(p2) = 2 τ a
jiτ

b
ij i

∫
d4k

(2π )4
trγ [iγ5Si(k)iγ5Sj (k − p)],

(C12)

where we have performed a variable shift k → k − p/2.
In flavor space, we choose the representations shown in

Table VI for the sextet and antitriplet case [12,38]. For both of
them, the normalization is tr (τ aτ b) = 2δab.

As an example, we calculate the lightest a = [ud] diquark.
It is easy to see that the polarization function is diagonal in
flavor, so the only possibility is to have b = [ud]. Using τ

[ud]
ij =

−λ2
ij ,

�[ud](p2) = 4i

∫
d4k

(2π )4
trγ [iγ5Sd (k)iγ5Su(k − p)]. (C13)

This is the final expression for the polarization function that
gives rise to the propagator of the [ud] diquark.

At finite temperature, we introduce fermionic Matsubara
frequencies,

�[ud](iνm,p) = −4T
∑

n

∫
d3k

(2π )3
trγ

× [iγ5Sd (iωn,k)iγ5Su(iωn − iνm,k − p)].

(C14)

TABLE VI. Flavor matrices for the antitriplet and sextet flavor
representations of the direct product 3f ⊗ 3f of SU (3).

Physical diquark 3̄ Representation

[ud] τ
[ud]
ij = τ 3̄

ij = −λ2
ij

[us] τ
[us]
ij = τ 2̄

ij = λ5
ij

[ds] τ
[ds]
ij = τ 1̄

ij = −λ7
ij

Physical diquark 6 Representation

(uu) τ
(uu)
ij = τ 1

ij = √
2δi1δj1

(ud) τ
(ud)
ij = τ 2

ij = λ1
ij

(dd) τ
(dd)
ij = τ 3

ij = √
2δi2δj2

(us) τ
(us)
ij = τ 4

ij = λ4
ij

(ds) τ
(ds)
ij = τ 5

ij = λ6
ij

(ss) τ
(ss)
ij = τ 6

ij = √
2δi3δj3

After performing the Matsubara sum, we analytically continue
the unsummed Matsubara frequency iνm to the real energy
p0 + iε. For practical purposes, this function can be reduced
in terms of the A,B0 functions defined in [22,34] and detailed
in Appendix B:

�[ud](p0,p)=− 1

2π2
{A(mu,T ,�)+A(md,T ,�)+[(mu−md )2

−p2
0 + p2]B0(mu,md,p0,p,T ,�)}.

Similar expressions can be found for other diquarks in different
flavor channels.

For axial diquarks, the expression for the transverse part of
the polarization function reads

�
(ud)
⊥ (p0,p)= 1

3π2
{A(mu,T ,�)+A(md,T ,�)+[(mu − md )2

− 2mumd − p2
0 + p2]B0(mu,md,p0,p,T ,�)}.

APPENDIX D: REDUCTION OF THE FADEEV EQUATION

In this appendix we will give some details of the simplifi-
cation of the Fadeev equation in Eq. (57) and its reduction to a
Dirac equation. We follow the same reasoning as in Ref. [13],
but with a different notation.

We start by considering Eq. (57):[
gαβδj ′k′δj̄ ′ k̄′

δjkδ
j̄ k̄ −

∫
d4k

(2π )4
L

j̄k̄,αβ
jk (P 2,q,k)

]

×X
k̄β
k (P 2,q)

∣∣∣∣
P 2=M2

B

= 0, (D1)

where its kernel was defined in Eq. (58). Notice that we have
denoted the color terms of the equation by primed indices, to
distinguish them from flavor factors.

For convenience, we define a new baryon wave function Y
by integrating over the momentum q [13],

Y
k̄β
k (P 2) ≡

∫
d4q

(2π )4
X

k̄β
k (P 2,q). (D2)

065206-15



TORRES-RINCON, SINTES, AND AICHELIN PHYSICAL REVIEW C 91, 065206 (2015)

To express the Fadeev equation in terms of the new wave
function one integrates Eq. (D1) over q to get[

gαβδj ′k′δj̄ ′ k̄′
δjkδ

j̄ k̄Y
k̄β
k (P 2) −

∫
d4q

(2π )4

×
∫

d4k

(2π )4
T k̄′

j ′l′τ
k̄
j l �γ Sl(−q − k) T

j̄ ′
l′k′τ

j̄
lk

×�α Sk(P/2 + q) it
γβ

k̄
(P/2 − q) X

k̄β
k (P 2,k)

]∣∣∣∣
P 2=m2

B

= 0,

where we have substituted the kernel given in Eq. (58). Notice
that it is not possible to express the equation only in terms of
Y

k̄β
k (P 2) because there is a quark propagator that depends on

the momentum k. Therefore, this equation is nonseparable and
can be only solved with numerical techniques [28].

In the so-called “static approximation” [13] one neglects the
momentum dependence of the quark propagator by assuming
that the dress quark mass is much larger than the typical k:

Sl(−q − k) = 1

−q/ − k/ − ml

→ −1

ml

I. (D3)

This approximation makes the Fadeev equation separable,
and allows for a trivial integration on k. The equation is reduced
to the simpler form:[

gαβδj ′k′δj̄ ′ k̄′
δjkδ

j̄ k̄ +
∫

d4q

(2π )4
T k̄′

j ′l′T
j̄ ′
l′k′τ

k̄
j lτ

j̄
lk �μ�μ

1

ml

× Sk

(
P

2
+ q

)
it

αβ

k̄

(
P

2
− q

)]
Y

k̄β
k (P 2)

∣∣∣∣
P 2=m2

B

= 0.

To obtain the baryon masses of the different states, we
project this equation onto physical states B and B ′. The flavor
projectors are defined in Appendix E for those states belonging
to the octet and the decuplet representations. Applying these
projectors we find

δjkδ
j̄ k̄ PB,†

j j̄
PB ′

k̄k
= PB,†

j j̄
PB ′

j̄ j
= δBB ′

. (D4)

In color space we take the projector onto the singlet state,
Pcolor

j̄ ′j ′ = δj̄ ′j ′/
√

3. In the first term of Eq. (4) one has

Pcolor,†
j ′ j̄ ′ δj ′k′δj̄ ′ k̄′ Pcolor,†

k̄′k′ = 1
3 trc I = 1, (D5)

whereas in the second term of Eq. (4),

Pcolor,†
j ′ j̄ ′ T k̄′

j ′l′T
j̄ ′
l′k′Pcolor,†

k̄′k′ = 1
3T k′

j ′l′T
j ′
l′k′ = −2, (D6)

where we have used Eq. (C9).
To simplify the notation we can define the matrix MBB ′

,

MBB ′,αβ (P ) ≡ 2

ml

∫
d4q

(2π )4
P†,B

j j̄
PB ′

k̄k
τ k̄
j l τ

j̄
lk �μ�μ

× Sk

(
P

2
+ q

)
it

αβ

k̄

(
P

2
− q

)
. (D7)

The final equation is expressed as a Dirac-like equation,

gαβδBB ′ − MBB ′,αβ
(
P 2 = M2

B

) = 0 , (D8)

which is a matrix equation in Dirac and flavor spaces.

For the baryon octet (composed by scalar diquarks) the
α,β-Lorentz indices are absent and �μ = iγ 5. Therefore one
has (after performing the change of variables q → −q + P/2)

MBB ′
(P ) = − 2

ml

P†,B
j j̄

PB ′
k̄k

τ k̄
j l τ

j̄
lk

∫
d4q

(2π )4
Sk(P − q) itk̄(q),

(D9)

where the scalar diquark propagator tk̄ is taken from Eq. (52).
In flavor space this equation is diagonal except for the � −

�0 − I mixing, where one needs to solve

det

⎛
⎝1 − M�0�0 −M�0� −M�0I

−M��0
1 − M�� −M�I

−MI�0 −MI� 1 − MII

⎞
⎠ = 0. (D10)

In the isospin limit (mu = md ) one has MI�0 = M�0I =
M��0 = M�0� = 0. Thus, the �0 decouples from the system
(D10), and in this limit its mass is degenerate with the mass
of the �+ baryon. However, the elements MI� and M�I are
nonzero and this produces a mixing between the flavor singlet
and the �. Therefore, to obtain the mass of the � we need to
solve the two-channel equation.

For the members of the decuplet (composed by axial
diquarks) one uses �μ = γ μ to get

MBB ′,αβ (P ) ≡ 8

ml

P†,B
j j̄

PB ′
k̄k

τ k̄
j lτ

j̄
lk

∫
d4q

(2π )4
Sk(P −q)itαβ

k̄
(q),

(D11)

with the diquark propagator taken from Eq. (54). In this case,
the Eq. (D8) is diagonal in flavor space.

APPENDIX E: PHYSICAL BARYON PROJECTIONS

Baryon masses are computed by solving the Fadeev equa-
tion projected into the different physical states. The baryon
projectors project the general wave function onto the wave
functions of specific baryons. In our scheme, the baryon wave
functions are the direct product of quark and diquarks wave
functions. In this appendix we provide the precise expressions
for completeness [39,40].

In Table VII we present the baryon octet and decuplet wave
functions in terms of the quark-diquark states. As in the main
text, scalar diquarks are represented by square brackets and
axial diquarks by parentheses. We remind one that in this work
we neglect the axial-diquark contribution to the members of
baryon octet.

These wave functions help us to construct the baryon
projectors. They satisfy(

PB
īj

)† = PB
j ī

, (E1)

where B represents the physical baryon state. They are
orthonormal within the same representation,(

PB
j ī

)†PB ′
īj

= δBB ′
. (E2)

For the baryon octet they read

Pp

īj
= 1

2
(λ4 − iλ5)īj , (E3)
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TABLE VII. Baryon wave functions for all the members of the octet and decuplet flavor representations.

Octet member Wave function Decuplet member Wave function

p |u[ud]〉 �++ |u(uu)〉
n |d[ud]〉 �+ 1√

3
(|d(uu)〉 + √

2|u(ud)〉)
� 1√

6
(|u[ds]〉 + |d[us]〉 − 2|s[ud]〉) �0 1√

3
(
√

2|d(ud)〉 + |u(dd)〉)
�+ |u[us]〉 �− |d(dd)〉
�0 1√

2
(|u[ds]〉 − |d[us]〉) �∗ 1√

3
(|s(uu)〉 + √

2|u(us)〉)
�− |d[ds]〉 �∗0 1√

3
(|s(ud)〉 + |d(us)〉 + |u(ds)〉)

�0 |s[us]〉 �∗− 1√
3
(|s(dd)〉 + √

2|d(ds)〉)
�− |s[ds]〉 �∗0 1√

3
(
√

2|s(us)〉 + |u(ss)〉)
Singlet Wave function �∗− 1√

3
(
√

2|s(ds)〉 + |d(ss)〉)
I 1√

3
(|u[ds]〉 + |d[us]〉 + |s[ud]〉) − |s(ss)〉

Pn
īj

= 1

2
(λ6 − iλ7)īj , (E4)

P�
īj

= P8
īj

=
√

1

2
λ8

īj
, (E5)

P�0

īj
= P3

īj
=

√
1

2
λ3

īj
, (E6)

P�±
īj

= 1

2
(λ1 ∓ iλ2)īj , (E7)

P�0

īj
= 1

2
(λ6 + iλ7)īj , (E8)

P�−
īj

= 1

2
(λ4 + iλ5)īj . (E9)

Finally, we need the projector for the flavor singlet state,

PI
īj

=
√

1

3
Iīj . (E10)

Note that for the baryon octet, the diquark index ī runs
from 1 to 3 because the scalar diquark belongs to the
antitriplet representation of SUf (3) × SUf (3). In particular,
the [ds],[us], and [ud] diquarks are represented by ī = 1,2,3,
respectively.

For the baryon decuplet the projectors read

P�++
īj

= δī1δj1, (E11)

P�+
īj

= 1√
3
δī1δj2 +

√
2

3
δī2δj1, (E12)

P�0

īj
=

√
2

3
δī2δj2 + 1√

3
δī3δj1, (E13)

P�−
īj

= δī3δj2, (E14)

P�∗+
īj

= 1√
3
δī1δj3 +

√
2

3
δī4δj1, (E15)

P�∗0

īj
= 1√

3
(δī2δj3 + δī4δj2 + δī5δj1), (E16)

P�∗−
īj

= 1√
3
δī3δj3 +

√
2

3
δī5δj2, (E17)

P�∗0

īj
=

√
2

3
δī4δj3 + 1√

3
δī6δj1, (E18)

P�∗−
īj

=
√

2

3
δī5δj3 + 1√

3
δī6δj2, (E19)

P−
īj

= δī6δj3. (E20)

In this sector, the axial diquarks belong to the sex-
tet representation of SUf (3) × SUf (3). Therefore, the
index ī runs from 1, . . . ,6 representing the diquarks
(uu),(ud),(dd),(us),(ds), and (ss), respectively.

All the projectors satisfy explicitly Eqs. (E1) and (E2).

APPENDIX F: QUARK-DIQUARK POLARIZATION FUNCTION

We will detail here the reduction of the quark-scalar diquark polarization function in Eq. (67). At finite temperature, the
polarization function (67) reads

�kk̄(iνl,p) = T
∑

n

∫
d3q

(2π )3
Sk(iνl − iωn,P − q) tk̄(iωn,q), (F1)

065206-17



TORRES-RINCON, SINTES, AND AICHELIN PHYSICAL REVIEW C 91, 065206 (2015)

where iνl is a fermionic Matsubara frequency which will be analytically continued to real values at the end of the calculation.
The variable iωn is a bosonic Matsubara frequency appearing in the diquark propagator in the pole approximation (52),

�kk̄(iνl,P) = −T g2
[qq]→qq

∑
n

∫
d3q

(2π )3

1

(iωn + εk̄,q)(iωn − εk̄,q )

(P0 − iωn)γ0 + mkI

(iωn − P0 + Ek,q)(iωn − P0 − Ek,q)
, (F2)

with ε2
k̄,q

= m2
DIQ,k̄ + q2 and E2

k,q = m2
k + (P − q)2 (note that k represents the quark flavor, not a momentum).

The Matsubara summation is performed taking into account the four poles using standard techniques [35]. We can express
the final result in terms of four functions (one coming from each pole):

�kk̄(P0,P = 0) = −g2
[qq]→qq

8π2
(JF

+ + JF
− + JB

+ + JB
− ), (F3)

where we have considered the baryon at rest P = 0 and performed the analytical continuation iνl → P0 + iε. We have also
defined four J functions, whose real and imaginary parts are given by

ReJF
± = 1

2P0
P.V.

∫ �E

mk

dEk,q[1 − 2nF (±Ek,q)] (Imk ∓ γ0Ek,q)

√
E2

k,q − m2
k

Ek,q − E±
, (F4)

ImJF
± = π

2P0
(Imk ∓ γ0E±)

√
(E±)2 − m2

k[1 − 2nF (±E±)]�(�E − E±)�(E± − mk), (F5)

ReJB
± = 1

2P0
P.V.

∫ �E∗

mDIQ,k̄

dεk[1 + 2nB(εk)] [∓Imk + γ0(εk ∓ P0)]

√
ε2
k − m2

DIQ,k̄

εk − ε±
, (F6)

ImJB
± = π

2P0
[∓Imk + γ0(ε± ∓ P0)]

√
(ε±)2 − m2

DIQ,k̄[1 + 2nB (ε±)]�(�E∗ − ε±)�(ε± − mDIQ,k̄), (F7)

with �E =
√

�2 + m2
k,�E∗ =

√
�2 + m2

DIQ,k̄
. In addition,

E± = ±
m2

DIQ,k̄
− m2

k − P 2
0

2P0
, (F8)

ε± = ∓
m2

DIQ,k̄
− m2

k + P 2
0

2P0
, (F9)

and the Fermi and Bose functions nF (Ek) = (eEk/T + 1)
−1

,nB(εk) = (eεk/T − 1)
−1

.
The axial diquark case—which we have omitted for simplicity—is straightforward. This case differs in the explicit appearance

of Dirac indices in Eq. (67). In addition, note that Eq. (67) carries an opposite sign to Eq. (69), but this cancels with the different
sign in the diquark propagators [cf. Eqs. (52) and (54)]. We have neglected the term proportional to pμpν in Eq. (54), which is
suppressed by the diquark mass squared.
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