
PHYSICAL REVIEW C 91, 065204 (2015)

Thermodynamics of the quark-gluon plasma within a T -matrix approach
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The strongly coupled phase of the quark-gluon plasma (QGP) is studied here by resorting to a T -matrix
formulation in which the medium is seen as a nonideal gas of quasiparticles (quarks, antiquarks, and gluons)
interacting nonpertubatively. In the temperature range under study, (1–5)Tc, where Tc is the temperature of
deconfinement, the interactions are expected to be strong enough to generate bound states. The dissociation
temperature of such binary bound states is thus computed here. The more the quasiparticles involved in the binary
system are heavy, the more the bound state is likely to survive significantly above Tc. Then the QGP equations of
state at zero and small baryonic potential are computed for Nf = 2 and Nf = 2 + 1 by resorting to the Dashen,
Ma, and Bernstein formulation of statistical mechanics. Comparisons with current lattice QCD data are presented.
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I. INTRODUCTION

The phenomenology related to the QCD confine-
ment/deconfinement phase transition is nowadays a fascinating
subject in the center of intense investigations, both experi-
mentally and theoretically (see, e.g., Ref. [1] for a review
of the topic). During the past two decades, a new state of
matter, the quark-gluon plasma (QGP), has been intensively
studied through heavy-ion collisions (CERN Super Proton
Synchrotron, BNL Relativistic Heavy Ion Collider, or CERN
Large Hadron Collider) and is still carefully analyzed. The
experiments seem to conclude that the QGP behaves like a
perfect fluid with a low ratio viscosity over entropy around
the critical temperature of deconfinement Tc. Therefore, this
observation suggests that a strongly coupled phase (called
sQGP) is present in this temperature range and that the
QCD confinement/deconfinement phase transition is much
more driven by screening effects of the strong interaction.
To correctly describe the different mechanisms at work during
this phase transition, or more exactly during this crossover,
a lot of theoretical research (lattice QCD, phenomenological
approaches, etc.) is carried out. In particular, finding the QGP
equations of state (EoS) is a crucial task nowadays needed.

The aim of this work is to investigate the thermodynamic
features of the QGP by resorting to a phenomenological ap-
proach based on T -matrix computations. This approach has the
advantage of allowing the study of bound and scattering states
of the system in a whole picture. Relevant results have already
been established for heavy quarkonia above Tc [2] and also for
glueballs in the Yang-Mills plasma [3]. Moreover, in this latter
reference, the EoS of the Yang-Mills plasma for SU(N) and G2

have been computed thanks to the Dashen, Ma, and Bernstein’s
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formulation of statistical mechanics in terms of the S matrix (or
T matrix) [4]. Such a formulation is particularly well suited for
systems whose microscopic constituents behave according to
relativistic quantum mechanics. The QGP is indeed identified
to a quantum gas of gluons, quarks, and antiquarks, which
are seen as the effective degrees of freedom propagating in
the plasma. This assumption is actually common to all the
so-called quasiparticle approaches [5,6]. However, thanks to
the T -matrix formulation, the strongly interacting regime can
also be investigated here, in which bound states are expected
to still survive above Tc [7].

The paper is organized as follows. Section II is a sum-
mary of the approach used here and about which detailed
explanations can be found in Refs. [3,8]. In Sec. III, the
model parameters are presented and discussed. In particular,
the quasiparticle bare masses are extracted from the T = 0
spectrum. In Sec. IV, the binary bound-state spectrum above
Tc is computed and analyzed. Then the EoS of the deconfined
phase at zero baryonic potential are studied for Nf = 2 and
Nf = 2 + 1 in Sec. V. To finish, an exploratory work at small
baryonic potential is carried out in Sec. VI. All our EoS are
compared to recent lattice QCD (lQCD) ones. Our results are
finally summarized in Sec. VII.

II. T -MATRIX FORMALISM IN STATISTICAL PHYSICS

A. Generalities

The results of Dashen, Ma, and Bernstein [4], establishing
the grand potential of an interacting relativistic particle gas �,
expressed as an energy density, are given by (in units where
� = c = kB = 1)

� = �0 +
∑

ν

[
�ν − eβ �μ· �N

2π2β2

∫ ∞

Mν

dE

4πi
E2K2(βE)

× Trν(SS−1←→∂E S)|c
]

. (1)
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This equation is made of two parts. The first term �0

refers to the grand-canonical potential of the free relativistic
(quasi)particles, while the second term accounts for interac-
tions in the plasma. This latter is made of a sum running
on all the species, the number of particles included, and the
quantum numbers necessary to fix a channel. The vectors
�μ = (μ1,μ2, . . . ) and �N = (N1,N2, . . . ) contain the chemical
potentials and the particle number of each species taking part
in a given scattering process. The set of all these channels is
generically denoted ν. As usual, the chemical potential μ is the
Lagrange multiplier associated with the number of particles.
It is a measure for the density of particles. In relativistic
models, the sign of μ is changed, passing from matter to
antimatter. This parameter marks imbalance between matter
and antimatter [4,9].

One can notice that the contribution of the bound and
scattering states are decoupled. The threshold Mν is the
summation on the masses of all the particles included in
a given channel ν. Below Mν , bound states appearing as
pole in the S matrix (equivalently T matrix) are added as
free additional species: �ν is the grand-canonical potential
describing a free relativistic gas of the ν-channel bound states.
Above Mν , the scattering contribution is expressed as an
integration depending on a trace, taken in the center-of-mass
frame of the particles in the channel ν, and function of the S
matrix of the system. S is, in particular, a function of the total
energy E. The symmetrizer S enforces the Pauli principle
when a channel involving identical particles is considered,
and the subscript c means that only the connected scattering
diagrams are taken into account. K2(x) is the modified Bessel
function of the second kind and β = 1/T , where T is the
temperature. The symbol A

←→
∂x B denotes A(∂xB) − (∂xA)B.

By definition, S is linked to an off-shell T matrix T ,

S = 1 − 2πiδ(E − H0)T , (2)

where H0 is the free Hamiltonian of the system. As in
Refs. [3,8], we only focus on two-body channels. So, a way
to obtain T is to solve the Lippmann-Schwinger equation,
schematically given by

T = V + V G0 T , (3)

with G0 the free two-body propagator and V the interaction
potential. It is worth mentioning that for three-body channels,
Faddeev equations should be used to eliminate the spurious
solution of the Lippmann-Schwinger equation [10]. Such
considerations will thus be beyond the scope of this paper.

Once Eq. (1) is computed, all thermodynamic observables
can derived. For example, the pressure is simply given by

p = −�. (4)

The sum
∑

ν appearing in Eq. (1) explicitly reads∑
I

∑
JPC

∑
C , where only two particles are involved in the

interaction process, I is a possible isospin channel, C is the
color channel, and JPC is the spin/helicity channel (the labels
C or P must be dropped off if the charge conjugation or the
parity are not defined).

The normalized trace anomaly can also be computed by the
formula

�

pSB
= −β

(
∂β

p

pSB

)
βμ

, (5)

where pSB is the Stefan-Boltzmann pressure. Although we
give here some results about the trace anomaly, it is mentioned
in Ref. [3] that some improvements must be done to obtain a
fully reliable estimation of this quantity.

B. Quasiparticle properties

Assuming that the dominant scattering processes are the
two-body ones, a key ingredient of the present approach is
the two-body potential V , encoding the interactions between
the particles in the plasma. As in Refs. [3,8], V is extracted
from the static quenched SU(3) lQCD free energy F1 between
a qq̄ pair in singlet representation at finite temperature [11]
and then fitted with a Cornell potential, screened thanks to the
Debye-Hückel theory [12] (see Appendix B in Ref. [3]). Note
that unquenched lQCD results are also available in Ref. [13].
Nevertheless, because these results are not significantly differ-
ent from the quenched ones, the quenched potential is kept as
the basis of our computations, giving the accuracy expected in
our work.

From that, the internal energy U1 is computed, U1 = F1 −
T ∂T F1, and considered as the interaction potential. This choice
is still a matter of debate. Nevertheless, it has given correct
results in the ordinary Yang-Mills (YM) case, as shown in
Ref. [3]. Moreover, in Sec. V C, we see that, according to our
prescription for the quasiparticle masses, the internal energy
is required to have a better agreement between our results and
lQCD ones just above Tc.

No relativistic corrections will be taken into account
for light-quark interactions within this paper. Indeed, the
quasiparticle quark masses used in our approach are large
enough to assume static potentials at first approximation.
Nevertheless, this task is left for future works.

Moreover, all hyperfine interactions are neglected. We
can expect that they are nondominant with respect to the
spin-independent contributions because these processes are
assumed to depend on the inverse square of the effective mass.
With this hypothesis, we also miss the diagonal annihilation
contributions.

Finally, the Casimir scaling is used to extract the leading-
order gauge dependence of U1(r,T ) for T > Tc, as proposed
in Sec. II in Ref. [3]. The Casimir scaling means that potentials
between colored sources are proportional to the eigenvalues
of the quadratic Casimir operator for their representation [14].
It is the simplest color dependence for two color sources:
It has indeed the same form as the one for the one-gluon
exchange process. Nevertheless, it is important to stress that
the interaction considered within this paper contains other
processes because it stems from a lQCD computation. Let
us note that the annihilation mechanism, which does not
respect the Casimir scaling, is a contact interaction and is then
vanishing for all non-S states. Moreover, it is worth mentioning
that the Casimir scaling seems very well respected between two
static color sources in the T = 0 sector [14]. Computations in
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the T > Tc sector show a situation which is slightly different:
The Casimir scaling seems partly violated (at most 20%) for
short distances and temperatures near Tc [15]. Nevertheless, in
this work, as in Ref. [3], we assume that the Casimir scaling
is satisfied. The final form of the potential is thus

V (r,T ) = κC;ij

κ•;qq̄

[U1(r,T ) − U1(∞,T )], (6)

where

κC;ij = CC
2 − C

Ri

2 − C
Rj

2

2C
adj
2

, (7)

and where CR
2 is the quadratic Casimir of the representation

R. C, adj, Ri , and Rj stand, respectively, for the pair, adjoint,
and i- and j -particle representation. For instance,

C
adj
2 = N , C•

2 = 0, C
q
2 = C

q̄
2 = N2 − 1

2N
, (8)

for the SU(N) gauge group (the singlet representation is
denoted by •). All the values taken by Eq. (7) for the
various color channels considered in this study are given in
Appendix A in Ref. [3]. Let us note that the interaction can be
attractive or repulsive. The normalization of Eq. (6) is given
by κ•;qq̄ = −4/9, because U1(r,T ) is fitted on a singlet qq̄
potential for SU(3). We can also notice in Eq. (6) that the
long-distance behavior of the lattice potential U1(∞,T ) is
subtracted. Indeed, this term is assimilated, as suggested in
Ref. [16], as a thermal mass contribution for the quasiparticles.
Moreover, it ensures the convergence of the scattering equation
and the possibility to perform the Fourier transform.

When the quasiparticles are infinitely separated, the only
remaining potential energy can be seen as a manifestation of
the in-medium self-energy effects, U1(∞,T ) = 2mq(T ). We
thus encode these effects as a mass shift δ(T ) to the “bare”
quasiparticle mass m0, by following the arguments exposed in
Ref. [3]:

m(T )2 = m2
0 + δ(T )2. (9)

To get the thermal mass for any particles, the first-order color
dependence is extracted in agreement with the hard-thermal-
loop (HTL) leading-order behavior [17],

δ(T ) =
√

CR
2

C
adj
2

�(T ), (10)

where the quantity �(T ) is assumed to be color independent.
As U1(r,T ) is fitted on a singlet qq̄ potential for SU(3), we
have here

U1(∞)

2
= mq(T ) =

√
C

q
2

C
adj
2

�(T ) = 2

3
�(T ). (11)

For further details about the behavior of m(T ), one can refer
to Sec. V in Ref. [3] and to Sec. III in this paper. At this stage,
one has to have in mind that chiral symmetry is not taken into
account in our formalism. Comments about that issue is given
in the conclusions.

C. Solving Lippman-Schwinger equations

The Lippman-Schwinger equation leading to the on-shell
T matrix can be computed from Eq. (3) as in Refs. [3,8],

Tν(E; q,q ′)

= Vν(q,q ′) + 1

8π3

∫ ∞

0
dkk2Vν(q,k)G0(E; k)Tν(E; k,q ′)

× [1 ± fp1(ε1)][1 ± fp2(ε2)], (12)

where E is the energy in the center-of-mass frame, εi is
the asymptotic energy of the particle i, and the free two-
body propagator is computed thanks to the Blanckenbecler-
Sugar (BbS) reduction scheme. Its explicit form is given in
Appendix C in Ref. [8]. Moreover, the in-medium effects,
namely the Bose enhancement and the Pauli blocking, are
included following Ref. [18]. fp is thus the distribution
function of the p species,

fp(ε) = 1

eβ(ε−μ) ∓ 1
, (13)

where the − stands for bosons, + stands for fermions, and μ
is a possible chemical potential. The sign choice in Eq. (12)
also depends on the nature of the particles: + for bosons and
− for fermions. Let us note that the impact of these in-medium
effects on our EoS is very small. Therefore, the results obtained
in Ref. [3] remain valid.

Concerning the interaction potential Vν(q,q ′) entering in
Eq. (12), it is obtained by the Fourier transform of the
interaction extracted in lQCD. Because our potential has a
spherical symmetry, we have

V (q,q ′,θq,q ′ ) = 4π

∫ ∞

0
drrV (r)

sin(Qr)

Q
, (14)

where Q = √
q2 + q ′2 − 2qq ′ cos θq,q ′ and θq,q ′ is the angle

between the momenta �q and �q ′.
For channels given by ordinary |2S+1LJ 〉 states, Vν(q,q ′) is

obtained from

VL(q,q ′) = 2π

∫ +1

−1
dxPL(x)V (q,q ′,x), (15)

where PL is the Legendre polynomial of order L. The spin S
is not indicated because our interaction is spin independent.

When at least one particle is transverse, the helicity
formalism [19] has to be used. It is then very convenient
to decompose a helicity state in the basis states |2S+1LJ 〉 to
perform the computations. For a particular helicity state |JP 〉,
it reads

|JP 〉 =
∑
L,S

CL,S

∣∣2S+1LJ

〉
. (16)

Then it can be shown that

VJP (q,q ′) =
∑
L,S

C2
L,SVL(q,q ′), (17)

because our interaction is spin independent. All the helicity
states needed for this study are listed in Appendix B in Ref. [8].

The Haftel-Tabakin algorithm is a reliable procedure to
solve the T -matrix problem [2,20]. The momentum integral is
discretized within an appropriate quadrature, thus turning the
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integral equation into a matrix equation, namely
∑

FikTkj =
Vij , where, schematically,

F = 1 − wV G(1 ± fp1 )(1 ± fp2 ), (18)

and where w denotes the integration weight. The solution
follows trivially by matrix inversion. Bound states are naturally
poles below Mν . An interesting criterion for finding them is
to use the determinant of the transition function F (referred
to as the Fredholm determinant) because it vanishes at the
bound-state energies [3]. Finally, once T (E; q,q ′) is known,
the on-shell T -matrix is readily obtained as T (E; q(E),q(E)),
with q(E) given by

q(E) =
√

[E2 − (m1 + m2)2][E2 − (m1 − m2)2]

2E
. (19)

III. MODEL PARAMETERS

A. Assumptions

Before fixing the parameters and applying the general
formalism described in the previous section to the Nf = 2(+1)
QGP, let us discuss some general assumptions that we have
done within this model.

In our approach, there are different species of quasipar-
ticles: the gluons (g), the light (anti)quarks (l, respectively
l̄), the strange (anti)quarks (s, respectively s̄), and the heavy
(anti)quarks (c and b, respectively c̄ and b̄). The (anti)quarks
are spin- 1

2 particles belonging to fundamental (conjugate)
representation of the gauge group. Despite their nonvanishing
mass, the gluons are transverse spin-1 bosons in the adjoint
representation. The gluon mass is dynamically generated by
self-energy effects, which does not imply a drastic change
of their nature. It has been shown that the gluon must be
considered as a transverse spin-1 boson to reproduce correctly
the expected glueball spectra at T = 0 [21]. Moreover, some
lattice data support the presence of massive transverse modes
only in a gluon plasma [5]. The two-body channels to be
considered are gg, qq, q̄q̄, qq̄, qg, and q̄g. The lowest
corresponding spin/helicity states are given in Appendix B
of Ref. [8], and the possible color channels can be found in
Appendix A of Ref. [3]. Within this study, we only focus on
the SU(3) gauge group.

Let us examine the different possibilities of interactions.

(i) As explained above, the interaction (6) between two
gluons or two quarks follows strictly the Casimir scal-
ing and neglects all hyperfine corrections, annihilation
ones included.

(ii) Although this interaction is expected to take into
account complicated exchanges (because it stems from
a lQCD calculation), it is interesting to look at the
simplest possible Feynman diagrams between two
particles. Two gluons or two quarks can exchange a
gluon, but the basic gluon-quark interaction is a quark
exchange. So the choice (7) for the color factor is
questionable for this particular interaction. To correct
this point is beyond the scope of this work, but it is
worth mentioning that the contributions of the qg and

q̄g interactions are expected to be very weak in our
model (see Sec. V).

(iii) Processes transforming a gg pair into a qq̄ pair exist,
but we have checked that mechanisms of order 1
are naturally suppressed because there is no overlap
between gg and qq̄ states [8]. As we neglect second-
order processes, as hyperfine interactions, we do not
take into account transition between gg and qq̄ pairs.

B. Potential at T = 0

To fix our parameters for starting the computations at finite
temperature, and to check the validity of our model, some
pieces of information can be extracted from the T = 0 bound
state spectrum as in Ref. [3].

In quenched SU(3) lQCD, the potential between a static
quark-antiquark pair at zero temperature is compatible with
the funnel form

Vf (r) = σr − 4

3

α

r
, (20)

where α = 0.4 and σ = 0.176 GeV2 (standard values for the
running coupling constant α and the string tension σ at T = 0).
Again, we neglect the contributions of annihilation processes.
Because the Fourier transform of Vf (r) is not defined (because
of a nonzero asymptotic value), a string-breaking value Vsb,
has to be introduced to make it convergent [2]. Vsb is thus seen
as the energy above which a light quark-antiquark pair can
be created from the vacuum and breaks the QCD string. This
scale is then subtracted and the potential effectively taken
into account is Vf (r) − Vsb, while Vsb/2 is interpreted as
an effective quark mass using the same arguments as those
detailed in Sec. II B.

According to the color scaling (7), the potential describing
the interactions between two color sources (with representa-
tions R and R̄) at zero temperature, is

V0(r) = 9
4

(
CR

2 + CR̄
2

)
Vf (r) − V RR̄

sb , (21)

because C•
2 = 0. The factor 9/4 appears because the potential

Vf is fitted on a singlet qq̄ pair for a SU(3) gauge group.
In this case, V RR̄

sb should rather be interpreted as the energy
scale necessary to form two sources of color compatible with
the existence of the two new color singlet pairs of particles
created by the string breaking. As in Refs. [3,8], if m0 is
the bare mass of the particle, the T = 0 mass m(0), used to
compute the bound state is then

m(0)2 = m2
0 +

(
V RR̄

sb

2

)2

, (22)

keeping the same structure as in Eq. (9).

C. T = 0 bound-state spectrum

The zero-temperature spectrum of the theory can be
computed by solving Eq. (12) with the potential (21). As
mentioned in Sec. II C, instead of looking at the pole of the
T matrix, the zeros of detF are computed to establish the
bound-state spectrum.
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TABLE I. J PC states allowed for qq̄ with L = 0 or L = 1 at
T = 0. The parity of the state P is given by (−1)L+1, while the
charge conjugation, C, is (−1)L+S .

J L S J PC

0 0 0 0−+

1 1 0++

1 1 0 1+−

0 1 1−−

1 1 1++

2 1 1 2++

The lightest glueball spectrum, namely the 0++, 0−+, and
2++, has already been computed in [3]. The parameters, V

gg
sb

and m0, were respectively fixed to 2 and 0.7 GeV. V
gg

sb is
in agreement with lattice data showing that the mass of the
lightest gluelump is given by 0.85(17) GeV [22], while m0 is
an acceptable value for the zero-momentum limit of the gluon
propagator at zero temperature, in view of previous studies
locating this mass typically between 500 and 700 MeV (see,
e.g., [23–25]). The interested reader can refer to Ref. [3] for
additional information about the T = 0 glueball spectrum.

Within this paper, the stress is put on mesons with an
orbital angular momentum L = 0 or L = 1. The allowed states
with these quantum numbers are displayed in Table I. As can
be seen, several JPC states are associated with the same L.
Because the potential (21) does not depend on other quantum
numbers, all these states are degenerate within our approach.

The used parameters are summarized in Table II. There are
essentially two main points to notice. First, a shift of 0.3 GeV
to the PDG quark bare mass [26] is systematically present.
It is a common assumption within quasiparticle approaches
because this shift corresponds to one-third of the nucleon
mass. Moreover, it is a typical value for the chiral condensate
according to Ref. [27]. Second, the string breaking depends
on the quark flavor. This could be explained by the following
argument: It is not the same region of the potential that is
relevant for the dynamics of all the quark flavors. Indeed, light
quarks are more sensitive to the linear part of the interaction
while the heavy-quark potential is dominated by the Coulomb
one.

TABLE II. Masses and string breaking (in GeV) for the different
flavors of quarks.

Quark composition V
qq̄

sb m1
0 m2

0

Light (l-l) 2.6 0.3 0.3
Strange (s-s) 2 0.4 0.4
Charm (c-c) 1 1.6 1.6
Beauty (b-b) 0.7 4.95 4.95
Kaon (l-s) 2.4 0.3 0.4
D meson (l-c) 1.5 0.3 1.6
Ds meson (s-c) 1.2 0.4 1.6
B meson (l-b) 1.2 0.3 4.95
Bs meson (s-b) 1 0.4 4.95
Bc meson (c-b) 0.7 1.6 4.95

TABLE III. Masses (in GeV) of the L = 0 and L = 1 meson
states at zero temperature with the gauge group SU(3). Our results
(third and sixth columns) are compared to the experimental data
of [26] (second and fifth columns).

L = 0 Exp. T matrix L = 1 Exp. T matrix

ρ(uū,dd̄) 0.77 0.72 a0(uū,dd̄) 1.45 1.45

�(ss̄) 1.02 1.08 f ′
2(ss̄) 1.53 1.58

K∗(l-s) 0.89 0.89 K(l-s) 1.43 1.52

J/ψ(cc̄) 3.10 3.01

ϒ(bb̄) 9.46 9.40

D∗(l-c) 2.01 2.01

D∗
s (s-c) 2.11 2.11

B∗(l-b) 5.33 5.33

B∗
s (s-b) 5.42 5.41

B∗
c (s-c) – 6.39

According to this interpretation, V
qq̄

sb has to be higher for
light quarks and has to decrease with heavier quark flavors. It
is exactly what it is observed with the parameters in Table II.
Moreover, when the bound state is made of two different quark
flavors, V

qq̄
sb takes a value between the chosen string breaking

for the two associated quarkonia systems. For D and B mesons,
V

qq̄
sb is closer to the string breaking of heavy quarkonia.

In Table III, the results are compared to experimental [26].
As can be noticed, a quite good agreement is reached provided
that we do not consider the lightest pions and kaons, i.e.,
π (140) and K(495). Indeed, the fact that the mass of these
lightest mesons are not reachable can be explained by the
theoretical origin of such states: The pion is the Goldstone
boson resulting from the spontaneously breaking of the chiral
symmetry. Such a peculiar phenomenon cannot be described
within such simple effective model. Moreover, according to
quasiparticle standard approaches, the spin effects are the
weakest in a S = 1 channel. Because our computations do not
take into account such effects, it is reasonable that our results
for the L = 0 light mesons are close to the ρ instead of the π .

Finally, let us add that, unlike in the glueball case, the T = 0
meson mass depends on the gauge group because κ•;qq̄ depends
on it (see Appendix A in Ref. [3]). Within our approach, such
study is not difficult to carry out. The meson mass dependence
in function of the gauge group is not studied here, because
the principal interest of the T -matrix computations at T =
0 is to extract and to check the parameters we will use at
T 
= 0. In this regard, let us note that only the quasiparticle
bare masses will enter in our computations at T 
= 0 and not
the string breaking Vsb. What can be said, however, about the
gauge-group dependence is that, in the case of SU(N ), the
meson masses are of order 1, as expected; see the Conclusions
section for more comments about this.

D. Critical temperature of deconfinement

The last global parameter that has to be fixed within our
approach is the critical temperature of deconfinement Tc. As
we fit our interactions on lattice calculations, the definition of
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FIG. 1. Normalized pure-gauge pressure p/pSB and trace anomaly �/pSB (without bound states) versus temperature in units of Tc (with
Tc = 0.15 and 0.3 GeV).

Tc comes from these approaches: The color averaged as well
as the singlet free energy of a quark-antiquark pair will tend
towards finite nonzero values for all temperatures T > Tc (and
diverge below Tc). In Ref. [3], a value of 0.3 GeV was used
because the focus was only on the gluon sector. Here, to stay
coherent with current lattice data, Tc is moved to 0.15 GeV.
This change naturally modifies the thermodynamics in the
gluon sector that was established in Ref. [3]. Let us discuss
this point.

First of all, let us set z = T/Tc. The two-body interaction
potential between particles only depends on z as it can be
explicitly shown from its expression given in Appendix B of
Ref. [3]. Therefore, it is the same for the gluon thermal mass
δg(T ), according to Eq. (10). Moreover, because the effect of
the Bose enhancement can be considered as negligible, it can
also be assumed that the T matrix TJPC , is only a function
of z.

In Fig. 1, the Tc impact is analyzed for the pure-gauge EoS
with Tc = 0.15 and 0.30 GeV, all other parameters remaining
fixed. The way to compute these EoS is given in Ref. [3] and is
recalled in Sec. V A. As can be noticed, the general behavior
is not the same and the normalized pressure seems to increase
when Tc increases. It is especially worth remarking that, if we
only consider the contribution of the quasiparticle ideal gas,
Tc has an impact on the thermodynamics. Indeed, the pressure

depends on the ratio m/T = m(z)/(zTc), depending on Tc for
a fixed z.

The behavior of the normalized trace anomaly (without
bound states) is also presented in Fig. 1. The Tc dependence is
not very easy to predict because the trace anomaly depends on
the slope of the associated pressure curve, and small variations
can generate a drastic change. In Fig. 1, we can indeed observe
that the behavior around Tc is extremely different for Tc = 0.15
and 0.3 GeV. The peak structure is lost for Tc = 0.15 GeV. This
could be attributable to two reasons: the total change of the
free-part structure and the small impact of the interactions in
comparison with the EoS obtained in Ref. [3], as shown in
Fig. 2.

IV. BOUND STATES WITHIN THE QGP

The existence of bound states in the deconfined phase
is not forbidden, in principle, especially around Tc, where
interactions are expected to be strong enough to bind two
or more particles [7]. Because the operator κC;ij is negative
for several color channels, the finite-temperature spectrum of
QCD above Tc can be computed by solving Eq. (12) with
the potential (6). The thermal masses of the quasiparticles are
given by Eq. (9), with m0 extracted from the T = 0 bound-state
spectrum (see Sec. III C).

FIG. 2. (Left) Normalized pure-gauge pressure p/pSB versus temperature in units of Tc (with Tc = 0.15 GeV), compared to the free-part
contribution. (Right) Normalized pure-gauge trace anomaly �/pSB versus temperature in units of Tc (with Tc = 0.15 GeV), compared to the
free-part contribution.
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TABLE IV. Masses (GeV) of lowest-lying QCD spectrum above Tc (Tc = 0.15 GeV). Singlet and AS, respectively, refer to the singlet and
antisymmetric representation of the gauge group. A line marks the temperature at which a bound state is not detected anymore.

Light quark sector Light-strange quark sector Strange quark sector

Channel qq̄(L = 0) qq/q̄q̄(L = 0) Channel qq̄(L = 0) qq/q̄q̄(L = 0) Channel qq̄(L = 0) qq/q̄q̄(L = 0)
C Singlet AS C Singlet AS C Singlet AS

T/Tc 2 ml T /Tc ml + ms T/Tc 2 ms

1.05 1.67 1.51 1.67 1.05 1.71 1.54 1.71 1.05 1.76 1.57 1.74
1.10 1.28 – – 1.10 1.43 – – 1.10 1.38 1.38 –

1.15 1.23 –

Within our formalism, the channels in which bound states
are favored at most should contain an S-wave component to
avoid the centrifugal barrier and should have a symmetry that
allows the state to be in a color singlet, the color channel in
which the interactions are maximally attractive.

In the gg case there are two such states: The 0++ and
2++ ones, in color singlet, correspond to the scalar and tensor
glueballs, respectively. We have observed in Ref. [3] that both
the scalar and the tensor glueball masses at 1.05Tc were
compatible with the zero-temperature ones. Moreover, the
scalar glueball exists as a bound state up to 1.25Tc, while
the tensor one is bound up to 1.15Tc. Note that in Ref. [3], the
impact of the Bose enhancement were not considered in the T
matrix. Therefore, the value of Tc should modify the masses of
the bound states. Nevertheless, it has been numerically checked
that the data shown in Ref. [3] differ from the ones containing
in-medium effects only with a relative error of the order of
2%. This is the reason why they are not presented again here.

Concerning the light and strange mesonic sector, the
dissolution inside the plasma is much more rapid. Indeed,
the most attractive channel, the L = 0 in singlet, is the only
one that survives above Tc. Moreover, mesons quickly dissolve
inside the plasma as can be observed in Table IV, and
the meson masses are not compatible with the T = 0 one
as in the gg case.

The same assertion can also be drawn for the qq and
q̄q̄ sectors. Indeed, because there is no more confinement
(i.e., only singlet representation) in the QGP, such states
could exist above Tc; the most attractive one being the L = 0
in the antisymmetric representation (AS). Nevertheless, they

TABLE V. Masses (GeV) of lowest-lying charmonium states
above Tc (Tc = 0.15 GeV). Singlet and AS refer, respectively, to
the singlet and antisymmetric representation of the gauge group. A
line marks the temperature at which a bound state is not detected
anymore.

Charm quark sector

Channel qq̄(L = 0) qq/q̄q̄(L = 0) qq̄(L = 1) qq/q̄q̄(L = 1)
C Singlet AS Singlet AS

T/Tc 2 mc

1.05 3.56 3.14 3.44 3.48 –
1.10 3.39 3.20 3.36 –
1.15 3.33 3.22 –
1.25 3.28 3.26
1.35 3.26 –

also rapidly disappear just above Tc, as shown in Table IV.
Such rapid dissolution in comparison with the gg case can
be understood by the fact that the quark quasiparticle mass
is lighter than the gluon one and that the κ•;gg is more
than two times the maximum magnitude of κC in the quark
sector. Indeed, κ•;gg = −1, while κ•;qq̄ = −4/9 and κAS;qq =
κAS;q̄q̄ = −2/9 for a SU(3) gauge group (see Appendix A of
Ref. [3]). Note that similar comments can also be done about
the qg and q̄g sectors, leading to a quick melting of these
bound states inside the plasma (see Table IX).

Concerning the heavy quark sector, quarkonia have already
been studied within a T -matrix approach similar to the one
proposed here [2]. The main differences are the inclusion of a
relativistic correction to the potential in Ref. [2] and the way of
implementing the quasiparticle masses. Within this paper, the
procedure (9) to determine the quasiparticle masses is applied
and allows one to compute systematically a large panel of
binary bound states made of different quark flavors.

Our study for the heavy quarkonia is displayed in Tables V
and VI. Around Tc, the J/ψ and ϒ masses are compatible
with the T = 0 spectrum, unlike for the light and strange
mesons. Moreover, they significantly survive above Tc, even if
the dissociation temperatures are lower than the ones found in
Ref. [2]. qq and q̄q̄ states can also be formed with the medium
but they dissolve more rapidly than the associated quarkonia,
owing to their weaker interaction potential.

An analysis for the D and B mesons has also been carried
out as well as for the qg and q̄g states for all the quark flavor

TABLE VI. Masses (GeV) of lowest-lying bottonium states above
Tc (Tc = 0.15 GeV). Singlet and AS refer, respectively, to the singlet
and antisymmetric representation of the gauge group. A line marks
the temperature at which a bound state is not detected anymore.

Beauty quark sector

Channel qq̄(L = 0) qq/q̄q̄(L = 0) qq̄(L = 1) qq/q̄q̄(L = 1)
C Singlet AS Singlet AS

T/Tc 2 mb

1.05 10.2 9.35 9.75 9.60 9.90
1.15 9.94 9.62 9.87 9.79 9.94
1.20 9.93 9.71 9.86 9.92 –
1.25 9.93 9.70 9.90 –
1.30 9.92 9.75 9.90
1.50 9.92 9.79 –
2.00 9.91 9.88
2.40 9.91 –
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TABLE VII. Temperature of dissociation in units of Tc for L = 0
mesons.

Dissociation temperature: qq̄

Light Strange Charm Beauty

Light 1.10 ± 0.05 1.10 ± 0.05 1.15 ± 0.05 1.20 ± 0.05
Strange 1.15 ± 0.05 1.15 ± 0.05 1.20 ± 0.05
Charm 1.35 ± 0.05 1.6 ± 0.1
Beauty 2.4 ± 0.1

considered here. The different temperatures of dissociation
are displayed in Tables VII, VIII, and IX. We can notice that
the more the quasiparticles considered in the binary state are
heavy, the more it survives significantly above Tc.

In Ref. [28], it is found that radially excited states are
unlikely to survive above Tc because they tend to melt below
the phase transition because of string breaking effects at finite
temperature. In our case, such states can be found, but not in all
channels. However, they quickly dissolve within the medium.

V. EQUATION OF STATE OF THE QGP AT μ = 0

A. General expression

Now that the bound-state sector is analyzed, it is possible
to compute explicitly the EoS and so to study the QGP
thermodynamics. In what follows, the heavy quark states will
be not included in our EoS. Indeed, their contributions to
the bound-state and scattering parts of the grand-canonical
potential are expected to be small because of their large
bound-state masses.

Some preliminary lattice results about the influence of
charm quarks on the EoS can be found in Ref. [29]. It appears
actually that charm quarks bring a significant contribution to
the trace anomaly above Tc. However, a technical problem
of the present approach is that discontinuity appear in the
trace anomaly when bound states melt [3]. This problem is
especially apparent when heavy quarks are involved. Hence,
including heavy flavors in our computations would lead to
results that are probably not reliable, and we prefer not to
consider them.

Let us thus particularize (1) to a QGP with Nf = 2(+1). As
in Refs. [3,8], a two-body restriction is used: The considered
interactions are gg, qq, q̄q̄, qq̄, qg, and q̄g, in different color
and JP (C) channels. Therefore, the first term in Eq. (1); i.e.,

TABLE VIII. Temperature of dissociation in units of Tc for L =
0 qq and q̄q̄ states.

Dissociation temperature: qq and q̄q̄

Light Strange Charm Beauty

Light 1.10 ± 0.05 1.10 ± 0.05 1.10 ± 0.05 1.10 ± 0.05
Strange 1.10 ± 0.05 1.10 ± 0.05 1.10 ± 0.05
Charm 1.15 ± 0.05 1.25 ± 0.05
Beauty 1.50 ± 0.05

TABLE IX. Temperature of dissociation in units of Tc for qg and
q̄g states.

Dissociation temperature: qg and q̄g

Light Strange Charm Beauty

1.10 ± 0.05 1.10 ± 0.05 1.20 ± 0.05 1.25 ± 0.05

the free relativistic gas, is given by

�
QCD
0 = 2 dim adj ωB

0 (mg,0)︸ ︷︷ ︸
gluons

+ 2
Nf∑
n=1

dim qn ωF
0

(
mqn

,μqn

)
︸ ︷︷ ︸

quarks

+ 2
Nf∑
n=1

dim q̄n ωF
0

(
mqn

, − μqn

)
︸ ︷︷ ︸

antiquarks

, (23)

where the gluons have a mass mg , and the (anti)quarks qn

(q̄n) a mass mqn
, given by the prescription (9) with the m0

value extracted from the T = 0 spectrum. μqn
is the chemical

potential of the considered quark flavor. They are set to
zero within this section. So, no asymmetry between quarks
and antiquarks is taken into account within the QGP. The
particle degrees of freedom are the following. The gluon is
a transverse spin-1 (so, two spin projections) boson lying in
the adjoint representation of the gauge group, while the quark
(respectively antiquark), existing in Nf different flavors, is
a spin- 1

2 fermion belonging in the fundamental (respectively
conjugate) gauge-group representation. The grand-canonical
potential per degree of freedom associated with a bosonic
species ωB

0 (m,0) and with a fermionic species ωF
0 (m,μ), with

mass m, are given by

ωB
0 (m,0) = 1

2π2β

∫ ∞

0
dkk2 ln(1 − e−β

√
k2+m2

), (24)

ωF
0 (m,μ) = − 1

2π2β

∫ ∞

0
dkk2 ln(1 + e−β(

√
k2+m2−μ)). (25)

For later convenience, the thermodynamic quantities will be
normalized to the Stefan-Boltzmann pressure, which is defined
as

pSB = − lim
m→0

�
QCD
0 (26)

and reads in this case

pSB = π2

45β4

⎡
⎣dim adj + 7

4

Nf∑
n=1

dim qn

⎤
⎦. (27)

As already mentioned, the second term of Eq. (1) stands
for the interactions. The sum

∑
ν now explicitly reads∑

ng+nqn+nq̄n =2

∑
C
∑

JP , where ng , nqn
, and nq̄n

are, respec-
tively, the number of gluons, quarks, and antiquarks involved
in the interaction process. Attractive interactions can lead to
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the formation of bound states with masses MBS
C,J P < m1 + m2 (see Sec. IV). They contribute also to the grand potential as new

species via the formula

�
QCD
bs =

∑
ng+nqn +nq̄n=2

eβ(μ1+μ2)
∑
JP

(2J + 1)
∑
C

dim C ω
B/F
0

(
MBS

C,J P ,0
)
. (28)

All JP and color channels leading to bound states are included in this summation.
Concerning the scattering term, a tedious calculation (explained in Refs. [3,8]) leads to

�QCD
s = 1

64π5β2

∑
ng+nqn +nq̄n =2

eβ(μ1+μ2)
∑
JP

(2J + 1)
∑
C

dimC
(

β

∫ ∞

m1+m2

dε ε2 ω(ε) �(ε)K1(βε) ReTC,J P (ε; ω(ε),ω(ε))

− 1

16π2

∫ ∞

m1+m2

dε ε2 ω(ε)2 �(ε)2K2(βε){ReTC,J P (ε; ω(ε),ω(ε))[ImTC,J P (ε; ω(ε),ω(ε))]′}

+ 1

16π2

∫ ∞

m1+m2

dε ε2 ω(ε)2�(ε)2K2(βε){[ReTC,J P (ε; ω(ε),ω(ε))]′ImTC,J P (ε; ω(ε),ω(ε))}
)

, (29)

where ω(ε) and �(ε) are given by

ω(ε) =
√

[ε2 − (m1 + m2)2][ε2 − (m1 − m2)2]

2ε
, (30)

�(ε) = ε4 − (
m2

1 − m2
2

)
ε3

, (31)

and where TC,J P (ε; ω(ε),ω(ε)) is the on-shell TC,J P matrix.
Note that a isospin number I has to be taken into account
when one deals with u and d quarks because they have the
same mass in our approach. This isospin number enters in the
summation

∑
ng+nq+nq̄=2 as a (2I + 1) factor.

Finally, the grand-canonical potential (reduced to two-body
interactions) is summarized by the formula

�
QCD
(2) = �

QCD
0 + �

QCD
bs + �QCD

s . (32)

For obvious numerical reasons, the summation over the
number of particles is not the only one that must be restricted.
All possible color channels are included, but all the possible
JP (C) channels contributing to �

QCD
(2) cannot be included

because their number is infinite. So, a reliable criteria to select
the most significant ones has to be established. The basic idea,
already proposed in Ref. [8], is that only states with low L
are included because they are the most likely to contribute

significantly to a total mean cross section σ̄J P . Retained are
only the channels for which the value of σ̄J P is at least 25%
of the value σ̄J P for the channel with the lowest value of 〈 �L2〉
(see Appendix D of Ref. [8] for further explanations).

In the present case, this criterion implies that only the
following JP (C) channels are included:

(i) for gg channels, the 0++, 0−+, 2++ and 1++ states;
(ii) for qq, q̄q̄, and qq̄ channels, all the JP ones with

L = 0 or L = 1;
(iii) for the qg and q̄g channels, all the states with 〈 �L2〉 < 8

(see Appendix B in Ref. [8]).

B. QGP with N f = 2

Now that the number of JP channels for each two-body
interactions is fixed, the EoS can be computed. In Fig. 3,
the normalized pressure is shown for a QGP with two light-
quark flavors included. As can be noticed, interactions do not
practically contribute: The major part is given by the free
gas. Globally, the weakness of interactions can be interpreted
in the same way as what it is observed for the YM plasma in
Sec. III D. Indeed, when the critical temperature decreases, the
interactions seem to become smaller and smaller. This behavior

FIG. 3. (Left) Normalized pressure p/pSB versus temperature in units of Tc, compared to the free part, bound state, and scattering
contribution. (Right) Different scattering contributions to the normalized pressure p/pSB versus temperature in units of Tc. Tc = 0.15 GeV.
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FIG. 4. Normalized trace anomaly �/pSB (without bound states)
versus temperature in units of Tc, compared to the free-part
contribution. Tc = 0.15 GeV.

is driven by the Bessel functions entering in the definition of
the scattering part. Moreover, it is important to notice that the
integration range in this term formally starts at β(m1 + m2).
This value is large in comparison to the values at which the
Bessel functions is significantly nonzero. A change of the
thermal mass prescription could thus impact the contributions
of the scattering part. This work is left for further developments
of our approach.

In the right panel of Fig. 3, the different scattering
contributions are separated. Without surprise, the qq̄, qg, and
q̄g channels asymptotically tend to zero. Indeed, it has been
shown in Ref. [3] that the interactions between two different
species vanish within the Born approximation, because of
an identity relating the color factors:

∑
C dim C κC,ij = 0.

Concerning the qq and q̄q̄ channels, they generate a global
increase of the normalized pressure while it is the contrary
for the gg sector. Not only these two effects are weak, but, in
addition, they contribute in opposite directions, leading to a
global suppression of the two-body interactions on average.

In Fig. 4, we display the normalized trace anomaly (without
bound states) compared to the free-gas part. A peak structure
is here exhibited even in the free-gas contribution. Therefore,
it is different from the YM sector where the interactions create
the peak. The nature of this latter is really difficult to establish

because few variations of the pressure can drastically change
the shape of the trace anomaly.

The main conclusion that seems to emerge from our
approach (looking at the normalized trace anomaly as well
as at the normalized pressure) is that the leading behavior of
the QGP is driven by gluon and (anti)quark degrees of freedom
that interact weakly. Nevertheless, it does not mean that the
interactions have no impact on the EoS. Indeed, the particle
thermal mass is extracted from it, leading to a self-energy
contribution for the particle (see Sec. V C).

C. QGP with N f = 2 + 1

An analysis similar to the one proposed in the previous
section can be applied in the 2 + 1 QGP case. Because similar
results and features can be deduced from it, we do not repeat
it again and focus more on the comparisons between our
model and lQCD extracted from Ref. [30]. Indeed, lQCD
collaborations have recently reached the physical quark masses
in their computations of the EoS, making their results more
and more reliable for comparisons.

As we can observe in Fig. 5, our data are qualitatively in
agreement with lQCD ones. The lQCD normalized pressure
is slightly overestimated, as well as the asymptotic behavior
of the normalized trace anomaly. However, the peak structure
of the trace anomaly is very different of the lQCD one. As
already mentioned, this latter is really difficult to obtain owing
to several reasons in our approach: problems in the inclusion
of the bound state [3], reliability of the quark masses, and
restriction to two-body interactions. Even in lQCD, different
collaborations find different quantitative behaviors for the
trace anomaly peak [30]. The possible discrepancies can arise
from the choice of the fermionic lattice action, the lattice
spacing, the considered quark masses, the extrapolation to the
continuum limit, etc. Only, a good agreement in the behavior
of the decreasing tail is reached by the different lQCD groups,
according to Ref. [30]. Nevertheless, it is worth mentioning
that the disagreements observed in the quantitative value of
the peak structure in various lQCD results (mainly owing
to a computation with no physical quark masses) seem to
reduce, and the shape of the lQCD trace anomaly tends to
the one depicted in Fig. 5 and first given by the BMW
collaboration [31].

FIG. 5. (Left) Normalized pressure p/pSB versus temperature in units of Tc, compared to lQCD data from Ref. [30]. (Right) Normalized
trace anomaly �/pSB versus temperature in units of Tc, compared to lQCD data from Ref. [30]. Tc = 0.15 GeV.
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FIG. 6. (Left) Normalized pressure p/pSB versus temperature in units of Tc. (Right) Normalized trace anomaly �/pSB (without bound
states) versus temperature in units of Tc. In the two figures, the gray (black) line is the free-part contribution of �

QCD
(2) computed with the free

(internal) energy. Tc = 0.15 GeV.

Therefore, except for the normalized trace anomaly peak
structure (for which a more appropriate treatment of the
bound-state inclusion is needed and could change significantly
its structure), our data are in correct agreement with lQCD
ones. As discussed in the previous section, this agreement
seems to be reached by only including a quasiparticle thermal
mass: The contributions of the two-body interacting channels
are minor. Nevertheless, it is worth insisting on the fact
that the thermal mass effects are extracted from the two-
body lQCD interaction potential within our model. So, the
chosen two-body interactions are not useless in understanding
the behavior of the QGP around Tc. Indeed, if we change the
potential, the free-gas contribution is modified because the
quasiparticle thermal masses depend on it. This leads to a
completely different behavior of the EoS as seen in Fig. 6, in
which the potential is now chosen to be the free energy. We
can especially notice in Fig. 6 that a better agreement between
our model and lQCD normalized pressure is reached around Tc

thanks to the internal energy, while the discrepancy between
the two curves decrease when the temperature increases.

Finally, let us compare in Fig. 7 the normalized pressure
and trace anomaly for a QGP with Nf = 2 and Nf = 2 + 1
(Tc = 0.15 GeV) to the ones of the YM plasma (Tc =
0.3 GeV). We can notice that the normalized pressure curves
are almost superimposed and that the decreasing trend of

the trace anomaly is nearly the same in all the considered
theories. The maximum of the deviation between these curves
is around 1.2 Tc, at the localization of the trace anomaly
peak. It is nevertheless important to remember that the critical
temperature and the normalization are not the same in all the
EoS [see Eq. (27)]. However, within these units, a universality
at large temperature (�3Tc) seems to emerge.

VI. EQUATION OF STATE OF THE QGP AT SMALL μ

Now that the EoS for the QGP are computed and favorably
compared with lQCD, we can investigate the nonzero baryonic
regime. This latter deserves a lot of interests, especially in
the area of the neutron-star physics. Indeed, since pioneering
works [32] about the existence of a deconfined phase in QCD,
it was assumed that the core of the heaviest neutron star should
be probably filled with a medium with a high nuclear density
and in which the significant degrees of freedom should be the
quarks. Therefore, getting the QCD EoS at finite μ could shed
some light in this field.

Up to now, this task still remained difficult from first QCD
principles. Remember that even in lQCD some conceptual
troubles appear (cf. sign problem) and only perturbations
around μ = 0 are meaningful. Therefore, it seems appeal-
ing to check whether quasiparticle approaches could help.

FIG. 7. (Left) Normalized pressure p/pSB versus temperature in units of Tc. (Right) Normalized trace anomaly �/pSB (without bound
states) versus temperature in units of Tc. Tc = 0.15 GeV for QGP and Tc = 0.3 GeV for YM.
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FIG. 8. Real part of the T matrix (qq̄ in L = 0, here given as example) in function of the energy for T = 0.105 GeV (left), T = 0.150 GeV
(middle), and T = 0.300 GeV (right) at different μ (MeV) with Tc = 0.15 GeV.

Unfortunately, at the present stage, some problems also appear
in our formalism. The main reasons are the following.

First, the Dashen, Ma, and Bernstein formalism that we
have used to compute the EoS is based on a virial expansion
in terms of eβ �μ �N . We are thus limited by construction to
small baryonic potential. Indeed, increasing the baryonic
potential is the same as increasing the density of particles:
The many-body interactions are more and more likely to
contribute. So the reduction to two-body interactions becomes
a poor approximation a priori and some problems, other
than a careful computation of all the channels, arise. Let us
mention, for instance, the absence of a helicity formalism for
many-body systems in a potential approach and the necessity
to resort to Faddeev and higher equations for more than
two-body interactions. Moreover, when the density of particles
increases, the notion of quasiparticle becomes more and more
questionable.

Another peculiar problem is the building of a coherent
interaction in the presence of baryonic potential. Already at
two bodies, no lQCD data are available to our knowledge. It
is not only important to define the potential between particles
but also the quasiparticle mass, which seems to rule the main
behavior of the EoS at μ = 0. A way to circumvent this
problem could be to use the HTL expressions for the particle
thermal mass, but it was not the bias adopted within this study.
Indeed, the actual shape of our thermal masses are not the ones
extracted from HTL.

For all these reasons, the study that follows will be only
limited to small baryonic potentials. We will thus keep the
restriction to two-body interactions which can make sense in
such a μ range. Moreover, the interaction potential and the
quasiparticle thermal masses are the same as the ones used
up to now, without the inclusion of the baryonic potential.
Of course, the obtained results must be considered as prelimi-
nary and are just intended to draw a general tendency. The bary-
onic potential enters at two levels in our computations: in the
T -matrices because of the in-medium effects and in all the
EoS contributions as multiplicative factors. Fortunately, as for
the Tc impact, it seems that the μ dependence on the T -matrix
calculations is negligible (see Fig. 8). Therefore, these latter
do not have to be recomputed at each μ, which drastically
reduces the computational time.

In Fig. 9, we have plotted the normalized pressure and trace
anomaly at different μ for a QGP with two light quarks. The
normalization is given by Eq. (27), that is to say at m = 0
and μ = 0. Naturally, the gluon chemical potential is zero
and the quark one is such that μu = μd = μ. We can see in
this figure that the normalized pressure increases with μ. This
pressure is especially driven by the increase of the free quark
gas contribution given in Fig. 10. Indeed, as in the μ = 0 case,
the leading contributions to the normalized pressure are the
free-part ones because the impact of the interactions is small,
as observed in Fig. 11. Moreover, the decrease of the free
antiquark gas contribution is slower than the increase of the

FIG. 9. (Left) Normalized pressure p/pSB versus temperature in units of Tc at different μ (MeV) for a QGP with two light quarks. (Right)
Normalized trace anomaly �/pSB (without bound states) versus temperature in units of Tc at different μ (MeV) for a QGP with two light
quarks. Tc = 0.15 GeV.
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FIG. 10. (Left) Free quark gas contribution to the total normalized pressure p/pSB versus temperature in units of Tc at different μ (MeV)
for a QGP with two light quarks. (Right) Free antiquark gas contribution to the total normalized pressure p/pSB versus temperature in units of
Tc at different μ (MeV) for a QGP with two light quarks. Tc = 0.15 GeV.

FIG. 11. (Left, top) qq-scattering contribution to the total normalized pressure p/pSB. (Right, top) Same for q̄q̄. (Left, middle) Same for
qg. (Right, middle) Same for q̄g. (Bottom) Same for qq̄. All the scattering contributions are presented versus temperature in units of Tc, with
Tc = 0.15 GeV, at different μ (MeV) for a QGP with two light quarks.
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FIG. 12. (Color online) (Left) Normalized pressure p/pSB compared to lQCD [33] versus temperature in units of Tc at different μB (MeV)
for a QGP with Nf = 2 + 1. (Right) Normalized trace anomaly �/pSB compared to lQCD [33] versus temperature in units of Tc at different
μB (MeV) for a QGP with Nf = 2 + 1. Tc = 0.15 GeV.

free quark gas one, explaining the total increasing behavior of
the normalized pressure.

Concerning the normalized trace anomaly, it is much more
difficult to understand the μ dependence. The only assertion
that we can do is that the trace anomaly peak becomes higher

and higher with the increase of μ. Moreover, we can notice
that the convergence to zero is faster with large μ.

As already mentioned, the scattering contributions are
small. Nevertheless in Fig. 11, we can observe a signifi-
cant dependence in terms of μ. The qq and qg scattering
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contributions obviously increase with μ, respectively, as e2βμ

and eβμ, while the q̄q̄ and q̄g ones go in the opposite way.
However, as in the free-gas case, the increase is higher than
the decrease, leading in fine to a more important contribution
of the scattering parts to the total normalized pressure.
To be complete, the qq̄ scattering contribution is stable because
there is no μ dependence at the level of the EoS: Indeed,
we have eβ(μ−μ) = 1 and just a very weak dependence on μ
appears in the T matrix. Moreover, because the gg sector is
independent of μ, increasing μ means increasing the impact
of the quark sector within the QGP.

Finally, we close this study by comparing in Fig. 12 our
preliminary results to the lQCD ones given by Ref. [33].
Within this paper, they deal with a QGP with Nf = 2 + 1
and with a small baryonic potential μB . Each flavor of quarks
is considered to carry one-third of μB . Therefore, we analyze
the 2 + 1 QGP with μu = μd = μs = μB/3. As for the μ = 0
case, we sightly overestimate the normalized pressure and we
miss the peak of the normalized trace anomaly. Therefore, it
seems that these differences have mainly the same origin as
at μ = 0 and our extrapolations at small μ is compatible with
lQCD.

VII. CONCLUSIONS

The present work is part of a program aiming at study-
ing the thermodynamic properties of gauge theories in the
deconfined phase. The interested reader may read Refs. [3]
and [8] for pure YM and supersymmetric YM theories,
while this paper is devoted to the “realistic” QGP. The
framework developed is based on a T -matrix formulation
of statistical mechanics, in which the thermal masses and
two-body interactions are derived from the static potential
between fundamental color source computed in quenched
lQCD [11]. Apart from the potential, the only remaining
parameters are the value of Tc and the bare quark masses.
These masses are fitted on the meson spectrum at zero
temperature. The main assumption underlying our model is
actually that a quasiparticle picture of deconfined matter just
above deconfinement is relevant. Although it is not a rigorous
proof, the nice agreement between our computed EoS and
the recent lattice data of Refs. [30,33] can be seen as an
a posteriori validation of our framework.

We are now in position of summarizing some of the key
results obtained in this paper.

(i) Both the free energy and the internal energy could
be used as potential terms in our model. It appears
that, keeping the same procedure and the same values
for the parameters, only the internal energy is able to
generate an equation of state which has the qualitative
features of the lattice equation of state. The internal
energy thus appears as the most relevant potential
within our framework and leads to a good agreement
with the lattice equation of state. Note that this
problem is far from being elucidated; see, for example,
the recent work [28], where the opposite conclusion is
reached.

(ii) Between 1 and 2 Tc, color interactions are strong
enough to create mesons, i.e., a quark-antiquark bound
state in a color singlet. Mesons made of one or
two light quarks are almost all dissociated in Tc.
Only mesons made of two heavy quarks (c, b) are
bound enough to survive in the range (1.3–2) Tc.
Although we use a T -matrix formulation as well,
our parameters have values different from those used
in Ref. [2], where the main goal was to reproduce
mesonic correlators computed on the lattice and not
the equation of state. In this last work, the J/ψ meson
is bound up to 3Tc and the ϒ meson is bound up
to 3.5Tc, thus at much higher T than what we find.
It is worth recalling that we are able to compute T
matrices in channels where the quark and the antiquark
have different masses, which was not considered in
Ref. [2].

(iii) Although strong in the color singlet channel, the
contribution of two-body interactions to the equation
of state is weak with respect to the free-gas part.
This is partly attributable to a cancellation between
attractive and repulsive color channels that come
with an opposite sign in the grand potential. It is
tempting to conclude from this result that it provides an
a posteriori justification of the success of approaches
involving free quasiparticles in the description of the
equation of state, even in the sQGP.

An obvious drawback of our framework is the neglect of
chiral symmetry, leading to results that may be inaccurate in
the light quark sector. QCD in Coulomb gauge is currently
the formalism which is maximally close to ours while fully
including chiral symmetry. Some work has been done in the
study of pure Yang-Mills theory and by using a toy model with
confining potential that mimics QCD [34]. Modeling the full
QGP within Coulomb gauge QCD is, however, a huge task
that still remains to be completed.

Some comments can be made about the large-N behavior of
our results. The meson masses depend on the number of colors
through the factor κ•;qq̄ = − 1

2 (1 − 1
N2 ) only, so the meson

masses are of order 1 at large N , with corrections in 1/N2,
as expected from a quenched potential. Moreover, it has been
shown in Ref. [3] that the quark contribution to the equation of
state behaves as Nf N in ‘t Hooft’s limit, as expected. This is
an important check of the ability of the present model to deal
with the large-N limit.

Future developments of the present model should include
the computation of the viscosity-over-entropy ratio. Such a
computation can, in principle, be done without extra parameter.
Hence, it is an important extension of our formalism that we
hope to present in forthcoming works.
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