Quartic isospin asymmetry energy of nuclear matter from chiral pion-nucleon dynamics

N. Kaiser*

Physik Department T39, Technische Universität München, D-85747 Garching, Germany (Received 25 March 2015; published 1 June 2015)

Based on a chiral approach to nuclear matter, the quartic term in the expansion of the equation of state of isospin-asymmetric nuclear matter is calculated. The contributions to the quartic isospin asymmetry energy $A_4(k_f)$ arising from 1π exchange and chiral 2π exchange in nuclear matter are calculated analytically together with three-body terms involving virtual $\Delta(1232)$ isobars. From these interaction terms one obtains at saturation density $\rho_0 = 0.16 \text{ fm}^{-3}$ the value $A_4(k_{f0}) = 1.5 \text{ MeV}$, more than three times as large as the kinetic energy part. Moreover, iterated 1π exchange exhibits components for which the fourth derivative with the respect to the isospin asymmetry parameter δ becomes singular at $\delta = 0$. The genuine presence of a nonanalytical term $\delta^4 \ln |\delta|$ in the expansion of the energy per particle of isospin-asymmetric nuclear matter is demonstrated by evaluating an *s*-wave contact interaction at second order.

DOI: 10.1103/PhysRevC.91.065201

PACS number(s): 21.60.Jz, 21.65.-f, 24.10.Cn, 21.30.-x

I. INTRODUCTION AND SUMMARY

The determination of the equation of state of isospinasymmetric nuclear matter has been a longstanding goal shared by both nuclear physics and astrophysics [1]. Usually one assumes a parabolic form for the energy per nucleon at zero temperature, $\bar{E}_{as}(\rho_p,\rho_n) = \bar{E}(\rho) + A_2(\rho)\delta^2 + O(\delta^4)$, where $\rho = \rho_p + \rho_n$ is the total nucleon density and $\delta = (\rho_n - \rho_p)/\rho$ the isospin asymmetry related to unequal proton and neutron densities $\rho_p \neq \rho_n$. The validity of the quadratic approximation has been verified with good numerical accuracy from isospinsymmetric nuclear matter ($\delta = 0$) up to pure neutron matter $(\delta = 1)$ by most of the existing nuclear many-body theories using various interactions [2,3]. Nonetheless, it has been shown consistently in numerous studies [4] that for some properties of neutron stars, such as the proton fraction at beta equilibrium, the core-crust transition density and the critical density for the direct Urca process to occur, even a very small quartic isospin asymmetry energy $A_4(\rho)$ (multiplied with δ^4 in the expansion of the energy per nucleon) can make a big difference.

Given the fact that all the available numerical solutions of the nuclear many-body problem confirm the validity of the quadratic approximation, the quartic isospin asymmetry $A_4(\rho)$ should be rather small. However, in the recent work by Cai and Li [5], which employs an empirically constrained isospindependent single-nucleon momentum distribution and the equation of state of pure neutron matter near the unitary limit, a significant quartic term of $A_4(\rho_0)^{(kin)} = (7.2 \pm 2.5)$ MeV has been found from the kinetic energy of interacting nucleons. This value amounts to about 16 times the free Fermi gas prediction; see Eq. (2). On the other hand, recent calculations of isospin-asymmetric nuclear matter based on chiral lowmomentum interactions and many-body perturbation theory [6] lead to a small value of $A_4(\rho_0) \simeq 1$ MeV.

The purpose of the present paper it to give a prediction for the density-dependent quartic isospin asymmetry energy $A_4(k_f)$ in the chiral approach to nuclear matter developed in Refs. [7,8]. In this approach the long- and medium-range nucleon-nucleon (NN) interactions arising from multipion exchange are treated explicitly and a few parameters encoding the relevant short-distance dynamics are adjusted to bulk properties of nuclear matter. A systematic expansion in small momenta is performed up to three-loop order. Single-particle potentials [8], quasiparticle interactions [9], the thermodynamic behavior of nuclear matter at finite temperatures [10], and the density dependence of the in-medium quark condensate [11] follow then as predictions in that framework (see also the recent review article [12]).

The present paper is organized as follows. In Sec. II, analytical expressions are given for the contributions to the quartic isospin asymmetry energy $A_4(k_f)$ as they arise from 1π exchange and chiral 2π exchange. The three-nucleon interaction generated by 2π exchange and excitation of a virtual $\Delta(1232)$ isobar is considered as well. These interaction contributions lead at saturation density $\rho_0 = 0.16 \text{ fm}^{-3}$ (or $k_{f0} = 263$ MeV) to the (small) value $A_4(k_{f0}) = 1.5$ MeV, which amounts to about three times the kinetic energy part. Moreover, in the course of the calculation one encounters components of the second-order 1π exchange whose representation of the fourth derivative with the respect to δ at $\delta = 0$ is singular. In Sec. III, the generic presence of a non-analytical term $\delta^4 \ln |\delta|$ in the expansion of the energy per particle of isospin-asymmetric nuclear matter is demonstrated by calculating in closed form the second-order contribution from an s-wave contact interaction. Clearly, after having established its existence, the nonanalytical term $\delta^4 \ln |\delta|$ should be included in future fits of the equation of state of (zerotemperature) isospin-asymmetric nuclear matter.

II. ONE-PION AND TWO-PION EXCHANGE CONTRIBUTIONS

In this section the expressions for the quartic isospin asymmetry $A_4(k_f)$ are given as they arise from one-pion and two-pion exchange diagrams following Refs. [7,8]. Isospinasymmetric (spin-saturated) nuclear matter is characterized by

^{*}nkaiser@ph.tum.de

different proton and neutron Fermi momenta, $k_{p,n} = k_f (1 \mp \delta)^{1/3}$. Expanding the energy per particle at fixed nucleon density $\rho = 2k_f^3/3\pi^2$ in the isospin asymmetry parameter δ up to fourth order gives

$$\bar{E}_{\rm as}(k_p, k_n) = \bar{E}(k_f) + \delta^2 A_2(k_f) + \delta^4 A_4(k_f) + \mathcal{O}(\delta^6), \quad (1)$$

with $A_2(k_f)$ the (usual) quadratic isospin asymmetry energy. The density-dependent expansion coefficients $\overline{E}(k_f)$, $A_2(k_f)$, and $A_4(k_f)$ are viewed as functions of the Fermi momentum k_f , since in this form they emerge directly from the calculation. The first contribution to $A_4(k_f)$ comes from the relativistically improved kinetic energy $T_{\text{kin}}(p) = p^2/2M - p^4/8M^3$, and it reads

$$A_4(k_f)^{(\text{kin})} = \frac{k_f^2}{162M} \left(1 + \frac{k_f^2}{4M^2} \right), \tag{2}$$

with M = 939 MeV the average nucleon mass. The corresponding value at nuclear matter saturation density $\rho_0 = 0.16 \text{ fm}^{-3}$ (or at Fermi momentum $k_{f0} = 263 \text{ MeV}$) is $A_4(k_{f0})^{(\text{kin})} = 0.464 \text{ MeV}$. The (positive) relativistic $1/M^3$ correction in Eq. (2) amounts to about 2%.

For the treatment of two-body interactions that depend on the momentum transfer $|\vec{p}_1 - \vec{p}_2|$, the following expansion formulas for six-dimensional integrals over two Fermi spheres are most helpful:

$$\int \frac{d^3 p_1 d^3 p_2}{(2\pi)^6} F(|\vec{p}_1 - \vec{p}_2|) [\theta(k_p - |\vec{p}_1|) \theta(k_p - |\vec{p}_2|) + \theta(k_n - |\vec{p}_1|) \theta(k_n - |\vec{p}_2|)] = \frac{2k_f^6}{3\pi^4} \int_0^1 dz \left\{ \left[z^2 (1 - z)^2 (2 + z) + \frac{\delta^2 z^3}{3} \right] F(2zk_f) + \frac{\delta^4 k_f}{162} [F'(2k_f) - 7z^4 F'(2zk_f)] \right\},$$
(3)
$$\int \frac{d^3 p_1 d^3 p_2}{(2\pi)^6} F(|\vec{p}_1 - \vec{p}_2|) \theta(k_p - |\vec{p}_1|) \theta(k_n - |\vec{p}_2|) = \frac{k_f^6}{3\pi^4} \int_0^1 dz \left\{ \left[z^2 (1 - z)^2 (2 + z) + \frac{\delta^2 z}{3} (z^2 - 1) \right] F(2zk_f) + \frac{\delta^4 k_f}{162} (8z^2 - 1 - 7z^4) F'(2zk_f) \right\}.$$
(4)

The z-dependent weighting functions at order δ^2 and δ^4 have been obtained by applying several partial integrations. The contribution of the 1π -exchange Fock diagram to the quartic isospin asymmetry energy reads

$$A_{4}(k_{f})^{(1\pi)} = \frac{g_{A}^{2}m_{\pi}^{3}}{(36\pi f_{\pi})^{2}} \left\{ \left(4u + \frac{21}{8u} \right) \ln(1 + 4u^{2}) - 2u^{3} - \frac{33u}{4} - \frac{u(9 + 44u^{2})}{4(1 + 4u^{2})^{2}} + \frac{m_{\pi}^{2}}{M^{2}} \left[2u^{5} + 2u^{3} + \frac{3u}{8} - u^{3}\ln(1 + 4u^{2}) - \frac{u(3 + 16u^{2})}{8(1 + 4u^{2})^{2}} - \frac{3u^{2}}{2}\arctan 2u \right] \right\},$$
(5)

with the dimensionless variable $u = k_f/m_{\pi}$. The occurring physical parameters are: nucleon axial-vector coupling constant $g_A = 1.3$, (neutral) pion mass $m_{\pi} = 135$ MeV, and pion decay constant $f_{\pi} = 92.4$ MeV. The second line in Eq. (5) gives the relativistic $1/M^2$ correction. It amounts at density $\rho_0 = 0.16$ fm⁻³ to a reduction of the static 1π -exchange contribution by about 16%.

Next in the chiral expansion comes the iterated (second-order) 1π exchange. With two medium insertions $\frac{1}{2}(1+\tau_3)\theta(k_p - |\vec{p}_i|) + \frac{1}{2}(1-\tau_3)\theta(k_n - |\vec{p}_i|)$ one gets a Hartree contribution of the form

$$A_4(k_f)^{(\text{H2})} = \frac{g_A^4 M m_\pi^4}{(24\pi)^3 f_\pi^4} \bigg\{ 10u^3 - \frac{61u}{2} + \frac{200u^2 + 49}{6u} \ln(1 + 4u^2) - \frac{u(13 + 60u^2)}{6(1 + 4u^2)^2} - \frac{128u^2}{3} \arctan 2u \bigg\},\tag{6}$$

and the corresponding Fock exchange-term reads

$$A_{4}(k_{f})^{(F2)} = \frac{g_{A}^{4}Mm_{\pi}^{4}}{(12\pi)^{3}f_{\pi}^{4}} \left\{ \frac{u}{8} - \frac{u^{3}}{3} - \frac{u}{12(1+2u^{2})} - \frac{u}{24(1+u^{2})} + u^{4}\arctan u + \frac{u^{2}(2+11u^{2}+16u^{4})}{6(1+2u^{2})^{2}} [\arctan u - \arctan 2u] + \int_{0}^{u} dx \, \frac{21x^{2} - 16u^{2}}{6u(1+2x^{2})} [(1+8x^{2}+8x^{4})\arctan x - (1+4x^{2})\arctan 2x] \right\}.$$
(7)

Pauli-blocking effects at second order are included through diagrams with three (isospin-asymmetric) medium insertions [7]. Here only the factorizable Fock contribution is considered for which the energy denominator gets canceled by factors from the momentum-dependent πN vertices (see Eqs. (11) and (26) in Ref. [7]). Its contribution to the quartic isospin asymmetry energy can be represented as a one-parameter

integral, $A_4(k_f)^{(\text{fac})} = g_A^4 M m_\pi^4 (12\pi f_\pi)^{-4} \int_0^u dx I(x,u)$, where the lengthy integrand I(x,u) involves the function $\ln[1 + (u + x)^2] - \ln[1 + (u - x)^2]$ and its square. The corresponding value at saturation density is $A_4(k_{f0})^{(\text{fac})} =$ -1.35 MeV, thus counterbalancing most of the Fock term $A_4(k_{f0})^{(\text{F2})} = 1.70$ MeV without Pauli-blocking written in Eq. (7). For the nonfactorizable pieces the representation of the fourth derivative with respect to δ at $\delta = 0$ includes singularities of the form $(u - x)^{-\nu}$, $\nu = 1,2$. When subtracting these singular terms from the integrand only very small numerical values are obtained for the nonfactorizable Hartree contribution. In the case of the quadratic isospin asymmetry energy $A_2(k_{f0})$ one finds that the nonfactorizable pieces (see Eqs. (24) and (26) in Ref. [7]) tend to cancel each other almost completely, as (-11.6 + 12.0) MeV. Therefore, one can expect that the omission of the nonfactorizable pieces does not change much the final result for the quartic isospin asymmetry energy $A_4(k_f)$. However, the observation that the iterated 1π exchange has components with a singular representation of their fourth derivative with respect to δ at $\delta = 0$, indicates that the expansion in Eq. (1) becomes nonanalytic beyond the quadratic order δ^2 . This feature is demonstrated in Sec. III by calculating in closed form the second-order contribution from an *s*-wave contact interaction.

One continues with the contribution of the irreducible 2π exchange to the quartic isospin asymmetry energy. Using a twice-subtracted dispersion relation for the 2π -exchange NN potential in momentum-space and the master formulas in Eqs. (3) and (4), one obtains

$$A_{4}(k_{f})^{(2\pi)} = \frac{1}{81\pi^{3}} \int_{2m_{\pi}}^{\infty} d\mu \left\{ \operatorname{Im}(V_{C} + 2\mu^{2}V_{T}) \left[\frac{7\mu k_{f}}{4} - \frac{2k_{f}^{5}}{3\mu^{3}} - \frac{\mu k_{f}^{3}(7\mu^{2} + 36k_{f}^{2})}{2(\mu^{2} + 4k_{f}^{2})^{2}} - \frac{7\mu^{3}}{16k_{f}} \ln \left(1 + \frac{4k_{f}^{2}}{\mu^{2}} \right) \right] + \operatorname{Im}(W_{C} + 2\mu^{2}W_{T}) \left[\frac{2k_{f}^{5}}{\mu^{3}} + \frac{k_{f}^{3}}{\mu} + \frac{21\mu k_{f}}{4} - \frac{\mu k_{f}^{3}(7\mu^{2} + 36k_{f}^{2})}{2(\mu^{2} + 4k_{f}^{2})^{2}} - \frac{\mu}{16k_{f}} \left(21\mu^{2} + 32k_{f}^{2} \right) \ln \left(1 + \frac{4k_{f}^{2}}{\mu^{2}} \right) \right] \right\}, \quad (8)$$

where Im $V_{C,T}$ and Im $W_{C,T}$ are the spectral functions of the isoscalar and isovector central and tensor NN amplitudes, respectively. These imaginary parts are composed of the functions $\sqrt{\mu^2 - 4m_{\pi}^2}, \sqrt{\mu^2 - 4m_{\pi}^2}/(\mu^2 - 4m_{\pi}^2 + 4\Delta^2)$ and $\arctan(\sqrt{\mu^2 - 4m_{\pi}^2}/2\Delta)$, with $\Delta = 293$ MeV the delta-nucleon mass splitting. Note that due to the implemented subtractions the k_f expansion of $A_4(k_f)^{(2\pi)}$ in Eq. (8) starts with the power k_f^2 . A short-distance contribution proportional to k_f^2 is supplemented by the subtraction constants

$$A_4(k_f)^{(\rm sc)} = \frac{10k_f^5}{(3M)^4} \left(\frac{2B_5}{3} - B_{n,5}\right),\tag{9}$$

with the parameters $B_5 = 0$ and $B_{n,5} = -3.58$ adjusted in Ref. [8] to the empirical nuclear matter saturation point and quadratic isospin asymmetry energy $A_2(k_{f0})^{(\text{emp})} = 34$ MeV.

Finally, in order to complete the small-momentum expansion in the $\Delta(1232)$ -full chiral effective field theory up to three-loop order [8], one considers the long-range three-nucleon interaction generated by 2π exchange and virtual excitation of a $\Delta(1232)$ isobar. The corresponding three-body Hartree contribution reads

$$A_4(k_f)^{(\Delta)} = \frac{g_A^4 m_\pi^6 u^2}{\Delta (6\pi f_\pi)^4} \left\{ \left(\frac{16u^2}{3} + \frac{21}{4} \right) \ln(1 + 4u^2) - \frac{4u^4}{3} - \frac{41u^2}{3} - \frac{2u^2(11 + 99u^2 + 236u^4)}{3(1 + 4u^2)^3} \right\},\tag{10}$$

while the associated three-body Fock term can be represented as $g_A^4 m_\pi^6 (12\pi f_\pi)^{-4} \Delta^{-1} \int_0^u dx J(x,u)$, where the lengthy integrand J(x,u) involves the functions $\arctan(u+x)$ + $\arctan(u-x)$ and $\ln[1 + (u+x)^2] - \ln[1 + (u-x)^2]$. Note that the three-body contact-term proportional to ζ introduced additionally in Ref. [8] does not contribute to the quartic isospin asymmetry energy $A_4(k_f)$.

Summing up all the calculated contributions, one obtains the result for the density-dependent quartic isospin asymmetry energy $A_4(k_f)$ of nuclear matter as shown in Fig. 1 in the density region $0 < \rho < 2\rho_0 = 0.32$ fm⁻³. The predicted value at saturation density $\rho_0 = 0.16$ fm⁻³ is $A_4(k_{f0}) = 1.49$ MeV and this amounts to 3.2 times the free Fermi-gas part $A_4(k_{f0})^{(kin)} =$ 0.464 MeV. For orientation, the density dependence of the kinetic part $A_4(k_f)^{(kin)}$ is shown separately by the dashed line in Fig. 1. It is worth mentioning that interaction contributions to $A_4(k_f)$ start (at least) with the power k_f^5 . The density dependence of the full line in Fig. 1 is to a good approximation $\rho^{5/4}$. For comparison, the variety of phenomenological Skyrme forces give a quartic isospin asymmetry energy $A_4(k_f)^{(Sk)} =$ $k_f^2/162M + k_f^5[3t_1(1 + x_1) + t_2(1 - x_2)]/972\pi^2$ with values typically smaller than 1 MeV at saturation density [13]. Moreover, one can study the sensitivity of the outcome for $A_4(k_{f0})$ on the fitting procedure of the short-range parameter $B_{n,5}$. According to Eq. (46) in Ref. [8] a variation of the quadratic isospin asymmetry energy $A_2(k_f)$ gets scaled down (via $B_{n,5}$) by a factor -27 for the quartic isospin asymmetry energy $A_4(k_f)$. Therefore, taking the lower value $A_2(k_{f0})^{(\text{emp})} = 28$ MeV as a benchmark would lead to a somewhat larger (predicted) value of $A_4(k_{f0}) = 1.7$ MeV. The estimated uncertainty of 0.2 MeV is presumably conservative, since a variation of $A_2(k_{f0})^{(\text{emp})}$ can also be linked to the short-range parameter $B_{n,3}$, which does not at all affect the quartic isospin asymmetry energy $A_4(k_f)$.

III. s-WAVE CONTACT INTERACTION TO SECOND ORDER

The analysis of the Pauli-blocking corrections to the second-order (iterated) 1π exchange has indicated that

FIG. 1. Quartic isospin asymmetry $A_4(k_f)$ as a function of the nucleon density $\rho = 2k_f^3/3\pi^2$.

nonanalytical terms may occur in the δ expansion of the energy per particle of isospin-asymmetric nuclear matter beyond the quadratic order. In the extreme case there could be a cubic term $|\delta|^3$, which after all is even under the exchange of protons and neutrons: $\delta \rightarrow -\delta$. In order to clarify the situation, one considers an *s*-wave contact interaction,

$$V_{\rm ct} = \frac{\pi}{M} [a_s + 3a_t + (a_t - a_s)\vec{\sigma}_1 \cdot \vec{\sigma}_2],$$
(11)

and examines it in second-order many-body perturbation theory. For this simple interaction, the occurring nine-dimensional principal-value integrals over three Fermi spheres with (at most) two different radii, k_p or k_n , can be solved in closed analytical form. The pertinent function to express the result in the isospin-asymmetric configuration of interest is

$$35 \int_{0}^{1} dz (z - z^{4}) \left\{ 2xz + (x^{2} - z^{2}) \ln \frac{x + z}{|x - z|} \right\}$$
$$= \frac{x}{2} (15 + 33x^{2} - 4x^{4}) + \frac{1}{4} (42x^{2} - 15 - 35x^{4}) \ln \frac{x + 1}{|x - 1|}$$
$$+ 2x^{7} \ln \frac{x^{2}}{|x^{2} - 1|}, \qquad (12)$$

where the variable x > 0 is set to a ratio of Fermi momenta, $[(1 + \delta)/(1 - \delta)]^{\pm 1/3}$ or 1. Note that the function defined in Eq. (12) has at x = 1 the value $22 - 4 \ln 2$. Combining the second-order Hartree and Fock diagrams generated by $V_{\rm ct}$ according to their spin- and isospin-factors and performing the expansion in powers of δ , one obtains the following result for the energy per particle:

$$\bar{E}_{as}(k_p,k_n)^{(2nd)} = \frac{k_f^4}{5\pi^2 M} \left\{ \frac{3}{7} \left(a_s^2 + a_t^2 \right) (11 - 2\ln 2) + \frac{4\delta^2}{3} \left[a_s^2 (3 - \ln 2) - a_t^2 (2 + \ln 2) \right] \right\}$$

FIG. 2. Dependence of the second-order energy per particle $\bar{E}_{as}(k_p,k_n)^{(2nd)}$ on the isospin asymmetry δ . Three different choices for the scattering lengths, $a_s = a_t$, $a_t = 0$, and $a_s = 0$, are considered.

$$+ \frac{\delta^{4}}{81} \left[a_{s}^{2} \left(10 \ln \frac{|\delta|}{3} + 2 \ln 2 - \frac{41}{6} \right) + a_{t}^{2} \left(30 \ln \frac{|\delta|}{3} + 2 \ln 2 + \frac{3}{2} \right) \right] + \mathcal{O}(\delta^{6}) \right\}.$$
(13)

The crucial and novel feature which becomes evident from this expression is the presence of the nonanalytical logarithmic term $\delta^4 \ln(|\delta|/3)$. Interestingly, the corresponding coefficient is three times as large in the spin-triplet channel as in the spinsinglet channel. For comparison the first-order contribution of the *s*-wave contact interaction V_{ct} reads $\bar{E}_{as}(k_p,k_n)^{(1st)} = k_f^3[-a_s - a_t + \delta^2(a_t - a_s/3)]/2\pi M$, without any higher powers of δ . Note that the sign convention for the scattering lengths $a_{s,t}$ has been chosen here such that positive values correspond to attraction. As a check the same results at first and second order have been derived by using the alternative (and equivalent) form of the *s*-wave contact interaction, $V'_{ct} = \pi[3a_s + a_t + (a_s - a_t)\vec{\tau}_1 \cdot \vec{\tau}_2]/M$.

In Fig. 2 the dependence of the second-order energy per particle $\bar{E}_{as}(k_p,k_n)^{(2nd)}$ on the isospin asymmetry parameter δ is shown for three different choices of the *s*-wave scattering lengths: $a_s = a_t, a_t = 0$, and $a_s = 0$. In each case the full line shows the exact result and the (nearby) dashed line gives the expansion in powers of δ truncated at fourth order according to Eq. (13). One observes that these expansions [including the nonanalytical logarithmic term $\delta^4 \ln(|\delta|/3)$] reproduce the full δ dependence very well over the whole range $-1 \leq \delta \leq 1$. Note also that the prefactor $k_f^4 a_{s,t}^2/5\pi^2 M$ of dimension energy has been scaled out in Fig. 2.

If one performs for the second-order energy density the fourth derivative with respect to δ at $\delta = 0$ under the integral, then one encounters integrands with singularities of the form $(1 - z)^{-\nu}$, $\nu = 1,2$. The origin of these singularities, or in the proper treatment the nonanalytical term $\delta^4 \ln(|\delta|/3)$, lies in the energy denominator of second-order diagrams. For an infinite (normal) many-fermion system the energy spectrum

has a vanishing gap between bound states in the Fermi sea and excited states in the continuum. Such a gapless energy spectrum causes a singularity, respectively a nonanalyticity, if small asymmetries of the Fermi levels of two components are analyzed with too high resolution.

In summary, it has been demonstrated that the nonanalytical term $\delta^4 \ln(|\delta|/3)$ will be generically present in calculations of isospin-asymmetric nuclear matter when going beyond the mean-field approximation. Therefore, a term $\delta^4 \ln |\delta|$ should

be included in future fits of the equation of state of (zerotemperature) isospin-asymmetric nuclear matter and its role should be further examined.

ACKNOWLEDGMENTS

I thank C. Drischler, A. Schwenk and C. Wellenhofer for informative discussions. This work has been supported in part by the DFG and the NSFC (CRC 110).

- [1] B.-A. Li, A. Ramos, G. Verde, and I. Vidaña, Eur. Phys. J. A 50, 9 (2014).
- [2] I. Bombaci and U. Lombardo, Phys. Rev. C 44, 1892 (1991).
- [3] C. Drischler, V. Soma, and A. Schwenk, Phys. Rev. C 89, 025806 (2014).
- [4] A. W. Steiner, Phys. Rev. C 74, 045808 (2006); C. Ducoin, J. Margueron, and P. Chomaz, Nucl. Phys. A 809, 30 (2008); W. M. Seif and D. N. Basu, Phys. Rev. C 89, 028801 (2014), and references therein.
- [5] B.-J. Cai and B.-A. Li, arXiv:1503.01167.
- [6] C. Drischler, Master's thesis, TU-Darmstadt, 2014 (unpublished).
- [7] N. Kaiser, S. Fritsch, and W. Weise, Nucl. Phys. A 697, 255 (2002).

- [8] S. Fritsch, N. Kaiser, and W. Weise, Nucl. Phys. A 750, 259 (2005).
- [9] N. Kaiser, Nucl. Phys. A 768, 99 (2006).
- [10] S. Fiorilla, N. Kaiser, and W. Weise, Nucl. Phys. A 880, 65 (2012).
- [11] S. Fiorilla, N. Kaiser, and W. Weise, Phys. Lett. B 714, 251 (2012).
- [12] J. W. Holt, N. Kaiser, and W. Weise, Prog. Part. Nucl. Phys. 73, 35 (2013).
- [13] L. W. Chen, B. J. Cai, C. M. Ko, B. A. Li, C. Shen, and J. Xu, Phys. Rev. C 80, 014322 (2009). The expression for the quartic isospin asymmetry energy given at the end of Sec. III B needs to be corrected as follows: $t_1 \leftrightarrow t_2$ and $x_1 \leftrightarrow x_2$.