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Quartic isospin asymmetry energy of nuclear matter from chiral pion-nucleon dynamics
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Based on a chiral approach to nuclear matter, the quartic term in the expansion of the equation of state of
isospin-asymmetric nuclear matter is calculated. The contributions to the quartic isospin asymmetry energy
A4(kf ) arising from 1π exchange and chiral 2π exchange in nuclear matter are calculated analytically together
with three-body terms involving virtual �(1232) isobars. From these interaction terms one obtains at saturation
density ρ0 = 0.16 fm−3 the value A4(kf 0) = 1.5 MeV, more than three times as large as the kinetic energy part.
Moreover, iterated 1π exchange exhibits components for which the fourth derivative with the respect to the
isospin asymmetry parameter δ becomes singular at δ = 0. The genuine presence of a nonanalytical term δ4 ln |δ|
in the expansion of the energy per particle of isospin-asymmetric nuclear matter is demonstrated by evaluating
an s-wave contact interaction at second order.
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I. INTRODUCTION AND SUMMARY

The determination of the equation of state of isospin-
asymmetric nuclear matter has been a longstanding goal shared
by both nuclear physics and astrophysics [1]. Usually one
assumes a parabolic form for the energy per nucleon at zero
temperature, Ēas(ρp,ρn) = Ē(ρ) + A2(ρ) δ2 + O(δ4), where
ρ = ρp + ρn is the total nucleon density and δ = (ρn − ρp)/ρ
the isospin asymmetry related to unequal proton and neutron
densities ρp �= ρn. The validity of the quadratic approximation
has been verified with good numerical accuracy from isospin-
symmetric nuclear matter (δ = 0) up to pure neutron matter
(δ = 1) by most of the existing nuclear many-body theories
using various interactions [2,3]. Nonetheless, it has been
shown consistently in numerous studies [4] that for some
properties of neutron stars, such as the proton fraction at beta
equilibrium, the core-crust transition density and the critical
density for the direct Urca process to occur, even a very small
quartic isospin asymmetry energy A4(ρ) (multiplied with δ4

in the expansion of the energy per nucleon) can make a big
difference.

Given the fact that all the available numerical solutions
of the nuclear many-body problem confirm the validity of the
quadratic approximation, the quartic isospin asymmetry A4(ρ)
should be rather small. However, in the recent work by Cai
and Li [5], which employs an empirically constrained isospin-
dependent single-nucleon momentum distribution and the
equation of state of pure neutron matter near the unitary limit, a
significant quartic term of A4(ρ0)(kin) = (7.2 ± 2.5) MeV has
been found from the kinetic energy of interacting nucleons.
This value amounts to about 16 times the free Fermi gas
prediction; see Eq. (2). On the other hand, recent calculations
of isospin-asymmetric nuclear matter based on chiral low-
momentum interactions and many-body perturbation theory
[6] lead to a small value of A4(ρ0) � 1 MeV.

The purpose of the present paper it to give a prediction
for the density-dependent quartic isospin asymmetry energy
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A4(kf ) in the chiral approach to nuclear matter developed
in Refs. [7,8]. In this approach the long- and medium-range
nucleon-nucleon (NN) interactions arising from multipion
exchange are treated explicitly and a few parameters encoding
the relevant short-distance dynamics are adjusted to bulk
properties of nuclear matter. A systematic expansion in small
momenta is performed up to three-loop order. Single-particle
potentials [8], quasiparticle interactions [9], the thermo-
dynamic behavior of nuclear matter at finite temperatures
[10], and the density dependence of the in-medium quark
condensate [11] follow then as predictions in that framework
(see also the recent review article [12]).

The present paper is organized as follows. In Sec. II,
analytical expressions are given for the contributions to the
quartic isospin asymmetry energy A4(kf ) as they arise from
1π exchange and chiral 2π exchange. The three-nucleon
interaction generated by 2π exchange and excitation of a
virtual �(1232) isobar is considered as well. These interaction
contributions lead at saturation density ρ0 = 0.16 fm−3 (or
kf 0 = 263 MeV) to the (small) value A4(kf 0) = 1.5 MeV,
which amounts to about three times the kinetic energy part.
Moreover, in the course of the calculation one encounters
components of the second-order 1π exchange whose rep-
resentation of the fourth derivative with the respect to δ
at δ = 0 is singular. In Sec. III, the generic presence of a
non-analytical term δ4 ln |δ| in the expansion of the energy per
particle of isospin-asymmetric nuclear matter is demonstrated
by calculating in closed form the second-order contribution
from an s-wave contact interaction. Clearly, after having
established its existence, the nonanalytical term δ4 ln |δ| should
be included in future fits of the equation of state of (zero-
temperature) isospin-asymmetric nuclear matter.

II. ONE-PION AND TWO-PION
EXCHANGE CONTRIBUTIONS

In this section the expressions for the quartic isospin
asymmetry A4(kf ) are given as they arise from one-pion and
two-pion exchange diagrams following Refs. [7,8]. Isospin-
asymmetric (spin-saturated) nuclear matter is characterized by
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different proton and neutron Fermi momenta, kp,n = kf (1 ∓
δ)1/3. Expanding the energy per particle at fixed nucleon
density ρ = 2k3

f /3π2 in the isospin asymmetry parameter δ
up to fourth order gives

Ēas(kp,kn) = Ē(kf ) + δ2A2(kf ) + δ4A4(kf ) + O(δ6), (1)

with A2(kf ) the (usual) quadratic isospin asymmetry energy.
The density-dependent expansion coefficients Ē(kf ),A2(kf ),
and A4(kf ) are viewed as functions of the Fermi momentum
kf , since in this form they emerge directly from the calculation.
The first contribution to A4(kf ) comes from the relativistically
improved kinetic energy Tkin(p) = p2/2M − p4/8M3, and it

reads

A4(kf )(kin) = k2
f

162M

(
1 + k2

f

4M2

)
, (2)

with M = 939 MeV the average nucleon mass. The cor-
responding value at nuclear matter saturation density ρ0 =
0.16 fm−3 (or at Fermi momentum kf 0 = 263 MeV) is
A4(kf 0)(kin) = 0.464 MeV. The (positive) relativistic 1/M3

correction in Eq. (2) amounts to about 2%.
For the treatment of two-body interactions that depend on

the momentum transfer | �p1 − �p2|, the following expansion
formulas for six-dimensional integrals over two Fermi spheres
are most helpful:

∫
d3p1d

3p2

(2π )6
F (| �p1 − �p2|)[θ (kp − | �p1|) θ (kp − | �p2|) + θ (kn − | �p1|) θ (kn − | �p2|)]

= 2k6
f

3π4

∫ 1

0
dz

{[
z2(1 − z)2(2 + z) + δ2z3

3

]
F (2zkf ) + δ4kf

162
[F ′(2kf ) − 7z4F ′(2zkf )]

}
, (3)

∫
d3p1d

3p2

(2π )6
F (| �p1 − �p2|) θ (kp − | �p1|) θ (kn − | �p2|)

= k6
f

3π4

∫ 1

0
dz

{[
z2(1 − z)2(2 + z) + δ2z

3
(z2 − 1)

]
F (2zkf ) + δ4kf

162
(8z2 − 1 − 7z4)F ′(2zkf )

}
. (4)

The z-dependent weighting functions at order δ2 and δ4 have been obtained by applying several partial integrations. The
contribution of the 1π -exchange Fock diagram to the quartic isospin asymmetry energy reads

A4(kf )(1π) = g2
Am3

π

(36πfπ )2

{(
4u + 21

8u

)
ln(1 + 4u2) − 2u3 − 33u

4
− u(9 + 44u2)

4(1 + 4u2)2

+m2
π

M2

[
2u5 + 2u3 + 3u

8
− u3 ln(1 + 4u2) − u(3 + 16u2)

8(1 + 4u2)2
− 3u2

2
arctan 2u

]}
, (5)

with the dimensionless variable u = kf /mπ . The occurring physical parameters are: nucleon axial-vector coupling constant
gA = 1.3, (neutral) pion mass mπ = 135 MeV, and pion decay constant fπ = 92.4 MeV. The second line in Eq. (5) gives the
relativistic 1/M2 correction. It amounts at density ρ0 = 0.16 fm−3 to a reduction of the static 1π -exchange contribution by about
16%.

Next in the chiral expansion comes the iterated (second-order) 1π exchange. With two medium insertions 1
2 (1 + τ3)θ (kp −

| �pi |) + 1
2 (1 − τ3)θ (kn − | �pi |) one gets a Hartree contribution of the form

A4(kf )(H2) = g4
AMm4

π

(24π )3f 4
π

{
10u3 − 61u

2
+ 200u2 + 49

6u
ln(1 + 4u2) − u(13 + 60u2)

6(1 + 4u2)2
− 128u2

3
arctan 2u

}
, (6)

and the corresponding Fock exchange-term reads

A4(kf )(F2) = g4
AMm4

π

(12π )3f 4
π

{
u

8
− u3

3
− u

12(1 + 2u2)
− u

24(1 + u2)
+ u4 arctan u + u2(2 + 11u2 + 16u4)

6(1 + 2u2)2
[arctan u − arctan 2u]

+
∫ u

0
dx

21x2 − 16u2

6u(1 + 2x2)
[(1 + 8x2 + 8x4) arctan x − (1 + 4x2) arctan 2x]

}
. (7)

Pauli-blocking effects at second order are included through
diagrams with three (isospin-asymmetric) medium insertions
[7]. Here only the factorizable Fock contribution is considered
for which the energy denominator gets canceled by factors
from the momentum-dependent πN vertices (see Eqs. (11)
and (26) in Ref. [7]). Its contribution to the quartic isospin
asymmetry energy can be represented as a one-parameter

integral, A4(kf )(fac) = g4
AMm4

π (12πfπ )−4
∫ u

0 dx I (x,u),
where the lengthy integrand I (x,u) involves the function
ln[1 + (u + x)2] − ln[1 + (u − x)2] and its square. The
corresponding value at saturation density is A4(kf 0)(fac) =
−1.35 MeV, thus counterbalancing most of the Fock term
A4(kf 0)(F2) = 1.70 MeV without Pauli-blocking written in
Eq. (7). For the nonfactorizable pieces the representation
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of the fourth derivative with respect to δ at δ = 0 includes
singularities of the form (u − x)−ν, ν = 1,2. When subtracting
these singular terms from the integrand only very small
numerical values are obtained for the nonfactorizable Hartree
contribution. In the case of the quadratic isospin asymmetry
energy A2(kf 0) one finds that the nonfactorizable pieces (see
Eqs. (24) and (26) in Ref. [7]) tend to cancel each other almost
completely, as (−11.6 + 12.0) MeV. Therefore, one can
expect that the omission of the nonfactorizable pieces does not
change much the final result for the quartic isospin asymmetry
energy A4(kf ). However, the observation that the iterated 1π

exchange has components with a singular representation of
their fourth derivative with respect to δ at δ = 0, indicates
that the expansion in Eq. (1) becomes nonanalytic beyond the
quadratic order δ2. This feature is demonstrated in Sec. III by
calculating in closed form the second-order contribution from
an s-wave contact interaction.

One continues with the contribution of the irreducible 2π
exchange to the quartic isospin asymmetry energy. Using
a twice-subtracted dispersion relation for the 2π -exchange
NN potential in momentum-space and the master formulas in
Eqs. (3) and (4), one obtains

A4(kf )(2π) = 1

81π3

∫ ∞

2mπ

dμ

{
Im(VC + 2μ2VT )

[
7μkf

4
− 2k5

f

3μ3
− μk3

f

(
7μ2 + 36k2

f

)
2
(
μ2 + 4k2

f

)2 − 7μ3

16kf

ln

(
1 + 4k2

f

μ2

)]

+ Im(WC + 2μ2WT )

[
2k5

f

μ3
+ k3

f

μ
+ 21μkf

4
− μk3

f

(
7μ2 + 36k2

f

)
2
(
μ2 + 4k2

f

)2 − μ

16kf

(
21μ2 + 32k2

f

)
ln

(
1 + 4k2

f

μ2

)]}
, (8)

where Im VC,T and Im WC,T are the spectral functions of the isoscalar and isovector central and tensor NN amplitudes, respectively.
These imaginary parts are composed of the functions

√
μ2 − 4m2

π ,
√

μ2 − 4m2
π/(μ2 − 4m2

π + 4�2) and arctan(
√

μ2 − 4m2
π/2�),

with � = 293 MeV the delta-nucleon mass splitting. Note that due to the implemented subtractions the kf expansion of A4(kf )(2π)

in Eq. (8) starts with the power k7
f . A short-distance contribution proportional to k5

f is supplemented by the subtraction constants

A4(kf )(sc) = 10k5
f

(3M)4

(
2B5

3
− Bn,5

)
, (9)

with the parameters B5 = 0 and Bn,5 = −3.58 adjusted in Ref. [8] to the empirical nuclear matter saturation point and quadratic
isospin asymmetry energy A2(kf 0)(emp) = 34 MeV.

Finally, in order to complete the small-momentum expansion in the �(1232)-full chiral effective field theory up to three-loop
order [8], one considers the long-range three-nucleon interaction generated by 2π exchange and virtual excitation of a �(1232)
isobar. The corresponding three-body Hartree contribution reads

A4(kf )(�) = g4
Am6

πu2

�(6πfπ )4

{(
16u2

3
+ 21

4

)
ln(1 + 4u2) − 4u4

3
− 41u2

3
− 2u2(11 + 99u2 + 236u4)

3(1 + 4u2)3

}
, (10)

while the associated three-body Fock term can be rep-
resented as g4

Am6
π (12πfπ )−4�−1

∫ u

0 dx J (x,u), where the
lengthy integrand J (x,u) involves the functions arctan(u + x)
+ arctan(u − x) and ln[1 + (u + x)2] − ln[1 + (u − x)2].
Note that the three-body contact-term proportional to ζ
introduced additionally in Ref. [8] does not contribute to the
quartic isospin asymmetry energy A4(kf ).

Summing up all the calculated contributions, one obtains
the result for the density-dependent quartic isospin asymmetry
energy A4(kf ) of nuclear matter as shown in Fig. 1 in the den-
sity region 0 < ρ < 2ρ0 = 0.32 fm−3. The predicted value at
saturation density ρ0 = 0.16 fm−3 is A4(kf 0) = 1.49 MeV and
this amounts to 3.2 times the free Fermi-gas part A4(kf 0)(kin) =
0.464 MeV. For orientation, the density dependence of the
kinetic part A4(kf )(kin) is shown separately by the dashed line
in Fig. 1. It is worth mentioning that interaction contributions
to A4(kf ) start (at least) with the power k5

f . The density
dependence of the full line in Fig. 1 is to a good approximation
ρ5/4. For comparison, the variety of phenomenological Skyrme
forces give a quartic isospin asymmetry energy A4(kf )(Sk) =

k2
f /162M + k5

f [3t1(1 + x1) + t2(1 − x2)]/972π2 with values
typically smaller than 1 MeV at saturation density [13].
Moreover, one can study the sensitivity of the outcome for
A4(kf 0) on the fitting procedure of the short-range parameter
Bn,5. According to Eq. (46) in Ref. [8] a variation of
the quadratic isospin asymmetry energy A2(kf ) gets scaled
down (via Bn,5) by a factor −27 for the quartic isospin
asymmetry energy A4(kf ). Therefore, taking the lower value
A2(kf 0)(emp) = 28 MeV as a benchmark would lead to a
somewhat larger (predicted) value of A4(kf 0) = 1.7 MeV. The
estimated uncertainty of 0.2 MeV is presumably conservative,
since a variation of A2(kf 0)(emp) can also be linked to the
short-range parameter Bn,3, which does not at all affect the
quartic isospin asymmetry energy A4(kf ).

III. s-WAVE CONTACT INTERACTION
TO SECOND ORDER

The analysis of the Pauli-blocking corrections to the
second-order (iterated) 1π exchange has indicated that
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FIG. 1. Quartic isospin asymmetry A4(kf ) as a function of the
nucleon density ρ = 2k3

f /3π 2.

nonanalytical terms may occur in the δ expansion of the energy
per particle of isospin-asymmetric nuclear matter beyond the
quadratic order. In the extreme case there could be a cubic
term |δ|3, which after all is even under the exchange of protons
and neutrons: δ → −δ. In order to clarify the situation, one
considers an s-wave contact interaction,

Vct = π

M
[as + 3at + (at − as) �σ1 · �σ2], (11)

and examines it in second-order many-body perturbation the-
ory. For this simple interaction, the occurring nine-dimensional
principal-value integrals over three Fermi spheres with (at
most) two different radii, kp or kn, can be solved in closed
analytical form. The pertinent function to express the result in
the isospin-asymmetric configuration of interest is

35
∫ 1

0
dz (z − z4)

{
2xz + (x2 − z2) ln

x + z

|x − z|
}

= x

2
(15 + 33x2 − 4x4) + 1

4
(42x2 − 15 − 35x4) ln

x + 1

|x−1|

+ 2x7 ln
x2

|x2 − 1| , (12)

where the variable x > 0 is set to a ratio of Fermi momenta,
[(1 + δ)/(1 − δ)]±1/3 or 1. Note that the function defined in
Eq. (12) has at x = 1 the value 22 − 4 ln 2. Combining the
second-order Hartree and Fock diagrams generated by Vct

according to their spin- and isospin-factors and performing
the expansion in powers of δ, one obtains the following result
for the energy per particle:

Ēas(kp,kn)(2nd) = k4
f

5π2M

{
3

7

(
a2

s + a2
t

)
(11 − 2 ln 2)

+ 4δ2

3

[
a2

s (3 − ln 2) − a2
t (2 + ln 2)

]
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FIG. 2. Dependence of the second-order energy per particle
Ēas(kp,kn)(2nd) on the isospin asymmetry δ. Three different choices
for the scattering lengths, as = at , at = 0, and as = 0, are considered.

+ δ4

81

[
a2

s

(
10 ln

|δ|
3

+ 2 ln 2 − 41

6

)

+ a2
t

(
30 ln

|δ|
3

+ 2 ln 2 + 3

2

)]
+ O(δ6)

}
.

(13)

The crucial and novel feature which becomes evident from
this expression is the presence of the nonanalytical logarithmic
term δ4 ln(|δ|/3). Interestingly, the corresponding coefficient
is three times as large in the spin-triplet channel as in the spin-
singlet channel. For comparison the first-order contribution
of the s-wave contact interaction Vct reads Ēas(kp,kn)(1st) =
k3
f [−as − at + δ2(at − as/3)]/2πM , without any higher pow-

ers of δ. Note that the sign convention for the scattering
lengths as,t has been chosen here such that positive values
correspond to attraction. As a check the same results at first
and second order have been derived by using the alternative
(and equivalent) form of the s-wave contact interaction, V ′

ct =
π [3as + at + (as − at ) �τ1 · �τ2]/M .

In Fig. 2 the dependence of the second-order energy per
particle Ēas(kp,kn)(2nd) on the isospin asymmetry parameter δ
is shown for three different choices of the s-wave scattering
lengths: as = at , at = 0, and as = 0. In each case the full line
shows the exact result and the (nearby) dashed line gives the
expansion in powers of δ truncated at fourth order according
to Eq. (13). One observes that these expansions [including the
nonanalytical logarithmic term δ4 ln(|δ|/3)] reproduce the full
δ dependence very well over the whole range −1 � δ � 1.
Note also that the prefactor k4

f a2
s,t /5π2M of dimension energy

has been scaled out in Fig. 2.
If one performs for the second-order energy density the

fourth derivative with respect to δ at δ = 0 under the integral,
then one encounters integrands with singularities of the form
(1 − z)−ν, ν = 1,2. The origin of these singularities, or in
the proper treatment the nonanalytical term δ4 ln(|δ|/3), lies
in the energy denominator of second-order diagrams. For an
infinite (normal) many-fermion system the energy spectrum
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has a vanishing gap between bound states in the Fermi sea
and excited states in the continuum. Such a gapless energy
spectrum causes a singularity, respectively a nonanalyticity, if
small asymmetries of the Fermi levels of two components are
analyzed with too high resolution.

In summary, it has been demonstrated that the nonanalytical
term δ4 ln(|δ|/3) will be generically present in calculations of
isospin-asymmetric nuclear matter when going beyond the
mean-field approximation. Therefore, a term δ4 ln |δ| should

be included in future fits of the equation of state of (zero-
temperature) isospin-asymmetric nuclear matter and its role
should be further examined.
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