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Previous measurements of a quadrupole component of azimuth correlations denoted by symbol v2 have been
interpreted to represent elliptic flow, a hydrodynamic phenomenon conjectured to play a major role in noncentral
nucleus-nucleus collisions. v2 measurements provide the main support for conclusions that a “perfect liquid”
is formed in heavy-ion collisions at the Relativistic Heavy Ion Collider. However, conventional v2 methods
based on one-dimensional (1D) azimuth correlations give inconsistent results and may include a jet contribution.
In some cases the data trends appear to be inconsistent with hydrodynamic interpretations. In this study we
distinguish several components of 2D angular correlations and isolate a nonjet (NJ) azimuth quadrupole denoted
by v2{2D}. We establish systematic variations of the NJ quadrupole on yt , centrality, and collision energy. We
adopt transverse-rapidity yt as both a velocity measure and a logarithmic alternative to transverse momentum
pt . Based on NJ-quadrupole trends, we derive a completely factorized universal parametrization of quantity
v2{2D}(yt ,b,

√
sNN ) which describes the centrality, yt , and energy dependence. From yt -differential v2(yt ) data we

isolate a quadrupole spectrum and infer a quadrupole source boost having unexpected properties. NJ quadrupole
v2 trends obtained with 2D model fits are remarkably simple. The centrality trend appears to be uncorrelated with
a sharp transition in jet-related structure that may indicate rapid change of Au-Au medium properties. The lack
of correspondence suggests that the NJ quadrupole may be insensitive to such a medium. Several quadrupole
trends have interesting implications for hydro interpretations.
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I. INTRODUCTION

Measurements of the quadrupole component of azimuth
φ correlations from Relativistic Heavy Ion Collider (RHIC)
heavy-ion collisions in the form v2 = 〈cos(2 φ)〉 relative to
estimates of the A-A reaction-plane angle are conventionally
interpreted to represent elliptic flow, a conjectured hydrody-
namic response to pressure gradients in the initial collision
system corresponding to the overlap eccentricity of colliding
nuclei [1]. In a hydrodynamic (hydro) context [2–4] inferred
large elliptic flow values combined with other measurements
are interpreted to imply rapid thermalization and production of
a QCD medium with large energy density and small viscosity
described as a “perfect liquid” [5–7].

However, questions persist concerning v2 measurements
and interpretations. Conventional one-dimensional (1D) v2

methods [8,9] may not distinguish accurately between a nonjet
(NJ) azimuth quadrupole (cylindrical multipole uniform on
pseudorapidity η over a significant interval near midrapidity)
and certain jet-related angular correlations that vary strongly
with η near midrapidity [10–13]. The terms jet-related and
nonjet are discussed in Sec. II B.

In previous studies we introduced a physical-model-
independent method to distinguish geometrically between a
NJ quadrupole and the quadrupole (m = 2) Fourier component
of jet-related angular correlations dominated by a 2D peak
centered at the origin on η and φ difference variables [14,15].
The notation v2{2D} distinguishes the quadrupole component
derived from model fits to 2D histograms from v2{method}
data inferred with conventional 1D methods. We observed
that pt -integral v2{2D}(b,

√
sNN ) data follow simple trends

described by a few parameters over a broad range of centrality
and collision energy

√
sNN above 13 GeV. The trends factorize,

each factor described by a simple function. That analysis was
complementary to an analysis reported in Ref. [16] focusing
on jet-related structure.

In the present study we extend the NJ-quadrupole program
to measurements of yt -differential v2{2D}(yt ,b,

√
sNN ) also

derived from 2D model fits. As an alternative to transverse mo-
mentum pt , we introduce transverse-rapidity yt as a logarith-
mic variable (defined below) compatible with relativistic boost
measurements. From yt -differential v2{2D} data it is possible
to infer a quadrupole source boost distribution common to
hadrons of several species [17,18]. In this study we determine
the Au-Au centrality dependence of the quadrupole source
boost. We also infer a corresponding quadrupole spectrum
common to several hadron species [18] and substantially
different from the spectrum for most final-state hadrons. Those
results offer new insights into possible mechanisms for the NJ
azimuth quadrupole.

This paper is arranged as follows. In Sec. II we introduce
some general correlation analysis methods. In Secs. III and IV
we describe two alternative methods for estimating azimuth
quadrupole components of angular correlations. In Sec. V we
introduce measured yt -differential 2D angular autocorrelations
(histograms) derived from particle data. In Sec. VI we review
systematic model-parameter trends from model fits to the 2D
data histograms. In Sec. VII we define the quadrupole source
boost and determine its centrality dependence. In Sec. VIII
we extract quadrupole spectra and describe the centrality
dependence. In Sec. IX we derive a universal factorized
parametrization of NJ quantity v2{2D}(yt ,b,

√
sNN ). In Sec. X

we discuss systematic uncertainties, and in Sec. XI we present
comparisons between quadrupole amplitudes derived from 2D
fits to angular correlations and from other v2 methods. In
Secs. XII and XIII we present discussion and summary.
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II. GENERAL ANALYSIS METHODS

In this study we report measurements of yt -differential
V 2

2 {2D}(yt ,b) NJ azimuth power-spectrum elements derived
from model fits to 2D angular correlations. Transverse-
rapidity yt (defined below) serves as a logarithmic measure
of transverse momentum pt .

A. Kinematic measures and spaces

A-A collisions with impact parameter b produce final-state
hadrons in cylindrical 3D momentum space (pt ,η,φ), where pt

is transverse momentum, η is pseudorapidity, and φ is azimuth

angle. Transverse mass is mt =
√

p2
t + m2

h with hadron mass
mh. Pseudorapidity is defined by η = − ln[tan(θ/2)] (θ is polar
angle relative to collision axis z), and η ≈ cos(θ ) near η = 0.
Transverse rapidity is defined by yt = ln[(mt + pt )/mh]. For
identified hadrons the proper hadron mass is used and yt is
then a velocity measure appropriate to test flow conjectures.
For unidentified hadrons yt with pion mass assumed (about
80% of hadrons) serves as a logarithmic measure of pt , and
the pion mass regularizes the logarithmic trend for small
values of pt . The solenoidal tracker at RHIC (STAR) Time
Projection Chamber (TPC) acceptance pt > 0.15 GeV/c
corresponds to yt > 1.

Two-particle correlations are structures in the pair density
on 6D momentum space (yt1,η1,φ1,yt2,η2,φ2). Angular corre-
lations can be measured on subspace (η1,η2,φ1,φ2) given some
conditions on transverse momentum (pt1,pt1) or transverse-
rapidity (yt1,yt2). We can integrate over all yt (yt -integral
analysis) or define conditions on two particles (yt1,yt2) (yt -
differential analysis). Alternatively, we can integrate over some
part of the angular acceptance (angular acceptance conditions)
to study conditional correlations on (yt1,yt2) [19–22].

An autocorrelation on angular subspace (x1,x2) is derived
by averaging pair density ρ(x1,x2) along diagonals on (x1,x2)
parallel to the sum axis x� = x1 + x2y. The averaged pair
density ρ(x�) on defined difference variable x� = x1 − x2 is
then an autocorrelation [23]. For correlation structure approx-
imately independent of x� over some limited acceptance �x
(stationarity, typical over 2π azimuth and within some lim-
ited pseudorapidity interval �η) angular correlations remain
undistorted (no information is lost in the projection by aver-
aging) [24]. Within the STAR TPC acceptance �η = 2,�φ =
2π [25] 2D angular autocorrelations are lossless projections
of 6D two-particle momentum space onto angle difference
axes (η�,φ�) [26]. The φ� axis is divided into same-side (SS,
|φ�| < π/2) and away-side (AS, π/2 < |φ�| < π ) regions.

In the present analysis we impose conditions on the space
(yt1,yt2) to establish the full (yt ,b,

√
sNN ) systematics of

angular correlations, emphasizing the NJ quadrupole obtained
from 2D model fits via two model parameters: per-particle
quadrupole amplitude AQ{2D} or per-pair amplitude BQ{2D}
(terms defined below).

B. Correlation structure and interpretations

The 2D data histograms that form the basis for this study
(within the STAR TPC acceptance) exhibit the same three
dominant features from p-p to central Au-Au collisions:

(a) a SS 2D peak centered at the origin on (η�,φ�), (b) an AS
1D peak centered at φ� = π and approximately uniform on
η�, and (c) an azimuth quadrupole component uniform on η�.
Those three elements are distinguished in all cases by model
fits to 2D angular correlations on η� and φ�. Component (a)
is well-described by a SS 2D Gaussian in most cases. With
increasing A-A centrality the SS peak is elongated on η�.
If high-pt (trigger-associated) cuts are applied, the SS peak
may develop non-Gaussian tails on η�. Component (b) is well
described by a single AS dipole term.

In p-p and more-peripheral Au-Au collisions components
(a) and (b) represent intrajet and interjet correlations,
respectively: Their amplitudes scale with the number of binary
N -N collisions Nbin as expected for dijets, and their forms
are consistent with perturbative quantum chromodynamics
(pQCD) jet structure predicted by PYTHIA [27] and HIJING [28].
They both retain the same forms and follow Nbin scaling (N -N
linear superposition) in Au-Au collisions up to 50% central-
ity [16]. Throughout that centrality interval it is therefore
appropriate to refer to (a) and (b) as jet-related structures. In
more-central Au-Au collisions (above a sharp transition near
50% centrality [16]) the SS 2D peak becomes increasingly
elongated on η�, and the peak amplitude increases faster than
Nbin scaling. However, other features of the SS peak remain
consistent with jet production [29]. The AS dipole amplitude
closely follows the SS 2D peak amplitude and also remains
consistent with jet expectations. Nevertheless, other (nonjet)
interpretations have been proposed for those structures [30,31].

Azimuth quadrupole component (c) appears to be uncor-
related with jet-related components (a) and (b), for example,
exhibiting a smooth centrality dependence with no evidence of
the sharp transition [14,16]. In that context it is appropriate to
refer to (c) as the NJ quadrupole. The NJ quadrupole inferred
from 2D model fits (represented by symbol v2{2D}) is an
isolated quadrupole structure uniform on η near midrapidity
with maxima at 0 and π on azimuth. Its form is then consistent
with conventional expectations for “elliptic flow” if that
physical mechanism is relevant. The SS 2D peak (a) projected
onto 1D azimuth can be modeled as a narrow Gaussian with its
own Fourier series representation [32]. The SS peak Fourier
terms then contribute to any 1D Fourier description of all
correlation structures combined. Resulting series terms vm

then include admixtures of elements (a), (b), and (c). In this
study we show that multiple (physical) contributions to such a
1D Fourier series can be distinguished. We therefore refer to
NJ quadrupole (c) as the object of the present study distinct
from a jet-related quadrupole derived from (a), which may be
a source of systematic error for 1D v2 analysis [33].

C. Joint and marginal distributions on ( yt1, yt2)

This analysis addresses angular correlation systematics
corresponding to various cut conditions on space (yt1,yt2).
Figure 1 (left panel) shows the relation between trans-
verse momentum pt and transverse-rapidity yt . yt ≈ 1 (pt ≈
0.15 GeV/c) is the typical lower pt bound defining the
TPC acceptance for spectra and correlations. The dotted
line (mπ/2) exp(yt ) ≈ pt demonstrates that yt accurately
represents log(pt ) over the TPC pt acceptance. The close
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FIG. 1. (Left) The relation between transverse momentum pt

and transverse-rapidity yt (π ) (assuming a pion mass). The grid
shows the uniform yt bin system used for the present analysis. The
dotted line provides a log(pt ) reference for comparison. (Right) The
symmetrized two-particle space (yt1,yt2). An element of the joint
distribution on (yt1,yt2) is shown by the bold squares. An element of
the marginal distribution on yt is shown by the bold rectangles.

correspondence down to the pt acceptance limit arises because
the pion mass is ≈ 0.1 GeV/c. The grid illustrates the cut
system for this analysis, nine bins on yt with fixed width δyt =
0.4. The pt interval covered by the analysis is [0.16,7] GeV/c.

Figure 1 (right panel) shows the binning on (yt1,yt2) for
the yt -differential analysis. The binning system is symmetric
about the diagonal. The bold squares illustrate an element of
the joint distribution on (yt1,yt2). By integrating over one axis
we obtain the 1D projection or marginal distribution on yt

represented by the bold rectangles. The marginal format is the
basis for the yt -differential part of this analysis. Because the
cut system (equal yt bins) and other aspects of this analysis are
based on yt , we prefer that quantity in the text, with occasional
references to specific pt values.

D. Single-particle and correlated-pair measures

The single-charged-particle (SP) yt spectrum is ρ0(yt ,b) =
d2nch/ytdyt2πdη (azimuth averaged). The yt -integral
angular density is ρ0(b) = ∫

dytytρ0(yt ,b) ≈ nch/2π�η
averaged over acceptance �η. The two-component particle-
yield parametrization [34], as applied in this analysis, is
ρ0(b) = ρpp(Npart/2)[1 + x(ν − 1)], where 2πρpp and x are
2.5 and 0.095, respectively, for more-central 200-GeV Au-Au
collisions. Glauber-model centrality parameters Npart/2 and ν
are defined below.

ρ( �p1, �p2) is the basic pair density on 6D pair momentum
space. The event-averaged pair density ρsib derived from
sibling pairs (pairs drawn from single events) includes the cor-
relation structures to be measured. ρmix is the density of mixed
pairs drawn from different but similar events. ρref denotes a
minimally correlated reference-pair density derived from (a)
a mixed-pair density or (b) a product of SP densities via a
factorization assumption. On pair subspace (yt1,yt2) the fac-
torized joint reference is ρref(yt1,yt2,b) = ρ0(yt1,b)ρ0(yt2,b),
the marginal reference is ρref(yt ,b) = ρ0(b)ρ0(yt ,b), and the
yt -integral reference is ρref(b) = ρ2

0 (b).
Formation of autocorrelation histograms on difference

variables (η�,φ�) projected from pair angle subspace
(η1,φ1,η2,φ2) has been described previously [16,23]. Pair

histograms so formed are approximately uniform on η� and
φ�. Small deviations from uniformity represent correlations
of interest. Pair histograms formed by simple projection
from (η1,η2) (not autocorrelations) include a triangular pair
acceptance on difference variable η�.

Differential correlation structure is determined by compar-
ing a sibling-pair density to a reference-pair density in the form
of difference �ρ = ρsib − ρref representing a correlated-pair
density or covariance density. There are then two choices for
a relative correlation measure.

(a) Per-particle measure �ρ/
√

ρref has the form of Pear-
son’s normalized covariance wherein the numerator is a
covariance and the denominator is the geometric mean of
marginal variances. In the Poisson limit a marginal variance
is given by σ 2

n = n̄ ∝ ρ0. Because ρref ≈ ρ0 × ρ0 it follows
that the geometric mean of variances is given by

√
ρref ∝ nch

and the normalized covariance is a per-particle correlation
measure [11,12,23].

(b) Per-pair measure �ρ/ρref decreases trivially with sys-
tem size as 1/nch. That trend obscures smaller but physically
meaningful variations. The per-pair measure also tends to
increase trivially as a function of yt because the pair ratio
includes the SP spectrum in its denominator. The dominant SP
spectrum trend also obscures physically meaningful correla-
tion variations.

In a practical correlation analysis pair ratio �ρ/ρref →
�ρ/ρmix is first calculated directly to cancel particle-pair
detector inefficiencies. The per-particle measure �ρ/

√
ρref ≡√

ρref�ρ/ρmix is then obtained, where ρref is constructed from
corrected SP spectra ρ0(yt ,b) and yields ρ0(b) [16].

In this yt -differential analysis we present per-pair
quadrupole measurements based on 2D model fits to angular
correlations. The basic measures are the Fourier components
V 2

m of �ρ(φ�) emphasizing the quadrupole term V 2
2 . The

per-pair ratio �ρ/ρmix gives BQ{2D}(yt ,b) = v2
2{2D}(yt ,b) di-

rectly comparable with published v2(pt ) data. The per-particle
measure

√
ρref�ρ/ρmix gives AQ{2D}(b) = ρ0(b)v2

2{2D}(b)
exhibiting simple systematic trends on centrality and collision
energy [14,15]. Because V 2

2 (yt ,b) = ρ0(b)ρ0(yt ,b)(b)v2
2(yt ,b),

we have ρ0(b)AQ(b) = V 2
2 (b) and ρ0(b)ρ0(yt ,b)BQ(yt ,b) =

V 2
2 (yt ,b), defining per-particle AQ(b) and per-pair BQ(yt ,b)

quadrupole measures. Per-particle and per-pair measures are
thus exactly related. For reasons noted above, V 2

2 and per-
particle measure AQ are the bases for physical interpretations.
The per-pair measure BQ from this yt -differential study does
not require corrected SP spectra ρ0(yt ,b) and provides direct
comparison with published v2(pt ) data.

E. A-A centrality measures

A-A centrality is measured by matching the fractional cross
section σ/σ0 for some observed nch to the fractional cross sec-
tion derived from a Glauber Monte Carlo simulation. Glauber
parameters Npart/2 (participant pairs) and Nbin (N -N binary
collisions) and impact parameter b are thereby related to nch

integrated within the TPC acceptance |η| < 1. The fractional
impact parameter is defined by b/b0 ≡ √

σ/σ0. Centrality
measure ν ≡ 2 Nbin/Npart estimates the mean number of N -N
encounters per participant nucleon (mean projectile-nucleon
path length across the collision-partner nucleus). We use the
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FIG. 2. (Left) Mean participant path length ν vs fractional cross-
section measure 1 − σ/σ0. The grid shows the 11 centrality bins for
this analysis. The hatched region indicates the “sharp transition” in
jet-related correlation properties reported in Ref. [16]. (Right) Path
length ν vs fractional impact parameter b/b0 = √

σ/σ0. For Au-Au
collisions b0 ≈ 14.7 fm.

same Glauber parameters for all energies as purely geometrical
measures (the 200 GeV N -N cross section σNN = 42 mb is
assumed for all cases).

Figure 2 (left panel) shows participant path length ν vs
fractional cross section in the form 1 − σ/σ0 inferred from a
Glauber Monte Carlo. The hatched band, with position inferred
from angular correlation data, represents a sharp transition in
jet-related correlation systematics, below which jet correla-
tions follow the N -N binary-collision scaling expected for
linear superposition of N -N collisions (A-A transparency)
and no jet modification [16]. Figure 2 (right panel) shows ν vs
fractional impact parameter as 1 − b/b0, where b0 ≈ 14.7 fm
for Au-Au collisions.

The grids in Fig. 2 indicate the centrality bins for this
analysis defined as follows. Uncorrected minimum-bias event
samples are divided into 11 nominal centrality bins: 9 ≈ 10%
bins from 100% to 10%, the last 10% divided into 2 5%
bins. The corrected centrality of each bin as modified by
tracking and event vertex inefficiencies is determined by a
running-integral procedure described in Ref. [35]. Centralities
from N -N collisions (ν ≈ 1.25) to central A-A (b ≈ 0) are
thereby determined to 2%.

F. A-A initial-state geometry measures

Some features of the initial-state (IS) geometry of A-A col-
lisions may influence collision dynamics. Initial-state azimuth
structure is conventionally modeled by a Glauber Monte Carlo.
The participant-nucleon azimuth distribution can be described
by an autocorrelation function on azimuth difference φ� [23].
For noncentral A-A collisions the autocorrelation includes (a)
a few even-m sinusoids dominated by m = 2 (IS quadrupole)
phase-correlated with vector impact parameter �b (the eccentric
A-A overlap region), (b) a uniform background, and (c) a
δ-function term ∝ Npart (self pairs) uncorrelated with �b.

The Fourier transform of the IS azimuth autocorrelation is
a power spectrum represented by eccentricity elements E2

m =
N2

partε
2
m, with per-pair eccentricity measures [33]

ε2
m,MC = ε2

m,opt + σ 2
εm

+ δε2
m for m even

= δε2
m for m odd, (1)

Npart

ε m
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FIG. 3. Centrality trends for optical and Monte Carlo Glauber IS
azimuth multipoles with m = 2, 3 on participant-projectile-nucleon
number (left panel) and binary N -N collisions ν per participant-
nucleon pair (right panel).

where σ 2
εm

represents an eccentricity variance owing to
eventwise b fluctuations. Eccentricities ε2

m,opt (m = 2, 4)
represent the “elliptical” A-A overlap region for fixed b and
smooth matter distributions. The corresponding m = 2 optical
eccentricity for 200-GeV Au-Au is parametrized by [15]

ε2,opt = 1

5.4

[
log10

(
3 Nbin

2

)]0.96[
log10

(
1136

Nbin

)]0.78

. (2)

Pointwise Monte Carlo random sampling generates a “white-
noise” power spectrum δε2

m ∝ 1/Npart (approximately uniform
on m) corresponding to the self-pair contribution ≈ Npartδ(φ�)
in the IS azimuth autocorrelation. For a stochastic process
there should be no phase relation between noise amplitudes
δε2

m and impact parameter �b. All higher m are present in the
IS Monte Carlo spectrum and might appear in the observed
final state to some extent if Monte Carlo sampling at x ≈ 1/3
were a legitimate model of IS geometry relevant to FS hadron
production for η ≈ 0 and x ≈ 0.01.

Figure 3 shows centrality trends for m = 2, 3 IS power-
spectrum elements on participant-nucleon number Npart (left
panel) and mean participant path length ν (right panel).
Plotted are optical eccentricity ε2,opt (solid curves), Monte
Carlo eccentricity ε2,MC (dash-dotted curves), and so-called
“triangularity” δε3 (dashed curves). From Eq. (1) (and ignoring
a possible σ 2

ε2
contribution) we have ε2

2,MC = ε2
2,opt + δε2

2 , with
δε2

2 ≈ 4/Npart and ε2
3,MC = δε2

3 ≈ 4/Npart.
Whether point-like-nucleon sampling at nucleon momen-

tum fraction x ≈ 1/3 represents an IS geometry with signifi-
cant manifestations in FS correlation structure for x ≈ 0.01 is
an open question. The present analysis indicates that optical
eccentricity ε2,opt is most compatible with NJ v2{2D} data
obtained from 2D model fits.

III. NONGRAPHICAL NUMERICAL METHODS

In this section we present a simplified analysis method
confined to 1D azimuth difference φ� corresponding to
projection ρ(η�,φ�) → ρ(φ�) of all 2D angular correlation
structure within some detector η acceptance �η. This de-
scription is directly related to conventional 1D v2 analysis
via nongraphical numerical methods (NGNMs). In Sec. IV

064910-4



TRANSVERSE-RAPIDITY yt DEPENDENCE OF THE . . . PHYSICAL REVIEW C 91, 064910 (2015)

we describe a more-general analysis method based on model
fits to 2D data histograms on (η�,φ�), the basis for the present
NJ-quadrupole study.

A. Pair densities on azimuth difference φ�

ρ(φ�) is the (4D angular) pair-density projection onto
azimuth difference φ� obtained by averaging over η� within
acceptance �η. Any distribution on periodic φ� can be
described exactly by a Fourier series,

ρ(φ�) = 1

2π�η2

n∑
i,j=1,∈�η

δ(φi − φj − φ�)

= δ(φ�)ρ0/�η + V 2
0 + 2

∞∑
m=1

V 2
m cos(mφ�), (3)

with V 2
m ≡ V 2

0 v2
m and V 2

0 = n(n − 1)/(2π�η)2 (overline in-
dicates event-ensemble average). The sum upper limit is sim-
plified by nch → n. That expression describes all pairs within
the angular acceptance including self-pairs i = j . The Fourier
coefficients V 2

m constitute the power spectrum of the azimuth
pair density [36]. Any and all significant correlation structure
projected onto azimuth should be accurately represented by
the V 2

m, which are additive or extensive measures (whereas the
v2

m are not). The δ function on the right-hand side represents
self pairs (i = j ) and has its own Fourier series representation
(a uniform or “white-noise” power spectrum on m) [36].

In this analysis we consider the azimuth quadrupole (a
cylindrical multipole) term of the power spectrum. The m = 2
Fourier coefficient (also a 4D angular density) with self-pairs
excluded is determined from data by

V 2
2 (b) = 1

2π

∫ 2π

0
dφ�ρ(φ�,b) cos(2φ�)

= 1

(2π�η)2

n,n−1∑
i �=j=1,∈�η

〈cos[2(φi − φj )]〉

≡ ρ2
0 (b)v2

2(b) ≈ ρ2
0 (b)〈cos(2φ�)〉. (4)

The approximation in the last line is for n  1. For
conventional notation v2{method}, Eq. (4) represents V 2

2 {2}
derived from two-particle 1D azimuth correlations. Recent
“higher-harmonic” Fourier analysis extends to m > 2,
interpreting any vm as representing a flow [30]. Equation (4)
is actually equivalent to a model fit to 2D angular correlations
projected onto 1D azimuth. Model-fit comparisons are
discussed further in Sec. IV.

B. yt -differential V 2
2 {2}( yt,b) measurement

Figure 1 (right panel) shows joint and marginal conditions
on (yt1,yt2) (bold lines). The joint distribution (6D density) on
(yt1,yt2) is defined by

V 2
2 (yt1,yt2,b) = 1

(δyt2π�η)2

nyt1 ,nyt2∑
i∈yt1 �=j∈yt2

cos[2(φi − φj )]

yt1yt2
, (5)

where δyt = 0.4 is the bin width on yt (uniform widths
in this analysis). The marginal distribution is defined

by

V 2
2 (yt ,b) = 1

2π

∫ 2π

0
dφ�ρ(yt ,φ�,b) cos(2φ�)

= 1

δyt (2π�η)2

nyt ,n−1∑
i∈yt �=j=1

cos[2(φi − φj )]

yt

=
∫ ∞

0
dy ′

t y
′
tV

2
2 (yt ,y

′
t ,b)

≡ V2(b)V2(yt ,b)

= ρ0(b)ρ0(yt ,b)v2
2(yt ,b), (6)

where ρ0(yt ,b) is the SP spectrum on yt . V2(yt ,b) ≡
V 2

2 (yt ,b)/V2(b) with V2(b) ≡
√

V 2
2 (b) defines a self-consistent

extensive measure system.
In some conventional NGNM v2 analyses the pair ratio is

calculated directly as the ensemble mean of a ratio,

v2
2(yt ,b) = 1

nyt
(n − 1)

nyt ,n−1∑
i∈yt �=j=1

cos[2(φi − φj )]

≡ v2(b)v2(yt ,b), (7)

whereas in other analyses a ratio of mean values is employed.
The pair ratio does cancel detector imperfections to some
extent. Quadrupole amplitudes V 2

2 (yt ,b) can be approximated
by using corrected yt spectra ρ0(yt ,b) and angular densities
ρ0(b) averaged over 2π and some η acceptance �η (e.g., STAR
TPC). Data from NGNM applied to two-particle correlations
are denoted by v2{2}. The v2{2D} method used in the present
study and based on model fits to 2D angular correlations is
described next.

IV. MODEL FITS TO 2D (η,φ) CORRELATIONS

In this section we extend NGNM analysis of 1D azimuth
projections to graphical analysis of 2D angular autocorrela-
tions via fits to data with a 2D model function including several
elements. The η dependence of angular correlations is used
to distinguish among several functional forms that are later
interpreted physically by comparisons with theory predictions.
A per-particle model appropriate for studying Glauber linear
superposition in the context of jet production [16] with
amplitudes denoted by quantities AX was applied in a previous
yt -integral v2{2D} analysis [14,15]. A per-pair model with
amplitudes denoted by BX is applied in the present yt -
differential analysis to provide direct comparison with v2(pt )
data from conventional 1D analysis. The Bx format does not
require corrected SP spectra ρ0(yt ,b).

A. Motivation for 2D model fits

Nongraphical numerical method data (e.g., v2{2}) derived
from 1D projections discard the η structure of 2D angular cor-
relations. Although a Fourier series can represent accurately
any 1D azimuth distribution, multiple physical mechanisms
may then contribute to any single Fourier amplitude (azimuth
multipole) [37]. One-dimensional Fourier analysis may be
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unsuited to describe 2D angular correlations from p-p and
peripheral A-A collisions, which include strong variations on
η� accurately described by a combination of 1D and 2D peaked
functions [21,22]. In that case a 1D Fourier series cannot
describe angular correlations comprehensively over all A-A
centralities as required to understand the centrality evolution
of collision phenomena [32].

A 2D data model composed of elementary functions can
remove ambiguities arising from 1D projection onto azimuth.
The basic premise is as follows: Within some limited η ac-
ceptance, 2D structure is separated into what is approximately
uniform on η and what is strongly varying. The nearly-uniform
components are candidates for 1D Fourier representation.
However, alternative representations (e.g., 1D Gaussian on az-
imuth) are also considered. Any components nonuniform on η
should be modeled by the simplest combination of elementary
functions sufficient to describe the 2D data accurately.

B. Isolating and modeling 2D correlation structure

If Eq. (3) is evaluated for particle pairs drawn from the
same event the result is the sibling-pair density ρsib. If pairs are
drawn from different but similar events, the resulting mixed-
pair density ρmix is approximately equal to the factorized
reference density ρref = V 2

0,ref = ρ2
0 . In that context the density

of “correlated pairs” (a covariance density with self-pairs
excluded) is

�ρ(φ�) = ρsib − ρref = �V 2
0 + 2

∞∑
m=1

V 2
m cos(mφ�), (8)

and the per-pair measure of correlated pairs is pair ratio

�ρ

ρref
= �v2

0 + 2
∞∑

m=1

v2
m cos(mφ�). (9)

Note that v2
1 in that series represents a cylindrical multipole,

not the spherical multipole associated with “directed flow”
v1 [9]. The quantity �V 2

0 = V 2
0 − V 2

0,ref is proportional to
fluctuation measure σ 2

n − n̄ (variance difference) represent-
ing number angular correlations with characteristic lengths
comparable to or exceeding the acceptance scale [11,23]. We
wish to extend the mathematical representation of Eq. (8) to
2D angular correlations.

In all 2D data histograms we observe an AS structure (AS
ridge) that is broad on azimuth and approximately uniform
on η� within the TPC angular acceptance. The latter property
implies that the AS structure is a candidate for 1D Fourier
representation, but the former property implies that only a few
terms in the Fourier series of Eq. (8) are required by the data,
and two terms (dipole and quadrupole) are sufficient in most
cases. An m = 1 AS dipole is generally consistent with pQCD
jet structure in minimum-bias angular correlations, and the
m = 2 NJ quadrupole is the object of the present study.

The remaining 2D structure is strongly varying on η� and
therefore not suitable for 1D Fourier series representation. The
η-dependent 2D structure is represented by a non-Fourier (NF)

term. The model function is then

�ρ(η�,φ�) ≡ �ρNF(η�,φ�) + 2
2∑

m=1

V 2
m cos(mφ�), (10)

where �ρNF is a combination of 1D (on η�) and 2D peaked
functions plus constant offset.

In p-p collisions the NF contribution dominates 2D
angular correlations and consists of elements predominantly
associated with either like-sign charge pairs or unlike-sign
pairs (whereas the NJ quadrupole is observed to include both
types equally) [21,22]. NF includes a 1D peak on η� nearly
uniform on φ� and a complex SS 2D peaked structure at
the (η�,φ�) origin. Most of the SS 2D peak can be modeled
by a 2D Gaussian consistent in its properties with pQCD
jet expectations [29]. A smaller 2D exponential contribution
is consistent with Bose-Einstein correlations (BECs) plus
conversion-electron pairs [16].

In more-central Au-Au collisions the minimum-bias SS
2D peak becomes elongated on η� and slightly narrower
on φ� compared to p-p collisions but remains statistically
consistent with a 2D Gaussian [16]. A NJ quadrupole is
visually obvious in more-central Au-Au data [10,16], but
the quadrupole component remains statistically significant for
all Au-Au centralities down to N -N collisions [15]. Thus,
parametric evolution of a single 2D model function with
a few simple elements accurately represents all collision
systems from p-p to central Au-Au. This study presents a
description of model properties inferred from 2D histograms
by yt -differential model fits.

C. yt -differential model function

The yt -integral v2{2D}(b) analysis described in
Refs. [14,15] employed an 11-parameter model function as
described in Ref. [16]. The 2D histograms were fitted with
a data model including several elements applicable to higher
RHIC energies and all Au-Au centralities. The 11-parameter
model is

�ρ√
ρref

= A2D exp

{
−1

2

[(
φ�

σφ�

)2

+
(

η�

ση�

)2
]}

+AD[cos(φ� − π ) + 1]/2 + A0

+AQ2 cos(2φ�) + Asoft exp

{
−1

2

(
η�

σ0

)2
}

+ABE exp

⎧⎨
⎩−

[(
φ�

wφ�

)2

+
(

η�

wη�

)2
]1/2

⎫⎬
⎭. (11)

The definitions of two parameters in that expression (AD and
AQ) are slightly modified from those in Ref. [16].

For the present yt -differential analysis we introduce three
changes to the fit model. (a) We switch from per-particle
measure �ρ/

√
ρref to per-pair measure �ρ/ρref to facilitate

comparisons with published v2(pt ) data from 1D methods
while not requiring corrected SP spectra ρ0(yt ,b). (b) We
eliminate one NF element not required to describe more-
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central Au-Au collisions. (c) We introduce an alternative
Gaussian model for the AS 1D peak.

With yt cuts imposed jet-related peak structures may
become narrower, as expected for jet correlations and observed
in so-called trigger-associated dihadron correlations [38,39].
If the AS 1D peak on azimuth narrows its Fourier series
representation may require more than a single AS dipole term,
and an AS 1D Gaussian may be a more-efficient representation.
A narrower AS 1D peak may also introduce a systematic ambi-
guity between the NJ quadrupole and a jet-related quadrupole
contribution from the narrower AS peak [40]. In this analysis
each of two AS 1D peak models is included alternately in 2D
model fits. Any differences in inferred BQ{2D}(yt ,b) values
provide an estimate of systematic uncertainties.

Given that context, we simplify the 2D data model for
several reasons: (a) The yt -differential analysis includes 99
histograms each for 62 and 200 GeV and for two AS peak
models. Each of nearly 400 conditions then requires up to
1000 fits with random starting parameters to ensure location
of global χ2 minima. The entire analysis program is executed
several times to investigate data quality, alternative data
models, and overall fit stability. Of order 106 fits are then
required. (b) With data subdivided into 11 centrality bins
and 9 yt bins, the statistical power for each fit is reduced.
(c) In this analysis we emphasize quadrupole systematics for
more-central Au-Au collisions where some of the NF terms
in Eq. (10) are not required for accurate data description. For
those reasons a model with fewer parameters is permitted and
provides improved fit stability and more-rapid convergence.

The per-particle model in Ref. [16] includes 11 parame-
ters, of which only 5 or 6 parameters represent physically
relevant model elements [SS 2D peak (3), AS 1D peak
(1 or 2), NJ quadrupole (1)]. The remainder are mainly
required for structure prominent only in peripheral A-A and
p-p collisions. The soft-component term Asoft exp{−η2

�/2σ 2
s }

(two parameters), included in the present study for more-
peripheral collisions, is not required for more-central Au-Au
collisions. In yt -integral analysis the amplitude of that term is
observed to fall to zero above midcentrality (50% fractional
cross section) [16]. We drop the model element representing
BEC + electron pairs (three parameters) because that structure
becomes very narrow in more-central Au-Au collisions. To
compensate, three histogram bins near the (η�,φ�) origin are
removed from the 2D fits to eliminate sensitivity to the narrow
BEC + electron-pair component.

The 2D model function for yt -differential analysis applica-
ble to more-central A-A collisions is then [17]

�ρ

ρref
= B0 + B2D exp

{
−1

2

[(
φ�

σφ�

)2

+
(

η�

ση�

)2
]}

+BD{1 + cos(φ� − π )}/2 + BQ2 cos(2φ�), (12)

where B0 is a constant offset and BQ → BQ{2D} = v2
2{2D}

denotes the NJ quadrupole derived from model fits to 2D
angular correlations. The soft-component term with amplitude
Bsoft does not appear explicitly in Eq. (12) but is included in
model fits to more-peripheral data histograms. Equation (12)
is then referred to as the eight-parameter model.

As noted, the AS 1D peak can be modeled by an AS
1D Gaussian or by its limiting case, an AS dipole [as in
Eq. (12)] [32,40]. If the AS dipole is chosen the inferred
quadrupole amplitude determines an upper limit on the true
NJ quadrupole. If the AS 1D Gaussian is chosen the inferred
quadrupole determines a lower limit. The difference estimates
systematic uncertainties for v2

2{2D}(yt ,b). The 2D fit model
also includes image Gaussians at 2π for the SS 2D Gaussian
and at −π for the AS 1D Gaussian if that peak model is
employed [40].

Amplitudes are denoted by symbol BX in the 2D fit model
of Eq. (12) applied to per-pair data histograms �ρ/ρref as
opposed to amplitudes AX for per-particle histograms. From
model fits to 2D angular correlations we measure pair ratio
BQ{2D}(yt ,b) = v2

2{2D}(yt ,b) and may convert those data to
power-spectrum elements V 2

2 (yt ,b) via corrected SP yt spectra
ρ0(yt ,b) (3D densities) and yields ρ0(b) (2D densities).

V. 2D ANGULAR AUTOCORRELATIONS

In this section we introduce data histograms as 2D angular
autocorrelations. The basic analysis procedure is described
in Ref. [16]. Charged hadrons from Au-Au collisions at√

sNN = 62 and 200 GeV accepted for this analysis fell
within a detector acceptance defined by pt > 0.15 GeV/c,
|η| < 1.0, and 2π azimuth. Charge signs were determined but
particle identification was not otherwise implemented. Further
details of track definitions, efficiencies, and quality cuts are
described in Ref. [16]. Data for this analysis were selected
from earlier RHIC running periods where low luminosities
ensure reduced pileup distortions in 2D angular correlations.
Reduction of pileup effects and other tracking details are
described in Ref. [16]. In this presentation we emphasize the
200-GeV data; the results for 62 GeV are similar modulo the
energy-dependence factor reported in Refs. [14,15].

A. yt -differential 2D histograms

Figure 4 shows example yt -differential 2D angular auto-
correlations for nominal 40%–50%-central 200-GeV Au-Au
collisions. The midcentral case is chosen to illustrate typical
model fits over a range of yt bins. The yt -differential analysis
is based on 6.7M and 14.5M (both year 2004, M = 1 × 106)
Au-Au collisions at

√
sNN = 62 and 200 GeV, respectively.

The panels represent yt intervals (a) yt < 1.4, (b) 1.8 < yt <
2.2, (c) 2.6 < yt < 3.0, and (d) 3.4 < yt < 3.8 (yt bins 1, 3,
5, 7).

The BEC-electron peak dominates correlations in the
lowest yt bin, as expected. That peak is wide enough in the
lowest bin that it interferes with the SS 2D jetlike peak and
degrades the fit quality. Because the information obtained on
jet structure in the lowest yt bin is minimal, fit values for SS 2D
peak parameters from that bin are omitted from the rest of the
analysis. For larger-yt bins the BEC-electron peak is reduced
in amplitude and widths. A few histogram bins nearest the
origin are removed from the fits and the 2D fit model includes
no corresponding element. NJ quadrupole data are insensitive
to that issue and are retained for all yt bins.
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FIG. 4. (Color online) 2D data histograms from 40%–50% cen-
tral 200-GeV Au-Au collisions for four yt bins: (a) yt < 1.4, (b)
1.8 < yt < 2.2, (c) 2.6 < yt < 3.0, (d) 3.4 < yt < 3.8. The narrow
BEC + electron peak at the origin decreases to zero amplitude for
larger yt .

FIG. 5. (Color online) Fits to 2D data histograms from 40%–50%
central 200-GeV Au-Au collisions for two yt bins: (a), (b) 1.8 < yt <

2.2 and (c), (d) 3.4 < yt < 3.8. The model fits appear on the left in
each case. The vertical scale is the same for fits and data. The upper
limit has been adjusted to reveal the BEC + electron contribution
excluded from the fit (narrow peak in three central bins).

B. Example 2D model fits to yt -differential data

Figure 5 compares fits (left panels) with data histograms
(right panels) for two yt bins from 40%–50% central 200-GeV
Au-Au collisions. That figure presents 2 of 99 cases (11
centralities × 9 yt bins). For each case approximately 1000
fits starting with randomly chosen initial parameter values
are performed. The fit corresponding to the global-minimum
χ2 value is then chosen. The fits were performed with the
eight-parameter model function of Eq. (12) including an
AS dipole 1D peak model or with a nine-parameter model
including an AS Gaussian. The three bins at the origin
containing the BEC + electron peak were excluded from all
fits. That contribution is mainly confined to the lowest yt bin.

Small irregularities appearing near the pair-acceptance
boundary |η�| = 2 have little effect on error-weighted 2D fits
because the statistical uncertainties are largest there. The SS
2D peak may deviate from an ideal 2D Gaussian for some
applied pt cuts, but for this analysis of the marginal distribution
on yt the deviations are not substantial. The NJ-quadrupole
component is found to be insensitive to such deviations (see
Sec. X for further discussion).

VI. yt -DIFFERENTIAL BX {2D} SYSTEMATICS

Figure 6 shows the yt and centrality evolution of four fit
parameters from 200-GeV Au-Au collisions describing SS 2D
peak properties and the NJ-quadrupole amplitude. The plots
show per-pair SS 2D peak amplitude B2D, SS peak widths ση�

FIG. 6. Per-pair fit parameters derived from 2D fits with Eq. (12)
to yt -differential data histograms from 200-GeV Au-Au collisions
for eight centrality bins (0%–70% central). (a) SS 2D peak amplitude
B2D(yt ,b); (b),(c) SS 2D peak rms widths ση�

(yt ,b) and σφ�
(yt ,b); (d)

per-pair quadrupole amplitude BQ{2D}(yt ,b). The error bars indicate
fit uncertainties. The BQ errors for yt = 4.4 are consistent with a 20%
systematic uncertainty for that yt value, as noted in Sec. X B.
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and σφ�
, and per-pair NJ-quadrupole amplitude BQ{2D}. The

data for SS 2D peak properties are not plotted for the first yt

bin (pt ≈ 0.2 GeV/c) because correlation structure for that
centrality is dominated by the narrow peak representing BEC
and conversion electrons [see Fig. 4(a)]. The yt interval for this
analysis includes almost all significant jet correlation structure.
The yt -differential SS 2D peak parameters are required for the
v2{2}(yt ,b) ↔ v2{2D}(yt ,b) comparisons in Sec. XI C. These
results are consistent with those of Ref. [17].

The B2D and BQ data are dominated by trends generally
expected for per-pair amplitudes: (a) decrease with increasing
centrality and (b) increase with increasing yt , both owing to
the SP ρ0(yt ,b) spectrum factor in the denominators of the BX.
Smaller physically meaningful variations are overshadowed
by the dominant per-pair trends. Just as for AQ{2D}(b) the
BQ{2D}(yt ,b) data exhibit remarkable simplicity, but the
simplicity is not revealed until we present these results in
alternative plotting contexts. Note that BQ{2D} values for
0%–5% central collisions are consistent with zero for almost
all yt bins (at both collision energies), with small upper limits.

In Refs. [14,15] it was reported that yt -integral per-particle
NJ-quadrupole amplitude AQ{2D}(b,

√
sNN ) is factorizable,

the factors having simple functional forms. With the yt -
differential data from this study we demonstrate that the yt

or pt dependence of the NJ quadrupole is also factorizable,
leading to a simple quadrupole parametrization accurate over
a large kinematic space as presented in Sec. IX.

The sharp transition in jet-related angular structure near
50% Au-Au centrality (ν ≈ 3) [16] does not significantly
alter the pt structure of the SS 2D peak. Similar yt trends
are observed down to p-p collisions for SS 2D peak and
quadrupole despite a substantial change in the SS 2D peak
angular shape. To further explore the NJ-quadrupole data
systematics, we introduce the concepts of quadrupole source
boost and quadrupole spectrum

VII. QUADRUPOLE SOURCE BOOST

The broad source-boost distribution reflecting Hubble
expansion of a bulk medium assumed in conventional hydro
descriptions is contrasted with a narrow quadrupole source-
boost distribution inferred from v2(yt ) data.

A. Theoretical context

According to hydro descriptions, elliptic flow is an az-
imuthal modulation of radial flow corresponding to the IS
matter eccentricity of noncentral A-A collisions, the trans-
verse flows arising from large pressure gradients in a dense
medium [3,41]. Within the hydro narrative most hadrons
(especially below 2–3 GeV/c) emerge by “freeze-out” from
the monolithic flowing medium, and each hadron is therefore
associated with a particular medium speed or relativistic boost
corresponding to its freeze-out space-time position. Almost all
final-state hadrons should then reflect the same hadron-source
boost distribution.

As noted in Ref. [3], if all hadrons emerged from a
cylindrical shell with fixed radial speed (as a limiting case),
the SP pt spectrum should exhibit a peak at nonzero pt and
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FIG. 7. (Left) Per-pair data B2{2D}(yt ,b) from the present
analysis scaled as described in the text and compared with the
minimum-bias pion data (solid curve) from Ref. [18] (left panel).
The vertical dotted lines mark the TPC acceptance edge on yt for
pions at pt = 0.15 GeV/c. (Right) The same procedure applied to
data from 62-GeV Au-Au collisions.

a minimum at zero, reflecting the radial boost of the hadron
source. On transverse-rapidity yt the spectrum alteration would
be especially simple: The hadron spectrum in the stationary
laboratory frame would be the spectrum in the moving boost
frame shifted to larger yt . For v2(pt ) the consequence would
be negative values for pt near zero [18]. However, such trends
are not expected owing to “more-realistic [hadron source]
velocity profile, [wherein] the peak in transverse-momentum
distribution disappears.” The “more-realistic” velocity profile
is approximated by that expected for transverse Hubble
expansion of a flowing bulk medium, a broad distribution
on radial speed βt extending from zero to some maximum
value. However, so-called “mass ordering” of v2(pt ) at lower
pt should survive as a manifestation of radial flow.

In Ref. [18] it was pointed out that the ratio v2(pt )/pt

for several hadron species plotted vs yt with the proper
mass for each hadron species reveals a common source-
boost distribution for identified hadrons from a minimum-bias
distribution of Au-Au collisions (centrality-averaged result).
The factor 1/pt emerges from a Taylor expansion of the
Cooper-Frye expression [42] for the thermal spectrum from
a boosted source. Here we consider the centrality dependence
of source boosts inferred from v2{2D}(yt ) data for unidentified
hadrons from 62- and 200-GeV Au-Au collisions.

B. Quadrupole source-boost centrality dependence

Figure 7 (left panel) shows the source-boost centrality evo-
lution of yt -differential unidentified-hadron BQ{2D} data from
Fig. 6(d) for 200-GeV Au-Au collisions. The plotted quantity
is unit-normal ratio (1/pt )BQ{2D}(yt ,b)/〈1/pt 〉BQ{2D}(b).
The ratio format removes the yt -integral v2(b) centrality de-
pendence reported in Refs. [14,15] [see Eq. (7)], bringing data
trends near the spectrum mean p̄t (ȳt ≈ 1.8) into alignment
at unity. The solid curve represents a centrality-averaged pion
curve from Ref. [8] for quadrupole source boost �yt0 = 0.6
divided by 〈1/pt 〉v2{2D}(b) ≈ 0.1 that describes most of the
scaled BQ{2D}(yt ,b) data well.

Figure 7 (right panel) shows the same procedure applied
to data from 62-GeV Au-Au collisions. The results are very
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similar, with some small quantitative differences noted below.
The yt -integral values v2{2D}(b) used for both plots are derived
from Refs. [14,15] for the two energies, and see Sec. XII B. In
both cases 〈1/pt 〉 = 2 (GeV/c)−1 and the quadrupole source
boost is consistent with �yt0 = 0.6.

The solid and dashed curves in Fig. 7 are defined by F (yt ) =
g(b)C{[1 − βt/ tanh(yt )]/(1 − βt )} exp(−pt/P ). The
expression in curly brackets is determined only by relativistic
kinematics and �yt0 [18]. The other factors are derived from
data. Factor C is 1.3 and 1.1, respectively, for the two energies.
Factor g(b) is defined in Sec. IX. The product g(b)C for three
g(b) values (0.55, 0.75, 1.0) is noted next to the curves (left
panel). Exponential constant P is 4 ± 0.2 GeV/c for 200
GeV and 5 ± 0.2 GeV/c for 62 GeV. The increase in P for
the lower energy may result from the softer SP spectrum in
the v2 denominator: the spectrum hard component at 62 GeV
is 60% of the hard component at 200 GeV [16,29], tending to
elevate the plotted v2 ratio at larger yt .

The plotting format in Fig. 7 includes prefactor 1/pt (lab)
derived from the measured laboratory pt . Motivation for that
factor relates to interest in the yt spectrum in the boost
frame. In the function F (yt ) the kinematic factor in curly
brackets represents the ratio pt (boost)/pt (lab) relating pt in
the laboratory frame to pt in the boost frame, as derived in
Ref. [18], Eq. (15). If the kinematic factor were removed [i.e.,
if 1/pt (boost) were applied as the prefactor], most of the data
would follow the dash-dotted curves.

Within the conventional hydro narrative, one should expect
increasing source boosts in more-central A-A collisions as IS
particle and energy densities, and therefore density gradients,
increase. The data in Fig. 7 suggest that all scaled BQ(yt ,b)
data below 20% central Au-Au centrality are statistically
identical in shape. The ratio data follow a simple exponential
form that facilitates the universal parametrization described
in Sec. IX. Uniformity across most centralities suggests that
the quadrupole source boost is approximately independent
of Au-Au centrality. Those conclusions are consistent with
more-recent � v2(pt ) data [43] for central Au-Au collisions
that show the same source boost as the centrality-averaged
data [44,45]. We pursue that possibility with differential study
of quadrupole spectra.

VIII. QUADRUPOLE SPECTRA

We next consider the centrality dependence of azimuth
quadrupole spectrum shapes above pt = 0.5 GeV/c. Ra-
tio measure v2{method}(yt ,b) includes the SP yt spectrum
ρ0(yt ,b) in its denominator. The SP spectrum has a strong
jet contribution (spectrum hard component) [46] that should
not relate to hydro models and is then generally extraneous
to the azimuth quadrupole problem. Depending on the v2

method, the numerator of v2(yt ,b) may also include significant
contributions from jets in the form of a “nonflow” bias.
To study the quadrupole spectrum in isolation we remove
the jet contributions from numerator and denominator of
v2 by focusing on NJ-quadrupole amplitude V 2

2 {2D}(yt ,b) =
ρ0(b)ρ0(yt ,b)BQ{2D}(yt ,b).
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FIG. 8. Unit-normal quadrupole spectra for seven centralities of
200-GeV Au-Au collisions derived from Eq. (13). The spectrum
shapes are independent of Au-Au centrality: All Q(yt ,b) coincide
within systematic uncertainties. The common shape denoted by
Q0(yt ) is well described by a boosted Lévy distribution with
parameters T2 and n2 [18].

Based on BQ(yt ,b) data described in the previous section
and Ref. [18], we define a unit-normal ratio

Q(yt ,b) ≡ (1/pt )V 2
2 {2D}(yt ,b)

〈1/pt 〉V 2
2 {2D}(b)

→ (1/pt )ρ0(yt ,b)v2{2D}(yt ,b)

〈1/pt 〉ρ0(b)v2{2D}(b) × g(b)
, (13)

where the data from the present analysis are of the form
BQ{2D}(yt ,b) = v2{2D}(b)v2{2D}(yt ,b). We seek the central-
ity dependence of the quadrupole spectrum shape represented
by Q(yt ,b). The ad hoc O(1) factor g(b) in the second line is
defined and discussed in Sec. IX.

Figure 8 shows Q(yt ,b) data for seven centrality bins of
200-GeV Au-Au collisions derived from pair ratios BQ(yt ,b)
obtained in the present analysis (Fig. 6). Two-dimensional
model fits with the AS dipole peak model are preferred because
those fits are more stable. The BQ data are combined with SP
spectra ρ0(yt ,b) and yields ρ0(b) from Ref. [46] to compute
Q(yt ,b). The ratio is undefined for the 0%–5% bin because
v2{2D}(yt ,b) for that centrality is consistent with zero for
yt > 2. We observe that, within the data uncertainties, yt -
differential quadrupole data follow a universal spectrum shape
above yt = 2 (pt = 0.5 GeV/c), represented by unit-normal
quadrupole spectrum Q0(yt ) (dashed curve) previously derived
from minimum-bias particle-identified (PID) v2 data in the
form of a boosted Lévy distribution [18]. Q0 is not a fit to data
from the present analysis. We conclude that quadrupole source
boost �yt0 ≈ 0.6 for unidentified hadrons (mainly pions) is
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approximately independent of Au-Au centrality. That result is
consistent with 0%–10% � v2(pt ) data from Ref. [43].

There are currently no accurate parametrizations available
for 62-GeV SP spectra ρ0(yt ,b). Thus, complete reconstruction
of quadrupole spectra for the lower energy is not possible.
Based on the results in Fig. 7, the same quadrupole spectrum
universality may persist there.

In Fig. 7 we observed that the plotted data for the three
most-central bins in the interval yt > 2 (pt > 0.5 GeV/c)
are suppressed relative to the trend for other centralities.
In Fig. 8 those data have been rescaled by factors g(b) in
Eq. (13). The resulting vertical shifts bring the spectra into
coincidence above yt = 2. The agreement of all quadrupole
spectrum shapes with common form Q0(yt ) over that interval
is within data uncertainties. The yt -integral quantity v2{2D}(b)
from Ref. [15] is consistent with the v2{2D}(yt ,b) values
below yt = 2 for all centralities (because of the SP spectrum
shape), but a substantially different v′

2(b) describes the v2(yt ,b)
centrality trend above yt = 2 for more-central collisions.

Results from Ref. [18] and Fig. 8 taken together suggest
that all quadrupole spectra for any A-A centrality and for any
hadron species follow universal Q0(m′

t ) in the boost frame,
except for most-central Au-Au collisions, where an additional
reduction factor g(b) < 1 is required. That conclusion may be
contrasted with arguments for quark-number scaling of v2(pt )
data summarized in Ref. [18].

IX. v2( yt,b,
√

sN N ) PARAMETRIZATION

Model-parameter trends derived from 2D model fits to
yt -differential histograms reveal factorization of quadrupole
systematics on centrality and hadron yt , the factors described
by simple functions.

Combining above results the yt -differential quadrupole
amplitude can be described in factorized form as

V 2
2 {2D}(yt ,b) ≈ 〈1/pt 〉(b)V 2

2 {2D}(b)ptQ0(yt ). (14)

That simplicity becomes apparent only in terms of extensive
measure V 2

2 (yt ,b) obtained by eliminating the SP spectrum in
the denominator of intensive measure v2

2(yt ,b) with its strong
jet contribution. The simplicity of Eq. (14) is unique to the
quadrupole spectrum.

The quadrupole amplitude determined in this study is

BQ{2D}(yt ,b) = v2
2{2D}(yt ,b)

= v2{2D}(b) v2{2D}(yt ,b), (15)

and we use the v2{2D}(b) parametrization from Refs. [14,15]
(Sec. XII B) to infer v2{2D}(yt ,b). Based on Sec. VIII the
v2{2D}(yt ,b) data can be represented accurately by a simple
parametrization, just as for the yt -integral case. From above
we have the relation V 2

2 (yt ,b) = ρ0(b)ρ0(yt ,b)v2
2(yt ,b). Rear-

ranging Eq. (14) accordingly, we obtain the parametrization

v2{2D}(pt ,b) = pt 〈1/pt 〉v2{2D}(b)

{
Q0(pt )

ρ0(pt ,b)/ρ0(b)

}
Q0(pt )

ρ0(pt ,b)/ρ0(b)
≈ exp(−pt/P ) × f (yt ,b), (16)

FIG. 9. pt -differential v2{2D}(pt ,b) trends from 200-GeV Au-Au
collisions (points) compared to a parametrization of v2{2D}(pt ,b)
data given by Eq. (16) (solid curves) for (a) 40%–50%, (b) 30%–40%,
(c) 20%–30%, (d) 10%–20%, (e) 5%–10%, (f) 0%–5% centralities.
Solid points are for the AS 1D Gaussian peak model and open circles
are for the AS dipole peak model in Eq. (12). Dotted curves are
Eq. (16) without factor f (yt ,b).

which can be compared with v2(pt ,b) data. The ratio of
unit-normal spectra in curly brackets is approximated with
reasonable accuracy by exp(−pt/P ). An O(1) empirical
factor f (yt ,b) representing deviations from that function for
more-central collisions is

f (yt ,b) = 1 + C(b)[erf(yt − 1.2) − erf(1.8 − 1.2)]

C(b) = 0.12 − (ν − 3.4)/5 − [(ν − 3.4)/2]5. (17)

Function f (yt ,b) decreases with yt from values exceeding 1
for yt < 2 to a constant value g(b) � 1 for yt > 2. The curve
crosses through unity near yt = 1.8 (pt ≈ 0.4 GeV/c). Values
g(b) = 0.9, 0.75, 0.55 are inferred from the data for centrality
bins 20%–30% through 5%–10% (the 0%–5% BQ data for
yt > 2 are consistent with zero).

Figure 9 shows comparisons between Eq. (16) and 200-GeV
data from the present yt -differential analysis (points). The
solid dots and open circles represent v2{2D}{pt ,b} data from
2D fits with AS 1D Gaussian and AS dipole peak models,
respectively. The parametrization of Eq. (16) (solid curves)
describes the {2D} data accurately over a large kinematic
range. Significant differences arising from the choice of AS
1D peak model appear only for large yt values, as expected.
Thus, the algebraic relations in Refs. [14,15] and Eq. (16) are
confirmed by comparisons with these v2{2D}(yt ,b) data.

The dotted curves exclude the factor f (yt ,b) and therefore
have the simple form ∝ pt exp(−pt/P ), with P = 4 GeV/c
for 200 GeV. The more-peripheral data (possibly down to N -N
collisions) are consistent with that parametrization (follow the
dotted curves). Nonjet quadrupole data for three more-central
bins and, for yt > 2 (pt > 0.5 GeV/c), fall increasingly below
the trend predicted by the parametrization of v2{2D}(b) from

064910-11



KETTLER, PRINDLE, AND TRAINOR PHYSICAL REVIEW C 91, 064910 (2015)

Ref. [15], and quadrupole data for 0%–5% central collisions
are consistent with zero throughout that interval.

X. SYSTEMATIC UNCERTAINTIES

Statistical and systematic uncertainties are discussed for
yt -differential BQ data and for inferred quadrupole spectrum
trends. For this differential study the choice of fit model
is a compromise between minimizing systematic errors and
employing the same model to cover large kinematic intervals
on yt and centrality ν. For this discussion, we refer to the
model elements in Eq. (12).

A. 2D fit-model elements

At lower yt the 2D exponential (BEC + electrons) peak
narrows with increasing centrality while the SS 2D peak
broadens on η, ensuring accurate distinctions. At higher yt

the exponential peak amplitude drops rapidly to zero. Thus,
except for peripheral collisions that element can be dropped
from the 2D fit model. To minimize systematic fit errors from
that source the central three bins are omitted from all 2D fits
(bin errors greatly increased).

At small ν (peripheral collisions, below the sharp transition)
the SS 2D peak is narrow on η and φ and accurately described
by a 2D Gaussian for all yt bins. In more-central Au-Au
collisions the SS 2D peak broadens on η but remains narrow
on φ. For most yt bins the 2D peak is still accurately described
by a 2D Gaussian. At larger yt the peak is distorted on
η�, developing non-Gaussian tails as observed in trigger-
associated analysis [38,39]. The 2D Gaussian model, while
no longer binwise accurate, does estimate the peak amplitude
and rms widths satisfactorily for the present study focusing on
the azimuth quadrupole component.

In more-peripheral collisions (and in the yt -integral analy-
sis) the AS 1D peak is broad enough to be modeled accurately
by a single dipole term. In more-peripheral collisions and at
larger yt the AS 1D peak appears to narrow. If the width of the
AS peak becomes substantially smaller than π/2 and the AS
dipole model is employed, the quadrupole component of the
AS 1D peak might appear as a bias in the inferred quadrupole
amplitude. That bias source can be investigated by replacing
the AS dipole with an AS 1D Gaussian model and refitting the
2D data. Any differences in inferred BQ{2D}(yt ,b) establish
the systematic uncertainty from that source in the inferred NJ
azimuth quadrupole amplitude, typically at the few-percent
level as with other fit uncertainties.

B. 2D fit-quality systematics

Figure 10 shows typical fit residuals for lower- and higher-yt

bins using the eight-parameter fit model. For lower-yt bins
(left panel) the residuals do not contain significant large-
scale structure and are generally consistent with statistical
uncertainties. The χ2/DoF ≈ 0.8–2.5 (DoF = fit number of
degrees of freedom). The BEC + electron peak at the origin
appearing in the residuals (not described by the fit model) does
not contribute to the χ2 because those three bins are excluded
from the fit (assigned artificially large errors). In the higher-yt
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FIG. 10. (Color online) Residuals from 2D fits to yt -differential
histograms from 40%–50% central 200-GeV Au-Au collisions
for (left) yt ∈ [1.8,2.2] (pt ∈ [0.4,0.65] GeV/c) and (right) yt ∈
[3.4,3.8] (pt ∈ [2,3.3] GeV/c). The vertical scales are half the range
of the corresponding panels in Fig. 4.

bin the BEC + electron peak is negligible, consistent with the
pt dependence of both mechanisms.

To summarize systematic uncertainty trends for the yt -
differential analysis, we identify three zones on kinematic
space (yt ,ν). Zone A is more-peripheral collisions (ν < 2,
1 − σ/σ0 � 0.3) for all yt , zone B is more-central collisions
(ν > 2) for lower yt , and zone C is more-central collisions
for higher yt . The yt boundary between zones B and C
is approximately yt = 3.8 (pt ≈ 3 GeV/c). In zone A the
11-parameter model function for yt -integral analysis from
Refs. [15,16] is required for satisfactory fits. In zone B either
the 11- or 8-parameter model function provides similar fit
quality.

In zone C the 11-parameter model is excluded because of
fitting ambiguities between part of the SS 2D peak structure
and the 2D exponential model element, but the simpler 8-
parameter model function provides an adequate description
when three bins near the origin are excluded from the fit. As
noted, the simpler model function is therefore utilized to cover
zones B and C reported in this yt -differential analysis, and zone
A is not reported. Systematic uncertainties in zone B are small
and consistent with statistical and fit errors. Uncertainties in C
may be significant and are explicitly estimated.

Figure 10 (right panel) shows small but significant residuals
structure resulting from the non-Gaussian shape of the SS
2D peak appearing in larger-yt bins (zone C): excesses at
the origin and near the acceptance boundaries on η� for
φ� ≈ 0. A small excess in the inferred quadrupole BQ is also
observed (e.g., depression near φ� = π ) owing to the non-
Gaussian SS peak shape. The peak-peak residual quadrupole
amplitude is about 0.001 for BQ ≈ 0.014 [Fig. 6(d)]. Thus,
the relative uncertainty is ≈ 0.0005/0.014 � 5%, comparable
to the typical fit uncertainties there. The inferred quadrupole
data are generally stable against minor changes in jet-related
fit-model elements or the SS 2D peak shape, except for
the largest yt value (4.4), where a substantial systematic
uncertainty (20%) must be assigned to that single BQ point
for each centrality. What is most important to ensure accuracy
of the NJ quadrupole is the presence in the fit model of a SS
2D peak element narrow on the azimuth.
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FIG. 11. Data-model deviations Q(yt ,b) − Q0(yt ) are shown
relative to fixed spectrum model Q0(yt ). The upper hatched band
indicates that the rms data deviation is less than 5% except near
the acceptance end points. There are systematic deviations below
0.5 GeV/c and larger fitting uncertainties for the largest yt bin. The
lower hatched band provides an estimate of systematic uncertainties
above yt = 1.8 and the range of variations corresponding to v2(b) vs
v′

2(b) below yt = 1.8. The dashed curves are explained in the text.

C. Quadrupole spectrum uncertainties

The SP spectrum parametrization from Ref. [46] is not
constrained by data below yt = 2. Thus, some systematic
deviations from the Q0(yt ) reference may be attributable to
inaccuracies in the modeled SP spectrum structure. Also, we
have approximated the hadron spectrum for this study by the
pion spectrum alone. Protons and kaons do play a significant
role in the hadron spectrum shape, and those spectra are
substantially different from the pion spectrum, introducing
a further source of systematic bias.

Figure 11 shows relative deviations of unit-normal
quadrupole spectrum data Q(yt ,b) from universal spectrum
reference Q0(yt ). The symbols are defined as in Fig. 8. The
more-central data are scaled by factor g(b) < 1 as in Fig. 8
so that spectrum shapes for yt > 2 (pt > 0.5 GeV/c) can be
compared. The more-central data then exhibit large deviations
below yt = 2 owing to the rescaling. Such deviations could
represent variations in SP spectra below yt = 2, but they may
also reflect significant changes in the actual quadrupole spectra
with physical implications. The deviations above yt = 4 are
consistent with fit instabilities and sparse statistics. However,
we also expect an excess at larger yt because those data are
derived using the AS dipole model. If the AS 1D peak narrows
at larger yt (expected) the quadrupole component of the AS
1D peak may then contribute a positive bias to the inferred
v2{2D} data.

We can establish an upper limit on possible source-boost
variations with a Taylor expansion of Q(yt ,b) about Q0(yt )
relative to variations in boost �yt0. The two dashed curves
represent ±δyt0 d log[Q0(yt )]/dyt , with δyt0 = 0.02�yt0 =
0.012 or 2% of the mean source boost. The data lie well within
those limits for yt > 1.8 (pt > 0.4 GeV/c). Boost variations
with centrality are comparable to or smaller than those
observed small deviations on yt . The comparison suggests
that the mean quadrupole source boost does not change by
more than a few percent over a broad centrality interval. In

general, the Q0(yt ) universal quadrupole spectrum represents
the Q(yt ,b) data well over pt in 0.35–4 GeV/c (yt in 1.8–4).

XI. COMPARISONS AMONG v2 METHODS

Substantial differences appear between the NJ azimuth
quadrupole v2{2D} derived from model fits to 2D angular
correlations and v2{method} data derived from conventional
NGNM (equivalent to 1D model fits to azimuth correla-
tions) [15,17]. In this section we provide detailed comparisons
among several methods and consider possible sources of
observed differences.

A. Algebraic relation between v2{2} and v2{EP}
To establish the relation between conventional event-plane

{EP} and two-particle correlation {2} methods, we first note
that v2{EP} is defined by [8,26]

v2{EP} = v2,obs

〈cos[2(�2 − �r )]〉 , (18)

where the numerator is “observed” v2,obs (defined below) and
the denominator is described as the event-plane resolution.
To relate v2,obs to v2{2}, we define the m = 2 (azimuth
quadrupole) Q vector by [26,44,47]

�Q2 = 1

2π�η

n∑
i=1,∈�η

�u(2φi) ≡ Q2 �u(2�2), (19)

with unit vectors �u(φ) and event-plane angle �2. The vector
notation is an alternative to that in Ref. [47] based on complex
quantities. �Q2 as defined in Eq. (19) is a 2D angular density.
We then have

Q2
2 = �Q2 · �Q2 = ρ0

2π�η
+ V 2

2 {2}, (20)

as in Eq. (4), but with self-pairs included in the first term on
the right-hand side. It is notable that V 2

2 {2} and Q2
2 differ only

by the self-pair term. We then have

v2,obs ≡ 〈cos[2(φ − �2)]〉

= 1

n

n∑
i=1

�u(2φi) · �u(2�2,i), or

Q′
2v2,obs = 1

2π�η

1

n

n,n−1∑
j �=i=1

�u(2φi) · �u(2φj )

= v2{2}V2{2}, (21)

where Q′
2 = Q2

√
(n − 1)/n, and X2,i indicates that the ith

term is excluded from a sum over j . The summation condition
j �= i in Eq. (21) (third line) excludes self-pairs from that pair
sum but not from Q2 in Eq. (20) (or Q′

2). From Ref. [26] we
obtain the “event-plane resolution” measure

cos2[2(�2 − �r )] = nV 2
2 {2}

(n − 1) Q2
2

≈ nv2
2{2}

1 + nv2
2{2} , (22)
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where nv2
2{2} serves as a statistical figure of merit for ratio v2

analogous to σp2 (σ is a nuclear cross section) or Lp2 (L is
a beam luminosity) for measurements of polarization ratio p.
The {EP} ↔ {2} relation is then

v2{2} = v2,obs
Q2

V2{2}

√
n − 1

n

= v2,obs

〈cos[2(�2 − �r )]〉rms
≈ v2{EP}. (23)

Small {EP} ↔ {2} differences may arise from covariances
corresponding to non-Poisson multiplicity fluctuations. The
“event-plane resolution” correction is required because invo-
cation of an event-plane estimate via �Q2 implicitly includes a
self-pair contribution. Excluding self-pairs in Eq. (21) does not
remove the Q2 bias. The v2{EP} estimate does not necessarily
relate to an A-A reaction plane; it represents all 2D correlation
structure including jets. We hereafter refer exclusively to v2

2{2}
or V 2

2 {2} except when introducing published v2{EP} data.

B. Algebraic relation between v2{2} and v2{2D}
The quadrupole power-spectrum element V 2

2 {2} (equivalent
to ρ0AQ{2},ρ2

0BQ{2}) represents the total azimuth quadrupole
component for all angular correlations, including both jet-
related structures and any NJ structure that might be identified
with flows. As noted in Sec. IV A, the η� dependence of
2D angular correlations can be employed to separate unique
correlation components via 2D model fits, as in Refs. [10,16]
and the present analysis. For almost all collision conditions
we observe that the AS structure of 2D angular correlations
is uniform on η� within |η| < 1 and completely described by
a NJ azimuth quadrupole represented by AQ{2D} and an AS
dipole component.

The only remaining nontrivial structure observed in more-
central Au-Au collisions is a SS 2D peak (consistent with
intrajet correlations). Because the AS dipole is orthogonal
to all other multipoles, the SS 2D peak is the only other
significant contributor to total quadrupole V 2

2 {2} = ρ2
0v2

2{2}
in more-central A-A collisions. The SS 2D peak per-particle
quadrupole amplitude (Fourier coefficient) is given by [32]

2AQ{SS}(b) = F2(σφ�
)G(ση�

; �η)A2D, (24)

where A2D = ρ0B2D is the per-particle amplitude of the fitted
SS 2D peak with rms widths (ση�

,σφ�
), F2 is the m = 2 Fourier

component of a unit-amplitude 1D Gaussian on azimuth with
width σφ�

,

2Fm(σφ�
) =

√
2/πσφ�

exp
( − m2σ 2

φ�
/2

)
, (25)

and G � 1 is a calculated 2D → 1D η projection factor defined
in Ref. [32]. We thus obtain the relation

AQ{2} = AQ{2D} + AQ{SS} (26)

plus a small contribution from BEC + electron pairs in more-
peripheral collisions. Jet-related quadrupole AQ{SS} may be
identified with “nonflow” [32,33,40]. NJ quadrupole AQ{2D}
would correspond to elliptic flow if that phenomenon is
relevant. We test that relation with results from the present and

previous 2D correlation analysis and published v2{method}
data in the next section.

Strategies have been adopted to reduce nonflow (mainly
jet contributions) to v2 by excluding some parts of the nom-
inal (η1,η2) acceptance from NGNM calculations [32]. For
instance, some η� interval centered at zero may be excluded
from projections onto φ� by “estimating the reaction plane”
with large-η detectors [9,48,49]. The motivation is exclusion of
jet-related structure AQ{SS} from azimuth projections AQ{2}
based on assumptions about the jet fragment distribution on η.

Such η pair cuts may be less effective at distinguishing
jet-related structure from a NJ quadrupole than 2D model fits
applied within a more-limited η acceptance. In more-central
Au-Au collisions the SS 2D peak is strongly elongated and
may develop non-Gaussian tails extending over a large η�

interval [38]. The effects of η-exclusion cuts are then quite
uncertain and may have little impact on jet-related biases in
v2{method} data [32].

C. yt -differential data comparisons

Figure 12 shows published v2
2{EP}(pt ,b) data (open circles)

compared to v2
2{2D}(pt ,b) data from the present analysis (solid

points or hatched upper limit) and “nonflow” prediction v2
2{SS}

(dash-dotted curve) derived from characteristics of the SS 2D
peak measured in this analysis. The v2

2{EP}(pt ,b) points are
obtained by combining v2(b) and v2(pt ,b) measurements from
Ref. [9]. The hatched region in the left panel denotes an upper
limit on v2

2{2D} [compare with Fig. 9(f)]. The bold solid curve
in the right panel is defined (without the factor 100) by v2

2{2} =
v2

2{2D} + v2
2{SS} per Eq. (26).

We find that the measured v2
2{EP} ≈ v2

2{2} trend is predicted
by a combination of v2

2{2D} data and v2
2{SS} representing the

m = 2 Fourier component of the SS 2D jet peak projected
onto 1D azimuth. The dash-dotted curves v2

2{SS}(pt ,b) derived
from SS 2D peak properties inferred from this analysis can be
interpreted as the jet contribution to v2

2{2}. We confirm the
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FIG. 12. (Left) Comparison of measured 2D angular correlations
represented by v2

2{SS}(pt ,b) (dash-dotted curve) and v2
2{2D}(pt ,b)

(hatched region, upper limit) with published v2
2{EP}(pt ,b) data (open

circles) for 0%–5% central 200-GeV Au-Au collisions. (Right) Sim-
ilar comparison for 5%–10% central Au-Au collisions showing the
close correspondence between the sum v2

2{2D}(pt ,b) + v2
2{SS}(pt ,b)

(bold solid curve) and published v2
2{EP}(pt ,b) data (open circles) as

in Eq. (26). The light solid curve through the v2
2{2D} data (solid dots)

represents the parametrization in Eq. (16).
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FIG. 13. (Left) Comparison similar to Fig. 12 for 10%–20%
central Au-Au collisions showing near-equal contributions from NJ
quadrupole v2

2{2D}(pt ,b) and jet-related quadrupole v2
2{SS}(pt ,b).

The bold solid curve is the sum of {2D} and {SS} data. The
bold dotted curve is the parametrization of v2{2D}(pt ,b) from
Eq. (16) combined with a v2{2D}(b) value derived from Refs. [14,15]
(Sec. XII B). (Right) The quadrupole amplitude of the SS 2D peak
(dash-dotted curve) derived from Eq. (24) with data from Fig. 6
[same as Fig. 12 (left panel)] compared to a similar calculation using
fixed SS 2D peak widths (dotted curve and points). The substantial
differences illustrate the importance of accurately measured SS 2D
peak properties for understanding jet biases in v2{2} ≈ v2{EP} data.

trend v2
2{2} = v2

2{SS} + v2
2{2D} for yt -differential data based

on the detailed η dependence of 2D angular correlations. There
is no adjustment to accommodate the v2

2{EP} data.
Figure 13 (left panel) shows data for 10%–20% cen-

tral Au-Au collisions including similar contributions from
NJ quadrupole v2

2{2D}(pt ,b) and jet-related quadrupole
v2

2{SS}(pt ,b). The sum (bold solid curve) accurately describes
the published v2{EP} data. The parametrization of Eq. (16)
(dotted curve) describes the v2

2{2D}(pt ,b) data over the entire
pt acceptance.

Figure 13 (right panel) illustrates the importance of accurate
jet-related 2D correlation measurements. The dash-dotted
curve is v2

2{SS} from Fig. 12 (left panel) derived from Eqs. (24)
and (25) based on measured SS 2D peak characteristics as
in Fig. 6. The dotted curve and points represent the same
computation with the SS 2D peak widths held fixed at ση�

=
2.5 and σφ�

= 0.65 (yt -integral values for that centrality). This
exercise illustrates that accurate description of the v2

2{EP} data
in Fig. 12 (left panel) by the dash-dotted curve relies on full
employment of measured SS 2D peak properties.

We learn, for instance, that, relative to the correct dash-
dotted curve, the dotted curve assuming fixed SS peak widths
is too large at lower pt because the SS peak azimuth width is
substantially larger there, leading to an overestimate of Fourier
coefficient F2(σφ�

) in Eq. (25) by the fixed-width assumption.
The dotted curve is too large at higher pt because the SS peak
η-width reduction is not taken into account. The substantial
downturn in v2

2{EP}(pt ,b) for 0%–5% centrality at larger pt is
solely attributable to strong narrowing of the SS 2D peak on
η� above 4 GeV/c toward the p-p value, as in Fig. 6(b). The
combination of measured amplitude and widths of the SS peak
from Fig. 6 accurately describes the nonflow (jet) contribution
v2

2{SS} to v2
2{EP} ≈ v2

2{2} (dash-dotted curve).

XII. DISCUSSION

We consider the implications of differential v2{2D}(yt ,b)
measurements from this analysis for conventional v2 mea-
surements and for interpretations of v2 data in terms of
hydrodynamic flows.

A. Fit models and interpretation of model elements

We model yt -differential 2D angular correlations with
Eq. (12) whose elements are motivated only by structures
directly observed in the data, with no a priori physical
assumptions. We then interpret the elements physically by
comparison of data systematics with theoretical predictions.
Based on measured trends for p-p and more-peripheral A-A
collisions (95%–50% fractional cross section), we interpret
the SS 2D peak and AS 1D peak elements as “jet-related”
(see Sec. II B). All other elements are then referred to
as “nonjet,” including the NJ azimuth quadrupole. The
same terminology is retained in more-central A-A collisions
although a jet interpretation may be questioned there. The
ordered sequence—mathematical modeling followed by phys-
ical interpretation—is an essential feature. The jet-related and
NJ terminology is complementary to flow-related and nonflow
terminology. However, jet phenomenology is well established
from extensive HEP measurements and QCD theory, whereas
hydrodynamic flows in high-energy nuclear collisions (RHIC
and LHC energies as opposed to the Bevalac/AGS energy
regime) remain a matter of conjecture (see Sec. XII D for
further discussion).

Jet-related and NJ-quadrupole correlation components are
separately identified. So-called nonflow bias is associated with
the quadrupole (m = 2) Fourier component of the jet-related
SS 2D peak. AQ{2D} or BQ{2D} results are insensitive to the
SS peak shape on η, as noted in the present study. The essential
model element is the SS peak 1D Gaussian factor on azimuth,
as noted in Ref. [37], where 1D Fourier fits without an SS
peak element are strongly rejected by a Bayesian-inference
analysis.

B. yt -integral AQ{2D} systematics

The AQ{2D}(b,
√

sNN ) data from Refs. [14,15] reveal two
interesting features: (a) Data from two energies are accurately
described by the same centrality variation (defined below);
(b) the energy dependence of the quadrupole amplitude
(in combination with SPS data at 17 GeV [50]) scales as
log(

√
sNN ). When plotted on b/b0 the AQ{2D} data reveal

a simple variation closely approximating a Gaussian function
centered on b/b0 = 0.5.

Figure 14 (left panel) summarizes the measured NJ-
quadrupole energy dependence from Bevalac to highest RHIC
energy. AQ data values at b/b0 ≈ 0.5 minimize the relative
effects of jet (nonflow) contributions to AQ{method}. We
observe a major transition in the energy trend of per-particle
measure AQ near 13 GeV, suggesting different physical
mechanisms for the measured NJ quadrupole within the two
energy regimes [33]. Above 13 GeV the function R(

√
sNN ) ≡

log{√sNN/13.5 GeV}/ log(200/13.5) (solid line) describes
the energy dependence, with zero intercept at 13.5 ± 0.5 GeV.
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FIG. 14. (Left) Collision energy dependence of v2 data converted
to per-particle measure AQ. The solid points are from Refs. [14,15]
and Ref. [50]. They follow a logarithmic trend proportional to
R(

√
sNN ) (see text). The Bevalac-AGS trend below 13 GeV is propor-

tional to R′(
√

sNN ) = ln(
√

sNN/3.2 GeV). The open points are taken
from Fig. 4 of Ref. [48]. (Right) The azimuth quadrupole amplitude
AQ{2D} divided by optical ε2

opt plotted vs energy-dependent factor
R(

√
sNN ) times 200-GeV Au-Au binary-collision number Nbin(b).

The AQ{2D} data are consistent with simple proportionality [Eq. (27)]
over three decades.

A similar energy dependence was observed for 〈pt 〉 fluctua-
tions/correlations attributed to (mini)jets [12] consistent with
jet-related trends observed recently at the LHC [51]. The rate
of increase with energy (line slopes) is six times greater at
higher energies than the Bevalac/AGS trend (dashed curve).

Figure 14 (right panel) shows (1/ε2
2,opt)AQ{2D}(b)

vs R(
√

sNN )Nbin, where Nbin is the number of N -N binary
collisions. The vertical-axis variable is motivated to test
expectations for the ratio v2/ε: The trend v2/ε ∝ Sdnch/dη,
with S the A-A overlap area for more-peripheral A-A col-
lisions should transition to a “hydro limit” v2/ε ≈ constant
in more-central collisions [52]. From the present analysis we
conclude that for Au-Au collisions AQ{2D} data above 13 GeV
are described by

AQ{2D}(b,
√

sNN ) ≡ ρ0(b)v2
2{2D}(b,

√
sNN )

= CR(
√

sNN )Nbin(b)ε2
2,opt(b), (27)

where coefficient C is defined by 1000C = 4.5 ± 0.2. Equa-
tion (27) accurately describes measured yt -integral az-
imuth quadrupole data in heavy-ion collisions for all cen-
tralities down to N -N collisions and all energies above√

sNN ≈ 13 GeV. It represents factorization of energy
and centrality dependence for the NJ quadrupole. The
2D quadrupole data are also consistent with V 2

2 {2D} =
ρ0AQ{2D} ∝ NpartNbinε

2
2,opt(b) [14], a trend that, modulo the

IS eccentricity factor, increases much faster than the dijet
production rate. The nonzero value v2 ≈ 0.02 from Eq. (27)
extrapolated to p-p (N -N ) collisions agrees with a p-p
color-dipole prediction from QCD theory [53].

C. yt -differential AQ{2D} systematics

The BQ{2D}(yt ,b,
√

sNN ) data from the present study reveal
two interesting features: (a) The quadrupole source-boost
distribution is independent of Au-Au centrality over a large
interval (70% to 5%); and (b) the quadrupole spectrum shape

is independent of centrality over the same interval and very
different from the SP spectrum shape representing most
hadrons. The quadrupole spectrum is much colder (90 MeV vs
145 MeV) and does not change shape above the sharp transition
in jet properties as does the SP spectrum (e.g., RAA and “jet
quenching”). Those interesting trends are not apparent from
the systematics of ratio measure v2(pt ). Some implications are
considered in the next section.

D. Physical implications of AQ{2D} factorization

The present study combined with previous yt -integral anal-
ysis [14,15] reveals two factorizations of the NJ quadrupole
denoted by v2{2D}: (a) (b,

√
sNN ) factorization (yt -integral

case) above 13 GeV; and (b) (yt ,b) factorization at two
energies (yt -differential case). Such factorizations become
apparent only in terms of extensive correlation measure V 2

2
and with accurate distinction between the NJ quadrupole
and other structure, including jet-related SS 2D and AS 1D
peaks.

In case (a) (yt -integral case) we can aid interpretation by
rearranging Eq. (27) to obtain

2AQ = CR(
√

sNN )ν(b)
[
Npart(b)ε2

2,opt(b)
]
. (28)

The left-hand side per-hadron measure of final-state azimuth
quadrupole AQ{2D} = ρ0v

2
2 (momentum space) is mathe-

matically analogous to the right-hand side per-participant IS
quadrupole measure within the square brackets (configuration
space). The two azimuth correlation measures are simply
related by the product of participant path length ν(b) and
energy-dependent factor R(

√
sNN ). The quadrupole compo-

nent of the initial A-A overlap source depends only on impact
parameter b. Thus, the final-state NJ quadrupole of produced
hadrons (left-hand side) is simply proportional to the IS
quadrupole of the collision participants (right-hand side, as
determined by

√
sNN,b,A) over a large kinematic domain,

including N -N (p-p) collisions.
A plot of AQ vs 1 − b/b0 in Ref. [14] suggests that

the centrality dependence in Eq. (27) may depend only on
the relative impact parameter b/b0 independent of collision
energy. The shape of the quadrupole centrality trend may not
depend on the absolute size of the collision system, only on
the relative geometry of intersecting spheres independent of
atomic number A. Further studies with lighter nuclei (e.g.,
Cu-Cu) may test that hypothesis.

In case (b) (yt -differential case) we observe that a fixed
quadrupole spectrum shape is a universal feature of Au-Au
collisions over most of the centrality range (70%–5%), and the
inferred source-boost distribution is narrow with fixed mean
value. Both results contrast strongly with hydro expectations.
In the conventional hydro narrative [3] (i) almost all hadrons
emerge from a monolithic flowing bulk medium and (ii)
flows are driven by pressure gradients corresponding to large
IS energy densities in more-central A-A collisions. Item (i)
implies that quadrupole spectra should be equivalent to SP
spectra (and thus cancel in ratio v2), that both phenomena
should reflect a broad source-boost distribution corresponding
to Hubble expansion of the bulk medium, and that there should
be a close relation with the systematics of “jet quenching” in
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the medium. Item (ii) implies that flow magnitudes should
increase strongly with A-A centrality, may be negligible
in more-peripheral collisions, and should correspond with
jet-quenching systematics.

In contrast, measured quadrupole spectrum properties
suggest hadronization from a cold boosted source, possibly
an expanding cylindrical shell. There is no correspondence
with the sharp transition in jet properties observed near 50%
fractional cross section, suggesting that the quadrupole phe-
nomenon is not related to jet formation through a dense QCD
medium. The narrow fixed boost distribution independent of
A-A centrality appears to be incompatible with a Hubble
scenario that would describe explosive expansion of a bulk
medium, the mean boost increasing with A-A centrality [18].

XIII. SUMMARY

We have obtained azimuth quadrupole component v2{2D}
data from transverse-rapidity yt -differential correlations for
62- and 200-GeV Au-Au collisions. Application of novel
analysis methods to 2D angular correlations permits accurate
isolation of a nonjet (NJ) quadrupole component with simple
systematic properties on yt , Au-Au centrality, and collision
energy.

Conventional v2 analysis is based on nongraphical nu-
merical methods (NGNMs) equivalent to fitting 1D azimuth
correlations projected from some pseudorapidity η acceptance
with a single cosine function. In the present analysis fits
with a multielement fit model are applied to 2D angular
correlations. The fit model is based on identification of certain
geometric features in the 2D data without assumptions about
physical mechanisms. In p-p and more-peripheral Au-Au
collisions the data features are then characterized as jet-
related or NJ by comparisons with theory. Those designations
are maintained to central Au-Au collisions, although some
physical interpretations may be questioned in more-central
collisions.

In this analysis we have identified significant “nonflow”
bias in published v2{method}(yt ,b) data, the bias derived
mainly from a jet-related SS 2D peak. The bias is accurately
predicted by separately measured SS peak properties. A variety
of strategies has been developed previously in attempts to
reduce the nonflow (jet) bias in conventional v2 data, but the
results are inconclusive.

The systematics of yt -differential v2{2D}(yt ,b,
√

sNN )
data from the present study and published yt -integral

v2{2D}(b,
√

sNN ) data reveal that the quadrupole power-
spectrum amplitude V 2

2 {2D}(yt ,b,
√

sNN ) derived from those
data is fully factorizable. The separate factors on rapidity,
centrality, and energy are represented by simple functional
forms. In terms of per-particle quadrupole measure AQ = ρ0v

2
2

(ρ0 is the single-particle density), the energy dependence is
observed to be proportional to log(s/s0) (

√
s0 ≈ 13 GeV),

as expected for a QCD process. The centrality depen-
dence is essentially Gaussian on relative impact parameter
b/b0. The quadrupole power-spectrum centrality trend is
V 2

2 {2D}(b,
√

sNN ) ∝ NpartNbinε
2
opt(b). The same trends accu-

rately describe data from p-p to midcentral Au-Au collisions.
A nonzero v2 value for p-p collisions derived by extrapolation
is consistent with a theory prediction based on an alternative
(nonflow) QCD mechanism for the NJ quadrupole.

From the yt -dependence factor quadrupole spectra can be
reconstructed and a quadrupole source boost inferred for each
collision system. The quadrupole spectrum shape is the same
for three hadron species and for all collision systems, and
the quadrupole source boost (a single value) is approximately
independent of Au-Au centrality.

Our results have implications for hydrodynamic interpre-
tations of A-A collisions. The universal quadrupole centrality
trend can be contrasted with the trends for jet-related cor-
relations which exhibit a common sharp transition within a
small centrality interval, from N -N linear superposition in
more-peripheral Au-Au collisions to a substantially different
dependence in more-central collisions. In contrast, the trend
for v2{2D}/εopt remains smooth and slowly varying from p-p
to more-central Au-Au collisions. If jet production responds to
formation of or changes in a dense bulk medium, the azimuth
quadrupole appears unresponsive to such a medium.

Further implications for hydro models arise from
quadrupole spectrum results and quadrupole source-boost
trends. The mean source boost does not vary significantly
with Au-Au centrality, and the narrow boost distribution is
inconsistent with Hubble flow of an expanding bulk medium.
The NJ quadrupole amplitude and ratio v2{2D}/ε fall to zero
for most-central Au-Au collisions.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Energy Office of Science, Office of Nuclear
Physics under Award No. DE-FG02-97ER41020.

[1] J. Y. Ollitrault, Phys. Rev. D 46, 229 (1992).
[2] D. Teaney, J. Lauret, and E. V. Shuryak, Phys. Rev. Lett. 86,

4783 (2001).
[3] P. Huovinen and P. V. Ruuskanen, Annu. Rev. Nucl. Part. Sci.

56, 163 (2006).
[4] P. F. Kolb, U. W. Heinz, P. Huovinen, K. J. Eskola, and K.

Tuominen, Nucl. Phys. A 696, 197 (2001).
[5] T. Hirano and M. Gyulassy, Nucl. Phys. A 769, 71 (2006).
[6] L. P. Csernai, J. I. Kapusta, and L. D. McLerran, Phys. Rev. Lett.

97, 152303 (2006).

[7] J. Adams et al. (STAR Collaboration), Nucl. Phys. A 757, 102
(2005).

[8] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671
(1998).

[9] J. Adams et al. (STAR Collaboration), Phys. Rev. C 72, 014904
(2005).

[10] J. Adams et al. (STAR Collaboration), Phys. Rev. C 73, 064907
(2006).

[11] J. Adams et al. (STAR Collaboration), J. Phys. G 32, L37
(2006).

064910-17

http://dx.doi.org/10.1103/PhysRevD.46.229
http://dx.doi.org/10.1103/PhysRevD.46.229
http://dx.doi.org/10.1103/PhysRevD.46.229
http://dx.doi.org/10.1103/PhysRevD.46.229
http://dx.doi.org/10.1103/PhysRevLett.86.4783
http://dx.doi.org/10.1103/PhysRevLett.86.4783
http://dx.doi.org/10.1103/PhysRevLett.86.4783
http://dx.doi.org/10.1103/PhysRevLett.86.4783
http://dx.doi.org/10.1146/annurev.nucl.54.070103.181236
http://dx.doi.org/10.1146/annurev.nucl.54.070103.181236
http://dx.doi.org/10.1146/annurev.nucl.54.070103.181236
http://dx.doi.org/10.1146/annurev.nucl.54.070103.181236
http://dx.doi.org/10.1016/S0375-9474(01)01114-9
http://dx.doi.org/10.1016/S0375-9474(01)01114-9
http://dx.doi.org/10.1016/S0375-9474(01)01114-9
http://dx.doi.org/10.1016/S0375-9474(01)01114-9
http://dx.doi.org/10.1016/j.nuclphysa.2006.02.005
http://dx.doi.org/10.1016/j.nuclphysa.2006.02.005
http://dx.doi.org/10.1016/j.nuclphysa.2006.02.005
http://dx.doi.org/10.1016/j.nuclphysa.2006.02.005
http://dx.doi.org/10.1103/PhysRevLett.97.152303
http://dx.doi.org/10.1103/PhysRevLett.97.152303
http://dx.doi.org/10.1103/PhysRevLett.97.152303
http://dx.doi.org/10.1103/PhysRevLett.97.152303
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.085
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.085
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.085
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.085
http://dx.doi.org/10.1103/PhysRevC.58.1671
http://dx.doi.org/10.1103/PhysRevC.58.1671
http://dx.doi.org/10.1103/PhysRevC.58.1671
http://dx.doi.org/10.1103/PhysRevC.58.1671
http://dx.doi.org/10.1103/PhysRevC.72.014904
http://dx.doi.org/10.1103/PhysRevC.72.014904
http://dx.doi.org/10.1103/PhysRevC.72.014904
http://dx.doi.org/10.1103/PhysRevC.72.014904
http://dx.doi.org/10.1103/PhysRevC.73.064907
http://dx.doi.org/10.1103/PhysRevC.73.064907
http://dx.doi.org/10.1103/PhysRevC.73.064907
http://dx.doi.org/10.1103/PhysRevC.73.064907
http://dx.doi.org/10.1088/0954-3899/32/6/L02
http://dx.doi.org/10.1088/0954-3899/32/6/L02
http://dx.doi.org/10.1088/0954-3899/32/6/L02
http://dx.doi.org/10.1088/0954-3899/32/6/L02


KETTLER, PRINDLE, AND TRAINOR PHYSICAL REVIEW C 91, 064910 (2015)

[12] J. Adams et al. (STAR Collaboration), J. Phys. G 34, 451 (2007).
[13] T. A. Trainor and D. T. Kettler, Phys. Rev. D 74, 034012 (2006).
[14] T. A. Trainor, D. T. Kettler, D. J. Prindle, and R. L. Ray, J. Phys.

G 42, 025102 (2015).
[15] D. T. Kettler (STAR Collaboration), Eur. Phys. J. C 62, 175

(2009).
[16] G. Agakishiev et al. (STAR Collaboration), Phys. Rev. C 86,

064902 (2012).
[17] D. Kettler (STAR Collaboration), J. Phys. Conf. Ser. 270,

012058 (2011).
[18] T. A. Trainor, Phys. Rev. C 78, 064908 (2008).
[19] T. A. Trainor and D. J. Prindle, Phys. Rev. D 88, 094018

(2013).
[20] T. A. Trainor, arXiv:1407.6422.
[21] R. J. Porter and T. A. Trainor (STAR Collaboration), J. Phys.

Conf. Ser. 27, 98 (2005).
[22] R. J. Porter and T. A. Trainor (STAR Collaboration), PoS

CFRNC2006, 004 (2006).
[23] T. A. Trainor, R. J. Porter, and D. J. Prindle, J. Phys. G 31, 809

(2005).
[24] J. Adams et al. (STAR Collaboration), Phys. Lett. B 634, 347

(2006).
[25] K. H. Ackermann et al. (STAR Collaboration), Nucl. Instrum.

Methods Phys. Res., Sect. A 499, 624 (2003).
[26] T. A. Trainor and D. T. Kettler, Int. J. Mod. Phys. E 17, 1219

(2008).
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