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Electromagnetic field and the chiral magnetic effect in the quark-gluon plasma
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Time evolution of an electromagnetic field created in heavy-ion collisions strongly depends on the
electromagnetic response of the quark-gluon plasma, which can be described by the Ohmic and chiral
conductivities. The latter is intimately related to the chiral magnetic effect. I argue that a solution to the classical
Maxwell equations at finite chiral conductivity is unstable due to the soft modes k < σχ that grow exponentially
with time. In the kinematical region relevant for the relativistic heavy-ion collisions, I derive analytical expressions
for the magnetic field of a point charge. I show that finite chiral conductivity causes oscillations of magnetic field
at early times.
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I. INTRODUCTION

Collision of relativistic heavy ions produces hot nuclear
matter that can be described using the relativistic hydrody-
namics [1,2]. I will refer to this matter as the quark-gluon
plasma (QGP), leaving aside the issues of its equilibration and
thermalization. Valence electric charges of the colliding ions
are not a part of the plasma, as they continue on the incident tra-
jectory along the beam directions with very little deflection [3].
However, they create a strong electromagnetic field (EMF) that
influences the plasma behavior [4–9]. Electrically conducting
plasma responds by generating induced EMF. The resulting
EMF is a solution to a complicated magnetohydrodynamic
problem. As a first approximation, one can rely on slow time
dependence of the relevant kinetic coefficients on time to
decouple the Maxwell equations from the time evolution of
the QGP. Analytical solution to these equations shows that the
EMF decreases with time much slower than in vacuum and is
approximately collision energy independent; rather it depends
only on the impact parameter and the electrical conductivity
of the QGP [4,10–12]. Numerical simulations that take into
account the QGP expansion [13] qualitatively agree with this
conclusion.1

It has been recently realized that kinetic properties of the
QGP reflect the nontrivial topological structure of the QCD.
In particular, the QGP responds to the chirality imbalance
by generating metastable parity-odd domains. In the presence
of external magnetic field such a metastable domain induces
a parallel to it electric field, which is known as the chiral
magnetic effect (CME) [9,14–17]. Electric current generated
by the CME is proportional to the external magnetic field, with
the chiral conductivity σχ being the proportionality coefficient.
In this paper, I study the electromagnetic field generated by
valence charges at finite chiral conductivity and determine the
role of the chiral magnetic effect (CME) in the electromagnetic
field dynamics in the QGP.

I found a twofold effect of the CME on the electromagnetic
field evolution. First, the field becomes unstable because

1A different strength of EMF in Refs. [13] and [11] is due to different
initial time at which the plasma evolution starts.

soft modes with k < σχ grow exponentially with time. For
the QGP this effect is of little importance since the largest
wavelength 1/k that is allowed in QGP is much smaller than
1/σχ . However, in non-Abelian plasmas with large spatial
extent this is an important phenomenon that may lead to a
breakdown of the electromagnetic field into a set of knots with
nontrivial topology.2 Second, due to finite chiral conductivity,
the magnetic field, produced by valence electric charges,
oscillates at early times after a heavy-ion collision. These
oscillations may result in partial cancellation of the magnetic
field effects, when averaged over time.

The paper is structured as follows. In Sec. II, I describe the
Maxwell-Chern-Simons (MCS) theory, which is an elegant
way to incorporate the topological effects in QED. In the
MCS the chiral conductivity arises from the time-dependent θ
angle. Following Ref. [24] I consider the simplest model with
constant σχ . In Sec. III, I solve MCS equations away from
charges and show that the dispersion relation of electromag-
netic wave contains an unstable mode at k < σχ . In Sec. IV, I
derive expressions for the electromagnetic field of a relativistic
point charge and discuss its properties. Explicit analytical
expressions for the magnetic field of a point charge is derived
in Sec. V in the diffusion approximation, which is appropriate
for the relativistic heavy-ion collisions. The main result, shown
in Fig. 2, indicates that at finite chiral conductivity, magnetic
field components oscillate at early times. I discuss these results
and conclude in Sec. VI.

II. MAXWELL-CHERN-SIMONS EQUATIONS

The Lagrangian of electrodynamics coupled to the topolog-
ical charge carried by the gluon field, the so-called Maxwell-
Chern-Simons theory, reads [17,25–27]

L = −1

4
FμνFμν − Aμjμ − c

4
θF̃ μνFμν, (1)

where c = Nc

∑
f q2

f e2/2π2. An external pseudoscalar field θ
depends on the medium properties and originates in the QCD

2A different type of chiral plasma instabilities has been recently
discussed in Refs. [18–23].
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Lagrangian. The corresponding field equations are given by3

∇ · B = 0, (2)

∇ · E = ρ − c ∇θ · B, (3)

∇ × E = −∂t B, (4)

∇ × B = ∂t E + j + c(∂tθ B + ∇θ × E). (5)

Time-derivative θ̇ = μ5 can be identified with the axial
chemical potential μ5 [16,17]. The part of the anomalous
current density proportional to the magnetic field can be
written down as j = σχ B, where

σχ = μ5
e2

2π2
Nc

∑
f

q2
f (6)

is the chiral conductivity induced by the QED anomaly [29].
The θ angle is believed to be finite inside metastable regions of
size ∼1/g2T . On average it must vanish 〈θ〉 = 0 to preserve
the global CP invariance of the QCD. Its space and time
dynamics is complicated: shortly after a heavy-ion collision
it is determined by the colored fields of glasma [30–32], while
at later time by the sphaleron transition dynamics [20–23].

Since the detailed structure of inhomogeneous field θ is
unknown, one has to resort to phenomenological models in
order to study its effect on the electromagnetic field dynamics
(see, e.g., Ref. [32]). The simplest model that captures the
essential dynamics of the CME effect, and that we adopt in
the present study, is to neglect the space variation of θ and
approximate σχ by a constant. In other words we set ∇θ = 0
and σχ = const. This model was used in Ref. [33] to discuss
nontrivial static topological solutions of (2)–(5) (see below)
and in Ref. [24] to numerically investigate time evolution of
magnetic field. The main advantage of this model is that it can
be analytically solved and thus provides important insights into
the dynamics of the electromagnetic fields in the presence of
the chiral anomaly. Moreover, it is argued in Refs. [34,35] that
θ may actually be a slow function of x that permits expansion
θ ≈ θ0 + μ5t + c−1 P · r with constant μ5 and P .

Consider now the system of equations (2)–(5) in the absence
of electric charges, with the assumptions discussed in the
previous paragraph. It has nontrivial stationary solutions with
finite magnetic field and vanishing electric field that satisfies
the following equations [36–38]:

∇ · B = 0, (7)

∇ × B = σχ B. (8)

It is argued in Ref. [33] that since the anomalous current j =
σχ B exists only in the deconfined phase occupying a domain
of finite volume D, there is no outward current on its boundary.
This implies the boundary condition

r̂ · B|∂D = 0. (9)

The solution to (7)–(9) is a system of magnetized knots of
different sizes. In a simplest case of spherical boundary the

3The correct signs in front of the anomalous terms where derived
in Ref. [28].

possible values of its radius are

Rn = κn

σχ

, n = 0,1,2, . . . , (10)

where n enumerates zeros of spherical Bessel functions κn.
The smallest of κ’s is κ0 ≈ 4.5, which for a realistic σχ yields
R0 ≈ 200 fm. R0 is much larger than a characteristic transverse
size of the QGP RA ∼ 6–10 fm and thus has no effect on the
QGP phenomenology. It is possible that magnetic knots are
artifacts of our model for the θ angle. It is far from clear
whether any static topological solutions survive in a more
realistic model.

III. INSTABILITY OF ELECTROMAGNETIC WAVES
IN INFINITE PLASMA

Consider electromagnetic waves propagating in plasma far
from any sources. In a conducting medium Maxwell equations
for the electromagnetic field read

∇ · B = 0, (11)

∇ · D = 0, (12)

∇ × E = −∂t B, (13)

∇ × H = ∂t D + σχ B. (14)

D is electric displacement vector. We will assume that μ = 1.
Fourier transformation

E(r,t) =
∫

d4k

(2π )4
e−ik·x Eω,k,

(15)

B(r,t) =
∫

d4k

(2π )4
e−ik·x Bω,k,

where x = (t,r), k = (ω,k) yields Maxwell equations in
momentum space

k · Bω,k = 0, (16)

εk · Eω,k = 0, (17)

k × Eω,k = ωBω,k, (18)

k × Bω,k = −ωε Eω,k − iσχ Bω,k, (19)

where Dω,k = ε Eω,k. In electrically conducting medium with
the Ohmic conductivity σ the permittivity is ε = 1 + iσ/ω,
Taking vector product of (19) with k and using (16) and (18)
we get

Bω,k[ω(ω + iσ ) − k2] = −iσχ k × Bω,k. (20)

Taking another vector product with k gives

(k × Bω,k)[ω(ω + iσ ) − k2] = iσχ k2 Bω,k. (21)

Equations (20) and (21) have a nontrivial solution only if the
following dispersion relation is satisfied

[ω(ω + iσ ) − k2]2 = σ 2
χ k2. (22)

It has four solutions

ωλ1,λ2 = − iσ

2
+ λ1

√
k2 + λ2σχk − σ 2/4, (23)
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where λ1, λ2 = ±1 and k =
√

k2 � 0. These solutions de-
termine the time dependence of electromagnetic wave as
∼e−iωλ1 ,λ2 t .

Let κ2 = k2 + λ2σχk − σ 2/4. When κ2 > 0 the electro-
magnetic wave oscillates with frequency κ and is damped
over the distance 1/σ . This corresponds to momenta

k > k0 ≡ 1

2

√
σ 2

χ + σ 2 − λ2σχ

2
. (24)

For k < k0, κ2 < 0, and all ωλ1,λ2 ’s become imaginary im-
plying that electromagnetic wave is a monotonic function of
time. At κ2 = −σ 2/4, which occurs at k = σχ , λ2 = −1, and
λ1 = +1, ω+− vanishes indicating a stationary mode. Finally,
when κ2 < −σ 2/4, i.e., k < σχ , λ2 = −1, λ1 = +1 there is
an unstable mode with Im ω+− > 0, which corresponds to the
exponentially increasing magnetic field. Im ω+− vanishes at
k = 0 and k = σχ and has a maximum value of (

√
σ 2+σ 2

χ −σ )/2

at k = σχ/2.
The electromagnetic wave, which at some initial time

contains modes extending to the region k < σχ , is unstable.
This is a usual situation in an infinite plasma. However, in
a plasma of spatial size R there are only modes k � 1/R.
Therefore, the instability affects the field evolution only if
R � 1/σχ . In the QGP this condition is not satisfied, except,
perhaps, in very rare fluctuations of the θ angle, and hence can
be ignored.

IV. ELECTROMAGNETIC FIELD OF A POINT CHARGE

In an electrically conducting medium Maxwell equations
for the electromagnetic field of a point charge moving along a
straight line z = vt read

∇ · B = 0, (25)

∇ · D = eδ(z − vt)δ(b), (26)

∇ × E = −∂t B, (27)

∇ × H = ∂t D + σχ B + ev ẑδ(z − vt)δ(b). (28)

These equations in momentum space are

k · Bω,k = 0, (29)

εk · Eω,k = −2πieδ(ω − kzv), (30)

k × Eω,k = ωBω,k, (31)

k × Bω,k = −ωε Eω,k − iσχ Bω,k − 2πiev ẑδ(ω − kzv).

(32)

We repeat the algebraic manipulations of the previous section.
First, taking the vector product of (32) with k and using (29)
and (31) we arrive at

Bω,k[ω(ω + iσ ) − k2]

= −iσχ k × Bω,k − 2πievk × ẑδ(ω − kzv). (33)

Second, we take another vector product with k to obtain

(k × Bω,k)[ω(ω + iσ ) − k2]

= iσχ k2 Bω,k − 2πievk × (k × ẑ)δ(ω − kzv). (34)

We are interested in a particular solution to Eqs. (33) and
(34), namely the one that is generated by the electric charge e.
Solving (33) and (34) yields

Bω,k = (k × ẑ)[ω(ω + iσ ) − k2] − iσχ k × (k × ẑ)

[ω(ω + iσ ) − k2]2 − σ 2
χ k2

× (−2πi)evδ(ω − kzv). (35)

The electric field follows from the Faraday law (31) upon
taking its vector product with k:

k(k · Eω,k) − k2 Eω,k = ω(k × Bω,k). (36)

Substituting (30) and (32) we find

Eω,k = 2πieδ(ω − kzv)[k/ε − vω ẑ] − iωσχ Bω,k

ω(ω + iσ ) − k2 , (37)

with Bω,k given by (35).
It will be suitable to write the cross products in Eq. (35)

in cylindrical coordinates. Let ψ be the angle between the
vector k⊥ and the x axis, the corresponding unit vector is
ψ̂ = −x̂ sin ψ + ŷ cos ψ . Then

k × ẑ = −k⊥ψ̂, (38)

k × (k × ẑ) = kzk⊥ − k2
⊥ ẑ. (39)

Using identities (38) and (39) in Eq. (30), substituting the
result into (15), and taking integral over kz we find

B = ie

∫ +∞

−∞

dω

2π

∫
d2k⊥
(2π )2

k⊥ψ̂
[
ω(ω + iσ ) − k2

⊥ − ω2

v2

] + iσχ

(
k⊥ ω

v
− k2

⊥ ẑ
)

[
ω(ω + iσ ) − k2

⊥ − ω2

v2

]2 − σ 2
χ

(
k2
⊥ + ω2

v2

) e−iωx−+ik⊥·b, (40)

where x− = t − z/v.
The time dependence of the magnetic field is determined

by the poles of (35) in the plane of complex ω. These poles
are solutions of the following quartic equation

[
ω(ω + iσ ) − k2

⊥ − ω2

v2

]2

− σ 2
χ

(
k2
⊥ + ω2

v2

)
= 0. (41)

Equation (41) can be obtained from the dispersion relation
(22) of a free wave by restricting it to the particle equation of

motion kz = ω/v. Introducing γ = (1 − v2)−1/2 allows us to
cast (41) in a more convenient form

(
− ω2

v2γ 2
+ iωσ − k2

⊥

)2

− σ 2
χ

(
ω2

v2
+ k2

⊥

)
= 0. (42)

Four solutions to this equation can be found using the standard
algebraic methods. However, they are quite bulky, so I am not
reproducing them here. Instead, I find it more illuminating to
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FIG. 1. Four solutions of (42) at σ = 5.8 MeV, σχ = 1 MeV,
γ = 100. Horizontal and vertical axes are in units of GeV. Each line
is a unique function of k⊥. Squares, circles and triangles indicate the
positions of the poles at k⊥ = 0.1,0.6,1.1 GeV respectively.

plot them at fixed σ , σχ , and γ for different values of k⊥ as
shown in Fig. 1.

The position of the four poles at k⊥ → 0 can be found by
expanding (42), which gives three distinct solutions ω = 0 and
ω = v2γ 2(iσ ± σχ ). The former corresponds to the minimum
value of the lower branches, while the latter to the minimum
values of the upper branches. Thus, the upper branches are
separated from the real axis by a gap v2γ 2σ . The absolute value
of the real part of the upper branches decreases monotonically
with k⊥. At k⊥ → ∞

ω ≈ ±ivγ k⊥ ± 1
2vγ σχ

√
γ 2 − 1. (43)

Thus, the real value of ω of upper branches approaches
a constant at large k⊥, which indicates that a gap of size
∼γ 2σχ exists also between the upper branches and the
imaginary axis. In the ultrarelativistic limit v → 1, or γ → ∞,
the upper branches move to infinity. Since the poles in the upper
half plane determine the electromagnetic field at x− < 0, it gets
exponentially suppressed at γ � 1.

Behavior of the electromagnetic field at x− > 0 is deter-
mined by the two poles in the lower half plane. Unlike the poles
in the upper half plane they stay finite in the ultrarelativistic
limit. One of the lower branches exhibits a peculiar behavior
by crossing the real axis and acquiring a positive Im ω when
k⊥ < σχ . This is a way in which the field instability discussed
in the previous section manifests itself in this case. (This
feature is not readily seen in Fig. 1 due to the small value of σχ ).
The existence of a pole in the upper-half plane implies that the
field of a point charge moving along x− = 0 receives acausal
contribution, viz., a term that is finite at x− < 0 when γ → ∞.
Fortunately, transverse momenta as small as k⊥ ∼ σχ are not
relevant in relativistic heavy-ion phenomenology, allowing me
to neglect the acausal contribution. This however does not
resolve a theoretical problem that the acausal term presents.4

4A solution to this problem might be related to existence magnetic
knots discussed in Sec. II that also appear at k ∼ σχ .

V. DIFFUSION APPROXIMATION

At a given light-cone time x− > 0 the ω integral in Eq. (40)
vanishes at ω � 1/x− due to the rapid oscillation of the
integrand. Therefore, at later times the terms in Eq. (42) that are
quadratic in ω are suppressed. This correspond to the following
diffusion approximation:

ω � σv2γ 2, ω � vγ k⊥, (44)

which is tantamount to

x− � 1

σv2γ 2
, x− � b

vγ
, (45)

where we estimated k⊥ ∼ 1/b. Electrical conductivity of the
quark-gluon plasma at the critical temperature is σ = 5.8 MeV
[39–42]. For a heavy-ion collision at γ = 100 we estimate
1/σv2γ 2 ∼ 3 × 10−3 fm. For b ∼ 10 fm, b/γ ∼ 0.1 fm.
Taking into account that it takes about 1/Qs ∼ 0.2 fm to
release the color charges from the nuclei wave functions, it
follows that approximation (44) applies to the entire lifetime of
the QGP. The precise initial conditions do not play an important
role in the electromagnetic field evolution.

Since the valence quarks are ultrarelativistic, i.e., γ � 1,
we will approximate their velocity as v ≈ 1 − 1/2γ 2. Then,
the dispersion relation (42) in the diffusion approximation
takes form

(iωσ − k2
⊥)2 − σ 2

χ (ω2 + k2
⊥) = 0. (46)

The two solutions of (46), describing the two lower poles in
Fig. 1, are

ω1,2 =
−iσk2

⊥ ± k⊥σχ

√
k2
⊥ − σ 2 − σ 2

χ

σ 2 + σ 2
χ

. (47)

These are the only poles of the Fourier component of magnetic
field Bω,k in the complex ω plane because the upper poles
in Fig. 1 disappear in the limit v → 1. If k⊥ >

√
σ 2+σ 2

χ , then
both complex-conjugated poles lie in the lower half plane. If
σχ < k⊥ <

√
σ 2+σ 2

χ , then there are two poles on the imaginary
axis in the lower half plane. Finally, if k⊥ < σχ , then both
poles lie on the imaginary axis, but ω1 is in the upper half
plane, while ω2 is still in the lower one.

In the diffusion approximation (40) reads

B = −ie

∫
dω

2π

∫
d2k⊥
(2π )2

k⊥ψ̂(iωσ − k2
⊥) + iσχ (k⊥ω − k2

⊥ ẑ)(
σ 2 + σ 2

χ

)
(ω − ω1)(ω − ω2)

×e−iωx−+ik⊥·b (48)

=
∫

d2k⊥
(2π )2

eik⊥·b
∫ +∞

−∞

dω

2π

f (ω)

(ω − ω1)(ω − ω2)
e−iωx− , (49)

where I denoted

f (ω) = − ie

σ 2 + σ 2
χ

[k⊥ψ̂(iωσ − k2
⊥) + iσχ (k⊥ω − k2

⊥ ẑ)].

(50)
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Closing the integration contour in Eq. (49) by an infinite
semicircle in the lower half plane we find at x− > 0

B =
∫

d2k⊥
(2π )2

eik⊥·b i

ω2 − ω1

× [e−iω1x− f (ω1)θ (k⊥ − σχ ) − e−iω2x− f (ω2)]θ (x−).
(51)

The value of σχ probably does not exceed a few MeV at best,
while typical k⊥ is in the range 20–200 MeV corresponding to
b’s in the range 1–10 fm. Therefore, only the case k2

⊥ � σ 2 +
σ 2

χ has a practical significance. This allows us to approximate
the poles of (47) as follows

ω1,2 ≈ k2
⊥(−iσ ± σχ )

σ 2 + σ 2
χ

= k2
⊥

iσ ± σχ

. (52)

The magnetic field at x− > 0 becomes

B ≈
∫

d2k⊥
(2π )2

eik⊥·b i

ω2 − ω1
[e−iω1x− f (ω1) − e−iω2x− f (ω2)].

(53)

Its polar component is given by

Bφ =
∫

d2k⊥
(2π )2

eik⊥·b i

ω2 − ω1
ψ̂ · [e−iω1x− f (ω1)

− e−iω2x− f (ω2)], (54)

where φ is the angle between the impact parameter b and the
x axis. Integration over the directions of k⊥ given by the polar
angle ψ is done as follows:

∫ 2π

0
eik⊥·bψ̂ dψ=

∫ 2π

0
eik⊥b cos(ψ−φ)(−x̂ sin ψ + ŷ cos ψ)dψ

= 2πiJ1(k⊥b)φ̂, (55)

Using (55) in Eq. (54) and substituting (50) and (52) we have:

Bφ = −
∫ ∞

0

dk⊥k⊥
2π

iJ1(k⊥b)
ek⊥

2
(
σ 2 + σ 2

χ

)

×
[

(iσ − σχ )e−i
k2⊥x−
iσ+σχ + (iσ + σχ )e−i

k2⊥x−
iσ−σχ

]
. (56)

The remaining integral can be done analytically yielding

Bφ = eb

8πx2−
e
− b2σ

4x−

[
σ cos

(
b2σχ

4x−

)
+ σχ sin

(
b2σχ

4x−

)]
.

(57)

Turning to the component of magnetic field aligned along the
b direction we obtain:

Br =
∫

d2k⊥
(2π )2

eik⊥·b i

ω2 − ω1
k̂⊥·

× [e−iω1x− f (ω1) − e−iω2x− f (ω2)]. (58)

Angular integration is done using∫ 2π

0
eik⊥·bk̂⊥ dψ =

∫ 2π

0
eik⊥b cos(ψ−φ)(x̂ cos ψ + ŷ sin ψ) dψ

=2πiJ1(k⊥b)b̂. (59)

Plugging the k⊥ component of f from (50) and integrating
over k⊥ we derive

Br = eb

8πx2−
e
− b2σ

4x−

[
σ sin

(
b2σχ

4x−

)
− σχ cos

(
b2σχ

4x−

)]
.

(60)

Finally, repeating the by now familiar procedure and using the
integral ∫ 2π

0
eik⊥·b ẑ dψ = 2πJ0(k⊥b) ẑ (61)

we find for the longitudinal field component:

Bz = eb

4πx2−
e
− b2σ

4x−

[
σ sin

(
b2σχ

4x−

)
− σχ cos

(
b2σχ

4x−

)]
.

(62)

0.2 0.4 0.6 0.8 1.0
t

�0.04

�0.03
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t

0.002

0.004

0.006

eB�m2

FIG. 2. Magnetic field of a point charge as a function of time t at z = 0. (Free space contribution is not shown). Electrical conductivity
σ = 5.8 MeV. Solid line on both panels corresponds to B = Bφ at σχ = 0. Broken lines correspond to Bφ (dashed), Br (dashed-dotted), and Bz

(dotted) with σχ = 15 MeV on the left panel and σχ = 1.5 MeV on the right panel. Note that the vertical scale on the two panels is different.
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It is seen in Eqs. (60) and (62) that the field components Br

and Bz are generated only at a finite chiral conductivity σχ .
Equations (57), (58), and (62) are the main result of this

paper. They show that at finite σχ , the magnetic field of a point
charge acquires two components that are absent in the chirally
neutral medium: the radial and the longitudinal components.
All field components oscillate at early times. This is clearly
seen in Fig. 2. The Bz and Br components change sign at
light-cone times

x
(n)
− = b2σχ

4
[

arctan σχ

σ
+ πn

] , n = 0,1, . . . , (63)

while the Bφ components change sign at

x̃
(n)
− = b2σχ

4
[ − arctan σ

σχ
+ πn

] , n = 0,1, . . . . (64)

The latest oscillation corresponds to n = 0; it increases with
σχ .

VI. DISCUSSION AND SUMMARY

We discussed the chiral topological effect on the electro-
magnetic field in the quark-gluon plasma. In our model the
anomalous current density is given by j = σχ B with constant
chiral conductivity σχ . For the energy and time scales of
the QGP this model gives a reasonable physical picture of
the electromagnetic field space-time evolution. There are two
major results presented in this paper.

(i) I showed that solutions to the Maxwell equations are not
stable in the presence of the chirality imbalance. It is possible
that electromagnetic field collapses into a set of magnetic
knots. This problem certainly deserves a dedicated study and
may be important in cosmology. However, as far as heavy-ion
collisions are concerned, this instability has negligible impact
on the QGP because it originates from soft modes k < σχ that

do not exist in the QGP of realistic dimensions. The maximal
growth rate of unstable modes is (

√
σ 2+σ 2

χ −σ )/2.
(ii) I derived an analytical expression for the magnetic field

produced by valence charges in quark-gluon plasma at finite
chiral conductivity σχ . Its components are given by Eqs. (57),
(60), and (62), which indicate the emergence of the radial
Br and longitudinal Bz components of magnetic field (as
compared to the σχ = 0 case). If σχ is not much smaller than
σ , then all components perform oscillations at early times
after the collision. Since the magnetic field is strongest at
early times, these oscillations should have important impact
on heavy-ion phenomenology. In particular, they may weaken
effects that depend on the magnetic field direction, such as the
B-dependent elliptic flow [43,44] and charge separation effect
[9]. This is especially true for the charge separation effect that
requires sufficiently large σχ .

In this paper, I considered the simplest model that in-
corporates the chiral anomaly in electrodynamics. Its main
advantages are that it describes the experimentally observable
charge separation in heavy-ion collisions and can be solved
analytically. However, it has serious drawbacks as well: chiral
conductivity of a realistic plasma is a complicated function
of space and time. Thus, the main outstanding problem is to
find a more realistic model for the chiral anomaly and verify
which of the above results survive in an improved formulation,
and to what extent. This can serve as a benchmark for the full
magnetohydrodynamical treatment of the problem.
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