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Hybrid approaches based on relativistic hydrodynamics and transport theory have been successfully applied for
many years for the dynamical description of heavy-ion collisions at ultrarelativistic energies. In this work a new
viscous hybrid model employing the hadron transport approach UrQMD for the early and late nonequilibrium
stages of the reaction, and 3+1 dimensional viscous hydrodynamics for the hot and dense quark-gluon plasma
stage, is introduced. This approach includes the equation of motion for finite baryon number and employs an
equation of state with finite net-baryon density to allow for calculations in a large range of beam energies. The
parameter space of the model is explored and constrained by comparison with the experimental data for bulk
observables from Super Proton Synchrotron and the phase I beam energy scan at Relativistic Heavy Ion Collider.
The favored parameter values depend on energy but allow extraction of the effective value of the shear viscosity
coefficient over entropy density ratio η/s in the fluid phase for the whole energy region under investigation. The
estimated value of η/s increases with decreasing collision energy, which may indicate that η/s of the quark-gluon
plasma depends on baryochemical potential μB .
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I. INTRODUCTION

Ultrarelativistic heavy-ion collisions allow investigation of
the properties of strongly interacting matter under extreme
conditions. At high temperatures and/or high net-baryon
densities a new state of matter, the so-called quark-gluon
plasma (QGP), is formed. The two main goals of heavy-
ion research are the exploration of the phase diagram of
quantum chromodynamics and the determination of transport
coefficients of this new state of matter.

The studies of high-energy heavy-ion collisions at the Large
Hadron Collider (LHC) at CERN and the Relativistic Heavy
Ion Collider (RHIC) at Brookhaven National Laboratory have
revealed that the quark-gluon plasma behaves like an almost
perfect fluid. In recent years, so-called hybrid approaches [1–5]
based on (viscous) relativistic hydrodynamics for the hot and
dense stage coupled to hadron transport approaches for the
decoupling stage of the reaction have been applied with great
success to extract average values of the shear viscosity over
entropy ratio η/s. The results are very close to the conjectured
universal limit of η/s = 1

4π
, based on the anti–de Sitter and

conformal field theory (AdS-CFT) correspondence [6]. For
example, the values extracted in Ref. [7] for collisions are
η/s = 0.12 at RHIC and η/s = 0.2 at the LHC.

One expects the formation of partonic matter in heavy-ion
collisions at ultrarelativistic energies (see, e.g., Ref. [8]).
However, it is unknown at what collision energy the transition
from hadronic to partonic matter sets in. In addition, as the
collisions at lower energies probe the phase diagram at larger
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net-baryon densities, it may be possible to experimentally
see signs of the theoretically predicted critical point [9] and
the first-order phase transition beyond it. To investigate these
questions the so-called beam energy scan (BES) programs
at SPS (NA49, NA61 experiments) and at RHIC (STAR,
PHENIX experiments) were started. One of the surprises of
the stage I of the BES program at RHIC has been that the
pT -differential elliptic flow, v2(pT ), of charged hadrons does
not change significantly when the collision energy is reduced
from

√
sNN = 200 to ∼20 GeV [10]. The large values of elliptic

flow measured at
√

sNN = 200 GeV collisions were taken as
a sign of very low shear viscosity of the matter formed in
these collisions. Thus, the large v2(pT ) measured in collisions
at lower energy leads to the question of how η/s changes as
function of net-baryon density and baryochemical potential
μB [11].

Unfortunately, many of the hydrodynamical and hybrid
models used to model collisions at full RHIC and LHC
energies are not directly applicable to collisions at RHIC
BES and CERN SPS energies or to collisions at even
lower energies in the future at Facility for Antiproton and
Ion Research (FAIR), Nuclotron-based Ion Collider Facility
(NICA), and stage II of the BES program at RHIC. The
simplifying approximations of boost invariance and zero
net-baryon density are not valid, and different kinds of
nonequilibrium effects play a larger role. To overcome these
limitations, a novel hybrid approach has been developed. This
approach is based on the Ultrarelativistic Quantum Molecular
Dynamics (UrQMD) transport [12] for the nonequilibrium
early and late stages and on a (3+1)-dimensional viscous
hydrodynamical model [13] for the hot and dense stage of the
reaction.
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In this paper, this approach is applied to extract the shear
viscosity coefficient over entropy density ratio of strongly
interacting matter from the heavy-ion collision data at RHIC
beam energy scan energies in the broad range

√
sNN =

7.7–200 GeV. The details of the model are explained in
Sec. II, and the generic effects of finite shear viscosity on
the hydrodynamical expansion are described in Sec. III. The
sensitivity of particle yields and spectra to the parameters for
the initial- and final-state transitions is explored in Sec. IV.
Section V contains the main results of this work including the
estimated values of the effective shear viscosity over entropy
density ratio as a function of beam energy. Finally, the main
conclusions are summarized and an outlook on future work is
given in Sec. VI.

II. MODEL DESCRIPTION

Our hybrid approach combines the UrQMD transport
model [12] for the early and late stages of the evolution with
a dissipative hydrodynamical model, called VHLLE [13], for
the hot and dense stage. The distinguishing features of the
present model are that the fluid dynamical expansion is solved
numerically in all three spatial dimensions without assuming
boost invariance nor cylindrical symmetry, the equations of
motion for finite net-baryon and charge densities are explicitly
included, and, in contrast to the standard UrQMD hybrid
approach (UrQMD-3.4 at urqmd.org) [3,14], dissipation in
the form of shear viscosity is included in the hydrodynamical
stage. Unlike our previous studies [17,18], event-by-event
fluctuations are now included. The hadronic cascade operates
with the full phase-space distribution of the final particles,
which allows for a proper comparison to experimental data.

A. Prethermal phase

The UrQMD string or hadronic cascade is used to describe
the primary collisions of the nucleons and to create the initial
state of the hydrodynamical evolution. The two nuclei are
initialized according to Woods-Saxon distributions and the
initial binary interactions proceed via string or resonance
excitations, the former process being dominant in ultrarela-
tivistic collisions (including the BES collision energies). All
the strings are fragmented into hadrons before the transition
to fluid phase (fluidization) takes place, although not all
hadrons are yet fully formed at that time; i.e., they do not
yet have their free-particle scattering cross sections and thus
do not yet interact at all. The hadrons before conversion to
fluid should not be considered physical hadrons but rather
marker particles to describe the flow of energy, momentum,
and conserved charges during the pre-equilibrium evolution
of the system. The use of UrQMD to initialize the system
allows us to describe some of the pre-equilibrium dynamics
and dynamically generates event-by-event fluctuating initial
states for hydrodynamical evolution.

The interactions in the pre-equilibrium UrQMD evolution
are allowed until a hypersurface of constant Bjorken proper
time τ0 = √

t2 − z2 is reached, since the hydrodynamical
code is constructed using the Milne coordinates (τ,x,y,η),
where τ = √

t2 − z2 [13]. The UrQMD evolution, however,
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FIG. 1. The earliest possible starting time of the hydrodynamic
evolution as a function of

√
sNN according to Eq. (1).

proceeds in Cartesian coordinates (t,x,y,z), and thus evolving
the particle distributions to constant τ means evolving the
system until large enough time tl in such a way that the col-
lisional processes and decays are only allowed in the domain√

t2 − z2 < τ0. The resulting particles on t = tl surface are
then propagated backwards in time to the τ = τ0 surface
along straight trajectories to obtain an initial state for the
hydrodynamic evolution.

The lower limit for the starting time of the hydrodynamic
evolution depends on the collision energy according to

τ0 = 2R/

√
(
√

sNN/2mN )2 − 1, (1)

which corresponds to the average time when two nuclei have
passed through each other, i.e., all primary nucleon-nucleon
collisions have happened. This is the earliest possible moment
in time where approximate local equilibrium can be assumed.
The τ0 values calculated according to this formula are plotted
in Fig. 1.

To perform event-by-event hydrodynamics using fluctu-
ating initial conditions, every individual UrQMD event is
converted to an initial-state profile. As mentioned, the hadron
transport does not lead to an initial state in full local
equilibrium and the thermalization of the system at τ = τ0

has to be artificially enforced. The energy and momentum of
each UrQMD particle at τ0 is distributed to the hydrodynamic
cells ijk assuming Gaussian density profiles

�P α
ijk = P αC exp

(
−�x2

i + �y2
j

R2
⊥

− �η2
k

R2
η

γ 2
η τ 2

0

)
, (2)

�N0
ijk = N0C exp

(
−�x2

i + �y2
j

R2
⊥

− �η2
k

R2
η

γ 2
η τ 2

0

)
, (3)

where �xi , �yj , �ηk are the differences between particle’s
position and the coordinates of the hydrodynamic cell {i,j,k}
and γη = cosh(yp − η) is the longitudinal Lorentz factor of
the particle as seen in a frame moving with the rapidity η. The
normalization constant C is calculated from the condition that
the discrete sum of the values of the Gaussian in all neighboring
cells equals one. The resulting �P α and �N0 are transformed
into Milne coordinates and added to the energy, momentum,
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FIG. 2. An example of a fluctuating (single-event) initial energy
density profile in the transverse plane at η = 0. The profile is obtained
with R⊥ = Rη = 1 fm Gaussian smearing and corresponds to a
20–30% Au-Au collision at

√
sNN = 39 GeV.

and baryon number in each cell. This procedure ensures that in
the initial transition from transport to hydrodynamics energy,
momentum and baryon number are conserved.

For the present study energy and momentum of the initial
particles are converted at τ0 into a perfectly equilibrated fluid,
i.e., the initial values for the viscous terms in the energy-
momentum tensor are set to zero: πμν(τ0) = 	(τ0) = 0. In
other words the T 0μ components of the energy-momentum
tensor stay the same but the T ij components change when we
switch from UrQMD to the fluid. Thus, we do not consider
how much the energy-momentum tensor of UrQMD deviates
from the ideal fluid energy-momentum tensor but leave this
topic for further studies.

One typical example of the initial energy density distribu-
tions in the transverse plane at midrapidity for one event is
presented in Fig. 2. The parameters R⊥ and Rη regulate the
granularity of the initial state. At the same time they influence
the initial entropy of the hydrodynamic evolution, while the
total initial energy and momentum are always fixed to be equal
to the energy and momentum of the pre-equilibrium UrQMD
event. The dependence of the final results on these two
parameters is discussed later in Sec. IV.

B. Hydrodynamic evolution

The (3+1)-dimensional viscous hydrodynamical code VH-
LLE is described in full detail in Ref. [13]. We repeat here
only its main features. The code solves the usual local
energy-momentum conservation equations

∂;νT
μν = 0, (4)

∂;νN
ν
B,Q = 0, (5)

where Nν
B and Nν

Q are net baryon and electric charge cur-
rents respectively, and the semicolon denotes the covariant

derivative. The calculation1 is done in Milne coordinates
(τ,x,y,η), where τ = √

t2−z2 and η=1/2 ln[(t+z)/(t − z)].
In the Israel-Stewart framework of causal dissipative

hydrodynamics [19], the dissipative currents are independent
variables. For the purpose of the present work we set the bulk
viscosity to zero, ζ/s = 0. We work in the Landau frame,
where the energy diffusion flow is zero, and neglect the baryon
and charge diffusion currents, which is equivalent to zero heat
conductivity. For the shear stress evolution we choose the
relaxation time τπ = 5η/(T s), the coefficient δππ = 4/3τπ ,
and approximate all the other coefficients [20,21] by zero. For
the shear-stress tensor πμν we obtain the evolution equation

〈uγ ∂;γ πμν〉 = −πμν − π
μν
NS

τπ

− 4

3
πμν∂;γ uγ , (6)

where the brackets denote the traceless and orthogonal to uμ

part of the tensor and π
μν
NS is the Navier-Stokes value of the

shear-stress tensor.
Another necessary ingredient for the hydrodynamic stage

is the equation of state (EoS) of the medium. We use the chiral
model EoS [22], which features correct asymptotic degrees
of freedom—i.e., quarks and gluons in the high-temperature
limits and hadrons in the low-temperature limits, crossover-
type transition between confined and deconfined matter for all
values of μB—and qualitatively agrees with lattice QCD data
at μB = 0.

The tests to confirm the accuracy of the code have been
reported in Ref. [13]. In particular the solutions have been
compared to the ideal Gubser solution [23] and to a numerical
solution of dissipative hydrodynamics calculated using the
VISH2+1 hydro code [24].

C. Particlization and hadronic rescattering

It is well known that hydrodynamics loses its validity when
the system becomes dilute. To deal with this problem we apply
the conventional Cooper-Frye prescription [25] to convert the
fluid to individual particles at a hypersurface of constant local
rest frame energy density and use the UrQMD cascade to
describe the further evolution of these particles. This switching
hypersurface is evaluated during the hydrodynamic evolution
using the Cornelius routine [26], and as a default value for the
switching density we use εsw = 0.5 GeV/fm3, which in the
chiral model EoS corresponds to T ≈ 175 MeV at μB = 0.
At this energy density the crossover transition is firmly on the
hadronic side, but the density is still a little higher than the
chemical freeze-out energy density suggested by the thermal
models [27]. Thus the hadronic transport can take care of both
chemical and kinetic decoupling of hadrons. We discuss the
sensitivity of the results to the value of the switching density
in Sec. IV.

1Typical grid spacing used in the calculations: �x = �y = 0.2 fm,
�η = 0.05–0.15, and time step �τ = 0.05–0.1 fm/c depending on
the collision energy. A finer grid with �x = �y = 0.125 fm was
taken to simulate peripheral collisions.
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As given by the Cooper-Frye prescription, the hadron
distribution on each point of the hypersurface is

p0 d3Ni(x)

d3p
= dσμpμf (pu(x),T (x),μi(x)). (7)

The phase space distribution function f is usually assumed to
be the one corresponding to a noninteracting hadron resonance
gas in or close to the local thermal equilibrium. This is
inconsistent with mean fields included in the chiral model
EoS used during the evolution. To solve this inconsistency we
evaluate the switching surface using the chiral model EoS, but
use a free hadron resonance gas EoS to recalculate the energy
density, pressure, flow velocity uμ, temperature, and chemical
potentials from the ideal part of the energy-momentum tensor
and charge currents, and use these values to evaluate the
particle distributions on the switching surface. For example,
the above mentioned temperature of T ≈ 175 MeV in chiral
model EoS at zero baryon density and εsw = 0.5 GeV/fm3

drops to T ≈ 165 MeV in the free hadron resonance gas EoS.
This procedure ensures that the total energy of the produced
particles is reasonably close to the overall energy flow through
the particlization hypersurface (up to negative contributions to
the Cooper-Frye formula), although a small error arises since
we use a different energy density to evaluate the position of the
surface and the properties of the fluid on it.2 We have checked
that in a case of event-averaged initialization, this error is on the
level of a few percent. In addition, the conservation of energy
and momentum in the 3+1-dimensional numerical solution
of the fluid-dynamical equations using Milne coordinates is
slightly violated as discussed in Refs. [13,21].

To take into account the dissipative corrections to the
distribution function f , we use the well-known Grad’s 14-
moment ansatz for a single-component system and assume that
the correction is the same for all hadron species. We evaluate
the particle distribution in the rest frame of the fluid at each
surface element using the Cooper-Frye formula

d3�Ni

dp∗d(cos θ )dφ
= �σ ∗

μp∗μ

p∗0︸ ︷︷ ︸
Wresidual

p∗2feq(p∗0; T ,μi)︸ ︷︷ ︸
isotropic

×
[

1 + (1 ∓ feq)
p∗

μp∗
νπ

∗μν

2T 2(ε + p)

]
︸ ︷︷ ︸

Wvisc

. (8)

The distribution function in Eq. (8) is expressed in terms of
temperature and chemical potential(s), which implies a grand
canonical ensemble. This allows to do the particle sampling
independently on each surface element. To create an ensemble
for particles, we perform the following steps at each element
�σi :

2The exact procedure suggested in Ref. [28] requires a numerical
solution of a cubic equation for each surface element and is therefore
too slow for event-by-event studies.

(a) First, the average number of hadrons of every sort is
calculated:

�Ni = �σμuμni,th = �σ ∗
0 ni,th

(b) For a given 〈Ntot〉 = ∑
i Ni , the number of particles

to be created is generated according to a Poisson
distribution with a mean value 〈Ntot〉.

(c) For each created particle, the type is randomly chosen
based on the probabilities Ni/Ntot.

(d) A momentum is assigned to the particle in two steps:
(1) The modulus of the momentum is sampled in

the local rest frame of the fluid, according to
the isotropic part of Eq. (8), and the direction of
momentum is picked randomly in 4π solid angle.

(2) The correction for Wresidual or WresidualWvisc in
Eq. (8) is applied via rejection sampling: A random
number x in the range [0,Wmax] is generated.
If x < W , the generated momentum is accepted;
if not, the momentum generating procedure is
repeated.

(e) The particle momentum is Lorentz boosted to the
center-of-mass frame of the system.

(f) The particle position is taken to be equal to the
coordinate of the centroid of the corresponding surface
element, except for the space-time rapidity of the
particle, which is uniformly distributed within the
longitudinal size of the volume element.

For the current study, no correction over the grand canonical
procedure is made to effectively account for the exact con-
servation of the total baryon-electric charge, strangeness, and
total energy-momentum for every sampled event.3 As a result,
these quantities fluctuate from event to event.

The generated hadrons are then fed into the UrQMD
cascade. Since the cascade accepts only a list of particles
at an equal Cartesian time as an input, the created particles
are propagated backwards in time to the time when the first
particle was created. The particles are not allowed to interact
in the cascade until their trajectories cross the particlization
hypersurface.

III. SENSITIVITY TO SHEAR VISCOSITY

The overall effects of shear viscosity on hydrodynamical
expansion have been extensively discussed in the litera-
ture [24,30–32]. Here we show that the results from high
energy collisions, e.g., entropy increase, enhancement of
transverse and inhibition of longitudinal expansion, and
suppression of anisotropies are also manifested in calculations
at lower collision energies.

We have carried out event-by-event simulations for different
collision energies, centralities, and two fixed values of shear
viscosity: η/s = 0 (ideal hydro evolution) and η/s = 0.2. For
these simulations we use the values of the Gaussian radii for
the particles’ energy/momentum deposition R⊥ = Rη = 1 fm

3For a suggested procedure to impose the conservation laws, see
Ref. [26].
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[see Eqs. (2) and (3)]. The initial time is chosen according to
Eq. (1); however, for the collisions at energies equal or higher
than

√
sNN = 27 GeV we set τ0 = 1 fm/c.

To reduce the need for processing time, we use the
so-called oversampling technique, as in Ref. [33]. For each
collision energy, centrality, and parameter set we have created
around 500 hydrodynamic events with randomly generated
initial conditions. For each hydrodynamic event, or transition
hypersurface, we generate Noversample = 50–100 final-state
events, which results in 25 000–50 000 events used to calculate
observables. We have checked that the oversampling procedure
does not significantly affect the final observables by creating
1000 or 10 000 hydrodynamic events, with Noversample =
20 and 2, respectively, for several parameter sets. In both cases,
the calculated observables agreed within statistical errors.

The available experimental data set for the basic bulk
hadron observables at the BES energies is inhomogeneous.
(Pseudo)rapidity spectra of all charged hadrons for Au-Au
collisions are available from the PHOBOS analysis [34] for√

sNN = 19.6, 62.4, and 200 GeV energies only. The pT

spectra are published for
√

sNN = 62.4 GeV by the PHOBOS
Collaboration [35] and for

√
sNN = 200 GeV by the PHENIX

Collaboration [36]. To cover the lower collision energies we
use dN/dy and pT spectra from the NA49 [29] Collaboration
for Pb-Pb collisions at Elab = 40 and 158 A GeV, which
correspond to

√
sNN = 8.8 and 17.6 GeV, and set up the

simulations accordingly for Pb-Pb system. For the elliptic flow
we compare to the STAR results at

√
sNN = 7.7, 11.5, 19.6, 27,

39 GeV [10] and 200 GeV [37] collision energies. In the model
we define the centrality classes as impact parameter intervals
based on the optical Glauber model estimates [38,39].

The transverse momentum distributions of identified par-
ticles at

√
sNN = 8.8 GeV (Elab = 40 A GeV) collision, and

(pseudo)rapidity distributions of identified or charged particles
at collision energies

√
sNN = 8.8–200 GeV are shown in

Figs. 3 and 4, respectively. As can be seen, the inclusion
of shear viscosity in the hydrodynamic phase hardens the
pT spectra and increases dN/dy (and similarly dN/dη) at
midrapidity, squeezing the overall rapidity distribution. This
effect can be attributed to the effect of shear viscosity on
the strong longitudinal expansion of the system in the initial
state for the hydrodynamic phase. Shear viscosity attempts to
isotropize the expansion by decelerating it in the longitudinal
direction and accelerating it in the transverse direction. The
energy of the hydrodynamic system is always conserved,
whereas additional entropy is produced during the viscous
hydrodynamic evolution, which explains the increased total
particle multiplicity. By comparing it to the experimental
data one observes that η/s = 0.2 gives a good estimate
of the rapidity and transverse momentum distributions at
the lowest collision energy point

√
sNN = 8.8 GeV (Elab =

40 A GeV), while overestimating dN/dη at midrapidity for
the rest of collision energies except for the highest energy,√

sNN = 200 GeV, where we underestimate the PHOBOS
results.

In Fig. 5 the pT -averaged elliptic and triangular flow
coefficients v2 and v3 are shown as a function of colli-
sion energy. The flow coefficients are calculated using the
event-plane method as described in Ref. [33], including the
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8.8 GeV) central Pb-Pb collisions. The experimental data from
the NA49 Collaboration [29] are compared to the hybrid model
calculations with η/s = 0 (dashed lines) and η/s = 0.2 (solid lines)
in the hydrodynamic phase. The results from UrQMD model with
no intermediate hydro phase (dubbed as “pure UrQMD”) are shown
with dotted lines.
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√
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to the hybrid model calculations with η/s = 0 (dashed lines) and
η/s = 0.2 (solid lines) in the hydrodynamic phase.
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FIG. 5. (Color online) pT integrated (0.2 < pT < 2.0 GeV and
|η| < 1) elliptic (v2) and triangular (v3) flows of all charged hadrons
in 20–30% central Au-Au collisions as a function of collision energy,
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flow data is from the STAR Collaboration [10,40]. The solid line
depicts the calculation with η/s = 0.2, the dashed line shows the
calculation with η/s = 0, whereas the dotted line corresponds to
the “pure” UrQMD calculation with no intermediate hydrodynamic
stage.

event-plane resolution correction. As expected, the elliptic
and triangular flow coefficients are suppressed by the shear
viscosity. However, when comparing the results for η/s = 0.2
to the STAR experimental results at 20–30% centrality we find
that the suppression is too weak for

√
sNN � 30 GeV and too

strong otherwise. The latter is consistent with the fact that the
optimal value of η/s required to fit the elliptic flow data at√

sNN = 200 A GeV is η/s = 0.08 assuming the initial energy
density profile from Monte Carlo–Glauber approach [41].
Another particular feature of both v2 curves is that, in the region√

sNN ≈ 20–62 GeV, the elliptic flow decreases as a function
of

√
sNN. If we do not limit the initial time τ0 from below at

energies
√

sNN > 25 GeV, but take it directly from Eq. (1), we
do not see this decrease, but v2 increases monotonously with
increasing collision energy. Thus we expect that the reason for
the nonmonotonous behavior is in our choice for the initial
time of the hydrodynamic evolution.

The results from the standard UrQMD cascade (without
intermediate hydrodynamic phase) are also shown for com-
parison in Figs. 3 and 4 with dotted lines. One may conclude
that whereas standard UrQMD does a good job for pT spectra
and rapidity distributions at the lowest energy, it clearly
underestimates v2 when the collision energy increases (which
repeats the conclusion about the v2 excitation function from
Ref. [42], and later results from v3 analysis in Ref. [14]).
This is an indication of too large viscosity of the high-density
medium and served historically as a motivation to introduce
the intermediate hydrodynamic stage.

IV. INVESTIGATION OF PARAMETER SPACE

After investigating the generic influence of a finite shear
viscosity during the hydrodynamic evolution on basic bulk
observables, it is clear that we cannot fit all the available
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FIG. 6. Parameter dependence of the total yield at midrapidity
(top) and the effective temperature of pion, kaon, and proton pT

spectra (bottom) in 0–5% central Au-Au collisions at
√

sNN =
19.6 GeV.

experimental data using the same set of parameters.4 Thus
we have to adjust the model parameters according to the
collision energy before drawing any conclusions about the
physical properties of the system.

In this section we study systematically the sensitivities of
the particle yield at midrapidity, which is a measure for the
final entropy, the effective slope parameter that measures the
strength of the transverse expansion, and the anisotropic flow
to the main parameters of the model. Due to the limited space,
and to emphasize the main features of the dependencies, we
restrict ourselves to one collision energy,

√
sNN = 19.6 GeV,

in the middle of the investigated range. Since the influence of
shear viscosity was discussed above, we now concentrate on
the remaining parameters of the model: the two Gaussian radii

4The internal parameters of UrQMD, e.g., particle properties and
cross sections, are fixed by experimental data as explained in
Ref. [15]. The effects of changes in resonance properties were studied
in Ref. [16]. It was found that if the changes stay within experimen-
tally acceptable limits, the effects on final particle distributions are
small.

064901-6



ESTIMATION OF THE SHEAR VISCOSITY AT FINITE . . . PHYSICAL REVIEW C 91, 064901 (2015)

relative change of the parameter
0.6 0.8 1 1.2 1.4 1.6 1.8 2

2v

0.04

0.05

0.06

0.07

0.08

0.09
{EP}2STAR v

change of R
η

change of R

sw∈change of 
0τchange of 

=19.6 GeV, 20-30% centrals,{EP}2v

FIG. 7. (Color online) Parameter dependence of pT integrated
elliptic flow v2 of charged hadrons in 20–30% central Au-Au
collisions at

√
sNN = 19.6 GeV. The experimental value of the elliptic

flow is shown with a solid red (gray) line for comparison.

R⊥ and Rη for the initial distribution of energy, momentum
and charges, the starting time for the hydro phase τ0, and
the energy density εsw when the switch to the hadronic
cascade happens. The default case is R⊥ = Rη = 1.0 fm,
τ0 = 1.22 fm/c [calculated according to Eq. (1)], η/s = 0 (for
simplicity), and εsw = 0.5 GeV/fm3. The dependencies are
presented in Figs. 6 and 7, where each curve corresponds to
the variation of only one of the parameters, while keeping the
default values for the others. All values are normalized to their
default values to allow a direct comparison to each other. The
effective temperatures of the hadron spectra in the lower panel
of Fig. 6 are defined as the parameter of the exponential fit,

dN

mT dmT dy
= C exp

(
−mT

Teff

)
,

where the mT − m range is 0.2–1 GeV for pions and protons
and 0.05–1 GeV for kaons.5 In general we do observe only a
very weak dependence on the parameters, that is less than 10%
for a 10% change in parameters. The observed dependencies
can be summarized as follows:

(a) Increased R⊥ smoothens the initial energy density
profile in the transverse plane, which leads to smaller
gradients and less explosive transverse expansion. The
latter leads to a decrease of the effective temperature
(inverse slope) Teff of the pT spectra; see Fig. 6, lower
panel. Larger R⊥ also results in decreased ellipticity
and triangularity of an initial energy density profile,
which is hydrodynamically translated into smaller
final elliptic (v2, see Fig. 7) and triangular (v3) flow
components.

(b) In a similar manner, the increase of Rη leads to shal-
lower longitudinal gradients and weaker longitudinal

5Smaller mT − m range for pions and protons is taken since the
lowest mT − m part of the spectrum has a different slope than the
intermediate mT − m range.

TABLE I. Schematical representation of the response (increase or
decrease) of the observables to the increase of a particular parameter
of the model.

R⊥ ↑ Rz ↑ η/s ↑ τ0 ↑ εsw ↑
Teff ↓ ↑ ↑ ↓ ↓
dN/dy ↑ ↑ ↑ ↓ ↑
v2 ↓ ↑ ↓ ↓ ↓

expansion. Thus more energy remains at midrapidity
to form stronger transverse expansion, which increases
Teff and v2. On the other hand, larger Rη also results in
larger initial entropy of the system, which considerably
increases the final particle multiplicity; see Fig. 6,
upper panel.

(c) Increased τ0 has two effects:
(1) It leads to a shorter lifetime of the hydrodynamic

phase, as a result of longer prethermal phase.
(2) At the same time τ0 enters the Gaussian energy-

momentum smearing profile. Thus its increase acts
opposite to the increase of Rη.

From the response of the observables to the increase of
τ0 we find that the second effect is stronger.

(d) Increased εsw shortens the effective lifetime of the
hydrodynamic phase. The shorter time to develop radial
and elliptic flows is not fully compensated by the
longer cascade phase, which results in the decrease
of both final Teff and final v2. Since the total entropy
is conserved in the ideal hydrodynamic expansion
but increases in the cascade stage, the final particle
multiplicity increases with the increase of εsw.

The observed dependencies are schematically depicted in
Table I, where the signs of the responses of the observables
to the increase of a particular model parameter are shown. As
for the magnitudes of the response, one can see from the plots
that by varying the parameters of the initialization procedure
one has a nearly linear influence on the final dN/dy, Teff ,
and v2. From Fig. 7 one can see that by choosing a larger
value of R⊥ it is possible to approach the experimental value
of v2 with zero shear viscosity in the hydrodynamic phase.
However, such value is inconsistent with the pT spectra and
charged particle multiplicity.

Investigating all the dependencies in detail allows us
to choose parameter values which lead to a reasonable
reproduction of the data. These values are shown in Table II.
For reasons of simplicity we keep εsw = 0.5 GeV/fm3 for all
collision energies, since the other parameters provide enough
freedom for adjustment. Note that since the model requires
a lot of processing time to obtain results for each particular
collision energy and centrality, it is at the moment impractical
to provide χ2-optimized values of the model parameters and
their errors. Thus the parameters are adjusted manually based
on a visual correspondence to the data. A full-fledged χ2 fit to
the data is planned for the future using a model emulator, as
suggested in Refs. [43–45].
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TABLE II. Collision energy dependence of the model parameters
chosen to reproduce the experimental data in the BES region and
higher RHIC energies. Asterisks denote the values of starting time
τ0, which are adjusted instead of being taken directly from Eq. (1).

√
sNN (GeV) τ0 (fm/c) R⊥ (fm) Rη (fm) η/s

7.7 3.2 1.4 0.5 0.2
8.8 (SPS) 2.83 1.4 0.5 0.2
11.5 2.1 1.4 0.5 0.2
17.3 (SPS) 1.42 1.4 0.5 0.15
19.6 1.22 1.4 0.5 0.15
27 1.0 1.2 0.5 0.12
39 0.9* 1.0 0.7 0.08
62.4 0.7* 1.0 0.7 0.08
200 0.4* 1.0 1.0 0.08

V. RESULTS FOR BULK OBSERVABLES

Finally, let us have a look at the results for bulk observables
with the energy-dependent parameters for the hydrodynamic
description (see Table II).

The (pseudo)rapidity spectra are presented in Fig. 8. One
can see that whereas the parameters were adjusted to reproduce
the total multiplicities, the resulting shapes of the pseudora-
pidity distributions are also in a reasonable agreement with
the data. From the model results one can observe the change
in shape from the single peak structure at

√
sNN < 20 GeV

to a doubly peaked distribution (or from a Dromedary to a
Bactrian camel shape), which starts to form at

√
sNN = 39 GeV.

At higher collision energies we observe a shallow dip around
zero pseudorapidity.

The pT spectra of pions, kaons, and protons in collisions
at

√
sNN = 62.4, 17.6, and 8.8 GeV energies are shown in

Fig. 9. In general the spectra and especially the pT slopes
are reproduced, which indicates that both the collective radial
flow (generated in the hydrodynamic and cascade stages), and
thermal motion are combined in the right proportion.

The elliptic and triangular flow coefficients for 20–30%
central Au-Au collisions as a function of collision energy are
presented in Fig. 10. As expected, the calculated values of
the elliptic flow follow the data closely, since this quantity
was used to fix the parameters. In contrast to that, triangular
flow v3 is calculated from the same simulated events, and thus
can be considered as a prediction of the model. We expect
that the nonmonotonous behavior of v3 is an artifact of our
fitting procedure, and more careful adjustment of the model
parameters would further smoothen the behavior of v3(

√
s).

The 20–30% centrality class was chosen because the elliptic
flow signal is strongest around this centrality class. Also, at this
centrality nonflow contributions from minijets, which are not
included in the model, are small. The centrality dependence
of elliptic flow at

√
sNN = 39 GeV is shown in Fig. 11.

The parameters are the same at all centralities. In peripheral
collisions the model significantly undershoots the data. This is
due to the smoothening procedure used to convert individual
particles to the fluid-dynamical initial state. With the present
smearing parameters the eccentricity of the system is too small
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FIG. 8. (Color online) Pseudorapidity distributions of charged
hadrons (top) in Au-Au collisions at

√
sNN = 19.6, 39, 62.4, and

200 GeV energies, and rapidity distributions of identified hadrons
in Pb-Pb collisions at Elab = 158 and 40 A GeV (

√
sNN = 17.6

and 8.8 GeV) energies (middle and bottom panels, respectively).
The calculations were done using the collision energy-dependent
parameters listed in Table II. The data are from the PHOBOS [34]
and the NA49 [29] Collaborations.

in peripheral collisions, where the size of the entire system is
comparable to the smearing radius.

The most important conclusion from the adjustment proce-
dure is that reproduction of the data requires an effective η/s
which decreases as a function of increasing collision energy;
see Table II and Fig. 12. In Fig. 12 one can also see an estimated
error band around the optimal values of η/s. As mentioned,
a proper determination of the error bars would require a χ2

064901-8



ESTIMATION OF THE SHEAR VISCOSITY AT FINITE . . . PHYSICAL REVIEW C 91, 064901 (2015)

 [GeV]
T

p
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 d
y)

T
 d

p
T

 pπ
N

/(
2

2 d

-110

1

10

210

/s=0.08η
-πPHOBOS,
-

PHOBOS, K
PHOBOS, p

=62.4 GeV, 0-15% centrals

(a)

-m [GeV]Tm
0 0.2 0.4 0.6 0.8 1 1.2

 d
y)

T
 d

m
T

N
/(

m
2 d

-110

1

10

210

310

/s=0.15η
-πNA49,

NA49, K-
NA49, K+
NA49, p

=158 A GeV, 0-5% centrallabE

(b)

-m [GeV]Tm
0 0.2 0.4 0.6 0.8 1 1.2

 d
y)

T
 d

m
T

N
/(

m
2 d

-110

1

10

210

310

/s=0.2η
-πNA49,

NA49, K-
NA49, K+
NA49, p

=40 A GeV, 0-5% centrallabE

(c)

FIG. 9. (Color online) pT spectra of identified hadrons in Au-Au
collisions at

√
sNN = 62.4 GeV energy (top) and in Pb-Pb collisions

at Elab = 158 and 40 A GeV (
√

sNN = 17.6 and 8.8 GeV) energies
(middle and bottom panels, respectively). The model calculations
were carried out using the collision energy-dependent parameters
listed in Table II, and the data are from the PHOBOS and NA49
Collaborations [29,35,46].

fit. Currently the error band is estimated from the variations of
two parameters of the model (η/s and RT ) which result in the
same value of pT integrated elliptic flow and a 5% variation in
the slope of proton pT spectrum, which is the most sensitive
to a change in radial flow.

In the present calculations η/s is taken to be constant
during the evolution of the system, and its value changes only
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FIG. 10. (Color online) pT integrated elliptic and triangular flow
coefficients v2 and v3 as a function of collision energy. Both the
experimental and calculated coefficients were evaluated using the
event-plane method. The calculation was done using the collision
energy-dependent parameters listed in Table II, and the data are from
the STAR Collaboration [10,40].

with the collision energy. However, we expect that physical
η/s depends on both the temperature and baryon chemical
potential, and that η/s has a minimum around Tc and zero
μb [47–50]. As the collision energy becomes smaller, the
average baryon chemical potential in the system increases.
This indicates that the physical value of η/s should increase
with increasing μB .

In Ref. [51] it was argued that η/s is not an appropriate
measure of the fluidity of the system. However, the measure of
fluidity proposed in that paper, Lη/Ln = (ηn1/3)/(wcs), where
n is the total particle number density, w is enthalpy, and cs is
the speed of sound, is difficult to implement in the present
fluid-dynamical calculation since n is not well defined in our
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FIG. 11. (Color online) pT integrated elliptic flow coefficient v2

in
√

sNN = 39 GeV Au-Au collisions as function of centrality. Both
the experimental and calculated v2 was evaluated using the event
plane method. The calculation was done using the collision energy-
dependent parameters listed in Table II, and the data are from the
STAR collaboration [10].
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FIG. 12. (Color online) Effective values of shear viscosity over
entropy density η/s used to describe the experimental data at different
collision energies as shown in Table II. The green (gray) band
represents an estimate of uncertainty in η/s resulting from the allowed
variation of model parameters around their optimal values.

two-phase EoS. Instead, we use as an alternative measure
of fluidity the combination ηT /w = ηT /(ε + P ) = η/(s +∑

α μαnα/T ), where nα are the charge densities (baryon,
strange, electric) and μα are the corresponding chemical
potentials, and which approaches η/s in the limit of small
charge densities. We have performed an additional round
of simulations, keeping ηT /w = 0.08 and η/s = 0.08 at all
collision energies to see whether different measures of fluidity
make any difference. The resulting elliptic and triangular flow
coefficients are shown in Fig. 13. One can see that at all
considered collision energies there is no visible difference
in the elliptic flow coefficient between the η/s = 0.08 and
ηT /w = 0.08 cases. We have also checked that the two
scenarios result in virtually same pT spectra and dN/dy
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FIG. 13. (Color online) pT integrated elliptic and triangular flow
coefficients v2 and v3 as a function of collision energy. Solid
red (gray) line represents the results from Fig. 10 obtained using
collision energy-dependent η/s. Dashed (blue) and dotted (green)
lines correspond to collision independent ηT/w = 0.08 and η/s =
0.08, respectively. In all three cases the other model parameters were
taken to depend on the collision energy as shown in Table II. The
experimental data are from the STAR Collaboration [10,40].

distributions. This indicates that the contribution from baryon-
electric charge density to the entropy density does not induce
baryon density dependence of the η/s ratio that is strong
enough to affect the hydrodynamic evolution.

VI. SUMMARY AND OUTLOOK

A hybrid model featuring a 3+1-dimensional viscous
hydrodynamic phase with an explicit treatment of finite baryon
and charge densities is introduced. The model employs a chiral
model equation of state for the hydrodynamic stage. The initial
and late nonequilibrium stages are modeled using the UrQMD
hadron cascade on an event-by-event basis.

This hybrid model was applied to describe the dynamics
of relativistic heavy-ion collisions at energies ranging from
the lowest RHIC beam energy scan energy to full RHIC
energy,

√
s = 7.7–200 GeV. After tuning the parameters, it

was possible to reproduce the observed pseudorapidity and
transverse momentum distributions of produced hadrons and
their elliptic flow coefficients. The reproduction of the data
requires a finite shear viscosity over entropy density ratio η/s,
which depends on collision energy. This ratio was found to
decrease from η/s = 0.2 to 0.08 as collision energy increases
from

√
sNN = 7.7 to 39 GeV, and to stay at η/s = 0.08

for 39 � √
s � 200 GeV. Since the average baryochemical

potential at midrapidity decreases with increasing collision
energy, the required collision energy dependence of the
effective η/s indicates that the physical η/s ratio may
depend on baryochemical potential and that η/s increases
with increasing μB . It was also found that a constant and
collision energy-independent ηT /w = 0.08 and η/s = 0.08
in hydrodynamic phase yield quantitatively similar results.
This indicates that the μBnB term in entropy density does
not induce the baryon density dependence of η/s required to
reproduce the data when ηT /w is kept independent of collision
energy.

In addition we have explored the parameter dependence
of the model results and generally found a <10% variation
of the results, when the individual parameters were varied
by 10%. Of course, the proper evaluation of the effect
of finite baryochemical potential on η/s would require
reproducing all the data using the same temperature- and
baryochemical-potential-dependent parametrization of η/s at
all energies and centralities. This will be addressed in future
studies.
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