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First-order and higher-order interferences in the 15C + 208Pb and 11Be + 208Pb reactions

B. Mukeru* and M. L. Lekala†
Department of Physics, University of South Africa, P.O. Box 392, Pretoria 0003, South Africa

(Received 13 January 2015; revised manuscript received 4 March 2015; published 11 June 2015)

First-order and higher-order interferences effects on the total, Coulomb, and nuclear breakup cross sections
in the 15C + 208Pb and 11Be + 208Pb reactions are studied at 68 MeV/u incident energy. A partial-wave analysis
is first performed, and shows that the differential total breakup cross sections are dominated by the p waves.
However, considered alone, they largely underestimate the data, hence the importance of the other partial-wave
contributions. It is also shown that the first-order interference reduces by more than 60% the total breakup cross
sections, by less than 3% the Coulomb breakup cross sections, and by more than 85% the nuclear breakup cross
sections, for both reactions. On the other hand, the higher-order interferences are found to reduce by less than 9%
the total breakup cross section, less than 1% the Coulomb breakup cross section, and less than 7% the nuclear
breakup cross section for the 15C + 208Pb reaction. For the 11Be + 208Pb reaction however, the higher-order
interference reduces by less than 7% the total breakup cross section, by less than 1% the Coulomb breakup cross
section, and by less than 4% the nuclear breakup cross section. It is finally shown that even at first order, the
incoherent sum of the nuclear breakup cross sections is more important than the incoherent sum of the Coulomb
breakup cross sections for the two reactions.
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I. INTRODUCTION

The Coulomb dissociation (CD) method based on the
first-order approximation restricted to the E1 multipole [1–3],
has been intensively used to study the structure of halo nuclei
[4–10]. The E1 multipole restriction is mostly justified by
the assumption that higher-order or non- first-order effects are
negligible in the Coulomb breakup induced by a neutron-halo
projectile [10,11]. In particular, it was shown in Ref. [7],
that the higher-order multipole transitions reduce by less than
4% the overall Coulomb breakup cross section. However,
this method has received criticisms regarding the elimination
of the nuclear breakup contribution to keep only the pure
Coulomb breakup cross section [12,13], in the sense that the
scaling method mostly used to eliminate the nuclear breakup
contribution [9,14], was found to not be always reliable
due to the significance of the Coulomb-nuclear interference
[12]. Various studies have also shown that a small nuclear
contribution does not necessarily mean negligible Coulomb-
nuclear interference [15–19], thus raising more issues in the
exclusion of the nuclear breakup cross section.

Another argument put forward for the E1 transition
restriction in the analysis of the 15C + 208Pb reaction was
that all the outgoing neutrons are in the p waves and the
breakup occurs in one step [20]. However, analyzing the same
reaction in Ref. [21], using the CDCC (continuum discretized
coupled channel) method [22,23], it was shown that all the
outgoing neutrons are not in the p waves and that the multistep
process plays an important role. While one could expect the
Coulomb breakup cross section to fit the experimental data,
the authors showed that the data are rather well fitted by the
Coulomb+nuclear breakup cross section. However, it is not
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clear whether this is an exclusive effect of the Coulomb-nuclear
interference.

Although the first- and higher-order interference effects
have received considerable attention, these effects are not
yet fully understood for both Coulomb+nuclear and nuclear
breakup cross sections, and they could shed more light in the
understanding of the role of the nuclear breakup in a Coulomb
dominated reaction, induced by a neutron-halo projectile.

For reactions induced by the proton-halo nucleus 8B, it was
shown in Refs. [24,25] that, for the Coulomb+nuclear breakup
cross section, the different multipole interference plays a rather
important role, and is strongly destructive. In Ref. [26], for
example, where both Coulomb and nuclear breakups were
considered separately, the authors obtained more pronounced
effects of the different mutlipole transitions on the nuclear
breakup cross section than on its Coulomb counterpart, for the
17F + 208Pb reaction. It is interesting to investigate whether
similar conclusions can be drawn as well for reactions induced
by neutron-halo projectiles.

In this work, we study the first- and higher-order interfer-
ences on the total (Coulomb+nuclear), Coulomb, and nuclear
breakup cross sections, for the 15C + 208Pb, 11Be + 208Pb
reactions at 68 MeV/u, using the CDCC method. We aim
especially to investigate how important are these interferences
(i.e., their magnitudes and nature) on the total and nuclear
breakup cross sections, for a better understanding of the
nuclear breakup contribution on these two reactions and then
testing the accuracy of excluding the nuclear breakup contri-
bution when the different multipole breakup cross sections are
summed incoherently, as is the case in the CD method.

The use of the CDCC method for such studies is motivated
by the fact that both Coulomb and nuclear breakups are treated
at the same footing. Multipole excitations are fully included
as well as the final state interaction effects [21]. On the other
hand, the choice of these two reactions is firstly justified by the
availability of the experimental data, making the comparison
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easy. Secondly, the two projectiles exhibit similar ground state
configurations [27,28]. Furthermore, the 11Be ground state
binding energy is less than the one of the 15C nucleus, thus
providing an opportunity to assess the role of the ground state
binding energy on our findings.

The methodology adopted in this paper consists of the
following steps: first we perform first-order (FO) CDCC
calculations, and estimate the first-order interference. Second,
we estimate the all-order (AO) interference, where all the
different multipoles retained in the CDCC model space are
included coherently and incoherently. Finally, the higher-order
interference is then estimated by considering the difference
between the first-and all-order interferences. The numerical
calculations are performed using the FRESCO codes [29].

This paper is structured as follows. In Sec. II, we briefly
recall the main features of CDCC method, in Sec. III the
results and discussion are presented, and Sec. IV is devoted to
the conclusions.

II. BRIEF THEORETICAL DESCRIPTION

A brief summary of the important features of the CDCC
method is presented here. More details can be found in
Refs. [22,23,30–35]. In general, in this method, the projectile
p is assumed to have a two-body structure, where a valence
nucleon v is loosely bound to a core c, such that its breakup
on a target t is treated as a three-body problem. The target is
kept structureless, meaning that no explicit target excitations
are taken into account, other than those due to projectile-target
optical potentials.

The internal Hamiltonian Hp of the projectile is given by

Hp = − �
2

2μcv

d2

dr2
+ Vcv(r), (1)

where μcv is the projectile reduced mass and Vcv(r) the core-
nucleon interacting potential. The continuum wave functions
[φj

k�(r)] of the projectile are radial parts of Hp, normalized
according to

φ
j
k�(r → ∞) → F�(kr) cos δ�j (k) + G�(kr) sin δ�j (k), (2)

where F� and G� are Coulomb functions [13] and δ�j (k) the
nuclear phase shifts.

Following [13,22,30], we adopt the binning technique and
slice the continuum wave functions φ

j
k�(r) into bins of widths

�ki = ki − ki−1 (i = 1,2, . . . ,Nb, with Nb the number of
bins), averaged over the relative momentum (k). With this
technique, one obtains discretized continuum wave functions,
which are square integrable and given by [13,35]

ϕα(r) =
√

2

πWα

∫ ki

ki−1

gα(k)φj
k�(r)dk, (3)

where gα(k) is some weight function, and Wi =∫ ki

ki−1
|gα(k)|2dk is a normalization coefficient. The subscript

α = (i,�,s,j ) represents the relevant quantum numbers de-
scribing the states of the projectile, where i = 0 refers to the

ground state. In each bin, the bin energy is defined by

εα = �
2

2μcvWα

∫ ki

ki−1

k2gα(k)dk. (4)

The weight function gα(k) depends on the state of the bins.
For instance it is common to use gα(k) = 1, for non-S-wave
nonresonant bins, which corresponds to Wi = (�ki)1/2 and

εi = �
2 k̂2

i

2μcv
, where k̂i = (k2

i + k2
i−1 + kiki−1)/3. To stabilize the

extraction of the three-body amplitude, it is convenient to use
gα(k) = k [30]. In the case of resonant bins, we adopt the
prescription of [31].

Having constructed the bin wave functions, the three-body
CDCC wave function can then be expanded as follows [13]:


CDCC
JM (r,R) = 1

rR

∑
α,L

χLJ
α (R)[iL�α(r) ⊗ YL(R̂)]JM, (5)

where

�α(r) = ϕα(r)
[
i�Y

m�

� (r̂) ⊗ Xms
s

]
jm

, (6)

with ϕα(r) given by Eq. (3). The substitution of the expansion
(5) into the three-body Schrödinger equation leads to a set of
coupled equations for the coefficients χLJ

α , reading[
− �

2

2μpt

(
d2

dR2
−L(L + 1)

R2

)
+ V LJ

αα (R) + εα−E

]
χLJ

α (R)

−
∑
α �=α′

iL−L′
V LL′J

αα′ (R)χL′J
α′ (R) = 0, (7)

where μpt is the projectile-target reduced mass, and V LL′J
αα′ (R)

the potential matrix element, coupling the ground state to
continuum states as well as continuum to continuum states
of the projectile, and has the following expression:

V LL′J
αα′ (R) = 〈YαL(r,R̂)|Uct + Uvt |Yα′L′(r,R̂)〉, (8)

where

YαL(r,R̂) = [
iL�̂α(r) ⊗ YL(R̂)

]
JM

, (9)

and Uct and Uvt are the core-target and neutron-target
phenomenological optical potentials, including nuclear and
Coulomb components. They also account for the absorption
from all the channels which are not included in the model
space. The coupled equations (7) are solved with the usual
boundary conditions at R → ∞, which are

χLJ
α (R) → i

2
[H−

α (KαR)δαα′ − H+
α (KαR)Sαα′ (R)], (10)

where H±
α (KαR) are Coulomb Hankel functions [13] and

Sαα′ (Kα) is the breakup S matrix, with Kα =
√

2μpt (E+εα )
�2 . The

breakup observables are obtained from the breakup S matrix
as described in [13,30].

III. RESULTS AND DISCUSSION

A. Projectile description and CDCC input parameters

We first describe the projectile structures and the CDCC
model space parameters. Starting with the 15C projectile,
we consider the 14C ⊗ n(2s 1

2
+) ground state configuration,
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TABLE I. Core-neutron potential parameters, taken from Ref. [38].

V�=0 V�>0 VSO a R0

Core-neutron (MeV) (MeV) (MeV fm2) (fm) (fm)

n + 10Be 59.5 40.5 32.8 0.6 2.699
n + 14C 52.814 51.3 20.77 0.6 2.959

as suggested in Refs. [27,36,37], with a binding energy of
1.218 MeV and parity Jπ = 1

2
+

. Its first excited state has

an excitation energy of 0.478 MeV and parity Jπ = 5
2

+
. The

Jπ = 3
2

+
partial wave contains a resonance of 3.56 ± 0.1 MeV

[38]. For the 11Be projectile on the other hand, we adopt the
10Be ⊗ n(2s 1

2
+ ) ground state configuration as in Ref. [28], with

a binding energy of 0.503 MeV and parity Jπ = 1
2

+
. The first

excited state has an excitation energy of 0.183 MeV, and parity
Jπ = 1

2
−

, and a narrow resonance of 1.274 ± 0.0018 MeV

[39] is located in the Jπ = 5
2

+
partial wave. The ground,

continuum, as well as resonant states of the projectiles are
obtained by solving the corresponding Schrödinger equation
using the core-neutron potential parameters listed in Table I.
The projectile-target optical potential parameters used to
calculate the potential matrix element are presented in Table II,
whereas the CDCC model space parameters are summarized
in Table III. These parameters are selected based on the
convergence requirements. The energy interval [0,εmax] is
discretized into bins of widths �εi = 0.5 MeV for the s and p
waves, �εi = 1 MeV for the d and f waves, and �εi = 2 MeV
for the gwaves. We verified that the convergence of the results
does not depend on a special discretization of the resonant
states.

B. Energy distributions partial-wave analysis

Motivated by the contradicting results of Refs. [20,21],
we first perform a partial-wave analysis for the two reactions
to assess, on one hand, the contributions of the different
partial waves included in the CDCC model space. On the
other hand, we analyze the role of the nuclear breakup and
the significance of the Coulomb-nuclear interference. The
results obtained for the 15C + 208Pb reaction are presented in
Fig. 1. Concerning the partial-wave contributions, the results in
Fig. 1(a) show, as expected, a large dominance of the p waves
(down-pointing triangles) which also dictate the shape of the
total breakup cross section (solid line). However, one sees
that the contribution of the other partial waves is important,

TABLE II. Core-target and neutron-target optical potential pa-
rameters, taken from Ref. [38].

V W RR RI aR aI

c/n + target (MeV) (MeV) (fm) (fm) (fm) (fm)

10Be + 208Pb 70.00 58.90 7.43 7.19 1.04 1.00
14C + 208Pb 70.00 58.90 7.67 7.42 1.04 1.00
n + 208Pb 29.46 13.40 6.93 7.47 0.75 0.58

TABLE III. CDCC model space parameters.

�max εmax rmax �r Lmax Rmax �R

(�) λmax (MeV) (fm) (fm) (�) (fm) (fm)

4 4 9 60 0.1 10000 1000 0.005

since it is clear that
∑

� σ �
T < σT (where σT is the coherent

sum of both the nuclear and Coulomb breakup cross sections).
The g waves were found to be insignificant, and are therefore
not plotted, although we checked that they are important in
obtaining converged results. Our results are consistent with
the findings of Ref. [21].

In order to analyze the role of the nuclear breakup contribu-
tion, we present in Fig. 1(b) the differential total (solid line),
only Coulomb (diamonds), and only nuclear (up-pointing
triangles) breakup cross sections. The results indicate that the
nuclear breakup cross section is not negligible, especially at
low excitation energies. Also it can be seen that the Coulomb
breakup cross section largely overestimates the data and is
more important than the total breakup cross section. The data
are, however, well fitted by the total breakup cross section. A
closer look at this figure shows that σN < σT − σC (where σN

and σC are the nuclear and Coulomb breakup cross sections,
respectively). This inequality is an indication of the fact that
a small nuclear contribution does not automatically imply
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FIG. 1. (Color online) (a) Different partial-wave differential
breakup cross sections; (b) total, Coulomb, and nuclear breakup cross
sections for the 15C + 208Pb reaction. See text for the details. The
experimental data are taken from Ref. [37].
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FIG. 2. (Color online) (a) Different partial-wave differential
breakup cross sections; (b) total, Coulomb, and nuclear breakup cross
sections for the 11Be + 208Pb reaction. The experimental data are
taken from Ref. [11].

small Coulomb-nuclear interference, which is destructive in
this case.

We now turn to the 11Be + 208Pb reaction, where the results
are presented in Fig. 2. Looking at Fig. 2(a), where the partial
breakup cross sections are shown, it is seen that, qualitatively,
we can draw similar conclusions as for the 15C + 208Pb
reaction [see Fig. 1(a)]. However, quantitatively, here the
partial breakup cross sections are much larger, which is not
surprising given the lower 11Be binding energy compared to
the one of 15C. We can then conclude that the importance of the
p waves is not binding energy dependent, at least for these two
reactions. Finally, in Fig. 2(b), the differential total, Coulomb,
and nuclear breakup cross sections are presented. It is similarly
observed that the Coulomb breakup cross section dominates
over the total and fairly fits the data at high excitation energies.
The results also show that although the nuclear breakup is
quite small (and becomes even negligible at ε � 1.5 MeV),
the Coulomb-nuclear interference is more significant and the
total breakup cross section provides a good fit of the data at
low excitation energies (ε � 1 MeV). Our results disagree with
the prediction of Ref. [10], where it was pointed out that the
disagreement between the data and the Coulomb dissociation
method (mostly at high excitation energies) could be due to the
nuclear breakup and/or higher-order effects. Rather, it could
be due to the description of the reaction.
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FIG. 3. (Color online) Energy-distribution differential (a) total,
(b) Coulomb, and (c) nuclear breakup cross sections, corresponding
to different multipoles, for the 15C + 208Pb reaction. The different
curves are explained in the text.

C. First- and higher-order interferences

In order to investigate the first- and higher-order interfer-
ences, we first analyze the importance of each single multipole
transition. For each multipole, a partial-wave analysis is
performed to assess how these partial waves are populated
by the different multipole transitions. In what follows, λ = a
denotes a single multipole transition of value a, and λmax = a,
stands for a coherent sum λ = 0, . . . ,a and accounts for the
multipole interference.

The energy-distribution differential breakup cross sections
are presented in Fig. 3 for the 15C + 208Pb reaction, and in
Fig. 4 for the 11Be + 208Pb reaction. Starting with the 15C +
208Pb reaction, the total breakup cross sections presented
in Fig. 3(a) show that the first-order [λ = 1 (diamonds)]
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FIG. 4. (Color online) Energy-distribution differential (a) total,
(b) Coulomb, and (c) nuclear breakup cross sections, corresponding
to different multipoles, for the 11Be + 208Pb reaction.

cross section is significantly dominant, followed by the
second-order [λ = 2 (up-pointing triangles)] cross section,
whereas the third-order [λ = 3 (down-pointing triangles)]
cross section is negligible for energies � 0.5 MeV. Compared
to the first-order breakup cross section, the zero-order [λ = 0
(circles)] breakup cross section is insignificant. Surprisingly,
the [λmax = 1 (squares)] breakup cross section is much less
than the first-order breakup cross section. This is a clear effect
of the first-order (λ = 0,1) interference, which is seen to be
strongly destructive. Including all the multipoles coherently,
we find that the all-order [λmax = 4 (solid line)] breakup
cross section curve only differs from the λmax = 1 curve for
energies 0.5 � ε < 4 MeV, in which interval the higher-order
(λ = 2,3) effects are significant.

The Coulomb breakup cross sections presented in Fig. 3(b)
indicate also a negligible λ = 0 breakup cross section (it is
multiplied by 10 for convenience). Moreover, it can be seen that
the first-order, the λmax = 1, and the all-order breakup cross
section curves are hardly distinguishable, showing that the
first- and higher-order interferences are negligible. Therefore,
the coherent and incoherent sums of the first- and all-order
Coulomb breakup cross sections are not expected to be that dif-
ferent. Lastly, the nuclear breakup cross sections are presented
in Fig. 3(c), where the results show that conclusions similar
to those of Fig. 3(a) can be drawn. However, a much more
destructive higher-order interference is noticed in this case.

For the 11Be + 208Pb reaction, the corresponding results
given in Figs. 4(a), 4(b), and 4(c), for the total, Coulomb, and
nuclear breakup cross sections, respectively, indicate that we
can still reach conclusions similar to those for the 15C + 208Pb
reaction, although here we observe larger breakup cross
sections, due to the same reasons pointed out in Sec. III B.

For a quantitative analysis of the first- and higher-order
interferences as well as the effects of the different multipoles
on the Coulomb-nuclear interference, we integrate the different
partial-wave differential breakup cross sections. The energy
integrated breakup cross sections are presented in Table IV.
In this table, σ �

C + σ �
N represents the incoherent sum of the

Coulomb and nuclear partial integrated breakup cross sections,
while ��

C and ��
N (in %) stand for the contributions of both

the Coulomb and nuclear partial breakup cross sections to their
incoherent sums. The incoherent sum of the partial breakup
cross sections (Sλ

i ,λ = i) for each single multipole is defined as

Sλ
i =

�max∑
�=0

σ �
x , x = C,N,T (11)

and S
λmax
i , λmax = i stands for the incoherent sum of the

partial-wave breakup cross sections, when the different
multipoles are included coherently.

Considering the different multipole transitions, the table
shows that at zero order only transitions from the ground
states to the s continuum states are accounted for. At first
order, transitions to all s, p, d, f , and g continuum states
are observed. At second order, only transitions to s, d, and
g continuum states are noticed, where the d-wave breakup
cross sections are more important. Finally, at third order, again
transitions to all s, p, d, f , and g continuum states are possible,
where f -wave breakup cross sections are more significant.

Comparing the Coulomb and nuclear contributions (7th,
8th, 13th, and 14th columns) to their incoherent sums, it
can be seen that for each partial wave and each single
multipole the nuclear breakup cross sections are more im-
portant than their Coulomb breakup counterparts (except for
λ = 1 and for the 11Be + 208Pb reaction). More precisely,
for the 15C + 208Pb reaction and for the Coulomb breakup,
the table shows that Sλ = Sλ

0 + Sλ
1 + Sλ

2 + Sλ
3 = 998.41 mb,

while Sλ = 2135.03 mb for the nuclear breakup. Looking at
the 11Be + 208Pb reaction, we have that Sλ = 2073.07 mb for
the Coulomb breakup and Sλ = 3863.09 mb for the nuclear
breakup.

Considering the effects of the first- and all-order interfer-
ences, from the table one can observe a substantial reduction of
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TABLE IV. Partial integrated breakup cross sections (in millibarns). The numerical integration is performed up to εmax = 5 MeV.

15C + 208Pb 11Be + 208Pb

σ �
T σ �

C σ �
N σ �

C + σ �
N ��

C ��
N σ �

T σ �
C σ �

N σ �
C + σ �

N ��
C ��

N

λ = 0 Sλ
0 80.84 14.03 80.84 94.87 14.80% 85.2% 145.80 12.43 145.80 158.22 7.86% 92.14%

s 429.05 57.14 174.12 231.26 24.71% 75.29% 1263.02 226.82 415.51 642.33 35.31% 64.69%
p 1110.44 833.70 1076.54 1910.24 43.64% 56.36% 2611.95 1560.40 1259.46 2819.856 55.34% 44.66%

λ = 1 d 380.45 86.16 182.19 268.35 32.11% 67.89% 824.60 166.93 407.17 574.10 29.08% 70.92%
f 99.60 6.39 19.37 25.76 24.81% 75.19% 162.80 42.37 116.52 158.90 26.67% 73.33%
g 15.73 0.54 0.76 1.30 41.47% 58.53% 41.076 15.67 36.83 52.50 29.85% 70.15%
Sλ

1 2035.26 983.93 1452.97 2436.90 40.38% 59.62% 4903.45 2012.20 2235.48 4247.69 47.37% 52.63%

s 105.79 0.00 112.47 112.47 0.00% 100% 161.82 13.06 176.03 189.09 06.91% 93.09%
p 0.00 0.00 0.00 0.00 0.00% 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00%

λ = 2 d 323.93 0.45 329.52 329.96 0.13% 99.87% 858.15 23.41 889.11 912.52 2.56 % 97.44%
f 0.00 0.00 0.00 0.00 0.00% 0.00 % 0.00 0.00 0.00 0.00 0.00% 0.00%
g 12.93 0.00 14.46 14.46 0.00% 100% 48.21 5.18 51.94 57.12 09.06% 90.94%
Sλ

2 442.65 0.45 456.44 456.90 0.10% 99.90% 1068.18 41.64 1117.08 1158.72 3.59% 96.41

s 18.48 0.00 18.36 18.36 0.00% 100% 44.93 1.36 42.21 42.57 3.13% 96.87%
p 0.16 0.00 0.16 0.16 0.00% 100% 0.46 0.03 0.37 0.40 7.90% 92.10%

λ = 3 d 4.56 0.00 4.55 4.55 0.00% 100% 10.20 0.21 10.44 10.65 1.98% 89.02%
f 119.97 0.00 119.66 119.66 0.00% 100% 309.38 4.79 304.92 309.71 1.55% 98.45%
g 2.07 0.00 2.05 2.05 0.00% 100% 8.55 0.40 6.79 7.19 5.56% 94.44%
Sλ

3 145.24 0.00 144.78 144.78 0.0% 100% 373.52 6.80 364.73 371.53 1.83% 98.17%

s 184.05 61.85 58.12 119.97 51.55% 48.45% 337.43 225.90 96.84 322.74 70.00% 30.00%
p 667.32 819.16 213.11 1032.27 79.36% 20.64% 1297.31 1559.57 209.20 1768.77 88.17% 11.83%

λmax = 1 d 106.91 83.52 28.17 111.69 74.78% 25.22% 157.02 168.85 22.03 190.88 88.46% 11.54%
f 19.25 6.41 0.08 6.49 98.75% 1.25% 28.64 44.67 1.22 45.89 97.33% 2.67%
g 2.60 0.58 0.08 0.66 87.65% 12.35% 3.00 17.44 0.048 17.49 99.73% 0.27%

S
λmax
1 980.13 971.52 299.57 1271.09 76.43% 23.57% 1823.39 2016.43 329.33 2345.76 85.96% 14.04%

s 79.64 62.08 22.27 84.35 73.60% 26.40% 121.37 221.77 30.96 252.73 87.77% 12.23%
p 563.75 818.25 105.10 923.35 88.62% 11.38% 1092.85 1558.67 69.48 1628.15 95.73% 4.27%

λmax = 4 d 80.81 82.50 22.79 105.28 78.35% 21.65% 148.23 168.14 65.37 233.51 72.01% 27.99%
f 13.01 6.41 8.89 15.29 41.92% 58.08% 14.67 44.91 23.75 68.66 65.41% 34.59%
g 6.50 0.61 4.16 4.78 12.69% 87.31% 18.54 15.87 12.92 28.79 53.13% 44.87%

S
λmax
4 743.71 969.83 163.20 1133.03 85.60% 14.40% 1395.66 2009.36 202.46 2211.82 90.85% 09.15%

the nuclear breakup cross sections, which become negligible
compared to the Coulomb breakup cross sections for both
reactions. A close look at the S

λmax
1 and S

λmax
4 sums reveals that

this substantial reduction of the nuclear breakup cross section
is largely due to the first-order interference. It is also noticed
that the dominance of the Coulomb breakup cross section
over the total is an effect of the first-order interference for
the 11Be + 208Pb reaction, and of the higher-order interference
for the 15C + 208Pb reaction.

In order to get a better quantitative understanding of the
first- and higher-order interferences, we present in Table V,
the amounts (in percentage) reduced from the different breakup
cross sections due to the first-order interference (σFO

I ) and to
the all-order interference (σAO

I ), defined as

σFO
I = 1 − S

λmax
1

Sλ

, σAO
I = 1 − S

λmax
4

Sλ

. (12)

The higher-order interference effect is then estimated by FO-
AO. For the 15C + 208Pb reaction, it can be observed from
the table that the all-order interference reduces by 72.50% the

total breakup cross section, distributed as follows: 63.75% due
to the first-order interference and 8.74% to the higher-order
interference. It reduces the Coulomb breakup cross section by
2.86%, in the following distribution: 2.69% due to the first-
order interference and 0.17% to the higher-order interference.
For the nuclear breakup on the other hand, this interference
reduces by 92.36% the breakup cross section, where 85.97% is
due to the first-order interference and 6.39% to the higher-order
interference. Our results for the S

λmax
4 , and for the total breakup

cross section, agree fairly with the 767 mb value of Ref. [40].
Finally, for the 11Be + 208Pb reaction, the results show

that the reduction of the total breakup cross section due to
the all-order interference amounts to 78.50%, distributed as
follows: 71.91% due to the first-order interference and 6.59%
to the higher-order interference. Looking at the Coulomb
breakup cross section, a slight reduction of 3.07%, where
2.73% is due to the first-order interference and 0.34% to
the higher-order interference, is noticed. As for the nuclear
breakup cross section, one sees that the all-order interference
reduces 94.76%, where 91.47% is due to the first-order
interference and 3.29% to the higher-order interference.
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TABLE V. First- and higher-order interference effects. FO (first-order), AO (all-order).

15C + 208Pb 11Be + 208Pb

FO AO FO AO

Sλ S
λmax
1 σ FO

I S
λmax
4 σ AO

I FO-AO Sλ S
λmax
1 σ FO

I S
λmax
4 σ AO

I FO-AO

Tot. 2704.00 980.13 63.75% 743.71 72.50% 236.42(8.74%) 6490.95 1823.39 71.91% 1395.66 78.50% 427.73(6.59%)
Coul. 998.41 971.52 2.69% 969.83 2.86% 1.69(0.17%) 2073.07 2016.43 2.73% 2009.36 3.07% 7.07(0.34%)
Nucl. 2135.03 299.57 85.97% 163.20 92.36% 136.37(6.39%) 3863.09 329.33 91.47% 202.46 94.76% 126.87(3.29%)

The results show that, for the two reactions, the higher
orders have small (<10%) effects on the integrated total,
Coulomb, and nuclear breakup cross sections, while the total
and nuclear breakup cross sections are substantially reduced
at first order. However, the results in Figs. 1(b), 2(b), 3(a),
and 4(a) indicate that the first-order differential breakup cross
sections alone overestimate the data mostly at low excitation
energies. Therefore, higher-order effects are also important in
the analysis of these reactions.

Based on these results, it can be deduced that the dominance
of the differential Coulomb breakup cross section over the total
breakup cross section observed in Sec. III B, and in other works
(for instance in Refs. [19,21]), is slightly due to the higher-
order effects for the 15C + 208Pb reaction and to the first-order
effects for the 11Be + 208Pb reaction. Moreover, it is clear
that if the integrated breakup cross sections corresponding
to the different multipoles were to be summed incoherently,
the nuclear breakup cross section would largely prevail over
the Coulomb breakup cross section even at first order. In
such case, the elimination of the nuclear breakup contribution
for obtaining the pure Coulomb breakup cross section would
lead to more concerns regarding the accuracy of the obtained
results. Our conclusions are in line with the ones drawn in
Ref. [24] for the 17F proton-halo projectile.

If we compare Figs. 1(b) and 2(b) with Figs. 6 and 7 of
Ref. [38], it can be seen that our results are only qualitatively
different from the results of this reference, where smooth
curves scaled by a factor 0.85 are observed. To obtain smooth
curves as in this reference, one can use for example the
folding procedure adopted in Refs. [37,40], without affecting
the conclusions.

So far, we have been discussing the energy-distribution
breakup cross sections. However, to further get a clear
understanding of the multipole transition effects on the three
different breakups, as in Ref. [24], we also consider the
angular-distribution breakup cross sections. The results are
presented in Fig. 5, for the 15C + 208Pb reaction and in Fig. 6,
for the 11Be + 208Pb reaction. In Fig. 5(a), it can be seen that the
non-first-order differential total breakup cross sections are all
negligible for θ � 2◦, and the first-order breakup cross section
is much extended to large angles. It is observed that, although
the zero-order breakup cross section is negligible compared
to the first-order breakup cross section, the first-order inter-
ference plays a significant role as it increases the λmax = 1
breakup cross section at angles between 1◦ and 3.5◦, before
dropping systematically beyond 3.5◦. Moreover, the results
show that the all-order interference lowers the total breakup
cross section at the whole range of angles, starting around 2◦.

Considering the Coulomb breakup cross sections
[Fig. 5(b)], one finds that the zero-order breakup cross section
is negligible (the multiplication by 10 is again for conve-
nience), while the first-order interference is more dominant
and is responsible for the oscillatory behavior of the Coulomb
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FIG. 5. (Color online) Angular-distribution differential (a) total,
(b) Coulomb, and (c) nuclear breakup cross sections, corresponding
to different multipoles for the 15C + 208Pb reaction.
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FIG. 6. (Color online) Angular-distribution differential (a) total,
(b) Coulomb, (c) nuclear breakup cross sections, corresponding to
different multipoles for the 11Be + 208Pb reaction.

breakup cross section. Lastly, Fig. 5(c) shows that all the
nuclear breakup cross sections are negligible at θ � 1◦, while
the first-order breakup cross section is much extended at larger
angles. Looking at Figs. 5(a) and 5(c), it is seen that both total
and nuclear breakup cross sections exhibit some similarities
regarding the effects of the first- and all-order interferences.

These results show that the oscillatory behavior observed in
Fig. 5(a) is due to the first-order interference in the Coulomb
breakup cross section. In Ref. [41], this oscillatory behavior
was attributed to the nuclear breakup for the 8B + 208Pb
reaction. Comparing our results to those obtained in Ref. [42],
we find that in our case the oscillations are less pronounced.
We can attribute the slight difference to the different projectile-
target interactions employed in both works. Furthermore, a
closer look at Figs. 5(b) and 5(c), shows as well that, if we were
to perform an angular integration, the non-first-order integrated

nuclear breakup cross sections would be more important than
their Coulomb breakup counterparts.

Turning to the 11Be + 208Pb reaction, the results in Fig. 6(a)
indicate again that we can still reach similar conclusions
as in Fig. 5(a). However, in this figure one observes more
oscillations and the first-order total breakup cross sections is
less extended to larger angles. On the other hand, as expected,
the total breakup cross sections in Fig. 5(a) are much less than
in this figure, but by almost a factor 10.

For the Coulomb breakup [Fig. 6(b)], the results show
that the λ = 1, λmax = 1, and λmax = 4 breakup cross section
curves are also hardly distinguishable. It means that the
non-first-order cross sections are insignificant and are therefore
not plotted. From this figure one notices that the λmax = 1
curve does not exhibit the oscillatory pattern observed in
Fig. 5(b). This indicates a qualitative difference between
the Coulomb breakups of the two reactions. As for the
nuclear breakup cross sections [Fig. 6(c)], it is seen that only
higher-order breakup cross sections do not present oscillatory
patterns; they are negligible at θ � 1◦, but become important
at backward angles. From the same figure, we also notice
similar magnitudes at 0◦ for both the zero- and all-order nuclear
breakup cross sections, and are as well hardly distinguishable
at θ � 4◦. These results show that the oscillations observed for
the total breakup cross sections are due to the nuclear breakup
component, in contrast to the 15C + 208Pb reaction.

The results in Figs. 5(c) and 6(c) also show that if the
incoherent sum of λ = 0,1 angular integrated breakup cross
section were considered, the incoherent nuclear sum would
be more important than the Coulomb incoherent sum. These
figures also show that in such cases the nuclear breakup
contribution cannot be eliminated by any impact parameter
value, as was the case in Ref. [11], since the nuclear
contribution is important even at large angles, where one
should expect negligible nuclear breakup cross sections due
the nuclear absorption at small impact parameters.

IV. CONCLUSIONS

In this work, the first- and higher-order interference effects
have been investigated for the 15C + 208Pb and 11Be + 208Pb
reactions. The partial-wave analysis was first performed in
order to check the importance of each partial wave included
in the CDCC model space. It is shown that the p waves are
more dominant for both reactions. But considered alone, they
largely underestimate the data, hence the importance of the
contributions of the other partial waves.

The total, Coulomb and nuclear breakups were analyzed
separately. Comparing the results with the data, we found
that for the 15C + 208Pb reaction the differential total breakup
cross section fits the data well, while they are significantly
overestimated by the differential Coulomb breakup cross
section at the whole energy spectrum considered. This fitness
was found to be an effect of the Coulomb-nuclear interference,
which indicates that in this reaction the nuclear breakup
contribution cannot simply be ignored. For the 11Be + 208Pb
reaction, however, we observed that the total differential
breakup cross section fits the data well at low excitation
energies (ε � 0.5 MeV). However, the Coulomb differential
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breakup cross section provided a fair fit of the data at high
excitation energies. We then concluded that the disagreement
observed between the data and the theory at high excitation
energies in [10] could not be attributed to the nuclear and/or
higher-order effects as predicted in that reference.

To analyze the first-order interference effects, we performed
the first-order CDCC calculations by selecting single λ = 0,1
multipoles and their coherent sum λmax = 1. We showed
that when the two multipoles are summed incoherently,
the integrated nuclear breakup cross section and hence the
integrated total breakup cross section are much larger than
the integrated Coulomb breakup cross section. However, the
coherent sum indicated that the integrated nuclear breakup
cross section is negligible compared to the integrated Coulomb
breakup cross section, which becomes more important than
its total breakup counterpart, due largely to the first-order
interference. The conclusion was that this interference could
be the reason why the total breakup cross section was found to
be less than the Coulomb breakup cross section, not only in this
study but also in [19,21] for the 19C + 208Pb and 15C + 208Pb
reactions, respectively. These conclusions are valid even for
angular-distribution breakup cross sections.

In order to study the higher-order interference effects, we
first considered the all-order interference, which was taken
care of by λmax = 4. Then the higher-order interference was
estimated using the first- and all-order interferences. For the
15C + 208Pb reaction, we obtained the following results. The
all-order interference reduces by 72.50% the total breakup

cross section, distributed as follows: 63.75% due to the first-
order interference and 8.74% to the higher-order interference.
It reduces by 2.86% the Coulomb breakup cross section, where
2.69% is due to the first-order interference and 0.17% to
the higher-order interference. For the nuclear breakup cross
section on the other hand, it is reduced by 92.36%, with
85.97% due to the first-order interference and 6.39% to the
higher-order interference.

Concerning the 11Be + 208Pb reaction, 78.50% of the
total breakup cross section is reduced due to the all-order
interference, in the following distribution: 71.91% due to
the first-order interference and 6.59% to the higher-order
interference. The Coulomb breakup cross section is reduced by
3.07%, where 2.73% is due to the first-order interference and
0.34% to the higher-order interference. Finally, the all-order
interference reduces by 94.76% the nuclear breakup cross
section, distributed as follows: 91.47% due to the first-order
interference and 3.29% to the higher-order interference.

Although the higher-order effects fall below 10% for both
total and nuclear breakup cross sections, the results showed
that the first-order results alone overestimate the data at low
excitation energies and hence the importance of the higher-
order interference effects, especially at low excitation energies.
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