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We describe low-lying collective excitations of atomic nuclei with the multireference covariant density
functional theory and combine them with coupled-channels calculations for heavy-ion fusion reactions at energies
around the Coulomb barrier. To this end, we use the calculated transition strengths among several collective states
as inputs to the coupled-channels calculations. This approach provides a natural way to describe anharmonic
multiphonon excitations, as well as a deviation of rotational excitations from a simple rigid rotor. We apply this
method to subbarrier fusion reactions of 58Ni + 58Ni, 58Ni + 60Ni, and 40Ca + 58Ni systems. We find that the
effect of anharmonicity tends to smear the fusion barrier distributions, better reproducing the experimental data
compared to the calculations in the harmonic oscillator limit.
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I. INTRODUCTION

In heavy-ion fusion reactions at energies around the
Coulomb barrier, low-lying collective excitations of the col-
liding nuclei during the fusion process play an important role
in enhancing fusion cross sections as compared to a prediction
of a simple potential model [1–3]. These effects have usually
been taken into account in the coupled-channels calculations
with a coupling scheme based on a harmonic vibrator for
spherical nuclei or on a rigid rotor for deformed nuclei [4,5].
With this approach, the energy of the first excited state as
well as the coupling strength from the ground state to the first
excited state, which can be taken from the experimental data,
specify all the other excitation energies and coupling strengths
for higher members in the coupling scheme. Typical examples
which show the subbarrier enhancement of fusion cross
sections include the fusion of 58Ni + 60Ni and 64Ni + 64Ni,
for which multiphonon excitations have been shown to play
an important role [6,7]. See also Refs. [8,9] for discussions
on multiphonon excitations. Multiple excitations within the
ground-state rotational band also play an important role in most
of fusion reactions involved with heavy deformed nuclei [10].

In reality, however, most atomic nuclei have neither a pure
harmonic oscillator spectrum nor a pure rigid body rotational
band. For example, the 58Ni nucleus, which has usually been
considered to be a typical vibrational nucleus, does not exhibit
a level spectrum characteristic to the harmonic vibration; that
is, the degeneracy of the two-phonon triplet is considerably
broken. Moreover, a recent theoretical calculation based on
a multireference density functional theory with the Skyrme
interaction also indicates that the B(E2) strengths among the
collective levels in 58Ni deviate largely from what are expected
from a simple harmonic oscillator [11]. It is therefore of
considerable interest to investigate the role of anharmonicity,
that is, the deviation from the harmonic limit, in subbarrier
fusion of 58Ni.

In Refs. [12,13], the effect of anharmonicity on subbarrier
fusion of 16O + 144,148Sm has been investigated using the

vibrational limit of interacting boson model (IBM). See also
Ref. [14] for an application of this method to large-angle
quasielastic scattering of the 16O + 144Sm system. Although
the static quadrupole moment of the first excited state could
be successfully extracted by analyzing the high-precision
experimental data with this approach [12,13], the application
of IBM has several limitations for a global study. First, the
method is not applicable to doubly magic nuclei, as the number
of bosons in IBM is estimated from the number of valence
nucleons outside shell closures. Second, phenomenological
parameters have to be introduced to the model Hamiltonian and
to the transition operators. It is therefore desirable to develop
an alternative microscopic approach for nuclear collective
excitations, which does not rely on the harmonic limit or
the rigid rotor, to systematically investigate the effect of
collective excitations in general on subbarrier fusion reactions
in a wide mass region.

In this paper, we employ a beyond-mean-field method to
describe low-lying collective excitations and combine it with
the coupled-channels approach to heavy-ion fusion reactions.
The pure mean-field approximation breaks the rotational
symmetry and does not yield a spectrum of nuclei. This can be
overcome by going beyond the mean-field approximation, in
particular, by carrying out the angular-momentum projection.
One can also take into account the quantum fluctuation of
the mean-field wave function by superposing many Slater
determinants with the generator coordinate method (GCM).
When the pairing correlation is important, the particle-number
projection can also be implemented. Such a scheme has
been referred to as a multireference density-functional theory
(MR-DFT) and has rapidly been developed in nuclear-structure
physics for the past decade [15,16].

The paper is organized as follows. In Sec. II, we briefly
review the coupled-channels approach for heavy-ion subbar-
rier fusion reactions. In Sec. III, we present the results of
MR-DFT calculations for the 58Ni and 60Ni nuclei. To this
end, we use the covariant density functional theory (CDFT),
based on the relativistic framework. In Sec. IV, we combine the

0556-2813/2015/91(6)/064606(11) 064606-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.91.064606


K. HAGINO AND J. M. YAO PHYSICAL REVIEW C 91, 064606 (2015)

coupled-channels calculations with the MR-CDFT approach.
We apply this method to subbarrier fusion reactions of
58Ni + 58Ni, 58Ni + 60Ni, and 40Ca + 58Ni systems and dis-
cuss the role of anharmonicity of quadrupole vibrations of
58Ni and 60Ni. We then summarize the paper in Sec. V.

II. COUPLED-CHANNELS APPROACH TO HEAVY-ION
FUSION REACTIONS

Our aim in this paper is to solve coupled-channels equations
using inputs from the MR-CDFT calculations. In principle,
one could formulate the coupled-channels method fully
microscopically using the MR-CDFT method. In such an
approach, the internuclear potentials, both for the diagonal
and the coupling parts, would be constructed by folding an
effective nucleon-nucleon interaction with calculated density
distributions and transition densities [17]. It has been known,
however, that this double folding procedure fails to work for
heavy-ion subbarrier fusion reactions [5]. That is, one obtains
a surface diffuseness parameter of around a ∼ 0.63 fm when a
double folding potential is fitted with a Woods-Saxon function,
whereas experimental fusion cross sections systematically
require a much larger value, e.g., a ∼ 1.0 fm [10,18–22]. An
important fact to notice is that the double folding method
works only in the surface region of the potential. For elastic and
inelastic scattering, the surface region of the potential is mainly
probed and a double folding potential is reasonable [22–26]. In
marked contrast, fusion reactions involve both the surface and
the inner regions, where two nuclei appreciably overlap with
each other. As a consequence, several dynamical effects are
important in the inner region [27–31], and the double folding
potential looses its validity.

Another problem of the fully microscopic formulation
is that the MR-CDFT calculations seldom yield a perfect
agreement with experimental data for excitation energies and
transition strengths, even though an overall agreement is often
reasonable. However, to describe quantitatively heavy-ion
fusion reactions at energies close to the Coulomb barrier, it
is important to use reasonable values for excitation energies
and transition strengths.

To avoid these drawbacks of the fully microscopic ap-
proach, in this paper we employ a semimicroscopic approach.
That is, we use a phenomenological Woods-Saxon internuclear
potential and adopt the experimental value for the coupling
strength between the ground state and the first excited state.
The coupling strengths for higher members are not known
well in many nuclei, and it is for these values that we employ
the MR-CDFT calculations, after scaling the calculated values
with the experimental strength for the transition between the
ground state and the first excited state. The excitation energies
are known for most of the collective levels, and we simply use
the experimental values whenever they are available.

In the coupled-channels approach to subbarrier fusion
reactions, one expands the total wave function of the system
in terms of the eigenfunctions of the collective states in the
target nucleus, |ϕJ0〉, as

�LML
(r) =

∑
J

uJ (r)

r
YLML

(r̂)|ϕJ0〉, (1)

where r is the relative coordinate between the colliding nuclei
and J and L are the angular momentum for the target state and
the angular momentum for the relative motion, respectively.
Here, for simplicity of notation, we have assumed that the
projectile nucleus is inert, but an extension is straightforward
to the case where both the projectile and the target nuclei are
excited. We have also introduced the isocentrifugal approxima-
tion [5] and have assumed that the angular momentum for the
relative motion does not change by the excitation of the target
nucleus. Notice that only the Jz = 0 component is excited in
the target nucleus in the isocentrifugal approximation.

Substituting Eq. (1) to the projected Schrödinger equation
for the energy E, that is, 〈ϕJ0|H − E|�LML

〉 = 0, where H
is the total Hamiltonian, one obtains the coupled-channels
equations for the radial wave functions uJ (r) as [5][

− �
2

2μ

d2

dr2
+ L(L + 1)�2

2μr2
+ V0(r) − E + εJ

]
uJ (r)

+
∑
J ′

VJJ ′ (r)uJ ′(r) = 0, (2)

where μ is the reduced mass for the relative motion, V0(r) is
the bare potential, and εJ is the energy of the target state J .
VJJ ′ (r) are the coupling matrix elements given by

VJJ ′ (r) = 〈ϕJ0|Vcoup(r,αλ0)|ϕJ ′0〉, (3)

where Vcoup is the coupling potential and αλ0 is the excitation
operator with a multipolarity λ. We solve the coupled-channels
equations by imposing the incoming wave boundary condition
at r = rabs inside the Coulomb barrier [5]; that is,

uJ (r) ∼
√

kJ0

kJ (r)
T L

JJ0
exp

[
−i

∫ r

rabs

kJ (r ′)dr ′
]

(r � rabs)

(4)

= H
(−)
L (kJ r)δJ,J0 −

√
kJ0

kJ

SJ
JJ0

H
(+)
L (kJ r) (r → ∞),

(5)

where H
(+)
L and H

(−)
L are the outgoing and the incoming

Coulomb wave functions, respectively. SL
JJ0

and T L
JJ0

are the
nuclear S matrix and the transmission coefficient, respectively,
with J0 = 0 being the spin of the ground state of the target
nucleus. kJ (r) is the local wave number given by

kJ (r) =
√

2μ

�2

[
E − εJ − L(L + 1)�2

2μr2
− V0(r)

]
, (6)

whereas kJ = kJ (r = ∞) =
√

2μ(E − εJ )/�2. The fusion
cross section σfus is then obtained as

σfus(E) = π

k2

∑
L

(2L + 1)PL(E), (7)

with PL(E) = ∑
J |T L

JJ0
|2.

As we have mentioned, we employ the Woods-Saxon
potential for the nuclear part of the bare potential, V

(N)
0 (r);

that is,

V
(N)

0 (r) = − V0

1 + exp[(r − R0)/a]
. (8)
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The nuclear coupling potential is obtained by deforming the
radius R0 to

R0 → R0 + RT

∑
μ

αλμY ∗
λμ(r̂), (9)

where RT is the radius of the target nucleus. Here the
deformation parameter αλμ is related to the electric multipole
operator as [32]

Qλμ = 3e

4π
ZT R2

T αλμ, (10)

where ZT is the atomic number of the target nucleus. The cou-
pling potential in Eq. (3) in the isocentrifugal approximation
then reads [5]

Vcoup(r,αλ0) = − V0

1 + exp
[(

r − R0 −
√

2λ+1
4π

RT αλ0
)
/a

]
+ 3

2λ + 1
ZP ZT e2 Rλ

T

rλ+1

√
2λ + 1

4π
αλ0

−V
(N)

0 (r), (11)

where we have also included the Coulomb coupling potential.
The last term is to avoid the double counting in Eq. (2).

The matrix elements of Vcoup, Eq. (3), can be evaluated with
the method employed in the computer code CCFULL [4,5].
To this end, one needs the matrix elements of the operator√

2λ+1
4π

αλ0. In the following, we define the coupling strengths
for the coupled-channels calculations as

β
(λ)
JJ ′√
4π

≡
√

2λ + 1

4π
〈ϕJ0|αλ0|ϕJ ′0〉. (12)

For the quadrupole harmonic oscillator with λ = 2, this
definition yields [5]

β
(λ=2)
J21

=
√

2 β
(λ=2)
2101

〈2020|J0〉, (13)

for the coupling between the one-phonon state (that is, the 2+
1

state) to the two-phonon state with the angular momentum

J . Notice that
√∑

J=0,2,4(β(λ=2)
J21

)2 = √
2 β

(λ=2)
2101

, which has
often been employed in the coupled-channels calculations
with multiphonon couplings [4,5,7–9]. For a rigid rotor, one
obtains

β
(λ=2)
22 = 2

√
5

7
β, β

(λ=2)
24 = 6

7
β, β

(λ=2)
44 = 20

√
5

77
β, (14)

with β
(λ=2)
20 ≡ β (see Eq. (3.49) in Ref. [5]).

With microscopic nuclear-structure calculations, the cou-
pling strengths can be estimated as [see Eqs. (10) and (12)],

β
(λ)
JJ ′√
4π

=
√

2λ + 1

4π

4π

3ZT eR2
T

〈ϕJ0|Qλ0|ϕJ ′0〉, (15)

where the quantity 〈ϕJ0|Qλ0|ϕJ ′0〉 can be evaluated micro-
scopically using the operator Qλμ = ∑

i r
λ
i Yλμ(r̂ i).

In coupled-channels calculations for heavy-ion reactions,
one sometimes uses a different value of the nuclear coupling
strength from the Coulomb coupling strength; see, e.g.,
Ref. [7]. While the Coulomb coupling strength, βC , can be

estimated from a measured electric transition strength, B(Eλ),
the nuclear coupling strengths, βN , are taken rather arbitrarily.
One of the big advantages of the semimicroscopic approach
is that the nuclear coupling strengths can also be estimated by
using the isoscalar operator for Qλμ; that is,

Q
(IS)
λμ =

∑
i∈p,n

rλ
i Yλμ(r̂ i) = 3

4π
AT R2

T αλμ, (16)

whereas the Coulomb coupling strengths are related to the Eλ
operator,

Q
(Eλ)
λμ = e

∑
i∈p

rλ
i Yλμ(r̂ i) = 3e

4π
ZT R2

T αλμ. (17)

From these equations, one obtains

βN

βC

= ZT

AT

(
1 + Mn

Mp

)
, (18)

where Mn/Mp is the neutron-to-proton ratio for a transition
given by

Mn

Mp

= 〈ϕJM | ∑i∈n rλ
i Yλμ(r̂ i)|ϕJ ′M ′ 〉

〈ϕJM | ∑i∈p rλ
i Yλμ(r̂ i)|ϕJ ′M ′ 〉 . (19)

Notice that for a pure isoscalar transition, Mn/Mp is reduced to
NT /ZT , and the nuclear and the Coulomb coupling strengths
are identical to each other; that is, βN = βC .

III. MULTIREFERENCE COVARIANT DENSITY
FUNCTIONAL CALCULATION FOR 58Ni AND 60Ni

Let us now carry out the MR-CDFT calculations for the
58Ni and 60Ni nuclei and obtain inputs for the coupled-
channels calculations. These nuclei have been studied recently
in Ref. [11] using the nonrelativistic MR-DFT method. Here
we repeat similar calculations with the relativistic framework
to check the dependence of the conclusions on a choice of
energy density functional.

In the MR-CDFT [16,33–35], the wave function for nuclear
low-lying states is constructed as a superposition of projected
mean-field states corresponding to a different deformation
parameter β,

|αJM; NZ〉 =
∑

β

f J
α (β)P̂ J

M0P̂
N P̂ Z|�(β)〉, (20)

where α = 1,2, . . . distinguishes different collective states
with the same angular momentum J . Here |�(β)〉 are the
mean-field states generated by the deformation-constrained
relativistic mean-field (RMF) method. The pairing correlation
is taken into account in the BCS approximation. For simplicity,
we have assumed the axial and reflection symmetries for
the mean-field states. Thus, the K quantum number (that
is, the projection of angular momentum onto the z axis)
is zero, and the index K has been dropped. We implement
both the particle-number and the angular-momentum projec-
tions. The projection operators P̂ N , P̂ Z , and P̂ J in Eq. (20)
project the mean-field states onto the states with good
neutron and proton numbers N,Z, as well as a good angular
momentum J .
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The weight coefficients f J
α (β) in Eq. (20) are de-

termined by solving the Hill-Wheeler-Griffin (HWG)
equations [32],

∑
β ′

[
HJ

00(β,β ′) − EJ
αN J

00(β,β ′)
]
f J

α (β ′) = 0, (21)

where N J
00(β,β ′)=〈�(β)|P̂ J

00P̂
N P̂ Z|�(β ′)〉 and HJ

00(β,β ′) =
〈�(β)|Ĥ P̂ J

00P̂
N P̂ Z|�(β ′)〉 are the norm and the energy

kernels, respectively. The prescription of mixed density is
adopted for the energy kernel. The detailed expressions for
the kernels can be found in Refs. [16,33–35]. The solution
of the HWG equation provides the energy levels and the
information on the matrix elements 〈ϕJ0|Qλ0|ϕJ ′0〉 in Eq.(15)
with |ϕJM〉 = |αJM; NZ〉, which are needed for the coupled-
channels calculations for fusion cross sections. Notice that
in most cases it is hard to determine experimentally the
sign of this matrix element even if information is sometimes
available on its absolute value from the electric transition
probabilities [7] (see also Ref. [36]). An advantage of the
present semimicroscopic approach is that the matrix elements
can be estimated theoretically, including their sign as well.

Figure 1(a) shows the energy curves of particle-number
and angular-momentum-projected states with J = 0, 2, 4, and
6 for 58Ni as a function of the intrinsic mass quadrupole
deformation β of the mean-field states. The PC-PK1 parameter
set [37] is used for the nucleon-nucleon interaction. The figure
also shows the low-lying collective states obtained by mixing
the symmetry conserved states. These states are plotted at their

FIG. 1. (Color online) (a) The total energy for the angular-
momentum-projected states with J = 0, 2, 4, and 6 for 58Ni as
a function of the intrinsic mass quadrupole deformation β of the
mean-field states. The particle-number projection has also been
implemented. Those curves are obtained with the projected CDFT
method with PC-PK1 interaction [37]. The low-lying collective levels,
obtained with the configuration mixing calculation, are also plotted
at their average deformation β̄. (b) The collective wave functions
given by Eq. (23) for the states indicated in the figure as a function
of deformation parameter β.

FIG. 2. (Color online) Comparison of the experimental and the
calculated low-lying energy spectra of 58Ni. The experimental data
are taken from Refs. [38,39], while the calculated spectrum is
obtained with the PC-PK1 force. The E2 transition strengths are
given in units of e2 fm4.

average deformation β̄ defined as

β̄(Jα) =
∑

β

β
∣∣gJ

α (β)
∣∣2

, (22)

where the collective wave functions gJ
α (β) are related to the

weight functions in Eq. (20) as

gJ
α (β) =

∑
β ′

[
N J

00

]1/2
(β,β ′)f J

α (β ′). (23)

These collective wave functions are plotted in Fig. 1(b).
To facilitate the discussion on the properties of these

states, we collect them and make a comparison with
the experimental spectrum in Fig. 2. The results for the 60Ni
are also shown in Fig. 3. One can see that the main feature of
the energy spectrum and the E2 transition strength from 2+

1 to
0+

1 are reproduced rather well. These results are qualitatively
similar to the results of the previous MR-DFT calculations
with the nonrelativistic Skyrme SLy4 interaction [11], but
quantitatively the present calculations with the relativistic DFT
reproduce the experimental data slightly better. For instance,
the B(E2) value from the 2+

1 to the 0+
1 states in 58Ni was

248 e2 fm4 in the previous calculation [11], while it is 150
e2 fm4 in the present calculation, which is much closer to the
experimental value of 126(8) e2 fm4 [38,39].

FIG. 3. (Color online) Same as Fig. 2, but for 60Ni.
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It is interesting to notice that the overall pattern of B(E2)
values is quite different from what would be expected for a
harmonic vibrator, even though the excitation energies of the
4+

1 , 2+
2 , and 0+

2 states are about twice the energy of the 2+
1 state.

In particular, the E2 transition from the 0+
2 to the 2+

1 states is
much smaller than that from the 4+

1 and the 2+
2 states to the 2+

1
state, which is similar to Cd isotopes [40,41]. Instead, the 0+

2
state has a strong transition from the 2+

2 state, which clearly
indicates that the 0+

2 state is not a member of the two-phonon
triplet. Notice that the collective wave function for each of the
4+

1 and 2+
2 states have a similar structure to one another [see

Fig. 1(b)]. However, the 0+
2 state has a considerably different

wave function from those states, being dominated by the mean-
field configurations around β = 0.3.

Compared to the 0+
2 state, the E2 transition strength from

the 0+
3 to the 2+

1 states is much larger and is comparable to that
from the 4+

1 and the 2+
2 states to the 2+

1 state. This fact makes
the 0+

3 state a better candidate for a member of the two-phonon
triplets, even though the excitation energy is a little bit large
and its collective wave function is much different from that
for the 4+

1 and the 2+
2 states. A similar conclusion has been

reached also with the nonrelativistic DFT [11].
Notice that, in the harmonic oscillator limit, the B(E2)

value from any of the two-phonon triplet states to the 2+
1

state is exactly twice the B(E2) value from the 2+
1 state to

the ground state [42]. The calculated B(E2) values shown in
Figs. 2 and 3, together with the strong transition from the 2+

2
to the 0+

2 states, indicate a presence of large anharmonicity
in the quadrupole vibrations in 58Ni and 60Ni. That is, the
calculated B(E2) values are significantly quenched from the
values in the harmonic limit. This fact also implies that
the present approach for fusion reactions with MR-CDFT
provides a natural truncation scheme in the coupled-channels
calculations, whereas the truncation of the phonon spectrum
has to be introduced in an ad hoc way if one employs the
harmonic oscillator couplings.

Another clear indication of anharmonicity is a finite value
of quadrupole moment of the first 2+ state. Experimentally,

the spectroscopic quadrupole moment of the first 2+ state has
been measured to be Q(2+

1 ) = −10 ± 6 e fm2 for 58Ni and
Q(2+

1 ) = +3 ± 5 e fm2 for 60Ni [43]. The present MR-CDFT
calculations yield Q(2+

1 ) = +7.96 and +10.4 e fm2 for 58Ni
and 60Ni, respectively. Even though the sign of quadrupole
moment is opposite that of the experimental data for 58Ni,
the MR-CDFT calculations predict a similar absolute value of
quadrupole moment to the experimental value both for 58Ni
and 60Ni. Notice that the average deformation for the 2+

1 state is
very small for both of these nuclei owing to a large cancellation
between the prolate and the oblate components, as shown in
Fig. 1. A more careful numerical treatment of the calculations
would therefore be necessary to reproduce the correct sign of
the quadrupole moment, although it is beyond the scope of the
present paper.

IV. FUSION OF Ni ISOTOPES

In the previous section, we have seen that both 58Ni and
60Ni do not show a typical behavior of harmonic oscillator.
Let us now investigate how the deviation of the spectrum from
the harmonic limit affects the subbarrier fusion reactions of Ni
isotopes.

We first consider the fusion reaction of two 58Ni nuclei.
Because we assume the axial and reflection symmetries in the
present MR-CDFT calculations, at this moment we are unable
to describe both the octupole vibration, 3−, and the 3+ state
in the three-phonon multiplets. We therefore consider only
the quadrupole two-phonon excitations in each 58Ni nucleus.
Table I summarizes the coupling strengths, obtained with the
MR-CDFT calculation discussed in the previous section [see
Eq. (15)]. We use RT = 1.06 × 581/3 fm for the radius of 58Ni.
The phase of each of the collective wave functions is chosen
so that the sign of the off-diagonal components is identical to
that in the harmonic oscillator limit. The Coulomb coupling
strength for the transition between the ground state and the
first 2+ state is estimated to be β = 0.223 using the measured

TABLE I. The Coulomb coupling strengths for the quadrupole transitions in 58Ni, estimated with the microscopic MR-CDFT calculations
with PC-PK1 force [see Eq. (15)]. The values in the parentheses are the corresponding nuclear coupling strengths obtained with Eq. (18). The
radius parameter of r0 = 1.06 fm is used, and the calculated values are scaled with the Coulomb coupling strength for the transition from the
ground state to the first 2+ state, which is estimated with the measured B(E2) value.

I ′

I 0+
1 2+

1 0+
2 2+

2 4+
1 0+

3

0+
1 0 0.223 0 0.0390 0 0

(0.245) (0.0228)
2+

1 0.223 − 0.0457 0.0736 − 0.147 0.215 0.117
(0.245) ( − 0.0311) (0.0668) ( − 0.155) (0.229) (0.108)

0+
2 0 0.0736 0 − 0.300 0 0

(0.0668) ( − 0.278)
2+

2 0.0390 − 0.147 − 0.300 0.0873 − 0.0617 0.165
(0.0228) ( − 0.155) ( − 0.278) (0.0777) ( − 0.0610) (0.170)

4+
1 0 0.215 0 − 0.0617 0.0279 0

(0.229) ( − 0.0610) (0.0405)
0+

3 0 0.117 0 0.165 0 0
(0.108) (0.170)
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TABLE II. The strengths for the Coulomb coupling in 58Ni in
the harmonic oscillator limit. Here we have assumed that the third 0+

state belongs to the two-phonon triplet.

I ′

I 0+
1 2+

1 0+
2 2+

2 4+
1 0+

3

0+
1 0 0.223 0 0 0 0

2+
1 0.223 0 0 −0.169 0.226 0.141

0+
2 0 0 0 0 0 0

2+
2 0 − 0.169 0 0 0 0

4+
1 0 0.226 0 0 0 0

0+
3 0 0.141 0 0 0 0

B(E2) value with the same radius parameter. The calculated
values of the coupling strengths shown in Table I have been
scaled to this value, which amounts to multiplying a factor of
0.916 to all the calculated coupling strengths. In Table I, the
values in the parentheses are the nuclear coupling strengths,
calculated with the theoretical value for Mn/Mp based on
Eq. (18). For a comparison, we also show in Table II the
Coulomb coupling strengths in the harmonic oscillator limit,
assuming the third 0+ state to be a member of the two-phonon
triplet. As we have mentioned in the previous section, the
coupling strengths in 58Ni shown in Table I reveal some
similarity to the harmonic oscillator. That is, the coupling
strengths from the one-phonon state (the 2+

1 state) to the
two-phonon states (that is, the 2+

2 , 4+
1 , and 0+

3 states) are
close to those in the harmonic limit. However, there are also
pronounced deviations from the harmonic limit as well. That
is, the strong couplings are present between the 2+

2 and the 0+
2

states and also between the 0+
3 and the 2+

2 states. The latter is
zero in the harmonic limit, and so is the former unless the 0+

2
is a member of the three-phonon multiplets.

Figures 4(a) and 4(b) show the fusion cross section σfus(E)
and the fusion barrier distribution Dfus(E) defined as [1,45]

Dfus(E) = d2(Eσfus)

dE2
(24)

for the 58Ni + 58Ni reaction, respectively. We use the Woods-
Saxon potential with V0 = 170.2 MeV, r0 = 1.0 fm, and a =
0.9 fm, where the radius R0 is given as R0 = r0(A1/3

T + A
1/3
T ).

The fusion barrier distributions are obtained with the point
difference formula with the energy step of �Ec.m. = 2 MeV
to be consistent with the experimental barrier distribution
extracted in Ref. [6]. The dashed line shows the result of
the coupled-channels calculations including up to the double-
phonon states in the harmonic oscillator limit. All the mutual
excitations between the projectile and the target nuclei are
included. However, the solid line in the figure is obtained with
the coupling strengths shown in Table I. To this end, we include
the 0+

1 , 2+
1 , 0+

3 , 2+
2 , and 4+

1 states in the coupled-channels
calculations. Again, all the mutual excitation channels are
taken into account. We use the experimental excitation energies
for these states; that is, ε = 0, 1.454, 3.531, 2.775, and
2.459 MeV, respectively. For a comparison, the figure also
shows the result of the no-coupling limit by the dotted line. One
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FIG. 4. (Color online) The fusion cross sections (a) and the
fusion barrier distributions (b) for the 58Ni + 58Ni system. Here the
fusion barrier distribution is defined as Dfus(E) = d2(Eσfus)/dE2.
The dashed line is the result of the coupled-channels calculations,
including the double quadrupole-phonon excitations in each 58Ni
nucleus in the harmonic oscillator limit, while the solid line is
obtained by including the 0+

1 , 2+
1 , 0+

3 , 2+
2 , and 4+

1 states with the
coupling strengths shown in Table I. The dotted line denotes the
result in the absence of the channel couplings. The experimental data
are taken from Ref. [44] for the fusion cross sections and from Ref. [6]
for the fusion barrier distribution.

can see that the calculations in the harmonic limit overestimate
fusion cross sections at the two lowest energies, while the
MR-CDFT calculations underpredict fusion cross sections
around 95 MeV. However, for the energy dependence of fusion
cross sections, shown in terms of fusion barrier distribution in
panel (b) of the figure, the MR-CDFT calculation leads to a
minor improvement by considerably smearing each peak.

As we have mentioned, to draw Fig. 4, we have multiplied
a constant factor to the calculated transition strengths so that
the transition rate from the first 2+ state to the ground state
coincides with the experimental data. We have also used the
experimental values for the excitation energies. Figure 5(a)
shows the fusion barrier distribution Dfus obtained without this
prescription, that is, obtained by using the calculated transition
strengths and excitation energies as they are. As shown in
Fig. 2, the PC-PK1 interaction somewhat overestimates the
energy of the first 2+ state (2.09 MeV as compared to the
experimental value of 1.45 MeV), although the B(E2) strength
is reproduced reasonably well; that is, B(E2 : 2+

1 → 0+
1 ) =

150.1 e2 fm4 as compared to the experimental value of 126(8)
e2 fm4. Because the shape of fusion barrier distribution is
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FIG. 5. (Color online) Comparison of the fusion barrier distri-
bution for the 58Ni + 58Ni reaction obtained with several methods.
(a) Results obtained with the calculated transition strengths and
the excitation energies for the two-phonon couplings in 58Ni. The
solid and dashed lines show the results with the PC-PK1 and
PC-F1 interactions, respectively. Panel (b) is obtained by using
the experimental values for the excitation energies and also by
multiplying a constant factor to the transition strengths so that the
B(E2) value from the first 2+ state to the ground state coincides with
the experimental value.

sensitive to the energy of the first excited state [5], this
calculation does not lead to a good reproduction of the
experimental data, especially around Ec.m. = 95 MeV. This
implies that it is essential in the present approach to use the
experimental values for the energy and the transition strength
for the first 2+ state to reproduce the experimental fusion
barrier distribution.

For comparison, the figure also shows the results with the
PC-F1 interaction [46] by the dashed line. This interaction
yields the energy of the 2+ state to be 1.58 MeV and thus
reproduces the experimental energy much better than the PC-
PK1 interaction. However, the transition strengths are largely
overestimated; e.g., the calculated value for B(E2 : 2+

1 → 0+
1 )

is 199.1 e2 fm4. Even though this interaction well reproduces
the experimental fusion barrier distribution even without the
scaling, this might be accidental given that the transition
strengths are incompatible with the experimental data. After
scaling the transition strengths, the dependence of the results
on the parameter set of the interaction becomes much weaker,
as is shown in Fig. 5(b).

To understand the origins for the smearing in fusion barrier
distribution owing to the anharmonicity effects, we repeat the
same calculations as those shown in Fig. 4 with three different
coupling schemes. In the first scheme, the energy of the two-
phonon triplets is set to be exactly twice the energy of the
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FIG. 6. (Color online) The fusion barrier distributions for the
58Ni + 58Ni reaction obtained with several coupling schemes. In
all the panels, the solid line denotes the result of the MR-CDFT
calculation shown in Fig. 4. In (a), the dashed line is obtained by
setting the energy of the two-phonon triplet to be exactly twice the
energy of the first 2+ state. In (b), the dashed line is obtained by
setting all the diagonal couplings to be zero, while in (c) it is obtained
by setting the coupling strength to be zero for the transition from the
second 2+ state to the third 0+ state.

first 2+ state. The result for this is shown in Fig. 6(a). In the
second scheme, all the diagonal couplings are set to be zero,
while in the third scheme the coupling strength is set to be zero
between the 2+

2 and the 0+
3 states. The results of these schemes

are plotted in Figs. 6(b) and 6(c), respectively. One can see
that all of these coupling schemes lead to a more structured
barrier distribution than the full MR-CDFT calculations, and
thus all of these three effects, together with the quenching
of the coupling between the one-phonon and the two-phonon
states, coherently contribute to the smearing in the barrier
distribution. Among them, the effect shown in Fig. 6(c) seems
to yield the largest effect.

In connection to Fig. 6(b), Fig. 7 shows the sensitivity of
the fusion cross section and the fusion barrier distribution
to the sign of quadrupole moment of the first 2+ state. The
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FIG. 7. (Color online) The fusion cross sections (a) and the
fusion barrier distributions (b) for the 58Ni + 58Ni system obtained
with the MR-CDFT method. The solid line is the same as that in
Fig. 4, while the dashed line is obtained by inverting the sign of the
quadrupole moment of the first 2+ state. The experimental data are
taken from Refs. [6,44].

solid line is the result with the coupling strengths shown
in Table I, while the dashed line is obtained by changing
the sign of the quadrupole moment of the first 2+ state.
One can see that the effect of the sign of the quadrupole
moment is not large, but is certainly not negligible. Therefore,
the conclusion in Refs. [12,13] remains the same; that is,
the sign of the quadrupole moment of an excited state can
be determined with heavy-ion subbarrier fusion reactions,
when high-precision experimental data are available. For the
58Ni + 58Ni system shown in Fig. 7, the experimental data
are reproduced slightly better with a negative value of
quadrupole moment of the first 2+ state, which is consistent
with the experimental observation [43].

Finally, let us discuss the effect of the second 0+ state,
which couples strongly to the second 2+ state (see Table I).
The dashed line in Fig. 8 is obtained by including the second
0+ state in the coupled-channels calculations in addition to
the two-phonon excitations. However, the solid line shows the
result of the two-phonon excitations, which is the same as that
in Figs. 4, 6, and 8. Despite the strong coupling between the
second 0+ and the second 2+ states, one can see that the main
feature of the barrier distribution remains the same even when
the second 0+ state is included, although the peak structure
is further smeared by the second 0+ state. This is probably
because the second 0+ state is not directly coupled to the
ground state.
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FIG. 8. (Color online) A comparison of the coupled-channels
calculations for the 58Ni + 58Ni system with (the dashed line) and
without (the solid line) the couplings to the second 0+ state. Panels
(a) and (b) show the fusion cross sections and the fusion barrier
distributions, respectively. The experimental data are taken from
Refs. [6,44].

Let us next consider the 58Ni + 60Ni reaction, for which
high-precision data for fusion cross sections have been
measured by Stefanini et al. [6]. Table III summarizes the
coupling strengths for 60Ni obtained with the MR-CDFT
calculations. The main feature of the coupling strengths is
similar to that for 58Ni, although the collectivity is somewhat
larger in 60Ni than in 58Ni. In particular, strong couplings
between the 0+

2 and 2+
2 states and between the 0+

3 and 2+
2 states

remain qualitatively the same. In addition, the reorientation
term (that is, the self-coupling term) for the 2+

2 is much larger
in 60Ni as compared to that in 58Ni. Figure 9 shows the results
of the coupled-channels calculations with the Woods-Saxon
potential with V0 = 154.5 MeV, r0 = 1.0 fm, and a = 0.9 fm.
Because we would like to compare between the harmonic
limit and the MR-CDFT calculations, we consider only the
two-phonon couplings, excluding the couplings to the second
0+ state. Unlike the 58Ni + 58Ni system shown in Fig. 4, the
fusion cross sections are largely underestimated at energies
below the Coulomb barrier by this calculation. This is probably
attributable to the elastic two-neutron transfer process, which
is not taken into account in the present coupled-channels
calculations, as has been discussed in Ref. [6]. Despite this,
however, one may expect that the shape of fusion barrier
distribution is not much affected by transfer channels, unless
a multinucleon transfer process takes place (which is unlikely
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TABLE III. Same as Table I, but for 60Ni.

I ′

I 0+
1 2+

1 0+
2 2+

2 4+
1 0+

3

0+
1 0 0.261 0 − 0.0101 0 0

(0.288) ( − 0.0170)
2+

1 0.261 − 0.0616 0.0478 − 0.148 0.251 0.126
(0.288) ( − 0.0562) (0.0390) ( − 0.154) (0.267) (0.117)

0+
2 0 0.0478 0 − 0.390 0 0

(0.0390) ( − 0.367)
2+

2 − 0.0101 − 0.148 − 0.390 0.164 − 0.0264 0.107
( − 0.0170) ( − 0.154) ( − 0.367) (0.151) ( − 0.0210) (0.114)

4+
1 0 0.251 0 − 0.0264 − 0.0701 0

(0.267) ( − 0.0210) ( − 0.0681)
0+

3 0 0.126 0 0.107 0 0
(0.117) (0.114)

in the 58Ni + 60Ni system). The effect of anharmonicity
on the shape of fusion barrier distribution is qualitatively
the same as that in the 58Ni + 58Ni system. That is, the
anharmonicity largely smears the peak structure in the barrier
distribution. Even though the agreement with the experimental
barrier distribution gets worse by including the anharmonicity
effects, it is interesting to notice that the MR-CDFT calcu-
lations appear to reproduce the more recent (preliminary)
data of the barrier distribution for the same system [47],
in a more consistent way than the result of the harmonic
approximation.
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FIG. 9. (Color online) Same as Fig. 4, but for the 58Ni + 60Ni
system. The experimental data are taken from Ref. [6].

Last, we briefly discuss the 40Ca + 58Ni fusion reaction.
Figure 10 shows the results of the coupled-channels calcula-
tions with the Woods-Saxon potential with V0 = 135 MeV,
r0 = 1.0 fm, and a = 0.9 fm. The excitations up to the
two-phonon states are taken into account in the target nucleus
58Ni, while the one-octupole phonon excitation is included
for the projectile nucleus, 40Ca, in the harmonic limit. All
the mutual excitations are included in the coupled-channels
calculation. Because the charge product is small for this
system, the inclusion of the second 0+ state in 58Ni leads
to only a marginal change both in the fusion cross sections
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FIG. 10. (Color online) Same as Fig. 4, but for the 40Ca + 58Ni
system. The experimental data are taken from Ref. [48].
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and in the fusion barrier distribution. Both the harmonic limit
and MR-CDFT calculations reproduce well the experimental
fusion cross sections [48]. However, in panel (b) of the figure
one can again see that the anharmonicity effect in 58Ni smears
the fusion barrier distribution, leading to a better agreement
with the experimental fusion barrier distribution as compared
to the results in the harmonic oscillator limit.

V. SUMMARY

We have proposed a semimicroscopic approach to heavy-
ion sub-barrier fusion reactions. The basic idea of this approach
is to combine a MR-DFT to a coupled-channels calculation.
The MR-DFT provides transition strengths among collective
states without resorting to the harmonic oscillator model or
the rigid rotor model. It also provides the relative sign for the
transition matrix elements. These quantities are usually not
known experimentally, and the MR-DFT provides important
inputs for the coupled-channels calculations. The excitation
energies, however, are often known well, and one can simply
use the experimental values for them, although one could use
the results of a MR-DFT calculation if the excitation energies
are not known experimentally. In this paper, instead of carrying
out a fully microscopic calculation for fusion with a double
folding potential, we employ the semimicroscopic approach
with a phenomenological Woods-Saxon potential, because it
has been known that the double folding procedure does not
work for subbarrier fusion reactions. The advantages of this
approach include that (i) deviations from the harmonic limit
as well as the rigid rotor limit can be taken into account,
(ii) it can therefore be applied also to transitional nuclei, which
show neither the vibrational nor the rotational characters,
(iii) the sign of the matrix elements can be determined,
(iv) the nuclear coupling strengths can be estimated using
the neutron-to-proton ratio for a transition, and (v) a natural
truncation is introduced in the coupling schemes.

We have applied this approach to the 58Ni + 58Ni,
58Ni + 60Ni, and 40Ca + 58Ni fusion reactions. We have first
discussed the spectrum of 58Ni and 60Ni using the MR-CDFT.

We have found that there are both similarities and differences
between the calculated spectra and those in the harmonic
limit, even though those nuclei have been considered to be
typical vibrational nuclei in the literatures. We have then
discussed the effect of the anharmonicities on the fusion cross
sections and the fusion barrier distributions. We have found
that the anharmonicities smear the fusion barrier distributions,
somewhat improving the agreement with the experimental
data.

In this paper, for simplicity we have assumed the axial
and reflection symmetries for the shapes of 58Ni and 60Ni.
This has prevented us from including the octupole and the
three quadruple-phonon excitations in the coupled-channels
calculations. Although the octupole excitations would not
affect much the fusion cross sections because the excitation
energy is large [5,49], the three quadrupole-phonon excitations
may perturb the results presented in this paper. It would be an
interesting future problem, even though it may be numerically
demanding, to relieve the restriction for the symmetries and
repeat the calculations to investigate the role of the three-
phonon excitations.

It would also be an interesting problem to extend the
treatment presented in this paper to heavy-ion elastic and
inelastic scattering. In contrast to fusion reactions, the double-
folding approach is applicable to these reactions. One can
therefore develop a fully microscopic approach to heavy-ion
scattering using the MR-DFT. That approach would also be
useful in applications to nuclear data, such as those related to
the problem of nuclear transmutation [50].
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