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Background: Ab initio many-body methods have been developed over the past 10 yr to address closed-shell
nuclei up to mass A ≈ 130 on the basis of realistic two- and three-nucleon interactions. A current frontier relates
to the extension of those many-body methods to the description of open-shell nuclei. Several routes to address
open-shell nuclei are currently under investigation, including ideas that exploit spontaneous symmetry breaking.
Purpose: Singly open-shell nuclei can be efficiently described via the sole breaking of U(1) gauge symmetry
associated with particle-number conservation as a way to account for their superfluid character. While this route
was recently followed within the framework of self-consistent Green’s function theory, the goal of the present
work is to formulate a similar extension within the framework of coupled cluster theory.
Methods: We formulate and apply Bogoliubov coupled cluster (BCC) theory, which consists of representing the
exact ground-state wave function of the system as the exponential of a quasiparticle excitation cluster operator
acting on a Bogoliubov reference state. Equations for the ground-state energy and the cluster amplitudes are
derived at the singles and doubles level (BCCSD) both algebraically and diagrammatically. The formalism
includes three-nucleon forces at the normal-ordered two-body level. The first BCC code is implemented in m

scheme, which will permit the treatment of doubly open-shell nuclei via the further breaking of SU(2) symmetry
associated with angular momentum conservation.
Results: Proof-of-principle calculations in an Nmax = 6 spherical harmonic oscillator basis for 16,18O and 18Ne
in the BCCD approximation are in good agreement with standard coupled cluster results with the same chiral
two-nucleon interaction, while 20O and 20Mg display underbinding relative to experiment. The breaking of
U(1) symmetry, monitored by computing the variance associated with the particle-number operator, is relatively
constant for all five nuclei, in both the Hartree-Fock-Bogoliubov and BCCD approximations.
Conclusions: The newly developed many-body formalism increases the potential span of ab initio calculations
based on single-reference coupled cluster techniques tremendously, i.e., potentially to reach several hundred
additional midmass nuclei. The new formalism offers a wealth of potential applications and further extensions
dedicated to the description of ground and excited states of open-shell nuclei. Short-term goals include the
implementation of three-nucleon forces at the normal-ordered two-body level. Midterm extensions include the
approximate treatment of triples corrections and the development of the equation-of-motion methodology to treat
both excited states and odd nuclei. Long-term extensions include exact restoration of U(1) and SU(2) symmetries.
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I. INTRODUCTION

The coupled cluster method was originally derived by
Coester and Kümmel [1,2] as an optimal approach to medium-
mass nuclei, compromising between accuracy on the one hand
and computational cost on the other. It proved fruitful for
applications in nuclear physics; see, e.g., the review article [3]
and references within. In these early works in coupled cluster
theory in nuclear physics, one can clearly see the deficiency of
the nuclear forces in operation at the time. However, important
formal developments were undertaken, such as the inclusion
of high orders in the expansion (complete single, double, and
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triple excitations as well as partial quadruple excitations) [4]
and the extension to very large model spaces [5]. Despite the
lack of convergence with early models of the nucleon-nucleon
interaction, experimental data could be reasonably reproduced
after the inclusion of phenomenological three-body forces
[3,6]. The original formulation of coupled cluster theory was
also extended to reach excited states in closed-shell nuclei
[7], as well as states in open-shell nuclei [6]. In the following
decades, coupled cluster theory became the “gold standard”
for ab initio computations in quantum chemistry; see, e.g., the
review [8] and references within. In the past 15 yr, coupled
cluster theory has reemerged in nuclear physics as a state-of-
the-art approach to evaluate the structure of medium-mass and
neutron-rich nuclei from first principles [9–18], now utilizing
modern bare nuclear forces derived from chiral effective
field theory [19–22], which provide a framework to construct
consistently two- and higher-body forces from the underlying
theory of quantum chromodynamics.
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Similar ab initio methods in nuclear physics, e.g., self-
consistent Dyson-Green’s function [23–27] and in-medium
similarity renormalization group (IMSRG) [28,29], have been
intensively developed in the past 10 yr to address nuclei up to
mass A ≈ 130 [30]. However, these important developments
have been limited until recently to doubly closed-(sub)shell
nuclei plus those accessible via the addition and removal of
one or two nucleons.

Extending many-body methods to genuinely open-shell
nuclei necessarily complicates the formalism and increases the
computational cost. One possible way to overcome the near
degeneracy of the reference state relies on the development
of multireference (MR) methods. Recently, a MR IMSRG
technique has been formulated and implemented to address
(singly) open-shell nuclei [31], whereas CC-based [32] and
IMSRG-based [33] configuration interaction methods have
been proposed as well. Multireference coupled cluster tech-
niques have also been implemented, both in the nuclear context
[6] as well as more recently in chemistry [34–36].

An alternative route exploits the concept of spontaneous
symmetry breaking, where U(1) gauge symmetry associated
with particle-number conservation can be broken to capture the
superfluid character of singly open-shell nuclei in a controlled
manner. Addressing doubly open-shell systems relies on the
breaking of another symmetry, i.e., SU(2) rotational symmetry
associated with angular momentum conservation, to grasp
quadrupole correlations. The breaking of U(1) symmetry has
been recently exploited within the framework of Green’s
function techniques via the first ab initio application of
self-consistent Gorkov-Green’s function (SCGoGF) theory to
finite nuclei [37–40]. First results in the calcium region based
on realistic two- and three-nucleon chiral forces show great
promise [41].

In this context, the goal of the present work is to extend
single-reference CC theory in a way that allows for the break-
ing of U(1) symmetry. We formulate a workable Bogoliubov
coupled cluster (BCC) theory for nuclei by representing the ex-
act ground-state wave function of even-even open-shell nuclei
as the exponential of a quasiparticle excitation cluster operator
acting on a Bogoliubov reference state to extend the reach of
single-reference coupled cluster calculations [42]. A reduced
form of this theory based on a Bardeen-Cooper-Schrieffer
(BCS) reference state was already formulated and applied to
simplified, e.g., translationally invariant, geometries [43,44].
Very recently, the BCS-based version of the BCC formalism
developed in the present paper was applied, at the doubles
level, to the attractive pairing Hamiltonian problem [45].
Near the transition point where particle-number symmetry is
spontaneously broken, a high-quality reproduction of exact
Richardson solutions [46,47] was obtained. The present work
derives BCC theory and, encouraged by the results of [45],
applies it for the first time to ab initio calculations of open-shell
nuclei.

The paper is organized as follows. Sections II and III
formulate the general BCC theory before providing fully
expanded expressions of the equations at the singles and
doubles (BCCSD) level in Sec. IV. The diagrammatic method
for the BCC formalism, as well as the full set of diagrams at
play at the BCCSD level, is treated in Sec. V. Results of the

first proof-of-principle calculations are discussed in Sec. VI.
Conclusions are given in Sec. VII, while two appendixes
provide additional technical details.

II. BOGOLIUBOV SETTING

A. Hamiltonian

The nuclear Hamiltonian H = Tkin + V + W is the sum of
the kinetic energy operator and of internucleon interactions
truncated at the three-body level. The Hamiltonian can be
expressed in an arbitrary single-particle basis under the
second-quantized form,

H ≡ 1

(1!)2

∑
pq

tpqc
†
pcq + 1

(2!)2

∑
pqrs

v̄pqrsc
†
pc†qcscr

+ 1

(3!)2

∑
pqrstu

w̄pqrstuc
†
pc†qc

†
r cuct cs, (1)

employing antisymmetric matrix elements of two- and three-
body interactions.

As self-bound systems, the center-of-mass motion of nuclei
can be separated from the motion of the nucleons relative to
it.1 Being interested in the intrinsic energy of the system, we
subtract the center-of-mass contribution to the Hamiltonian

Hrel = H − Hcm = T 1B
rel + [

V + T 2B
rel

] + W, (2)

where the relative kinetic energy was decomposed into one-
and two-body contributions defined, respectively, as

T 1B
rel ≡

(
1 − 1

A

) ∑
i

p2
i

2M
, (3a)

T 2B
rel ≡ − 1

A

∑
i<j

pi · pj

M
, (3b)

with pi the momentum of the ith nucleon, M the nucleon mass,
and A the number of nucleons. In Eq. (3), the term 1/A should
really be seen as the inverse of the particle-number operator A.
While it can be straightforwardly replaced with the number A
in particle-number-conserving theories, it is not the case for the
BCC scheme developed here once the many-body expansion
is truncated, as good particle number is then only conserved on
average. It could, however, be shown [49] that the form given
in Eq. (3) constitutes the leading term of an expansion in the
operator A−1. This constitutes the approximation used in the
present work. All throughout the remainder of the paper, Tkin

actually stands for T 1B
rel , while V really denotes V + T 2B

rel .

B. Bogoliubov algebra

The unitary Bogoliubov transformation connects single-
particle {cp; c†p} to quasiparticle {βα; β†

α} creation and

1This separation was demonstrated in practical CC applications
[15,48], while its verification in the BCC framework will be a subject
of future investigation.
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annihilation operators according to [50]

β†
α =

∑
p

Upαc†p + Vpαcp, (4a)

βα =
∑

p

U ∗
pαcp + V ∗

pαc†p. (4b)

Quasiparticle operators obey anticommutation rules such that
{βα,ββ} = {β†

α,β
†
β} = 0 and {βα,β

†
β} = δαβ .

The Bogoliubov product state, which carries even number
parity as a quantum number, is defined as

|�〉 ≡ C
∏
α

βα|0〉, (5)

and is the vacuum of the quasiparticle operators, i.e., βα|�〉 =
0 for all α. In Eq. (5), C is a complex normalization. As
quasiparticle operators mix particle creation and annihilation
operators [see Eq. (4)], the Bogoliubov vacuum breaks U(1)
symmetry associated with particle conservation; i.e., |�〉 is
not an eigenstate of the particle-number operator, except in the
particular limit where it reduces to a Slater determinant.

C. Normal ordering

A Lagrange term is required to constrain the particle number
to the correct value on average, such that the grand-canonical
potential � ≡ H − λA is used in place of H . BCC theory
is best formulated in the quasiparticle basis introduced in
Eq. (4) by normal ordering � with respect to |�〉 via Wick’s
theorem. Normal ordering an operator with respect to a
particle-number-breaking product state invokes two types of

elementary contractions, i.e., respectively, the normal and the
anomalous one-body density matrices [50]

ρqp ≡ 〈�|c†pcq |�〉
〈�|�〉 , (6a)

κqp ≡ 〈�|cpcq |�〉
〈�|�〉 . (6b)

The normal density matrix is Hermitian (ρ† = ρ), while the
anomalous density matrix or pairing tensor is skew symmetric
(κT = −κ). With recourse to Eq. (4), these quantities can be
written as

ρ = V ∗V T , κ = V ∗UT . (7)

Once the reference vacuum (i.e., U and V matrices) is
specified, the matrix elements of the various normal-ordered
contributions to � can be calculated and stored. In the
BCC method developed in Sec. III, the normal-ordered form
of � is determined once during the initialization of the
calculation and is then employed consistently throughout the
iterative process of solving the BCC equations. Performing
the normal ordering is tedious but straightforward. Explicit
expressions of normal-ordered Hamiltonian with respect to
a Bogoliubov vacuum have been given in, e.g., [50]. In the
present work, we extend this result in two respects. First, we
provide full-fledged expressions for a Hamiltonian containing
three-nucleon forces. Second, we express the normal-ordered
grand-canonical potential in terms of fully antisymmetric
matrix elements. The net result, expressed in terms of the
fully antisymmetric matrix elements defined in Appendix A 1,
reads as

� ≡ �[0] + �[2] + �[4] + �[6] (8a)

≡ �00 + [�11 + {�20 + �02}] + [�22 + {�31 + �13} + {�40 + �04}]
+ [�33 + {�42 + �24} + {�51 + �15} + {�60 + �06}] (8b)

= �00 (8c)

+ 1

1!

∑
k1k2

�11
k1k2

β
†
k1

βk2 (8d)

+ 1

2!

∑
k1k2

{
�20

k1k2
β
†
k1

β
†
k2

+ �02
k1k2

βk2βk1

}
(8e)

+ 1

(2!)2

∑
k1k2k3k4

�22
k1k2k3k4

β
†
k1

β
†
k2

βk4βk3 (8f)

+ 1

3!

∑
k1k2k3k4

{
�31

k1k2k3k4
β
†
k1

β
†
k2

β
†
k3

βk4 + �13
k1k2k3k4

β
†
k1

βk4βk3βk2

}
(8g)

+ 1

4!

∑
k1k2k3k4

{
�40

k1k2k3k4
β
†
k1

β
†
k2

β
†
k3

β
†
k4

+ �04
k1k2k3k4

βk4βk3βk2βk1

}
(8h)

+ 1

(3!)2

∑
k1k2k3k4k5k6

�33
k1k2k3k4k5k6

β
†
k1

β
†
k2

β
†
k3

βk6βk5βk4 (8i)

+ 1

(2!)(4!)

∑
k1k2k3k4k5k6

{
�42

k1k2k3k4k5k6
β
†
k1

β
†
k2

β
†
k3

β
†
k4

βk6βk5 + �24
k1k2k3k4k5k6

β
†
k1

β
†
k2

βk6βk5βk4βk3

}
(8j)
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+ 1

5!

∑
k1k2k3k4k5k6

{
�51

k1k2k3k4k5k6
β
†
k1

β
†
k2

β
†
k3

β
†
k4

β
†
k5

βk6 + �15
k1k2k3k4k5k6

β
†
k1

βk6βk5βk4βk3βk2

}
(8k)

+ 1

6!

∑
k1k2k3k4k5k6

{
�60

k1k2k3k4k5k6
β
†
k1

β
†
k2

β
†
k3

β
†
k4

β
†
k5

β
†
k6

+ �06
k1k2k3k4k5k6

βk6βk5βk4βk3βk2βk1

}
. (8l)

Let us now make a set of observations to clarify the content
of Eq. (8).

(1) Each term �ij in Eq. (8) is characterized by its number
i (j ) of quasiparticle creation (annihilation) operators.
Because � has been normal ordered with respect to |�〉,
all quasiparticle creation operators (if any) are located
to the left of all quasiparticle annihilation operators (if
any). The class �[k] groups all the terms �ij for which
i + j = k. The first contribution,

�[0] = �00 = 〈�|�|�〉
〈�|�〉 , (9)

denotes the fully contracted part of � and is nothing
but a (real) number.

(2) The subscripts of the matrix elements are ordered
sequentially, independently of the creation or annihi-
lation character of the operators that the indices refer
to. While quasiparticle creation operators themselves
also follow sequential order, quasiparticle annihilation
operators follow inverse sequential order. In Eq. (8i),
for example, the three creation operators are ordered
β
†
k1

β
†
k2

β
†
k3

, while the three annihilation operators are
ordered βk6βk5βk4 .

(3) Matrix elements are fully antisymmetric, i.e.,

�
ij
k1···kiki+1···ki+j

= (−1)σ (P )�
ij
P (k1···ki |ki+1···ki+j ), (10)

where σ (P ) refers to the signature of the permutation
P . The notation P (· · · | · · · ) denotes a separation into
the i quasiparticle creation operators and the j quasi-
particle annihilation operators such that permutations
are only considered between members of the same
group.

(4) Recent ab initio calculations of midmass nuclei have
made clear that contributions from the three-nucleon
interaction need to be included [14,27,30,31,41]. Still,
computational requirements make it challenging to
include them in full. As a result, the typical procedure
consists of truncating the normal-ordered Hamiltonian
by excluding �[6] such that the dominant effect of the
three-nucleon interaction is taken into account through
its contribution to �[k] with k � 4.2 This is shown to
work well in midmass closed-shell nuclei, although
the omitted part of the three-nucleon interaction may

2While this is strictly true in CC calculations [18], MR-IMSRG
calculations of open-shell nuclei as well as SCGF calculations of
closed- and open-shell nuclei truncate the Hamiltonian after normal
ordering it with respect to a partially [31] or fully correlated state
[51], respectively.

contribute on the same level as the triple corrections
[17]. Following this procedure, the explicit expressions
of �

ij
k1···kiki+1···ki+j

in terms of interaction and (U,V )
matrix elements are provided in Appendix A 1 for
i + j � 4. The remaining terms have been derived and
can be used eventually to include the residual, i.e., �[6],
part of the three-nucleon force.

D. Hartree-Fock-Bogoliubov reference state

1. Variational problem

The expressions thus far have been formulated for an
arbitrary Bogoliubov vacuum [Eq. (5)]. In practical ap-
plications, one must specify the way this vacuum |�〉 is
actually determined. Several choices are possible: a Brueckner
reference state which maximizes the overlap with the true
ground state [52], a simple BCS state, or the solution of
the variational problem, i.e., using the Bogoliubov vacuum
that solves self-consistent Hartree-Fock-Bogoliubov (HFB)
equations [50] under a set of symmetry requirements. We focus
here on the third option.

The HFB eigenvalue equation can be expressed [50]

(
h �

−�∗ −h∗

)(
Uα

Vα

)
= Eα

(
Uα

Vα

)
, (11)

where columns (Uα,Vα) of the U and V matrices determine
the quasiparticle operator β†

α of Eq. (4), and where h and
� are defined in Eq. (A2). In actual BCC applications, the
HFB solution will be utilized as the reference Bogoliubov
vacuum. Throughout this work, however, a general Bogoliubov
vacuum is used to derive BCC equations. Any result depending
specifically on the use of a HFB reference state will have the
Bogoliubov vacuum denoted as |�HFB〉.

2. Spectroscopic factors

Although Bogoliubov states do not carry a definite particle
number, it is still useful to discuss the spectroscopic content
associated with |�〉. The spectroscopic factors for the addition
(removal) of a nucleon are denoted by F+

α (F−
α ) and give [53]

F+
α ≡

∑
p

〈�|cp|�α〉〈�α|c†p|�〉 =
∑

p

|Upα|2, (12a)

F−
α ≡

∑
p

〈�|c†p|�α〉〈�α|cp|�〉 =
∑

p

|Vpα|2, (12b)

where the odd number-parity states |�α〉 describe the A ± 1
systems.
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3. Binding energy

The expression of the HFB total energy E0 is obtained
through the normal ordering of � with respect to |�HFB〉
given that �00 = E0 − λA [Eq. (A1a)]. The energy can also
be computed from the Galitskii-Koltun sum rule at play in
SCGoGF theory [37]. This alternative formulation provides a
check for consistency and convergence in the solution of the
HFB equations and can be written under the form of a trace
over the one-body Hilbert space H1, i.e.,

�00 = + 1

4πi

∫
C

dωTrH1{G11(0)(ω)[T − λ + ω]}

− 1

6
TrH1{�3Nρ + �3Nκ∗}, (13)

where G11(0)(ω) denotes the HFB approximation to the normal
Gorkov propagator, while the second line represents the
explicit correction to the standard Galitskii-Koltun sum rule
owing to the presence of three-nucleon forces [51]. The explicit
expressions of the Hartree-Fock �3N and Bogoliubov �3N

fields associated with the three-nucleon force contribution are
provided in Appendix A 1. Writing G11(0)(ω) in its Lehmann
representation

G
11(0)
ab (ω) =

∑
α

UaαU ∗
bα

ω − Eα + iη
+ V ∗

aαVbα

ω + Eα − iη
, (14)

where η is an infinitesimally small parameter, the contour
integral in Eq. (13) is effected over the upper-half plane to
obtain

E0 = +1

2

[∑
pq

tpqρqp −
∑

α

(Eα − λ)F−
α

]

− 1

6

[∑
pq

�3N
pq ρqp + �3N

pq κ∗
qp

]
. (15a)

III. COUPLED CLUSTER THEORY

A. Coupled cluster ansatz

In standard coupled cluster (CC) theory, the ground-state
wave function of the system is written in the exponentiated
form

|�〉 ≡ eT |�〉, (16)

where |�〉 is a Slater determinant and where the cluster
operator T ≡ T1 + T2 + T3 + · · · is the sum of connected
n-tuple excitation operators of the form [54]

T1 ≡ 1

(1!)2

∑
ia

tai c†aci, (17a)

T2 ≡ 1

(2!)2

∑
ijab

tab
ij c†acic

†
bcj , (17b)

T3 ≡ 1

(3!)2

∑
ijkabc

tabc
ijk c†acic

†
bcj c

†
cck, (17c)

etc., where the amplitudes tab···
ij ··· are the unknowns to be

determined. As T is expressed in normal-ordered form with
respect to the Slater determinant |�〉, intermediate normaliza-
tion 〈�|�〉 = 1 is in order. Occupied (hole) and unoccupied
(particle) single-particle states of |�〉 can be distinguished;
i.e., label indices a,b,c, . . . specifically denote particle states
while labels i,j,k, . . . refer to hole states. As was already clear
from above, the notation p,q,r, . . . is used when referring to a
general set of single-particle basis states.

This traditional CC scheme is presently extended to a
Bogoliubov setting where the ground-state wave function of
the system is written in the form

|�〉 ≡ eT |�〉, (18)

where |�〉 denotes now the Bogoliubov vacuum of Eq. (5),
and where the quasiparticle cluster operator T ≡ T1 + T2 +
T3 + · · · is defined by

T1 ≡ 1

2!

∑
k1k2

tk1k2β
†
k1

β
†
k2

, (19a)

T2 ≡ 1

4!

∑
k1k2k3k4

tk1k2k3k4β
†
k1

β
†
k2

β
†
k3

β
†
k4

, (19b)

T3 ≡ 1

6!

∑
k1k2k3k4k5k6

tk1k2k3k4k5k6β
†
k1

β
†
k2

β
†
k3

β
†
k4

β
†
k5

β
†
k6

, (19c)

etc. The quasiparticle amplitudes tk1k2···, which need to be deter-
mined, are fully antisymmetric, i.e., tk1k2··· = (−1)σ (P )tP (k1k2··· ),
resulting in the (2n!)−1 normalization factor in the definition
of Tn. Similarly to standard CC theory, the operator Tn is in
normal-ordered form with respect to the Bogoliubov vacuum
|�〉, which leads to intermediate normalization 〈�|�〉 = 1.

B. Similarity-transformed Hamiltonian

Given the BCC ansatz of Eq. (18), the Schrödinger equation
�|�〉 = �0|�〉 can be written as

�eT |�〉 = �0 eT |�〉. (20)

Operating from the left with e−T results in

e−T �eT |�〉 = �0|�〉, (21)

an eigenvalue equation for the non-Hermitian similarity-
transformed grand-canonical potential

�̄ ≡ e−T �eT , (22)

with ground-state eigenvalue �0 and right eigenfunction |�〉.
This operator is referred to as the BCC effective grand
canonical potential.

The Baker-Campbell-Hausdorff expansion allows one to
write

�̄ = � + [�,T ] + 1

2!
[[�,T ],T ]

+ 1

3!
[[[�,T ],T ],T ] + 1

4!
[[[[�,T ],T ],T ],T ] + · · · ,

(23)

which is an infinite sum of nested commutators. Apply-
ing Wick’s theorem, and given that Tm consists only of
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quasiparticle creation operators such that [Tm,Tn] = 0 for all
m,n, only terms consisting of at least one contraction between
� and each T operator in the nested commutators remain.
This results in a natural termination of the infinite expansion
in Eq. (23). The grand-canonical potential being presently
limited to �[k] with k = 0,2,4, Eq. (22) terminates exactly
after the term containing four nested commutators.3 Because
nonzero contractions require quasiparticle operators in the
form 〈�|βk1β

†
k2

|�〉, surviving terms necessarily contain � as
the leftmost operator. Thus, Eq. (22) can be rewritten

�̄ = � + (�T )C + 1

2!
(�T T )C

+ 1

3!
(�T T T )C + 1

4!
(�T T T T )C, (24a)

such that �̄ ≡ (�eT )C, where the subscript C denotes that
only connected terms eventually contribute; i.e., � must have
at least one contraction with each T operator.

C. Bogoliubov coupled cluster equations

Operating on Eq. (21) from the left with 〈�| and 〈�αβ···|
produces the BCC energy equation

〈�|�̄N |�〉C = ��0 (25)

along with equations to determine the n-tuple amplitudes

〈�αβ...|�̄N |�〉C = 0, (26)

respectively, where

|�αβ···〉 ≡ β†
αβ

†
β · · · |�〉. (27)

In Eqs. (25) and (26), one works with

�̄N ≡ e−T (� − �00)eT (28a)

≡ e−T �NeT (28b)

≡ (�NeT )C, (28c)

which eliminates the unnecessary evaluation of terms in-
volving the trivial contribution �00 to the normal-ordered
grand-canonical potential. The total ground-state energy E0

is eventually obtained from

�0 = �00 + ��0, (29a)

≡ E0 − λA. (29b)

It is important to note here, as discussed below, that the
chemical potential obtained from the solution of the HFB
equations is, in principle, different from that obtained in the
solution of the BCC equations. Therefore, one must be careful
in evaluating Eq. (29) to obtain E0 correctly, which is, of
course, independent of the chemical potential and therefore can
be written E0 = E0 + �H0, with �H0 obtained analogously

3If �[6] were to be included, the truncation of the expansion would
still occur, but terms with as many as six nested commutators would
contribute.

to ��0 from4

〈�|H̄N |�〉C = �H0. (30)

D. Constraint on particle number

The energy and amplitude equations [Eqs. (25) and (26)]
must be solved under the constraint 〈�|A|�〉/〈�|�〉 = A.
Even when this condition is imposed on the reference state
|�〉, it is not automatically maintained for the coupled cluster
wave function, which must thus be constrained as well. In
practice, of course, this must be done separately for both the
neutron number N and the proton number Z. In this formal
presentation, A stands for either of them.

It is thus mandatory to compute the average value of
the one-body operator A repeatedly while finding the cluster
amplitudes iteratively, and this for any truncation scheme of
interest (see below). There are various ways of attacking this
problem. One possibility relies on the Hellmann-Feynman
theorem that accesses the average value of A via the numerical
derivative of �0 with respect to the chemical potential.
However, the Hellmann-Feynman theorem can exhibit insta-
bilities near phase transitions, such as those employed by
our spontaneous breaking of U(1) symmetry. In the optimal
procedure [54],

A = 〈�|A|�〉
〈�|�〉 = 〈�|eT †

AeT |�〉
〈�|eT †

eT |�〉 (31)

= 〈�|A|�〉
〈�|�〉 + 〈�|eT †

ANeT |�〉C (32)

= 〈�|A|�〉
〈�|�〉 + 〈�|(1 + �)e−T ANeT |�〉C, (33)

where the deexcitation operator � = �1 + �2 + · · · is deter-
mined from the solution of the eigenvalue problem for the left
ground state of �̄ [54], and where the normal-ordered part of
any operator ON = O − 〈�|O|�〉. We describe the evaluation
of the particle number in this approach, but eventually use an
approximation to evaluate the left ground state.

We first normal order the particle-number operator with
respect to |�〉, i.e.,

A ≡ A[0] + A[2] (34a)

≡ A00 (34b)

+ 1

1!

∑
k1k2

A11
k1k2

β
†
k1

βk2 (34c)

+ 1

2!

∑
k1k2

{
A20

k1k2
β
†
k1

β
†
k2

+ A02
k1k2

βk2βk1

}
, (34d)

where the expression of the matrix elements are provided
in Appendix A 2. Given that the reference contribution is
〈�|A|�〉/〈�|�〉 = A00 = Tr[ρ], the correction to it is

δA = 〈�|(1 + �)e−T A[2]eT |�〉C. (35)

4In practice, it is more straightforward to determine E0 directly
from Eq. (29), evaluating �0 at the BCC chemical potential.
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If the Bogoliubov vacuum satisfies the correct particle
number on average, the correction δA must be constrained to
zero. In practice, lower energies are obtained using this method
(in the approximation discussed in Sec. IV) relative to those
obtained when solving the BCC system of equations via the
Hellmann-Feynman theorem to evaluate the particle number.
This emphasizes the danger in employing the Hellmann-
Feynman theorem near phase transitions.

In addition to constraining the average particle number,
it is of interest to monitor the breaking of the symmetry by
computing the variance associated with the operator A. In the
same spirit, our solution will be allowed to break good angular
momentum such that it is of interest to monitor the average
value of the operator J 2, which informs us directly on the
breaking of rotational symmetry when targeting the Jπ = 0+
ground state of an even-even nucleus. From the operators A
and A2, the particle-number variance �A2 is obtained via

�A2 = 〈�|A2|�〉
〈�|�〉 −

( 〈�|A|�〉
〈�|�〉

)2

. (36)

E. Computing observables

While, in principle, the expectation value of any operator
can be expressed in terms of density matrices and normal-
ordered matrix elements of the operator, one can instead
evaluate the expectation value by exploiting the BCC energy
and amplitude equations [Eqs. (25) and (26)].

We want to evaluate the expectation value

O = 〈�|O|�〉
〈�|�〉 , (37)

which can be written [54]

O = 〈�|O|�〉 + 〈�|(1 + �) e−T ONeT |�〉C (38a)

= Oref + �O, (38b)

where at this point the operator O is completely general. The
reference contribution Oref can be evaluated straightforwardly.
To evaluate the second term on the right-hand side of Eq. (38),
let us first define the Fock-space projection operators

P = |�〉〈�|, (39a)

Q =
∑

α

|�α〉〈�α| + 1

2!

∑
αβ

|�αβ〉〈�αβ |

+ 1

3!

∑
αβγ

|�αβγ 〉〈�αβγ | + 1

4!

∑
αβγ δ

|�αβγ δ〉〈�αβγ δ|

+ · · · , (39b)

which satisfy the identity 1 = P + Q. Inserting this identity
into the second term of Eq. (38),

�O = 〈�|(1 + �) [P + Q] e−T ONeT |�〉C (40a)

= 〈�|(1 + �) |�〉〈�| e−T ONeT |�〉C

+〈�|(1 + �) Qe−T ONeT |�〉C

= 〈�|ŌN |�〉C + 〈�|�QŌN |�〉C. (40b)

While we have included terms with both an odd and an even
number of quasiparticle creation operators in our definition of
Q in Eq. (39), the odd terms do not contribute in Eq. (40),
because the Bogoliubov reference state carries even number
parity as a quantum number and each component of � and T
conserves number parity. Thus, we only access the terms which
sum over an even number of quasiparticle excitations. For the
operator O = �, one can observe that the BCC equations
[Eqs. (25) and (26)] are reproduced, such that the energy from
Eq. (29) is recovered. In practice, as discussed in Sec. IV, this
form is convenient to obtain the expectation value of one- and
two-body operators, such as A and A2.

IV. BCC WITH SINGLES AND DOUBLES

A. Truncation scheme

Bogoliubov coupled cluster theory is formally exact at this
stage. The approximation in practical calculations results from
a truncation of the operator T to a limited number of n-tuple
terms Tn. The simplest approach truncates all terms beyond the
one-body operator T1. In connection with the nomenclature of
standard coupled cluster theory, this truncation scheme will be
referred to as Bogoliubov coupled cluster with singles (BCCS).
The present aim is to implement Bogoliubov coupled cluster
with singles and doubles (BCCSD), where T BCCSD = T1 + T2.
The BCCSD scheme encompasses the most common standard
CC approximation, i.e., CCSD, as a particular case. The
extension of standard approximations for the treatment of
triples, e.g., �-CCSD(T) [55] or CR-CC(2,3) [56], in the
context of BCC theory is expected to provide an excellent
approximation to open-shell systems. These developments,
however, are postponed to future works.

In the present section, the pedestrian approach to obtaining
algebraic forms of BCCSD equations is followed. Eventually,
it is inefficient to code the equations in the fully expanded
form thus provided such that one relies on the introduction of
so-called intermediates [54]. The latter have the benefit to limit
the computational cost and make the equations more compact
and readable. The BCCSD equations expressed in terms of
intermediates are provided in Appendix B. It should be further
noted that schemes with greater truncation, such as BCCS
or Bogoliubov coupled cluster with doubles (BCCD), can be
easily deduced from the set of BCCSD equations provided
below.

B. Expanded BCCSD equations

Truncating the cluster operator according to T BCCSD, the
correction to the unperturbed energy [Eq. (25)] reads

��0 = 〈�|�N

(
T1 + T2 + 1

2T
2

1

)|�〉C. (41)

This expression is, in fact, formally exact even when higher
n-tuple cluster operators are included, at least as long as the
grand-canonical potential is restricted to terms �[k] with k � 4.
The inclusion of higher terms inT would affect the energy only
indirectly by modifying the quasiparticle amplitudes tk1k2 and
tk1k2k3k4 entering Eq. (41). Exploiting the full antisymmetry
of the quasiparticle amplitudes [Eq. (19)] and of the matrix
elements of the grand-canonical potential (Appendix A 1), the
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application of Wick’s theorem permits the algebraic expansion
of the energy equation [Eq. (41)] under the form

��0 = 1

2

∑
k1k2

�02
k1k2

tk1k2

+ 1

4!

∑
k1k2k3k4

�04
k1k2k3k4

tk1k2k3k4

+ 1

8

∑
k1k2k3k4

�04
k1k2k3k4

tk1k2 tk3k4 . (42)

The singles and doubles quasiparticle amplitudes, respectively
tk1k2 and tk1k2k3k4 , remain to be determined by applying Eq. (26)

for two (〈�αβ |) and four (〈�αβγ δ|) quasiparticle states. The
single-excitation5 amplitude equations are given by

0 = 〈�αβ |�N

(
1 + T1 + 1

2T
2

1 + 1
3!T

3
1 + T2 + T1T2

)|�〉C,

(43)

while the double-excitation amplitude equations are

0 = 〈�αβγ δ|�N

(
1 + T1 + T2 + 1

2T
2

1 + 1
2T

2
2

+ T1T2 + 1
3!T

3
1 + 1

4!T
4

1 + 1
2T

2
1 T2

)|�〉C. (44)

Applying Wick’s theorem, one obtains the expanded algebraic
form of the single-excitation amplitude equations

0 = �20
αβ +

∑
k1

[
�11

αk1
tk1β + �11

βk1
tαk1

] + 1

2

∑
k1k2

[
�22

αβk1k2
tk1k2 + �02

k1k2

(
tαβk1k2 + 2tαk1 tk2β

)]

+ 1

6

∑
k1k2k3

[
�13

αk1k2k3

(
tk1βk2k3 + 3tk1βtk2k3

) + �13
βk1k2k3

(
tαk1k2k3 + 3tαk1 tk2k3

)]

+ 1

12

∑
k1k2k3k4

�04
k1k2k3k4

(
2tαk1 tk2βk3k4 + 2tβk1 tαk2k3k4 + 3tk1k2 tαβk3k4 + 6tαk1 tk2k3 tk4β

)
, (45)

and of the double-excitation amplitude equations

0 = �40
αβγ δ +

∑
k1

[
�31

αβγ k1
tk1δ+�31

αβδk1
tγ k1 +�31

αγ δk1
tk1β +�31

βγ δk1
tαk1

] +
∑
k1

[
�11

αk1
tk1βγ δ + �11

βk1
tαk1γ δ + �11

γ k1
tαβk1δ + �11

δk1
tαβγ k1

]

+ 1

2

∑
k1k2

[
�22

αβk1k2

(
tk1k2γ δ + 2tγ k1 tk2δ

) + �22
αγ k1k2

(
tk1k2δβ + 2tk1βtk2δ

) + �22
αδk1k2

(
tk1k2βγ + 2tk1βtγ k2

)
+�22

βγ k1k2

(
tk1k2αδ + 2tαk1 tk2δ

) + �22
βδk1k2

(
tk1k2γα + 2tαk1 tγ k2

) + �22
γ δk1k2

(
tk1k2αβ + 2tαk1 tk2β

)]
+

∑
k1k2

�02
k1k2

[
tαk1 tk2βγ δ + tβk1 tαk2γ δ + tγ k1 tαβk2δ + tδk1 tαβγ k2

]

+ 1

2

∑
k1k2k3

[
�13

αk1k2k3

(
tk1βtk2k3γ δ + tk1γ tk2βk3δ + tk1δtk2βγ k3 + tk1k2 tk3βγ δ + 2tk1γ tk2βtk3δ

)
+�13

βk1k2k3

(
tαk1 tk2k3γ δ + tk1γ tαk2k3δ + tk1δtαk2γ k3 + tk1k2 tαk3γ δ + 2tk1αtk2γ tk3δ

)
+�13

γ k1k2k3

(
tαk1 tk2βk3δ + tβk1 tαk2k3δ + tk1δtαβk2k3 + tk1k2 tαβk3δ + 2tk1αtβk2 tk3δ

)
+�13

δk1k2k3

(
tαk1 tk2βγ k3 + tβk1 tαk2γ k3 + tγ k1 tαβk2k3 + tk1k2 tαβγ k3 + 2tk1αtk2βtk3γ

)]
+ 1

24

∑
k1k2k3k4

�04
k1k2k3k4

[
tk4βγ δ

(
4tαk1k2k3 + 12tk1k2 tαk3

) + tαk4γ δ

(
4tβk1k2k3 + 12tk1k2 tβk3

)
+ tαβk4δ

(
4tγ k1k2k3 + 12tk1k2 tγ k3

) + tαβγ k4

(
4tδk1k2k3 + 12tk1k2 tδk3

)
+ tαβk3k4

(
3tk1k2γ δ + 12tk1γ tδk2

) + tαk3γ k4

(
3tk1βδk2 + 12tk1βtδk2

) + tαk3k4δ

(
3tk1βγ k2 + 12tk1βtγ k2

) + tk3βγ k4

(
3tαk1k2δ + 12tk1αtδk2

)
+ tk3βk4δ

(
3tαk1k2γ + 12tk1αtγ k2

) + tk3k4γ δ

(
3tαβk1k2 + 12tk1αtβk2

) + 24tk1αtk2βtk3γ tk4δ

]
. (46)

5To connect with the vocabulary at play in standard CC theory,
the equation of motion obtained by left projecting with two (four)
quasiparticle states is said to provide the single- (double-) excitation
amplitudes.

The solution of these equations, nonlinear in the quasiparticle
amplitudes, can be found iteratively to compute the energy.
Doing so requires a zeroth iteration, i.e., an initialization of the
quasiparticle amplitudes. Motivated by perturbation theory,
the off-diagonal part of �11 is neglected in Eqs. (45) and
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(46) along with the nonlinear terms, leading to the two initial
conditions

tαβ = − �20
αβ

�11
αα + �11

ββ

, (47a)

tαβγ δ = −�40
αβγ δ + (1 + Pγδ − Pβδ + Pαδ)�31

αβγ δtδδ

�11
αα + �11

ββ + �11
γ γ + �11

δδ

, (47b)

where the solution of Eq. (47a) must be inserted into Eq. (47b)
and where the operator Pαβ permutes the two labels α and
β. Starting from |�HFB〉, conditions �11

αα = Eα and �20
αβ = 0

from the diagonalization of Eq. (11) further simplify the initial
conditions to

tαβ = 0, (48a)

tαβγ δ = − �40
αβγ δ

Eα + Eβ + Eγ + Eδ

. (48b)

C. Particle number and other observables

The amplitude equations [Eqs. (45) and (46)] are solved
iteratively while constraining the BCCSD wave function to
carry good particle number A on average. This is effected by:
(i) iterating the BCCSD amplitude equations until a converged
energy is obtained, (ii) computing the error in average particle
number via Eq. (35), (iii) adjusting the chemical potential to
correct for the error, (iv) reinitializing quasiparticle amplitudes
via Eq. (47), and (v) returning to (i) until the targeted value of
particle number is achieved at convergence.

As discussed in Sec. III D, the average particle number is
obtained by adding to the reference value A00 the correction δA
computed through Eq. (35). In the BCCSD approximation, the
expectation values of the particle number and other operators
are obtained from Eq. (40), which terminates because the
truncation to singles and doubles applies also to the left
reference state, i.e., � = �1 + �2. Thus, one can write

�O = 〈�|ŌN |�〉C

+ 1

2

∑
αβ

〈�|�1|�αβ〉〈�αβ |ŌN |�〉C

+ 1

4!

∑
αβγ δ

〈�|�2|�αβγ δ〉〈�αβγ δ|ŌN |�〉C. (49)

Although it is our ambition to solve the left eigenvalue
problem in the near future within the BCC framework, along
with the associated equation-of-motion (EOM) method, it is
not the most efficient approach for repeated evaluations. We
utilize instead an approximate implementation that consists
of setting the deexcitation operator � = T †, which is exact
to first order in perturbation theory, with the potential for
improvement by extending to second order in perturbation
theory [54]. This approximation is sufficient to converge the
system of equations and is used to evaluate the variance in
Sec. VI by computing Eq. (36).

For the operator O = �, the terms 〈�αβ |ŌN |�〉C and
〈�αβγ δ|ŌN |�〉C are exactly the single- and double-excitation
amplitude equations. At convergence, we verify that the

evaluation of Eq. (49) returns ��0. To evaluate another
operator, for instance, the particle-number operator A, one
can use Eqs. (45) and (46), with the normal-ordered matrix
elements of A as taken from Appendix A 2 in place of the
normal-ordered grand-canonical potential matrix elements.
Even further, the normal-ordered matrix elements can be
obtained from Eq. (A1) with a suitable replacement of the
single-particle Hamiltonian matrix elements, i.e., with tpq →
δpq,v̄pqrs → 0,w̄pqrstu → 0,λ → 0 for A. This procedure can
be applied for any operator that can be similarly expressed
in terms of the Hamiltonian Eq. (1) and is also used for the
evaluation of A2 in this work.

V. DIAGRAMMATIC METHOD

The algebraic derivation of the expanded BCC equations
becomes tedious as the truncation of T is relaxed. As a
result, a diagrammatic technique is desired. The diagrammatic
description at play in standard coupled cluster theory [54]
provides guidance for the extension to BCC theory. In fact,
the procedure is simplified with fewer diagrams at a given
truncation order because particles and holes do not need
to be treated separately in BCC. In agreement with the
approximation used in the present work, the diagrammatic
technique is constructed here by considering normal-ordered
contributions �ij up to i + j � 4. This can be eventually
extended to genuine three-body terms, i.e., to �ij terms with
i + j = 6, similarly to what was done in standard CC theory
[14].

Taking BCCSD as an example, the objective is to represent
Eqs. (41), (43), and (44) in a diagrammatic form such that their
full expanded expressions given by Eqs. (42), (45), and (46),
respectively, are obtained through the application of systematic
rules while bypassing the pedestrian application of Wick’s
theorem. In the end, such a procedure is much more resilient
against errors. To proceed, the building blocks that need to be
defined are as follows.

(1) Diagrams representing normal-ordered contributions
�ij to the grand-canonical potential. The complete
set of such diagrams is provided in Fig. 1. In a given
diagram, one must associate the factor �

ij
k1···kiki+1···ki+j

to the dot vertex, where i denotes the number of
lines representing quasiparticle creation operators (i.e.,
traveling out of and above the vertex) and j denotes the
number of lines representing quasiparticle annihilation
operators (i.e., traveling into the vertex from below).
The indices that k1 · · · ki must be assigned consecu-
tively from the leftmost to the rightmost line above the
vertex, while ki+1 · · · ki+j must be similarly assigned
consecutively for lines below the vertex.

(2) Diagrams representing the n-tuple cluster amplitudes.
Those diagrams are provided in Fig. 2 up to the triply
excited cluster operator T3, which is neglected in the
present work. Because cluster operators only contain
quasiparticle creation operators, they only display lines
traveling out of and above the vertex. In a given
diagram, one must associate each Tm vertex with an
amplitude tk1···k2m

, where k1 · · · k2m must be assigned
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Ω[2] =

Ω[4] =

Ω11 Ω20 Ω02

Ω22 Ω31 Ω13 Ω40 Ω04

Ω[6] =

Ω33 Ω42 Ω24

Ω51 Ω15 Ω60 Ω06

+ +

+ + + +

+ +

+ + ++

FIG. 1. Normal-ordered contributions to the grand-canonical
potential in diagrammatic form. The first line corresponds to the
�[2] terms, the second line to the �[4] terms, and the final two lines
to the �[6] terms, which are neglected in the present work.

consecutively from the leftmost to the rightmost line
above the vertex.

With these building blocks at hand, one needs to construct the
diagrams that make up all the terms entering Eqs. (41), (43),
and (44). The basic rules to do so are as follows.

(1) All diagrams are connected; i.e., each contributing Tm

operator is contracted at least once with �.
(2) Diagrams making up Eq. (41) are vacuum-to-vacuum

diagrams; i.e., they are closed with no line leaving
the diagram. Each diagram contributing to Eq. (43)
[Eq. (44)] is linked with two (four) external lines
leaving it from above.

(3) For a given term in Eqs. (41), (43), and (44), construct
all possible independent diagrams from the building
blocks; i.e., contract the lines of � and of the various
Tm in all possible ways such that the two rules above
are fulfilled. Doing so typically limits which parts �ij

of � contribute to a given term.

Once all the diagrams are drawn, one must compute their
expressions. The rules to do so are as follows.

T1 T2 T3

FIG. 2. Singly (T1), doubly (T2), and triply (T3) excited quasipar-
ticle cluster operators in diagrammatic form. In the present work, T3

is neglected.

FIG. 3. Contributions to ��0 in diagrammatic form. Excluding
�[6] terms, these three diagrams provide an exact form for the
correction to the unperturbed energy, independent of the truncation
imposed on T .

(1) Label external lines with quasiparticle indices α,β, . . .
occurring in the bra of the amplitude equations. The
labeling must coincide with the left-right ordering of
the indices observed in the bra. Label internal lines
with different quasiparticle indices.

(2) Associate the interaction vertex and the cluster ampli-
tudes at play with the appropriate factors �

ij
k1···kiki+1···ki+j

and tk1···k2m
, respectively.

(3) Sum over all internal line labels.
(4) Include a factor (n!)−1 for each set of n equivalent

internal lines. Equivalent internal lines are those that
connect to identical vertices.

(5) Include a factor (�m!)−1 for each set of �m equivalent
Tm vertices. Two Tm vertices are equivalent if they have
the same number of outgoing lines nl (nl � 2m) which
terminate at the interaction vertex.

(6) Provide the diagram with a sign (−1)�c , where �c is the
number of line crossings in the diagram (vertices are
not considered line crossings).

(7) Sum over all distinct permutations P of labels of
inequivalent external lines, including a parity factor
(−1)σ (P ) from the signature of the permutation. Exter-
nal lines are equivalent if and only if they connect to
the same vertex.

The complete set of diagrams contributing to Eqs. (41), (43),
and (44) are given in Figs. 3, 4, and 5, respectively. Each term
in the final two diagrams is labeled, where the first character
S or D refers to the single- or double-excitation amplitude

α β α β α β

α β α β α β
S1 S2a S2b

S3a S3b S4

α β α β α β
α β

S5a S5b S6a S6b

FIG. 4. Diagrammatic representation of the single-excitation
amplitude equations in the BCCSD approximation.
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FIG. 5. Diagrammatic representation of the double-excitation
amplitude equations in the BCCSD approximation.

equations, whereas the following number denotes the term in
the algebraic expression to which the diagram corresponds
[i.e., in Eqs. (43) and (44)]. If there are multiple diagrams
which refer to a single algebraic term, they are labeled with
a final character incremented alphabetically. For instance,
diagrams S6 of Fig. 4 refer to the sixth term in Eq. (43),
for which �04 is the only term that can connect T1 and T2

to the two quasiparticle excitation level required at the top of
the diagram. However, there are two possible ways to connect
them; i.e., T1 can either have two lines or one line connected
to the interaction vertex. These possibilities are thus labeled
S6a and S6b, respectively.

Writing the algebraic result in a compact fashion requires
a set of general permutation operators to handle inequivalent
external lines. The permutation factor necessary for a given
diagram depends on the number of external lines and their
equivalence to each other. We thus employ permutation
operators P (αβ/γ δ/ · · · ), where the notation denotes that
α,β and γ,δ are equivalent pairs, but are distinct from each
other and from the remaining indices. As a result, all possible
permutations among labels, except for those involving labels
in the same group, are implied. The ordering of the groups
within the parentheses is irrelevant, e.g., P (αβ/γ δ/ · · · ) =
P (γ δ/αβ/ · · · ). In the end, the permutation operators required

α β

S6a

α β

S6b

k1
k2

k3

k4 k1

k2

k3

k4

tk1k2
tk3k4αβ

Ω04
k1k2k3k4

tαk1 tk2k3k4β

Ω04
k1k2k3k4

FIG. 6. Explicit labeling of two diagrams for the double-
excitation amplitude equations in BCCSD.

to express the diagrams occurring at the BCCSD level are

P (α/β) ≡ 1 − Pαβ, (50a)

P (αβγ/δ) ≡ 1 − Pαδ − Pβδ − Pγδ, (50b)

P (αβ/γ δ) ≡ 1 − Pαγ − Pαδ − Pβγ

−Pβδ + Pαγ Pβδ, (50c)

P (α/βγ/δ) ≡ 1 − Pαβ − Pαγ − Pαδ − Pβδ − Pγδ

+PαβPγδ + Pαγ Pβδ + PαβPαδ

+Pαγ Pαδ + PβδPαδ + PγδPαδ. (50d)

In fact, from the diagrammatic rules and diagram D8, an
additional permutation operator P (α/β/γ /δ) is necessary.
Based on the antisymmetry of �04

k1k2k3k4
and the product of four

quasiparticle amplitudes, the permutation operator produces
24 identical contributions, whose sum is the final term of
Eq. (46). For brevity, the form of this permutation operator
has been suppressed.

As an illustration, we focus on diagrams S6a and S6b that
are represented in complete detail in Fig. 6, to provide instruc-
tion on the implementation of the rules for evaluation. Follow-
ing those rules, the algebraic expression of diagram S6a is

S6a = 1

2

1

2

∑
k1k2k3k4

�04
k1k2k3k4

tk1k2 tk3k4αβ, (51)

with two pairs of equivalent internal lines, no crossing lines,
and two equivalent external lines. No permutation operator
occurs given that the two external lines are equivalent.
Similarly, Diagram S6b has the algebraic expression

S6b = 1

3!
P (α/β)

∑
k1k2k3k4

�04
k1k2k3k4

tαk1 tk2k3k4β, (52)

where the factor of (3!)−1 comes from the three equivalent
internal lines. The permutation operator P (α/β) enters owing
to the fact that the two external lines are inequivalent. In this
diagram, there are no lines crossing and therefore the sign of
the diagram is positive. These results correspond to the first
three terms in the last line of Eq. (45), albeit in a slightly
different ordering of indices after utilizing the antisymmetry
properties of the grand-canonical potential matrix elements
and quasiparticle amplitudes. In the complete description of
BCCSD, there are 27 contributing diagrams, as seen in Figs. 3,
4, and 5. The algebraic results for BCCSD obtained from
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Wick’s theorem have been compared to those determined
from the diagrammatic method to ensure the identity of the
two methods. Only one method is eventually necessary such
that the diagrammatic technique will be employed to set up
more involved truncation schemes in the future.

VI. PROOF-OF-PRINCIPLE CALCULATIONS

A. Calculational scheme

The BCC code is written in m-scheme starting from
a spherical harmonic oscillator (HO) basis defined by its
frequency ω and the number of included major shells Nmax ≡
max (2n + �), where n is the principal quantum number and �
is the orbital angular momentum. Single-particle basis states
carry quantum numbers p ≡ (n,π,j,m,q), where π = (−1)�

stands for the parity, j for the total angular momentum, m
for its projection on the z axis, and q for the projection
of the isospin on the same axis. Solving the HFB problem
[Eq. (11)] within m scheme provides the reference state for the
BCC calculation. The normal ordering of the grand-canonical
potential [Eq. (8)] and the BCC equations provided in Sec. IV
are thus implemented in the associated quasiparticle basis {β†

K }
carrying quantum numbers K ≡ (k,πk,mk,qk) and displaying
a degeneracy according to |mk|.

In both the BCCSD and the BCCD approximations, the
amplitude equations scale as N6, where N is the total number
of single-particle basis states. The scaling is slightly worse
than the standard CCSD and CCD cases, n2

h n4
p, where the

basis can be split into nh hole (occupied) orbits and np

particle (unoccupied) orbits based on the underlying Hartree-
Fock reference state. In addition, coupled cluster codes
have existed for decades, with optimized and parallelized
versions available. While our BCC code is parallelized,
significant optimization is necessary, especially in terms of the
storage of quasiparticle amplitudes, which currently prevents
calculations beyond Nmax = 6. It has long been known that
calculations are not converged in such small model spaces, e.g.,
comparison to exact Monte Carlo results in 4He displayed lack
of convergence for Nmax = 30 with quasirealistic potentials
[5], while calculations with modern chiral interactions display
dependence on the oscillator parameter at Nmax = 14 for 40Ca
[15].

The choice to break symmetries, i.e., not to exploit
possible reductions in the parameter space, result in significant
increases in the computational resources required. There are
336 basis states at Nmax = 6, but 1820 states at Nmax = 12. As
the number of equations to be solved and matrix elements to
be stored scale with the quartic power of the number of basis
states, this increase is significant, requiring approximately
100 TB of storage for Nmax = 12. To increase beyond Nmax =
6, we must either employ on-the-fly computations of matrix
elements or produce an equivalent code in J -coupled-scheme
code, where the storage required is greatly reduced. However,
only the m-scheme code authorizes the introduction of defor-
mation, i.e., the breaking of SU(2) symmetry, to access doubly
open-shell nuclei in the future. Eventually, the exact restoration
of U(1) [57] and of SU(2) [58] symmetry can be handled on
the basis of the same BCC m-scheme code. Presently, we will

employ extrapolation techniques (discussed in detail below)
that have been derived and successfully utilized for ab initio
calculations in medium-mass nuclei [59] to approximate the
results in the infinite-basis limit, although more investigation
is required to understand uncertainty quantification as well as
accuracy for quasiparticle bases. More extensive tests will be
effected once larger bases can be treated.

The m-scheme HFB code has been benchmarked against a
J -coupled-scheme code [37] for a variety of closed- and open-
shell nuclei. While calculations of excited states and open-
shell nuclei were performed with coupled cluster techniques
for, among others, 16,17,18O and 18F [6,7], we unfortunately
are unable to reproduce these pioneering calculations, being
limited to ground states of paired systems (i.e., even-even
nuclei) and lacking a routine to express the soft-core potentials
used in Refs. [6,7] in terms of our m-scheme representation
of Eq. (1). Instead, the BCC code has been benchmarked for
doubly closed-shell nuclei against an existing CC code and
for open-shell nuclei via EOM methods. We discuss the latter
comparison in the next section. We have established the former
by employing a J -coupled-scheme CC code [15], checking
that the results are indeed the same for 4He, 16O, and 24O.
While it can be shown analytically that HFB reduces to HF
in the limit of no pairing, no such analytic proof has been
found to show that the application of BCC equations on top of
the HF reference state will reproduce standard CC results in
this limit. In practice, however, our BCC results agree at the
eV level with CC results for a variety of doubly closed-shell
nuclei, model spaces, and interactions.

The results below are based on a two-nucleon force only.
The necessity of the inclusion of three-body forces has been
known for decades, as seen, for instance, in comparisons of
coupled cluster calculations to experimental data in the oxygen
isotopes [3]. However, storage of modern chiral three-body
forces is prohibitive in our current implementation. State-of-
the-art calculations require two- and three-body forces [17,30],
and the inclusion of three-nucleon forces at the normal-ordered
two-body level is the goal of a forthcoming publication. At
the moment, we employ the chiral NNLOopt [60] interaction
defined with a regularization cutoff �NN = 500 MeV and run
the calculations with Nmax = 6. Furthermore, we restrict solely
to double excitations in the first implementation of the BCC
code, with the complete demonstration of BCCSD results as
obtained from the solution of Eqs. (41), (43), (44), and (35)
postponed to a future publication.

We therefore perform BCCD calculations for the ground
states of 16,18,20O, 18Ne, and 20Mg. The doubly magic
16O nucleus provides a comparison to CCD and CCSD
calculations, while the A = 18 nuclei will be compared to
two-particle-attached EOM CCSD (2PA-EOM-CCSD) results
[16,48,61].

In Fig. 7, CCSD calculations are compared to CCD
calculations of the ground-state energy of 16O as a function of
the HO basis quantum of energy (denoted by �ω). In a complete
model space, the energy should be constant as a function
of �ω, which is far from true at Nmax = 6. Regardless, the
CCD results are consistently higher in energy than the CCSD
results, but in reasonable agreement with a root-mean-square
deviation of 315 keV for the 21 values of �ω displayed in
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FIG. 7. Comparison of CCSD and CCD calculations for 16O with
Nmax = 6 for a variety of HO bases given by �ω. The points denote
total energies in the CCSD approximation, with a minimum observed
at −119.211 MeV for �ω = 26 MeV, while the solid curve provides
corresponding results in the more restrictive CCD approximation. The
horizontal dotted line represents the extrapolated energy (see text),
which is indistinguishable in the CCSD and CCD approximations
on the scale of the figure, while the horizontal solid line is the
experimental energy.

Fig. 7. The doubles (T2) excitations contain the majority of the
correlation energy for a two-body potential, with the optimized
HF reference state of the CC equations minimizing the effect of
singles (T1) contributions. Therefore, the CCD approximation
provides sufficient accuracy for our benchmark calculations
of 16O, such that the truncation T = T2 is reasonable for our
proof-of-principle calculations of open-shell nuclei. As we
likewise construct BCC equations on top of an optimized HFB
reference state, we expect to minimize the effect of singles
contributions, which can be related to a transformation of the
reference state via the Thouless theorem [62].

B. Results

Returning to the 16O data in Fig. 7, we have verified BCCD
results against CCD results in 16O, which agree with each
other at the eV level. Because the ground-state energy is not
constant as a function of the basis, a minimum energy can
be located as a function of the oscillator frequency. In this
example, the minimum energy −119.211 (−119.110 MeV)
occurs at �ω = 26 MeV in the CCSD (CCD) approximation.
This result, however, is still underbound relative to the result
with a complete basis. For 16O, the CCSD code can be used to
establish the convergence as a function of Nmax. The minimum
energy for CCSD calculations up to Nmax = 12, along with
the corresponding value of �ω, is shown in Table I. From the
convergence pattern in Table I, as well as the small variation
observed as a function of �ω in the Nmax = 12 calculations (not
shown), we set a conservative uncertainty on the converged
energy of 16O, namely E0 = −123.5(1) MeV. Therefore, the
missing energy owing to the truncated model space at Nmax =
6 is approximately 3.5% of the binding energy. Notice that,

TABLE I. Minimum energies and associated frequencies ob-
tained for 16O in different Nmax CCSD calculations.

Nmax �ωmin Emin

6 26 −119.211
8 24 −122.776
10 24 −123.400
12 22 −123.502

while the converged CCSD energy underbinds the experi-
mental value of −127.619 MeV, the perturbative inclusion of
triples via the �-CCSD(T) approximation method results in
a similarly conservative converged energy of −130.3(2), thus
overbound relative to experiment.

The BCCD code currently cannot access model spaces
large enough to reach energies that are converged (as a
function of Nmax). To make predictions that are more accurate
than 5%, we utilize the infrared (IR) extrapolation technique
[59,63]. The oscillator basis truncation effectively imposes a
Dirichlet boundary condition at a radius L in position space,
approximated by

L = Leff ≡
√

2(Neff + 3/2 + 2)b, (53)

where b = √
�/(Mω) is the oscillator length and Neff is

obtained by matching to the lowest eigenvalue of the squared
momentum operator [59]. For 16O, the values of Neff are
included in Table 1 of [59]. With the effective radius in position
space, the IR extrapolation technique, originally derived for a
single-particle degree of freedom but now implemented also
for bound many-body systems, can be implemented via the
expression [59]

E(L) = E∞ + A∞e−2k∞L. (54)

The IR extrapolation technique is reliable in nuclei around
16O if the ultraviolet (UV) contamination is small, which can
be achieved by using HO bases with UV cutoffs �UV greater
than the momentum cutoff �NN of the nuclear interaction;
in this case, �NN = 500 MeV. In fact, the NNLOopt cutoff is
not sharp, so �UV must be sufficiently higher than �NN [59].
Erring on the side of caution, we fit Eq. (54) using energy data
from �ω = 50,53,55,58.

In Fig. 8, we plot the same CCD data shown in Fig. 7, but
now as a function of L instead of �ω. The solid circles corre-
spond to points used in the fit for the IR extrapolation, given by
Eq. (54), while the solid curve displays the function determined
by a least-squares fitting routine. The fit is perfect at the keV
level and results in a parameter E∞ which corresponds to the
energy in the infinite basis. We thus obtain the extrapolated
value for the energy denoted by the horizontal dashed line,
E∞ = −124.821 MeV. In comparison to the converged energy
of 16O, − 123.5(1) MeV, we observe 1.3 MeV overbinding
from the extrapolation procedure. This is consistent with the
results of Ref. [59] for Nmax = 6 [64], whereas extrapolations
from Nmax = 8,10,12 do not lead to overbinding. Possible
explanations for this imperfect extrapolation are insufficient
decoupling of the center of mass owing to the small model
space, or a peculiarity of the CCSD calculation at Nmax = 6
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FIG. 8. CCD calculations for 16O with Nmax = 6 as a function
of L. The points denote total energies, with a minimum observed at
−119.110 MeV for �ω = 26 MeV. Four points, from the calculations
with �ω = 50,53,55,58 MeV, are fit to Eq. (54) and represented by
the solid curve. The horizontal dotted line is the extrapolated energy
E∞, while the horizontal solid line is the experimental energy.

[59]. With the knowledge gleaned from CC calculations of
16O, we produce BCCD calculations of 16,18,20O, 18Ne, 20Mg
for �ω = 26,50,53,55,58. The lowest frequency is used as
an approximate value to obtain the minimum energy for the
Nmax = 6 calculations without performing time-consuming
calculations to determine the minimum for each nucleus. The
high frequencies provide the data to fit the IR extrapolation
formula [Eq. (54)] to find an extrapolated ground-state energy
for the NNLOopt interaction. The BCCD results for 16O
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FIG. 9. (Color online) BCCD calculations for 18O (black cir-
cles) and 18Ne (red crosses) with Nmax = 6 as a function of L.
In each nucleus, four points, from the calculations with �ω =
50,53,55,58 MeV, are fit to Eq. (54) and represented by the solid
curve. The open symbols correspond to results at �ω = 26 MeV. The
horizontal dotted line is the extrapolated energy E∞. See text for
additional details.
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FIG. 10. (Color online) BCCD calculations for 20O (black cir-
cles) and 20Mg (red crosses). See caption to Fig. 9 for details.

reproduce the CCD results at the eV level, including the
extrapolated result. The A = 18 and A = 20 results are
displayed in Figs. 9 and 10, respectively, while numerical
values of interest for all five nuclei can be found in Table II.

While single-reference CC calculations on top of a Slater
determinant require a doubly closed-shell nucleus, extensions
via the EOM method have been developed to compute nuclei
with up to two nucleons added. Therefore, BCCD results
for A = 18 nuclei can be compared to those obtained from
extensions of the standard CCSD method, as shown in Table II.
For these calculations, we used the two-particles-attached
EOM (2PA-EOM) method [16,48,61] including up to 3p-1h
excitations on top of 16O. While the A = 20 nuclei could, in
principle, be accessed by two-particle-removed EOM CCSD
[16] relative to 22O and 22Si, because these closed-subshell
nuclei are accessible via CCSD calculations, one finds signifi-
cant underbinding when including up to 1p-3h excitations. For
Nmax = 6 calculations, the 2PA-EOM-CCSD results are lower
in energy than the BCCD results by 2.04 MeV for 18O and
2.51 MeV for 18Ne. The effect of single contributions, which
have been excluded from the BCC calculations, is expected to

TABLE II. Compiled results for proof-of-principle BCCD cal-
culations with Nmax = 6, including both the approximate minimum
energy (taken from a calculation with �ω = 26 MeV) and the
extrapolated energy for an infinite model space (E∞) via Eq. (54).
Also included for comparison are CCSD calculations for 16O and
2PA-EOM-CCSD results for 18O and 18Ne with �ω = 26 MeV, as
well as experimental values [65]. Note that the BCCD calculations
for 16O, both Emin and E∞, reproduce exactly the corresponding CCD
calculations.

Nucleus Emin ECCSD
Nmax=6 E∞ ECCSD

Nmax=12 Eexp

16O −119.110 −119.211 −124.821 −123.453 −127.619
18O −124.440 −126.476 −130.738 −132.990 −139.808
20O −131.428 n/a −139.144 n/a −151.371
18Ne −115.413 −117.927 −122.089 −124.850 −132.143
20Mg −112.237 n/a −119.996 n/a −134.480
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remain on the order of 100 keV such that 2PA-EOM-CCSD
is genuinely lower in energy. This is not surprising given that
nuclei in the very vicinity of a closed shell are those for which
the benefit provided by the breaking of U(1) symmetry is
actually overtaken by the associated shortcoming of not having
an exact eigenstate of the particle-number operator [45], i.e.,
this constitutes a regime for which the exact restoration
of symmetry [57] is critical. The present comparison of
BCCD (without symmetry restoration) and 2PA-EOM-CCSD
results is meant to provide a reference corresponding to the
worst-case scenario.6 It is a compelling question for the
future to investigate the advantages and drawbacks of CC
methods based on symmetry breaking (and restoration) relative
to existing [6,36] and future MR CC methods. Quantum
chemistry appears to be a better forum for this investigation,
owing to a better understanding of forces, the ability to obtain
exact results, and the further development of MR CC methods
relative to nuclear systems. In this context, the comparison is
not related to our present paper and will be postponed to a
future publication.

While NNLOopt reasonably reproduces the binding energies
of oxygen isotopes [60], and might therefore be expected
to reproduce all five nuclei presented here, the primary
motivation of this section is not to compare our results to
experiment. Future developments of the code are needed to
go beyond calculations at Nmax = 6, not only to improve the
extrapolation [59] but also to ensure that this extrapolation
holds for the quasiparticle basis. In addition, the truncation
of the quasiparticle excitation operator at the doubles level is
too restrictive. For instance, including triples noniteratively in
the standard coupled cluster framework via the �-CCSD(T)
method [55] lowers the total energy by more than 6 MeV
for the nuclei considered here, better reproducing experiment
in all cases. The triple correction must therefore be included
at least in a noniterative way. Additionally, even though the
optimized two-body force utilized here reasonably reproduces
ground-state properties of nuclei in the vicinity of 16O, the
machinery to include three-body forces, at least at the normal-
ordered two-body level, must be developed to make reliable
theoretical predictions throughout the nuclear chart. Future
publications will address progress along these fronts.

Finally, as discussed in Sec. III D, one should monitor
the breaking of particle-number symmetry by computing the
variance associated with the operator A using Eq. (36). The
results are shown in Table III. For the five nuclei calculated
here, the variance in particle number obtained at the HFB level
is nearly constant. The inclusion of additional correlations
can either increase or decrease the variance, based on the
nucleus of interest, but remains reasonably similar to the
HFB variance, providing confidence in the applicability of
the symmetry-breaking BCC equations. Nevertheless, the
behavior of the variance must be studied further, especially

6The improved performance of 2PA-EOM-CCSD calculations
compared to symmetry-unrestricted single-reference CCSD calcu-
lations (without symmetry restoration) was similarly seen for SU(2)
symmetry in 6He, where 2PA-EOM-CCSD provided significant more
binding [16].

TABLE III. Variance in particle number from the solution to HFB
equations and BCCD equations, taken from a calculation with Nmax =
6 and �ω = 26 MeV.

Nucleus �A2
HFB �A2

BCCD

16O 0.000 0.000
18O 2.775 2.814
20O 2.888 3.398
18Ne 2.765 2.761
20Mg 2.859 2.547

with respect to an increase in the model space size and based
on the inclusion of single and triple excitations. Eventually, the
spontaneously broken symmetry must be restored for a proper
comparison to physical (i.e., symmetry-conserving) nuclei, for
which the implementation discussed by [57] will be applied.

VII. CONCLUSIONS

BCC theory has been formulated as a way to extend
single-reference coupled cluster techniques to the description
of genuinely open-shell nuclei. The rationale behind this
extension is the representation of the exact ground-state wave
function of even-even nuclei as the exponential of a quasi-
particle excitation cluster operator acting on a Bogoliubov
reference state. As such, BCC theory exploits the spontaneous
breaking of U(1) symmetry associated with particle-number
conservation to overcome the degenerate character of open-
shell systems. Thus, the potential span of ab initio coupled
cluster calculations based on single-reference techniques is
increased tremendously.

Equations for the ground-state energy and the cluster
amplitudes have been derived at the singles and doubles
level (BCCSD) both algebraically and diagrammatically. The
equations have been implemented in the BCCD approximation
in an m-scheme code based on a HO basis, with results for a
set of light doubly closed-shell nuclei validated against CCD
results. The numerical scaling of the method is polynomial and
goes as N6 in both the BCCD and BCCSD approximations,
where N is the total number of single-particle basis states.

The results of the first proof-of-principle calculations have
been reported for five even-even sd-shell nuclei in the BCCD
approximation. The breaking of U(1) symmetry has been
monitored by computing the variance associated with the
particle-number operator. The newly developed many-body
formalism offers a wealth of potential applications and further
extensions dedicated to the ab initio description of ground
and excited states of open-shell nuclei. Short-term extensions
include the implementation of three-nucleon forces at the
normal-ordered two-body level. Midterm extensions include
the development of approximate triples corrections and of
the EOM methodology to treat both excited states and odd
nuclei. One can also envision calculations of doubly open-
shell nuclei via the further breaking of SU(2) symmetry
associated with angular momentum conservation. Longer-term
extensions include the exact restoration of U(1) [57] and SU(2)
[58] symmetries.
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APPENDIX A: NORMAL-ORDERED MATRIX ELEMENTS

1. Grand-canonical potential

As the �[6] terms are not considered for practical appli-
cations at this point, the matrix elements �

ij
k1k2k3k4k5k6

, with
i + j = 6, are excluded for brevity. The grand-canonical
potential of Eq. (8), up to and including �[4], displays fully
antisymmetrized matrix elements whose explicit expressions
in terms of matrix elements of the kinetic energy plus two-
and three-body interactions, as well as of U and V matrices
defining the reference Bogoliubov state, are

�00 = Tr

[
Tρ + 1

2
�2Nρ + 1

3
�3Nρ − 1

2
�2Nκ∗ + 1

3
�3Nκ∗ − λρ

]
, (A1a)

�11
k1k2

= [U †hU − V †hT V + U †�V − V †�∗U ]k1k2 , (A1b)

�20
k1k2

= [U †hV ∗ − V †hT U ∗ + U †�U ∗ − V †�∗V ∗]k1k2 , (A1c)

�02
k1k2

= [−V T hU + UT hT V − V T �V + UT �∗U ]k1k2 , (A1d)

�22
k1k2k3k4

=
∑

l1l2l3l4

[
�l1l2l3l4

(
U ∗

l1k1
U ∗

l2k2
Ul3k3Ul4k4 + V ∗

l3k1
V ∗

l4k2
Vl1k3Vl2k4 + U ∗

l1k1
V ∗

l4k2
Vl2k3Ul3k4

−V ∗
l4k1

U ∗
l1k2

Vl2k3Ul3k4 − U ∗
l1k1

V ∗
l4k2

Ul3k3Vl2k4 + V ∗
l4k1

U ∗
l1k2

Ul3k3Vl2k4

)
+�l1l2l3l4

(
U ∗

l1k1
U ∗

l2k2
Ul4k3Vl3k4 + U ∗

l1k1
V ∗

l4k2
Vl3k3Vl2k4 − U ∗

l1k1
U ∗

l2k2
Vl3k3Ul4k4 − V ∗

l4k1
U ∗

l1k2
Vl3k3Vl2k4

)
−�∗

l1l2l3l4

(
V ∗

l3k1
U ∗

l4k2
Ul1k3Ul2k4 + V ∗

l3k1
V ∗

l2k2
Vl4k3Ul1k4 − U ∗

l4k1
V ∗

l3k2
Ul1k3Ul2k4 − V ∗

l3k1
V ∗

l2k2
Vl4k4Ul1k3

)]
, (A1e)

�31
k1k2k3k4

=
∑

l1l2l3l4

[
�l1l2l3l4

(
U ∗

l1k1
V ∗

l4k2
V ∗

l3k3
Vl2k4 − V ∗

l4k1
U ∗

l1k2
V ∗

l3k3
Vl2k4 − V ∗

l3k1
V ∗

l4k2
U ∗

l1k3
Vl2k4

+V ∗
l3k1

U ∗
l2k2

U ∗
l1k3

Ul4k4 − U ∗
l2k1

V ∗
l3k2

U ∗
l1k3

Ul4k4 − U ∗
l1k1

U ∗
l2k2

V ∗
l3k3

Ul4k4

)
+�l1l2l3l4

(
U ∗

l1k1
U ∗

l2k2
U ∗

l3k3
Ul4k4 + V ∗

l4k1
U ∗

l2k2
U ∗

l1k3
Vl3k4 − U ∗

l2k1
V ∗

l4k2
U ∗

l1k3
Vl3k4 + U ∗

l2k1
U ∗

l1k2
V ∗

l4k3
Vl3k4

)
+�∗

l1l2l3l4

(
U ∗

l4k1
V ∗

l3k2
V ∗

l2k3
Ul1k4 − V ∗

l3k1
U ∗

l4k2
V ∗

l2k3
Ul1k4 + V ∗

l3k1
V ∗

l2k2
U ∗

l4k3
Ul1k4 − V ∗

l3k1
V ∗

l2k2
V ∗

l1k3
Vl4k4

)]
, (A1f)

�13
k1k2k3k4

=
∑

l1l2l3l4

[
�l1l2l3l4

(
V ∗

l4k1
Ul3k2Vl2k3Vl1k4 − V ∗

l4k1
Vl2k2Ul3k3Vl1k4 − V ∗

l4k1
Vl1k2Vl2k3Ul3k4

+U ∗
l1k1

Vl2k2Ul3k3Ul4k4 − U ∗
l1k1

Ul3k2Vl2k3Ul4k4 + U ∗
l1k1

Ul3k2Ul4k3Vl2k4

)
+�l1l2l3l4

(
U ∗

l1k1
Vl2k2Vl3k3Ul4k4 − V ∗

l4k1
Vl1k2Vl2k3Vl3k4 + U ∗

l1k1
Ul4k2Vl2k3Vl3k4 − U ∗

l1k1
Vl2k2Ul4k3Vl3k4

)
+�∗

l1l2l3l4

(
V ∗

l3k1
Vl4k2Ul1k3Ul2k4 − V ∗

l3k1
Ul1k2Vl4k3Ul2k4 + V ∗

l3k1
Ul1k2Ul2k3Vl4k4 − U ∗

l4k1
Ul1k2Ul2k3Ul3k4

)]
, (A1g)

�40
k1k2k3k4

=
∑

l1l2l3l4

[
�l1l2l3l4

(
U ∗

l1k1
U ∗

l2k2
V ∗

l4k3
V ∗

l3k4
− U ∗

l1k1
V ∗

l4k2
U ∗

l2k3
V ∗

l3k4
− V ∗

l4k1
U ∗

l2k2
U ∗

l1k3
V ∗

l3k4

+U ∗
l1k1

V ∗
l4k2

V ∗
l3k3

U ∗
l2k4

+ V ∗
l4k1

U ∗
l2k2

V ∗
l3k3

U ∗
l1k4

+ V ∗
l4k1

V ∗
l3k2

U ∗
l1k3

U ∗
l2k4

)
+�l1l2l3l4

(
U ∗

l1k1
U ∗

l2k2
U ∗

l3k3
V ∗

l4k4
− U ∗

l1k1
U ∗

l2k2
V ∗

l4k3
U ∗

l3k4
+ U ∗

l1k1
V ∗

l4k2
U ∗

l2k3
U ∗

l3k4
− V ∗

l4k1
U ∗

l1k2
U ∗

l2k3
U ∗

l3k4

)
+�∗

l1l2l3l4

(
V ∗

l1k1
V ∗

l2k2
V ∗

l3k3
U ∗

l4k4
− V ∗

l1k1
V ∗

l2k2
U ∗

l4k3
V ∗

l3k4
+ V ∗

l1k1
U ∗

l4k2
V ∗

l2k3
V ∗

l3k4
− U ∗

l4k1
V ∗

l1k2
V ∗

l2k3
U ∗

l3k4

)]
, (A1h)

�04
k1k2k3k4

=
∑

l1l2l3l4

[
�l1l2l3l4

(
Ul3k1Ul4k2Vl2k3Vl1k4 − Ul3k1Vl2k2Ul4k3Vl1k4 + Ul3k1Vl2k2Vl1k3Ul4k4

064320-16



AB INITIO BOGOLIUBOV COUPLED CLUSTER . . . PHYSICAL REVIEW C 91, 064320 (2015)

−Vl2k1Ul3k2Vl1k3Ul4k4 + Vl2k1Vl1k2Ul3k3Ul4k4 + Vl2k1Ul3k2Ul4k3Vl1k4

)
+�l1l2l3l4

(
Vl1k1Vl2k2Vl3k3Ul4k4 − Vl1k1Vl2k2Ul4k3Vl3k4 + Vl1k1Ul4k2Vl2k3Vl3k4 − Ul4k1Vl1k2Vl2k3Vl3k4

)
+�∗

l1l2l3l4

(
Vl4k1Ul3k2Ul2k3Ul1k4 − Ul3k1Vl4k2Ul2k3Ul1k4 + Ul3k1Ul2k2Vl4k3Ul1k4 − Ul3k1Ul2k2Ul1k3Vl4k4

)]
. (A1i)

The above expressions make use of four one- and two-body
operators whose matrix elements are given in an arbitrary
single-particle basis by

hpq ≡ tpq − λ δpq + �2N
pq + �3N

pq (A2a)

= tpq − λ δpq +
∑
rs

v̄psqrρrs

+ 1

2

∑
rstu

w̄prsqtu

(
ρusρtr + 1

2
κ∗

rsκtu

)
, (A2b)

�pq ≡ �2N
pq + �3N

pq (A2c)

= 1

2

∑
rs

v̄pqrsκrs + 1

2

∑
rstu

w̄rpqstuρsrκtu, (A2d)

�pqrs ≡ v̄pqrs +
∑
tu

w̄pqtrsuρut , (A2e)

�pqrs ≡ 1

2

∑
tu

w̄pqrstuκtu. (A2f)

It is easy to verify the following properties

�2N
pq = �2N∗

qp , (A3a)

�3N
pq = �3N∗

qp , (A3b)

�2N
pq = −�2N

qp , (A3c)

�3N
pq = −�3N

qp , (A3d)

�pqrs = −�pqsr = �qpsr = −�qprs, (A3e)

�pqrs = �∗
rspq, (A3f)

�pqrs = −�qprs = �qrps = −�prqs = �rpqs = −�rqps.

(A3g)

From these relations, it is straightforward to show that
the matrix elements of the normal-ordered grand-canonical
potential exhibit the following behavior under Hermitian
conjugation:

�11
k1k2

= �11∗
k2k1

, (A4a)

�20
k1k2

= �02∗
k1k2

, (A4b)

�22
k1k2k3k4

= �22∗
k3k4k1k2

, (A4c)

�31
k1k2k3k4

= �13∗
k4k1k2k3

, (A4d)

�40
k1k2k3k4

= �04∗
k1k2k3k4

. (A4e)

2. Generic one-body operator

We define a generic one-body operator,

O ≡
∑
pq

opqc
†
pcq. (A5)

Its normal-ordered form with respect to |�〉 is given by

O ≡ O[0] + O[2] (A6a)

= O00 (A6b)

+ 1

1!

∑
k1k2

O11
k1k2

β
†
k1

βk2 (A6c)

+ 1

2!

∑
k1k2

{
O20

k1k2
β
†
k1

β
†
k2

+ O02
k1k2

βk2βk1

}
, (A6d)

with the matrix elements given by

O00 = Tr[oρ], (A7a)

O11
k1k2

= [U †oU − V †oT V ]k1k2 , (A7b)

O20
k1k2

= [U †oV ∗ − V †oT U ∗]k1k2 , (A7c)

O02
k1k2

= [−V T oU + UT oT V ]k1k2 . (A7d)

The particle-number operator

A ≡
∑

p

c†pcp (A8)

is thus obtained as a particular case with opq ≡ δpq .

APPENDIX B: QUASILINEAR FORM OF
BCCSD

1. Definition of intermediates

For both computational efficiency and simplicity of ex-
pression, it is useful to rewrite the nonlinear equations
of BCCSD into quasilinear equations, in which each term
consists of a single quasiparticle amplitude connected to an
intermediate. While these intermediates can be obtained from a
diagrammatic procedure involving the similarity-transformed
grand-canonical potential (in connection to the coupled cluster
effective-Hamiltonian diagrams derived in [54]), a more
straightforward procedure will provide greater flexibility in the
definition of the intermediates. As seen in the single-excitation
amplitude equations of BCCSD [Eq. (45)], there are many
terms which are nonlinear in T , i.e., which contain more than
one quasiparticle amplitude. However, in each contribution
consisting of multiple quasiparticle amplitudes, at least one
of the quasiparticle amplitudes has m external lines (m � 1).
There always exists a linear term containing the same quasipar-
ticle amplitude with m external lines, obtained at most through
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α β α β

α β α β

α β

FIG. 11. Diagrammatic representation of the single-excitation
amplitude equations in the quasilinear BCCSD approximation.

a renaming of indices. For example, the sixth term of Eq. (45)
is the first nonlinear term, and one identifies immediately
two quasiparticle amplitudes with external indices, tαk1 and
tk2β . Both amplitudes are present as linear contributions,
from the third term and second term, respectively (i.e., the
terms involving �11

βk1
and �11

αk1
, respectively, where the second

requires a renaming of index k1 → k2). To connect the sixth

α β γ δ α β γ δ δα β γ δα β γ

FIG. 12. Diagrammatic representation of the double-excitation
amplitude equations in the quasilinear BCCSD approximation.

diagram to the third diagram, one should “integrate over”
the summation index k2 to produce an intermediate I with
the desired indices (β,k1); i.e., one should rewrite the sixth
term as an intermediate Iβk1 connected to tαk1 . Similarly, three
later instances of tαk1 can be found in Eq. (45) and can be
manipulated in the same way to produce the full intermediate
χ11

βk1
.

2. Amplitude equations with intermediates

Implementing intermediates χij and making use of per-
mutation operators, the BCCSD amplitude equations from

χ11
k k = +=

k1 k2

k3
k4

k1 k2

k3
k4

χ22
k k k k = = + +

k1 k2

k3 k4

k1 k2

k3
k4

k1 k2

k4k3

+

χ02
k k =

k1
k2 k1

k2

= +

k1 k2

k1 k2
k3

k4

k1 k2
k3

k4

χ31
k k k k = = + + +

k1 k2 k3

k4

k1 k2 k3

k4 k4

k1 k2 k3

k2

k1 k1

k2

k1

k2

k1

k2

k1

k2k2

k1

+ + +

FIG. 13. Diagrammatic representation of the intermediates that enter into the amplitude equations of the quasilinear BCCSD approximation.
Note that χ 11

k1k2
and χ 11a

k1k2
have an identical form diagrammatically, but their symmetry factors (i.e., the factor in front of the diagram) are

different. To differentiate the two, χ 11
k1k2

is drawn with a squiggly line to the right, as shown here, while χ11a
k1k2

has a squiggly line to the left, as in
Fig. 12.
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Eqs. (45) and (46) can be rewritten

0 = �20
αβ + P (α/β)

∑
k1

χ11
βk1

tαk1 + 1

2

∑
k1k2

[
�22

αβk1k2
tk1k2 + χ02

k1k2
tαβk1k2

] + 1

6
P (α/β)

∑
k1k2k3

�13
αk1k2k3

tk1k2k3β, (B1a)

0 = �40
αβγ δ + P (αβγ/δ)

∑
k1

[
χ31

αβγ k1
tk1δ + χ11a

δk1
tαβγ k1

] + 1

2
P (αβ/γ δ)

∑
k1k2

χ22
αβk1k2

tk1k2γ δ, (B1b)

with the introduction of two separate intermediates χ11 and χ11a owing to the fact that the single-excitation amplitude equations
and double-excitation amplitude equations have different factors from their respective number of identical Tm operators. The
intermediates are defined as

χ02
k1k2

= �02
k1k2

+ 1

2

∑
k3k4

tk3k4�
04
k3k4k1k2

, (B2a)

χ11
k1k2

= �11
k1k2

+ 1

2

∑
k3

tk3k1�
02
k2k3

+ 1

2

∑
k3k4

tk3k4�
13
k1k2k3k4

+ 1

12

∑
k3k4k5

�04
k2k3k4k5

(
3tk3k1 tk4k5 + 2tk3k4k5k1

)
, (B2b)

χ11a
k1k2

= χ11
k1k2

+ 1

2

∑
k3

tk3k1�
02
k2k3

+ 1

4

∑
k3k4k5

�04
k2k3k4k5

tk3k1 tk4k5 , (B2c)

χ22
k1k2k3k4

= �22
k1k2k3k4

+ 1

4

∑
k5k6

�04
k3k4k5k6

[
tk5k6k1k2 − 4tk5k1 tk6k2

] + P (k1/k2)
∑
k5

�13
k1k3k4k5

tk5k2 , (B2d)

χ31
k1k2k3k4

= �31
k1k2k3k4

+ 1

2
P (k1/k2k3)

∑
k5

�22
k2k3k5k4

tk1k5 − 1

3
P (k2/k1k3)

∑
k5k6

�13
k2k5k6k4

tk1k5 tk6k3 + 1

4

∑
k5k6k7

�04
k5k6k7k4

tk1k5 tk2k6 tk7k3 .

(B2e)

3. Diagrammatic method with intermediates

As before, the BCCSD equations, now in their quasilinear
form, can be reexpressed in terms of diagrams to simplify
and shorten their treatment. It must be emphasized that the
diagrammatic rules as developed in Sec. V do not apply
directly to the intermediates and quasilinear form of BCCSD
separately, because the symmetry factors can be affected

when the full diagram is split. Therefore, the diagrams with
intermediates should truly be seen as a shorthand, while
the original diagram should be employed to determine the
corresponding algebraic expressions. The single-excitation
and double-excitation amplitude equations from Figs. 4 and
5 can be reexpressed in the simplified quasilinear form of
Figs. 11 and 12. The definition of intermediates utilized in
these figures is given in Fig. 13.
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