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Quarteting and spin-aligned proton-neutron pairs in heavy N = Z nuclei
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We analyze the role of maximally aligned isoscalar pairs in heavy N = Z nuclei by employing a formalism
of quartets. Quartets are superpositions of two neutrons and two protons coupled to total isospin T = 0 and
given J . The study is focused on the contribution of spin-aligned pairs carrying the angular momentum J = 9
to the structure of 96Cd and 92Pd. We show that the role played by the J = 9 pairs is quite sensitive to the model
space and, in particular, it decreases considerably by passing from the simple 0g9/2 space to the more complete
1p1/2,1p3/2,0f5/2,0g9/2 space. In the latter case the description of these nuclei in terms of only spin-aligned
J = 9 pairs turns out to be unsatisfactory while an important contribution, particularly in the ground state, is
seen to arise from isovector J = 0 and isoscalar J = 1 pairs. Thus, contrary to previous studies, we find no
compelling evidence of a spin-aligned pairing phase in 92Pd.
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I. INTRODUCTION

The role of spin-aligned isoscalar proton-neutron pairs in
the structure of heavy N = Z nuclei is an issue which has re-
ceived much attention in recent years following the first experi-
mental results on the excited states of 92Pd [1]. In Ref. [1] and in
an accompanying theoretical analysis [2] it was suggested that
the ground and low-lying yrast states of 92Pd show evidences
of a new spin-aligned pairing phase which is fundamentally
different from the superfluid phase of isovector J = 0 pairs
observed in even-even N �= Z nuclei. It was argued, in partic-
ular, that the low-lying yrast states of 92Pd are dominated by
the isoscalar J = 9 pairs and that the approximate equidistance
of the yrast states can be interpreted in terms of a simple an-
gular momentum rearrangement of these pairs. This coupling
scheme is similar to the stretch pair model [3] and is very
different from the pair breaking mechanism through which the
excited states are built in the BCS-like pairing models.

The structure of the yrast states of 92Pd has been mainly
studied in the framework of the standard shell model
(SM) [2,4–6]. These studies have evidenced the crucial role
played by the nuclear interaction in the J = 9 isoscalar channel
in affecting the properties of the low-energy states of this
nucleus. Consistently, an analogous dominance of isoscalar
J = 9 pairs has been evidenced in the case of 96Cd [2]. In
this case, large overlaps have been observed between the SM
eigenstates and the corresponding wave functions formulated
in terms of isoscalar J = 9 pairs only [4,5]. In the case of
92Pd, instead, the analysis has mostly concentrated on the
analysis of the expectation values of the so-called “pair number
operator” [2], with J = 9 pairs exhibiting by far the largest
value among isoscalar pairs.

The role of the spin-aligned proton-neutron pairs in 92Pd
has also been studied in the framework of the multistep shell
model [7]. This approach appears even more appropriate than
the standard SM to study the role of proton-neutron pairs in the
spectrum of this nucleus since it can be formulated explicitly in
terms of these pairs. The conclusions of this analysis, limited to
the case of nucleons confined in the 0g9/2 orbit, are consistent
with those of Refs. [1,2].

In this article the role of spin-aligned isoscalar pairs in
96Cd and 92Pd will be analyzed in a formalism of quartets.
We will adopt the same calculation scheme employed in a
recent analysis of sd shell nuclei [8]. Quartets are defined,
in general, as four-body correlated structures characterized
by total isospin T and angular momentum J . Based on the
outcome of our analysis of N = Z nuclei in the sd shell,
we will introduce only quartets with T = 0, namely formed
by two neutrons and two protons. States of 92Pd will be
described as superpositions of products of two quartets coupled
to given J . The advantage of this calculation scheme, which
conserves all symmetries and gives results of an accuracy
comparable to that of SM calculations [8–10], is a simple
structure of the wave function, well adapted for investigating
the underline correlations. We will carry out calculations
with quartets in their most complete form and verify that
the spectrum so generated provides a satisfactory description
of the experimental spectrum of 92Pd. Then we will explore
the validity of various approximations based on quartets built
only by some selected types of pairs. From an analysis of
the resulting spectra and electromagnetic transitions as well
as of the overlaps among wave functions in the various
approximations we will extract information on the structure
of the low-lying states of 96Cd and 92Pd.

II. FORMALISM

Qartets are defined as [8]

Q+
α,JM,T Tz

=
∑

i1j1J1T1

∑

i2j2J2T2

C
(α)
i1j1J1T1,i2j2J2T2

×[[
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j1

]J1T1
[
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i2
a+

j2

]J2T2
]
JT
MTz

, (1)

where J (T ) and M(Tz) are, respectively, the total angular
momentum (isospin) and the relative projections. The indices
i and j denote the quantum numbers of the single-particle
states considered in the calculations. We work in a spherical
single-particle basis and therefore, according to the standard
SM notation, i ≡ {ni,li ,ji}.
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The collective quartet (1) provides the exact SM wave
function of a system with four active nucleons outside a closed
core. Values of the isospin T range in the interval (0,2) and,
depending upon the projection Tz, all possible combinations
of protons and neutrons can be represented. Systems with
eight active nucleons outside an inert core can be described
in a basis formed by the tensorial product of two quartets (1),
i.e.,

[
Q+

α1,J ′,T ′ ⊗ Q+
α2,J ′′,T ′′

]J,T
, (2)

where J,T are the spin and the isospin of the calculated state. If
all possible quartets which can be formed within a given model
space are inserted in (2), this basis spans the entire Hilbert
space and the corresponding spectrum is exact. Since the basis
(2) is overcomplete, an exact calculation in this framework
would be more difficult than in standard SM. However, if a
satisfactory approximation of the exact spectrum is obtained
in terms of only a limited set of quartets, this can give us an
insight into the relevant degrees of freedom of the eigenstates.
This approach can in principle be extended to any system with
4n active nucleons and it will be referred in the following as
quartet model (QM).

The calculation scheme described above will be applied in
this work to 96Cd and 92Pd. By assuming 100Sn as the inert core
of reference, 96Cd is a system with two proton holes and two
neutron holes in this core and it will be therefore described as a
single quartet. As already noticed, in this case the SM and QM
approaches coincide. 92Pd has instead four proton holes and
four neutron holes with respect to 100Sn and it will be therefore
described as a superposition of two-quartet states of the type
shown in Eq. (2). Two basic problems are encountered in this
case: which quartets to involve in the calculations and how to
construct these quartets. Here we adopt a static formulation of
the quartets, which means that as quartets defining the basis
(2) we assume those describing the low-lying states of 96Cd.
More precisely, we will employ the quartets associated with
the positive-parity yrast states of 96Cd up to J = 8. These are
all T = 0 quartets.

The structure of nuclei with mass number immediately
below A = 100 is expected to be dominated by the 0g9/2

orbit and, in some studies, calculations have been restricted
to this orbit only [4,5,7]. To understand better the structure
of these nuclei, in this work we will perform calculations
within three different model spaces. These are composed by
the orbits (0g9/2), (1p1/20g9/2), and (1p3/20f5/21p1/20g9/2).
We will refer to them as g, pg, and fpg spaces, respectively.
The latter will also be referred to as the full (model)
space. The interactions that we will use are a renormalized
SLGT0 for the g space [4], the F-FIT by Johnstone and
Skouras [11] for the pg space, and the JUN45 [12] for the fpg
space.

In order to investigate the contribution of various pairs of
nucleons to the physical states, in addition to QM calcula-
tions performed with full quartets, namely quartets receiving
contributions from all possible pairs (hereafter we will refer to
these calculations simply as QM calculations), we will perform
approximate QM calculations in which only selected types of
pairs will take part in the formation of the quartets (1). In

particular, we will discuss

(i) the QMSA scheme, in which the quartets (1) are built
in terms of only isoscalar J = 9 pairs and therefore
carry only the component

[[
a+

i1
a+

j1

]J1=9T1=0[
a+

i2
a+

j2

]J2=9T2=0]JT =0; (3)

(ii) the QMIV scheme, in which quartets are superposi-
tions of the noncollective quartets

[[
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]J1=0T1=1[
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i2
a+

j2

]J2=JT2=1]JT =0, (4)

formed only with isovector pairs (notice that one of
the two pairs is constrained to have J = 0 while the
other one is responsible for the angular momentum of
the quartet);

(iii) the QMR scheme, in which quartets carry both the
components (3) and (4);

(iv) the QMJ1 scheme, in which quartets have the compo-
nent

[[
a+

i1
a+

j1

]J1=1T1=0[
a+

i2
a+

j2

]J2=1T2=0]JT =0
, (5)

formed with isoscalar J = 1 pairs only, in addition to
the isovector-type component (4). We observe that the
QMIV and QMJ1 schemes become identical when the
J of the quartet is larger than 2.
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FIG. 1. Low-energy yrast spectra of 96Cd obtained in the quartet
model (QM) and in the various approximations QMi explained in the
text. From bottom to top, the three panels correspond to calculations
done within the model spaces g, pg, and fpg, respectively. The
number below each spectrum gives the ground state correlation
energy, namely the difference between the total ground state energy
and the energy in the absence of interaction.
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III. RESULTS

Figure 1 shows the spectra that are obtained for 96Cd within
the just defined approximation schemes and for the three
model spaces g, pg, and fpg. A number of things are worth
noticing. The QMSA scheme shows an increasing difficulty
in reproducing the QM spectrum with increasing size of the
model space. In the fpg space, the QMSA spectrum is quite
compressed and the ground state correlation energy (defined
as the difference between the ground state energy and the
energy of this state in the absence of interaction) is far from
the exact value. Even in the most favorable case (the g space),
however, one can still observe significant deviations in the
ground state correlation energy (which is underestimated by
about 400 KeV) as well as in the energies of the 2+ and 8+
states. A considerable improvement of the spectrum, both in
the g and pg spaces, is obtained in the QMR approximation
which mixes the spin-aligned and seniority coupling schemes.
When passing to the fpg space, however, even the QMR

scheme appears to be no longer fully adequate. In this case we
have verified that in order to restore a good agreement with the
QM spectrum it is sufficient to add to the QMR approximation
the contribution of the quartets built by two pairs with J = 2.

Figure 2 shows the square of the overlaps 〈QM|QMi〉,
where QMi are the eingenfunctions of 96Cd corresponding
to the approximate schemes defined above. This figure clearly
shows how the contribution of the spin-aligned J = 9 pairs
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FIG. 2. (Color online) Overlaps between the QM low-lying yrast
states of 96Cd and the corresponding eigenstates in the various QMi

approximations explained in the text. From bottom to top, the three
panels correspond to calculations done within the model spaces g,
pg, and fpg, respectively.

0

100

200

QM
QM

R

QM
SA

QM
IV

QM
J1

0

100

200

B
(E

2)
 (

e2  f
m

4 )
2 4 6 8

J

0

100

200

96
Cd

(fpg)

(pg)

(g)

FIG. 3. (Color online) B(E2; J → J − 2) values between the
low-lying yrast levels of 96Cd in the quartet model (QM) and in
the various QMi approximations explained in the text. From bottom
to top, the three panels correspond to calculations done within the
model spaces g, pg, and fpg, respectively.

to the physical states evolves by varying the model space. In
particular, for the ground state one notices that the squared
overlap 〈QM|QMSA〉2 decreases from 0.91 to 0.56 when one
goes from g to fpg model space. It is also interesting to
observe that, in the full space, the QMR and QMJ1 schemes
generate ground states which have almost the same overlaps
with the exact ground state and, in addition, predict binding
energies which are close to each other (Fig. 1). Consequently,
in this case the role of isoscalar pairs with J = 1 is comparable
with that of the spin-aligned J = 9 pairs. For all other
eigenstates and model spaces the QMR scheme is the one
which gives the largest overlaps with the exact wave functions.
As a final remark relative to Fig. 2, we observe the negligible
role of the spin-aligned pairs in the J = 8 yrast level which is
instead much better represented in the QMIV scheme.

Figure 3 shows the B(E2; J → J − 2) values between the
yrast states of 96Cd in the various approximation schemes. For
the E2 operator we have adopted standard values of the effec-
tive charges ep = 1.5e and en = 0.5e and of the (squared) os-
cillator length b2 ≈ 41.4/�ω fm2, �ω = 45A−1/3 − 25A−2/3.
Similar to what has been observed in the analysis of the
energies and the overlaps, the QMR scheme is the one which
gives the best overall fit of the exact values among the various
approximation schemes. Differently from the case of the
energies and the overlaps, however, the QMSA results for the
B(E2)’s do not exhibit the rapid deterioration with increasing
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FIG. 4. Low-energy yrast spectra of 92Pd obtained in the quartet
model (QM) and in the various approximations QMi explained in the
text. From bottom to top, the three panels correspond to calculations
done within the model spaces g, pg, and fpg, respectively. The
number below each spectrum gives the ground state correlation
energy, namely the difference between the total ground state energy
and the energy in the absence of interaction.

size of the model space, which was instead observed in Figs. 1
and 2.

As anticipated, the analysis of 92Pd is based on the same
quartets already employed for 96Cd. These quartets are used to
construct the basis (2) and the spectrum of 92Pd is generated
by diagonalizing the Hamiltonian in this basis. This spectrum
(limited to the low-lying yrast states only) is shown in Fig. 4 for
the various approximations. The notation is the same adopted
for 96Cd. Only three excited levels are known experimentally
and their energies are (in MeV): E(2+) = 0.874, E(4+) =
1.786, E(6+) = 2.536 [1]. The QM spectra reproduce well
these states in all model spaces. It is worthy noticing that the
QM ground state turns out to be basically composed of J = 0
quartets only, since we have verified that, in all three model
spaces, a state product of two such quartets accounts by itself
for more than 99% of the ground state correlation energy.

Figure 4 has several features in common with Fig. 1. The
evolution of the QMSA spectrum when passing from the g
space to the full space looks quite similar in the two figures.
In Fig. 4, however, one notices that the mismatch between the
QM and QMSA spectra has become even more pronounced
than in 96Cd in the calculation relative to the fpg space. Still
in Fig. 4 one sees that the QMR scheme generates a good
spectrum in the g and pg spaces while it is not fully adequate
in the fpg space. We have verified that adding to the QMR

quartets the quartets built by two J = 2 pairs, as we have done

0.2

0.4

0.6

0.8

1

QMR

QMSA

QMIV

QMJ1

0.2

0.4

0.6

0.8

1

<
Q

M
|Q

M
i>

2

0 2 4 6 8
J

0.2

0.4

0.6

0.8

1

(fpg)

(pg)

(g)

92
Pd

FIG. 5. (Color online) Overlaps between the QM low-lying yrast
states of 92Pd and the corresponding eigenstates in the various QMi

approximations explained in the text. From bottom to top, the three
panels correspond to calculations done within the model spaces g,
pg, and fpg, respectively.

for 96Cd, one gets also in the full space a good agreement with
the SM spectrum.

As seen in Fig. 4, in the fpg space the QMJ1 scheme
generates a ground state whose energy is basically identical
to that of the QMR scheme. Moreover, one can observe that
the low-lying states generated by QMJ1 are even closer to the
QM results than the ones predicted by QMR . This confirms
the outcome of the analysis in 96Cd on the relevant role of the
isoscalar J = 1 pairs in the full model space calculations.

Further evidence of the role of the J = 1 pairs arises from
the observation of the overlaps 〈QM|QMi〉, the squares of
which are shown in Fig. 5. In the ground state of the fpg
model space, the overlap in the QMJ1 scheme is seen to be the
largest one among those shown in the figure. With only this
exception, the QMR scheme gives the best results in the full
space while, on the contrary, QMSA generates by far the worst
results. These facts suggest that the isovector component (4)
of the QMR quartets plays a leading role over the spin-aligned
part (3). As a confirmation of that, we see that the overlaps
〈QM|QMIV 〉 are considerably larger than the 〈QM|QMSA〉
ones (with the only exception of the J = 6 state). Altogether
these results do not show any dominance of the spin-aligned
J = 9 pairs in the low-lying yrast states of 92Pd. What emerges
is instead the relevant role played by the isovector J = 0 pairs
and isoscalar J = 1 pairs in the structure of the ground state
(we remind that the ground state of 92Pd is to a very large extent
a product of two J = 0 quartets and therefore the components
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FIG. 6. (Color online) B(E2; J → J − 2) values between the
low-lying yrast levels of 92Pd in the quartet model (QM) and in
the various QMi approximations explained in the text. From bottom
to top, the three panels correspond to calculations done within the
model spaces g, pg, and fpg, respectively.

(4) of the QMIV quartets in this state are formed exclusively by
J = 0 pairs). These conclusions remain valid also in the g and
pg spaces although one can notice that the differences among
the various approximation schemes become less apparent with
reduction of the model space. The increased role of J = 0
and J = 1 pairs relative to J = 9 pairs that is observed in the
calculations done in the full space is plausibly related to the fact
that the former pairs get contributions from nucleons sitting in
all the orbitals of the fpg space while the spin-aligned J = 9
pairs can be formed only in the orbital 0g9/2.

In Fig. 6, we display the B(E2; J → J − 2) values for the
transitions between the yrast states of 92Pd. In the case of the
full space, we also include the results of SM calculations [13].
The QM values exhibit the same trend as the SM results
although with a modest underestimation. As we have verified,
this can be reduced by adding extra quartets in the QM basis.
Although not exhibiting a deterioration with increasing size
of the model space comparable with that of the spectrum (as
for 96Cd), the QMSA values in the full space are characterized
by a trend which deviates from that of SM and QM results.
In particular, at variance with SM and QM results, one can
observe that in the full space the QMSA predicts an increase of
B(E2) values from J = 4 to J = 8. Large deviations from the
QM values are also observed in all spaces for the QMIV and
QMJ1 results for J � 2 and for the QMSA results for J = 8.
In all cases these deviations are consistent with the trend of
the overlaps in Fig. 5.

IV. SUMMARY

Summarizing, in this paper we have studied the role played
by the spin-aligned J = 9 proton-neutron pairs on the structure
of 96Cd and 92Pd. The analysis has been carried out in
the framework of a quartet model. We have found that the
contribution of spin-aligned J = 9 pairs to the structure of low-
lying states of these nuclei is strongly dependent on the model
space and it decreases considerably passing from the simple
(0g9/2) space to the more complete (1p3/20f5/21p1/20g9/2)
space. In the ground state of 92Pd, in particular, the role of
isoscalar J = 1 and isovector J = 0 pairs has been found to
be prominent with respect to that of isoscalar J = 9 pairs.
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