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The van der Waals (VDW) equation of state is a simple and popular model to describe the pressure function
in equilibrium systems of particles with both repulsive and attractive interactions. This equation predicts the
existence of a first-order liquid-gas phase transition and contains a critical point. Two steps to extend the VDW
equation and make it appropriate for new physical applications are carried out in this paper: (i) the grand canonical
ensemble formulation and (ii) the inclusion of the quantum statistics. The VDW equation with Fermi statistics
is then applied to a description of the system of interacting nucleons. The VDW parameters a and b are fixed
to reproduce the properties of nuclear matter at saturation density n0 = 0.16 fm−3 and zero temperature. The
model predicts a location of the critical point for the symmetric nuclear matter at temperature Tc

∼= 19.7 MeV
and nucleon number density nc

∼= 0.07 fm−3.
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I. INTRODUCTION

The van der Waals equation of state is a simple analytical
model of the pressure function p for equilibrium systems of
particles with both attractive and repulsive interactions. The
VDW model contains the first-order liquid-gas phase transition
which ends at the critical point. In the canonical ensemble
(CE), where independent variables are temperature T , volume
V , and number of particles N , the VDW equation of state has
the most simple and transparent form (see, e.g., Refs. [1,2]),

p(T ,n) = NT

V − bN
− a

N2

V 2
≡ n T

1 − bn
− a n2, (1)

where a > 0 and b > 0 are the VDW parameters that describe
attractive and repulsive interactions, respectively, and n ≡
N/V is the particle number density. The first term in the
right-hand-side of Eq. (1) corresponds to the excluded volume
(EV) correction, which manifests itself in a substitution of
the total volume V by the available volume, Vav = V − b N .
The second term comes from the mean field, which describes
attractive interactions between particles. To apply the VDW
equation of state to systems with variable numbers of particles
it is necessary to switch to the grand canonical ensemble
(GCE). This procedure was first performed for the EV model,
i.e., for a = 0 in Eq. (1), in Refs. [3,4]. In our recent paper
[5], the full VDW equation (1), with both attractive and
repulsive terms, was transformed from the CE to the GCE for
systems with Boltzmann statistics. There are several physical
situations when the GCE formulation is desirable (see Ref. [5]
for details). Note that the EV and VDW models can also be
conveniently treated within the GCE in a framework of the
thermodynamic mean-field approach (see Refs. [6–8]).

Equation (1) is valid for classical systems, where the effects
of quantum statistics are neglected. In the present paper we
suggest a generalization of the VDW equation to include
effects of the quantum statistics. Proper treatment of quantum
effects appears to be crucially important for a description of
statistical equilibrium at small temperatures. The quantum

statistics formulation is much easier to introduce in the GCE
than in the CE. This is an additional physical example where
the GCE formulation is particularly helpful. Thus, we use our
recent results of the GCE formulation [5] as a starting point for
a quantum generalization of the VDW equation of state. As a
next step, the VDW equation of state with Fermi statistics
is used to describe nuclear matter. The VDW parameters,
a and b, which correspond, respectively, to attractive and
repulsive interactions between nucleons, are fixed to reproduce
the properties of the symmetric nuclear matter at zero temper-
ature: saturation density, n0 = 0.16 fm−3; binding energy per
nucleon, −16 MeV; and zero pressure, p = 0.

The paper is organized as follows. In Sec. II the VDW
equation of state is transformed into the GCE, and the quantum
statistical formulation of this equation is elaborated in Sec. III.
In Sec. IV the VDW equation of state with Fermi statistics
is applied to a description of nuclear matter. A summary in
Sec. V closes the article.

II. VDW EQUATION FOR THE BOLTZMANN STATISTICS
IN THE GCE

The VDW pressure function (1) corresponds to the Boltz-
mann approximation, i.e., the effects of quantum statistics
(Bose or Fermi) are neglected. In our recent paper [5] the
VDW equation of state was formulated in the GCE. The
GCE pressure, p(T ,μ), is a function of temperature T and
chemical potential μ. It contains complete information about
thermodynamical functions of the system. Particle number
density n(T ,μ), entropy density s(T ,μ), and energy density
ε(T ,μ) can be presented in terms of p and its T and μ
derivatives:

n(T ,μ) =
(

∂p

∂μ

)
T

, s(T ,μ) =
(

∂p

∂T

)
μ

,

(2)

ε(T ,μ) =T

(
∂p

∂T

)
μ

+ μ

(
∂p

∂μ

)
T

− p.
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For a = b = 0 the above VDW equations are reduced to the
ideal gas expressions for classical particles.

The VDW equation of state in the GCE is obtained in the
form of a transcendental equation for particle number density
n ≡ n(T ,μ) as a function of T and μ [5]:

n(T ,μ) = nid(T ,μ∗)

1 + b nid(T ,μ∗)
, μ∗ = μ − T

bn

1 − bn
+ 2an,

(3)

where nid is a particle number density in the ideal Boltzmann
gas,

nid(T ,μ) = exp
(μ

T

) d m2 T

2π2
K2

(m

T

)
, (4)

with d being the degeneracy factor, m the particle mass, and
K2(x) the Bessel function. Note that the relativistic form of a
dispersion relation is considered, ω(k) = √

m2 + k2, where ω
and k are the free particle energy and momentum, respectively.
The GCE VDW pressure p(T ,μ) is then obtained by inserting
n(T ,μ) (3) into Eq. (1).

The VDW pressure (1) is a unique function of variables T
and n for all T � 0 and 0 � n � 1/b. The VDW equation of
state contains a first-order liquid-gas phase transition and has
a critical point. The critical point (Tc,nc) corresponds to the
temperature and particle number density, where(

∂p

∂n

)
T

= 0,

(
∂2p

∂n2

)
T

= 0. (5)

The thermodynamical quantities at the critical point are equal
to [1,2]

Tc = 8a

27b
, nc = 1

3b
, pc = a

27b2
. (6)

At T > Tc the following equation is always valid,(
∂p

∂n

)
T

> 0, (7)

while at T < Tc the unstable region appears with(
∂p

∂n

)
T

< 0. (8)

Therefore, the VDW isotherm p(n,T ) at T < Tc has a local
maximum at n = n1 and a local minimum at n = n2 > n1. The
unstable part (8) of the VDW isotherm at the interval [n1,n2],
together with two additional parts—[ng,n1] and [n2,nl] (they
are called metastable)—are transformed to a mixture of two
phases: a gas with density ng < n1 and a liquid with density
nl > n2. This is done according to the Maxwell rule of equal
areas (see, e.g., Refs. [1,2]), which leads to a constant pressure
p(T ,ng) = p(T ,nl) inside the density interval [ng,nl].

In the GCE the mixed phase region appears in a different
way. At T > Tc there is a unique solution of Eq. (3), while
at T < Tc it may have either one solution or three different
solutions for the particle number density n(T ,μ). Therefore,
either one or three different solutions may also appear for
the VDW pressure p(T ,μ). In a case when three different
values of p(T ,μ) are possible, the solution with the largest
pressure survives in accordance with the Gibbs criterion

(see Appendix A for details). The gas-liquid mixed phase
in the T -μ plane belongs to the line μ = μ(T ), where the
solutions ng(T ,μ) and nl(T ,μ) correspond to equal pressures,
pg(T ,μ) = pl(T ,μ).

The classical Boltzmann statistics leads to nonphysical
behavior in the zero temperature limit. This is already seen
on an ideal gas level. For the ideal Boltzmann gas an entropy
density in the nonrelativistic limit T/m � 1 is equal to

s id
Boltz

∼= nid

T

[
m + 5

2
T − μ

]
. (9)

In Eq. (9) we use the expressions pid = nidT and εid ∼=
nid(m + 3T/2) for the ideal gas pressure and the (nonrel-
ativistic) energy density, respectively. Using an asymptotic
expansion for the K2 Bessel function at large arguments,
K2(x) ∼= √

π/(2x) exp(−x), one finds from Eq. (4) that to have
a finite (nonzero) value, n0, of the particle number density at
T → 0 the chemical potential should be equal to

μ ∼= m − 3 T

2
ln(T/c0), c0 = 2π n

2/3
0

m
. (10)

Thus, only one limiting value, μ = m, is admitted in the
Boltzmann gas at T = 0 (this corresponds to the zero value of
the chemical potential, μnonrel ≡ μ − m, used in nonrelativistic
statistical physics). For μ > m or μ < m at T = 0 one finds
the following for the particle number density: n = 0 or n = ∞,
respectively.

Therefore, the entropy of the ideal Boltzmann gas (9) at
T → 0 is

s id ∼= n0
[

5
2 + 3

2 ln(T/c0)
]
, (11)

and it becomes negative in the zero temperature limit, in
a contradiction with the third law of thermodynamics. The
quantum statistics is needed to describe a physical system at
T → 0.

III. VDW EQUATION OF STATE WITH QUANTUM
STATISTICS

Quantum generalization of the VDW equation of state is
not a trivial task. Let us outline some general requirements for
the quantum version of this equation of state.

(i) It should be transformed to the ideal quantum gas at
a = b = 0.

(ii) It should be equivalent to the classical VDW equation
of state (1) in a region of thermodynamical parameters
where quantum statistics can be neglected.

(iii) The entropy should be a non-negative quantity and go
to zero at T → 0.

The pressure of the ideal quantum gas in the GCE reads

pid(T ,μ) = d

3

∫
d3k

(2π )3

k2

√
m2 + k2

×
[

exp

(√
m2 + k2 − μ

T

)
+ η

]−1

. (12)
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In Eq. (12), η equals +1 for Fermi statistics, −1 for Bose
statistics, and 0 for the Boltzmann approximation. All other
thermodynamical functions can be calculated from Eqs. (2).
Ideal quantum gas expressions for thermodynamical functions
satisfy the third law of thermodynamics, i.e., s � 0 and s → 0
at T → 0.

Let us now formulate a generalization of the VDW equation
of state which includes the effects of the quantum statistics.
Note that p(T ,μ) for the Boltzmann case can be rewritten
using Eq. (3) as

p(T ,μ) = pid(T ,μ∗) − an2, (13)

where

μ∗ = μ − bp(T ,μ) − abn2 + 2an. (14)

The function pid in Eq. (13) corresponds to the ideal gas
pressure in the Boltzmann approximation, i.e., η = 0 in Eq.
(12). We suggest the quantum VDW equation of state in the
same form as Eq. (13) but with ideal quantum gas pressure
pid, i.e., for the quantum case we propose to take η = ±1 in
Eq. (12), which corresponds to the Fermi or Bose statistics.

In accordance with Eq. (2), one has the following for the
particle number density:

n(T ,μ) ≡
(

∂p

∂μ

)
T

= nid(T ,μ∗) (1 − bn)

(
1 + 2a

∂n

∂μ

)
− 2an

∂n

∂μ
. (15)

This equation can be transformed to

[nid(T ,μ∗) (1 − bn) − n]

(
1 + 2a

∂n

∂μ

)
= 0. (16)

The solution of this equation, which has a physical meaning,
reads

n(T ,μ) = nid(T ,μ∗)

1 + bnid(T ,μ∗)
, (17)

nid(T ,μ) = d

2π2

∫ ∞

0
dkk2

[
exp

(√
m2 + k2 − μ

T

)
+ η

]−1

,

and it has the same form as Eq. (3). However, a principal
difference is that nid in Eq. (17) is the particle number density
of the ideal quantum gas, whereas nid in Eq. (3) corresponds
to the ideal classical gas, i.e., η = 0, and is given by Eq. (4).
We also note that, in the quantum case, expression (14) for the
shifted chemical potential μ∗ should be used instead of Eq. (3).

Equations (13) and (17) correspond to the system of two
equations for two unknown functions: p(T ,μ) and n(T ,μ).
The VDW model defined by these equations possesses all the
required properties. First, at a = b = 0 Eqs. (13) and (17) are
reduced to the ideal quantum gas expressions. Second, for
those T and μ∗ values, where quantum expressions for pid

and nid can be approximated by the Boltzmann statistics, i.e.,
by Eq. (4) for nid and pid = T nid for the ideal gas pressure,
Eqs. (13) and (17) become automatically equivalent to the
classical VDW equation of state (1). Third, the entropy density

has the following form:

s(T ,μ) ≡
(

∂p

∂T

)
μ

= s id(T ,μ∗)

1 + b nid(T ,μ∗)
; (18)

thus, it is always positive for the quantum ideal gas expressions
of s id, and s → 0 at T → 0.

The energy density can be calculated from Eq. (2) as

ε(T ,μ) = [εid(T ,μ∗) − an]n, (19)

where εid(T ,μ) is the average energy per particle in the ideal
gas,

εid(T ,μ) = εid(T ,μ)

nid(T ,μ)
. (20)

One can rewrite the VDW pressure as a function of
temperature T and particle density n. It follows from Eq. (17)
that μ∗ can be written as a function of T and n,

μ∗(n,T ) = μid
( n

1 − bn
,T

)
, (21)

where μid(n,T ) is the chemical potential of the ideal quantum
gas, which is a solution of the following transcendental
equation for the given n and T :

n = d

2π2

∫ ∞

0
dkk2

[
exp

(√
m2 + k2 − μid

T

)
+ η

]−1

. (22)

Equation (13) can be then rewritten as

p = pid
[
T ,μid

( n

1 − bn
,T

)]
− an2. (23)

One can easily check that this equation coincides with
Eq. (1) in the case of the Boltzmann statistics and, thus,
can be indeed regarded as a quantum generalization of
the classical VDW equation in the CE. It can be also
instructive to consider a formulation of the VDW equation
with quantum statistics within the thermodynamic mean-field
approach developed in Refs. [6–8]. This is presented in
Appendix B.

IV. NUCLEAR MATTER

In this section the VDW equation of state with quantum
statistics is used to describe the properties of symmetric
nuclear matter. Namely, a Fermi gas of nucleons (m ∼=
938 MeV and d = 4) is considered with attractive and repul-
sive interactions described by the a and b VDW parameters,
respectively. A study of nuclear matter has a long history.
The thermodynamics of nuclear matter and its applications to
the production of nuclear fragments in heavy ion collisions
were considered in Refs. [9–13] in the 1980s. A review
of these early developments can be found in Ref. [14].
Nowadays, the properties of nuclear matter are described by
many different models, particularly by those that employ a self-
consistent mean-field approach [15–19]. Excluded-volume
corrections in the mean-field models have been considered
in Refs. [4,7,20]. Experimentally, a presence of the liquid-
gas phase transition in nuclear matter was first reported in
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Refs. [21–23] by indirect observations. The first direct mea-
surements of the nuclear caloric curve were done by the
ALADIN Collaboration [24] and later followed by other
experiments [25,26].

Our consideration is restricted to small temperatures, T �
30 MeV; thus, pion production is neglected. In the present
work, we also neglect the possible formation of nucleon
clusters (i.e., ordinary nuclei) and baryonic resonances (like
N∗ and �), which may be important at low and high
baryonic density, respectively. Within these approximations,
the number of nucleons N becomes a conserved number and

an independent variable in the CE. The chemical potential μ
of the GCE regulates the number density of nucleons.

A. Properties at T = 0

For calculations of the thermodynamic functions in the
GCE, Eqs. (13), (17), (18), and (19) are used. In terms of
variable μ∗ (13), thermodynamical functions of the quantum
VDW gas can be presented in terms of the corresponding
functions of the ideal quantum gas as the following:

n(T ,μ) = nid(T ,μ∗)

1 + bnid(T ,μ∗)
, p(T ,μ) = pid(T ,μ∗) − a

[
nid(T ,μ∗)

1 + bnid(T ,μ∗)

]2

, (24)

ε(T ,μ) = εid(T ,μ∗)

1 + bnid(T ,μ∗)
− a

[
nid(T ,μ∗)

1 + bnid(T ,μ∗)

]2

, s(T ,μ) = s id(T ,μ∗)

1 + bnid(T ,μ∗)
. (25)

At zero temperature the ideal gas quantities in Eqs. (24) and (25) can be written as

nid(T = 0,μ∗) = d

2π2

∫ √
μ∗2−m2

0
dkk2 = d

6π2
(μ∗2 − m2)3/2, (26)

pid(T = 0,μ∗) = d

6π2

∫ √
μ∗2−m2

0
dk

k4

√
k2 + m2

= d

48π2
μ∗√μ∗2 − m2(2μ∗2 − 5m2) − d

16π2
m4 ln

m

μ∗ +
√

μ∗2 − m2
, (27)

εid(T = 0,μ∗) = d

2π2

∫ √
μ∗2−m2

0
dkk2

√
k2 + m2 = d

16π2
μ∗√μ∗2 − m2(2μ∗2 − m2) + d

16π2
m4 ln

m

μ∗ +
√

μ∗2 − m2
, (28)

s id(T = 0,μ∗) = lim
T →0

εid(T ,μ∗) + pid(T ,μ∗) − μ∗nid(T ,μ∗)

T
= 0. (29)

We fix parameters a and b in such a way to reproduce the
properties of nuclear matter in its ground state (see, e.g., Ref.
[27]), i.e., it should be p = 0 and ε/n = m + EB

∼= 922 MeV
at T = 0 and n = n0

∼= 0.16 fm−3. Here EB
∼= −16 MeV

is the binding energy per nucleon. One then finds a ∼=
329 MeV fm3 and b ∼= 3.42 fm3. Note that parameter b of
the proper particle volume can be expressed in terms of the
hard-core radius r as b = 16πr3/3. This gives r ∼= 0.59 fm
for the hard-core nucleon radius.

The pressure p and binding energy EB as functions of
nucleon density n at T = 0 are shown in Figs. 1(a) and 1(b),
respectively. The stable VDW isotherms are depicted in Fig. 1
by solid lines, while the metastable and unstable parts are
depicted by dash-dotted and dotted lines, respectively. At very
small densities a gaseous phase with almost ideal gas behavior
is always present. At T = 0 this phase, seen more clearly in
Fig. 2, can, however, exist as a metastable state only.

Note that at any T > 0 the chemical potential has a well-
defined limiting behavior μ → −∞ at n → 0. At T = 0 the
situation is different: at n = 0 the chemical potential may have
any value smaller than the particle mass. The mixed gas-liquid
phase at T = 0 is depicted by the horizontal lines in Figs.
1(a) and 1(b). The two coexisting phases at T = 0 are the
liquid phase, with n = 0.16 fm−3, p = 0, and μ = 922 MeV,
and the gaseous phase, with n = 0, p = 0 and μ = 922 MeV.

This corresponds to the Gibbs conditions of phase equilibrium,
i.e., equal temperatures, pressures, and chemical potentials for
coexisting phases. The stable gaseous phase at T = 0 is, in
fact, a vacuum with n = 0.

B. Phase diagram

The VDW pressure isotherms are depicted in (T ,v) and
(T ,n) coordinates (v ≡ 1/n) in Figs. 3(a) and 3(b), re-
spectively. They are calculated within the quantum VDW
equation of state using Eq. (23) with a ∼= 329 MeV fm3

and b ∼= 3.42 fm3. The critical temperature is found to be
Tc

∼= 19.7 MeV. The value of the critical temperature in our
model is close to the experimental estimates in Refs. [25,26].
At T < Tc two phases appear: the gas and the liquid phases
separated by a first-order phase transition. The mixed phase
region is obtained from the Maxwell construction of equal
areas for p(v) isotherms (see Appendix A), and it is depicted
by horizontal lines in Fig. 3(a) and by the shaded gray area in
Fig. 3(b). The nucleon number density at the critical point is
found to be nc

∼= 0.07 fm−3 ∼= 0.4 n0. Normal nuclear matter
with n = n0

∼= 0.16 fm−3 and T = 0 corresponds to a point
placed exactly on the boundary between the mixed and the
liquid phases. Note also that the maximal value of the nucleon
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FIG. 1. Dependence of the pressure p (a) and the binding energy EB (b) on the nucleon density n at T = 0. The VDW parameters are
a ∼= 329 MeV fm3 and b ∼= 3.42 fm3 (r ∼= 0.59 fm). The open circle corresponds to the ground state of nuclear matter. The dash-dotted line
corresponds to the metastable part of the VDW isotherm, whereas the dotted line corresponds to the unstable part.

FIG. 2. The same as in Fig. 1, but for small values of n.

FIG. 3. (Color online) Pressure isotherms in (a) (p,v) and (b) (p,n) coordinates, calculated in the quantum VDW equation of state with
parameters a ∼= 329 MeV fm3 and b ∼= 3.42 fm3 (r ∼= 0.59 fm). The dashed-dotted lines present the metastable parts of the VDW isotherms
at T < Tc, whereas the dotted lines correspond to the unstable parts. The full circle on the T = Tc isotherm corresponds to the critical point,
while the open circle at T = 0 in panel (b) shows the ground state of the nuclear matter. The shaded gray area in panel (b) depicts the mixed
phase region obtained from the Maxwell construction of equal areas for p(v) isotherms in panel (a).
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FIG. 4. (Color online) Density of the symmetric nuclear matter in
(T ,μ) coordinates, calculated in the quantum VDW equation of state
with parameters a ∼= 329 MeV fm3 and b ∼= 3.42 fm3 (r ∼= 0.59 fm).
The open circle denotes the ground state of the nuclear matter,
the solid circle corresponds to the critical endpoint, and the phase
transition curve is depicted by the solid black line.

number density in the VDW model is nmax = 1/b, which is
equal to nmax

∼= 0.29 fm−3 for the chosen value of parameter b.
In the mixed phase region, the particle number density is

given by

n = ξng + (1 − ξ )nl, (30)

where ξ and 1 − ξ are the volume fractions of the gaseous and
liquid components, respectively. The values of ng and nl in
Eq. (30) are the particle densities of, respectively, the gaseous
and the liquid phases at the corresponding boundaries with the
mixed phase. A behavior of the mixed phase at T = 0 is rather
special. The stable gaseous phase is absent at T = 0, i.e., ng =
0 at the mixed phase boundary because this boundary starts
from the point T = 0 and n = 0. Therefore, only a metastable
gaseous phase at small densities can exist at T = 0 as depicted
in Fig. 2. The stable gaseous phase exists however at any T > 0
for small enough values of the particle number density, smaller
than the ng density of the gaseous phase in the mixed phase
region resulting from the Maxwell construction.

Parameters of the critical point found in the VDW case with
Fermi statistics for nucleons differ significantly from those val-
ues for the classical VDW gas. With the same VDW parameters
a and b as in the Fermi statistics, the classical VDW equation
(1), i.e., with Boltzmann statistics, would give Tc = 8a/27b ∼=
28.5 MeV and nc = 1/3b ∼= 0.10 fm−3. This further indicates
an importance of the effects of quantum statistics: these effects
are not only crucial in the limit T → 0 but also remain
quantitatively important even near the critical point.

In Fig. 4 the phase diagram of the symmetric nuclear
matter in (T ,μ) coordinates is depicted. The nucleon density at
different temperature T and chemical potential μ is presented.
At T < Tc there is the T -μ region with three different solutions
for p(T ,μ) at given T and μ. According to the Gibbs
criterion, the solution with the largest pressure survives (see
Appendix A), and only this solution for n(T ,μ) is depicted in
Fig. 4. The location of the critical point is shown in Fig. 4 by the
solid circle, while the normal nuclear matter state corresponds

to the open circle. Note that μ0
∼= 922 MeV corresponds to the

chemical potential of the normal nuclear matter that is placed
on a boundary with the liquid phase. The values μ < μ0 are
forbidden at T = 0 (these values of μ lead formally to n = 0).
The values μ > μ0 at T = 0 are possible and correspond to
the nuclear liquid.

The phase transition line, μ = μmix(T ), shown in Fig. 4,
starts from the normal nuclear matter state with T = 0 and μ ∼=
922 MeV and ends at the critical point with Tc

∼= 19.7 MeV
and μmix(Tc) ∼= 908 MeV. This line presents the whole mixed
phase region shown by the gray area in Fig. 3. At each
T < Tc, two solutions, ng(T ,μ) and nl(T ,μ), with different
particle densities, ng(T ,μ) < nl(T ,μ), and equal pressures,
pg(T ,μ) = pl(T ,μ), exist at the phase transition line μ =
μc(T ). On this line, the discontinuities of the thermodynamical
quantities n, ε, and s take place.

At T > Tc there is only one solution n(T ,μ) for any T
and μ values; i.e., there are no distinct gaseous or liquid
phases. Nevertheless, as seen from Fig. 3, very rapid, although
continuous, changes of the particle number density take place
in a narrow T -μ region even at T > Tc. This is a manifestation
of the so-called smooth crossover phenomenon.

At any T > 0, there are no restrictions on possible values
of the chemical potential; i.e., any values of μ between −∞
and +∞ are possible. When μ decreases the particle number
density decreases too and goes to zero at μ → −∞. At
very small n, both the particle interactions and the Fermi
statistics effects become negligible. The system of nucleons
behaves then as the ideal Boltzmann gas. In an opposite limit,
μ → ∞, nucleon density n(T ,μ) goes to its upper limiting
value 1/b. The VDW pressure behaves then approximately
as p ∼= nT/(1 − bn) and goes to infinity. Different theoretical
models and their comparison with experimental estimates of
the nuclear matter properties have been widely discussed in the
literature (see, e.g., Refs. [28–30]). In the present paper we do
not attempt to make any detailed comparison of the developed
VDW quantum model with existing data for nuclear matter.
Some extensions of the model will probably be needed. These
questions are, however, beyond the scope of the present paper.

V. SUMMARY

In the present paper we have formulated a generalization
of the VDW equation of state to include effects of quantum
statistics. In the grand canonical ensemble a system of two
transcendental equations for the pressure and particle density
is obtained. These equations can be solved for all possible
values of temperature, T � 0, and chemical potential, −∞ <
μ < ∞. Our quantum generalization of the VDW equation
satisfies all basic requirements: it reduces to the ideal Fermi or
Bose gas for a = b = 0 and to the classical VDW equation
in the Boltzmann limit, and it satisfies the third law of
thermodynamics, i.e., s → 0 as T → 0. Note that at T > 0
the chemical potential has the well-defined limiting behavior
μ → −∞ at n → 0. This is implicitly used to derive the
Maxwell rule of equal areas from Gibbs conditions of phase
equilibrium for VDW isotherms (see Appendix A). For a
Fermi gas at T = 0 the situation is different: at n = 0 the
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FIG. 5. The generic VDW isotherm p(v,T ) for T < Tc. Points l and g on the isotherm correspond to the boundaries of the mixed phase. In
panel (a) point 1 (2) on the isotherm corresponds to the maximum (minimum) value of the chemical potential inside the mixed phase, which is
reached at the boundary between the metastable and unstable phases, while point 1′ (2′) corresponds to the same value of the chemical potential
reached in the pure liquid (gaseous) phase. In panel (b) points a1 (gaseous phase), a2 (metastable liquid phase), and a3 (unstable phase), which
all correspond to the same value of the chemical potential, are depicted on the VDW isotherm.

chemical potential may have any value smaller than particle
mass, μ < m.

The VDW equation with Fermi statistics has then been
applied to a system of interacting nucleons to describe the
properties of symmetric nuclear matter. The VDW parameters
a and b of interacting nucleons are fixed by the properties
of the nuclear matter ground state: T = 0,p = 0, n = n0 =
0.16 fm−3, and EB = −16 MeV. We find a ∼= 329 MeV fm3

and b ∼= 3.42 fm3. With these parameters the VDW model
predicts a first-order liquid-gas phase transition with a critical
endpoint located at Tc

∼= 19.7 MeV and nc
∼= 0.07 fm−3.

Extensions of the presented formulation as well as new
physical applications will be the subject of further studies.
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APPENDIX A: GIBBS CRITERIA AND MAXWELL
CONSTRUCTION

A statistical system in the GCE is defined by two indepen-
dent variables, T and μ. Two distinct phases, gas and liquid,
coexist if their pressures are equal, pg(T ,μ) = pl(T ,μ). In
the case of pg(T ,μ) 
= pl(T ,μ), only a phase with a larger
pressure survives. These statements are known as the Gibbs
criteria for the the first-order phase transition (see, e.g.,
Refs. [1,2]). We now prove that the Gibbs criteria are
equivalent to the Maxwell construction of equal areas for the
VDW equation of state.

At T < Tc, the Maxwell construction replaces a part of the
VDW isotherm p = p(v,T ) by the horizontal line p = pmix,

which corresponds to the mixed phase region for all v in the
interval [vl,vg]. This is shown in Fig. 5. The Maxwell equal
areas are∫ v0

vl

dv [pmix − p(v,T )] =
∫ vg

v0

dv [p(v,T ) − pmix], (A1)

where vl < v0 < vg and p(v0,T ) = pmix. The replaced parts
of the isotherm are interpreted as metastable (∂p/∂v < 0) and
unstable (∂p/∂v > 0) states. They are shown in Fig. 5 by the
dashed-dotted and dotted lines, respectively.

Using the thermodynamical identity(
∂μ

∂p

)
T

= v, (A2)

one can present the chemical potential μA at any point A on
the isotherm as

μA = μB +
∫ pA

pB

dp′v(p′,T ), (A3)

where B is an arbitrary point on the isotherm, and integration
in Eq. (A3) is performed along the path from point B to point
A on the isotherm.

With Eqs. (A1) and (A3) one can easily prove that

μ(vl,T ) = μ(vg,T ) ≡ μmix; (A4)

thus, the Maxwell and Gibbs constructions for the mixed phase
are equivalent.

According to Eq. (A3) the chemical potential decreases
with v if (∂p/∂v)T < 0, and it increases if (∂p/∂v)T > 0.
Therefore, inside the mixed phase region [vl,vg] the chemical
potential reaches its minimal value μ = μ2 < μmix at v = v2

and its maximal value μ = μ1 > μmix at v = v1. The points
v1 and v2, where (∂p/∂v)T = 0, correspond to the boundaries
between the metastable and unstable parts of the VDW
isotherm. At v < vl and v > vg the chemical potential is
a monotonously decreasing function of v, with μ → ∞ at
v → b and μ → −∞ at v → ∞. Therefore, there is a point
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v′
2 > vg in the gaseous phase where μ = μ2 and a point

v′
1 < vl in the liquid phase where μ = μ1. These two points

are depicted in Fig. 5(a). At both μ > μ1 and μ < μ2 the
GCE VDW pressure p(T ,μ) is a unique function. On the other
hand, there are three different solutions for the VDW pressure
at μ2 < μ < μ1.

Let us first consider μ2 < μa < μmix. There are three
points on the VDW isotherm with μ = μa shown in Fig. 5(b):
point a1 in the gaseous phase with vg < va

1 < v′
2, point a2 in

the metastable liquid phase with vl < va
2 < v2, and point a3

in the unstable phase with v2 < va
3 < v1. Using Eq. (A3) one

finds that∫ pmix

pa
1

dp′v(p′,T ) =
∫ pmix

pa
2

dp′v(p′,T )

=
∫ pmix

p2

dp′v(p′,T ) −
∫ pa

3

p2

dp′v(p′,T ).

(A5)

Applying the mean value theorem to integrals in Eq. (A5) one
obtains(

pmix − pa
1

)
v1 =(

pmix − pa
2

)
v2

=(pmix − p2) v31 − (
p2 − pa

3

)
v32, (A6)

where vl < v2 < va
2 , vg < v1 < va

1 , vl < v31 < v2 < v32 <
va

3 , and p2 = p(v2,T ). It follows from Eq. (A6) that pa
1 > pa

2
and pa

1 > pa
3 ; i.e., at μ2 < μ < μmix the gaseous phase should

be realized according to the Gibbs criteria as its pressure is
larger than the pressures of both metastable and unstable states.

The same arguments are applied to μmix < μ < μ1 and
show that the liquid pressure is then larger than the pressures
of both metastable and unstable states. Therefore, for the
VDW equation of state the Maxwell construction of the equal
areas and the Gibbs criteria are fully equivalent. The Maxwell
construction is applied in the CE, whereas the Gibbs criteria
are used in the GCE. We emphasize that this statement is
valid not only for the classical VDW equation of state but also
for the VDW equation with Fermi statistics with isotherms
depicted in Fig. 3.

APPENDIX B: THERMODYNAMIC MEAN-FIELD
APPROACH

In the framework of the thermodynamic mean-field (TMF)
approach [6–8] the pressure and particle number density are

presented as

p(T ,μ) = pid[T ,μid(n,T )] + P ex(n,T ), (B1)

n(T ,μ) = nid[T ,μ − U (n,T )], (B2)

where P ex(n,T ) and U (n,T ) are, respectively, the excess
pressure and the thermodynamic mean field. The presence of
nonzero quantities P ex(n,T ) and U (n,T ) in Eqs. (B1) and (B2)
corresponds to interaction between particles, and the condition
of thermodynamic consistency reads [8]

n
∂U

∂n
= ∂P ex

∂n
. (B3)

For a specific choice of P ex(n,T ) and U (n,T ) functions, one
proceeds by solving Eq. (B2) for n = n(T ,μ), and then the
pressure p(T ,μ) can be obtained from Eq. (B1) (see some
examples in Ref. [8]).

The VDW equation of state with quantum statistics defined
by Eqs. (13) and (17) can be rewritten in the TMF form (B1)
and (B2). In order to determine P ex(n,T ) and U (n,T ) we
rewrite Eq. (23) for the VDW pressure as

p =pid[T ,μid(n,T )] + pid

[
T ,μid

(
n

1 − bn
,T

)]

− pid[T ,μid(n,T )] − an2. (B4)

Comparing Eqs. (B1) and (B4) one finds

P ex
VdW(n,T ) =pid

[
T ,μid

(
n

1 − bn
,T

)]

− pid[T ,μid(n,T )] − an2. (B5)

The mean field UVdW(n,T ) can be then calculated from
Eq. (B3) as

UVdW(n,T ) =
∫ n

0

1

n′
∂P ex

VdW(n′,T )

∂n′ dn′. (B6)

For the Boltzmann statistics, Eqs. (B5) and (B6) are simplified
to the following analytical expressions:

P ex
VdW(n,T ) = T n

bn

1 − bn
− an2, (B7)

UVdW(n,T ) = T
bn

1 − bn
− T ln(1 − bn) − 2an. (B8)
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