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Nuclear scissors modes are considered in the frame of the Wigner-function moments method generalized
to take into account spin degrees of freedom and pair correlations simultaneously. A new source of nuclear
magnetism, connected with counter rotation of spins up and down around the symmetry axis (hidden angular
momenta), is discovered. Its inclusion into the theory allows one to improve substantially the agreement with
experimental data in the description of energies and transition probabilities of scissors modes in rare-earth nuclei.
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I. INTRODUCTION

The nuclear scissors mode was predicted [1–4] as a counter-
rotation of protons against neutrons in deformed nuclei.
However, its collectivity turned out to be small. From random-
phase approximation (RPA) results which were in qualitative
agreement with experiment, it was even questioned whether
this mode is collective at all [5,6]. Purely phenomenological
models (such as, e.g., the two-rotors model [7]) and the sum
rule approach [8] did not clear up the situation in this respect.
Finally, in a recent review [9] it was concluded that the scissors
mode is “weakly collective, but strong on the single-particle
scale” and further: “The weakly collective scissors mode
excitation has become an ideal test of models—especially
microscopic models—of nuclear vibrations. Most models
are usually calibrated to reproduce properties of strongly
collective excitations (e.g., of Jπ = 2+ or 3− states, giant
resonances, . . . ). Weakly collective phenomena, however,
force the models to make genuine predictions and the fact
that the transitions in question are strong on the single-particle
scale makes it impossible to dismiss failures as a mere detail,
especially in the light of the overwhelming experimental
evidence for them in many nuclei [10,11].”

The Wigner-function moments (WFM) or phase-space
moments method turns out to be very useful in this situation.
On the one hand it is a purely microscopic method, because it is
based on the time-dependent Hartree–Fock (TDHF) equation.
On the other hand the method works with average values
(moments) of operators which have a direct relation to the
considered phenomenon and, thus, make a natural bridge with
the macroscopic description. This makes it an ideal instrument
to describe the basic characteristics (energies and excitation
probabilities) of collective excitations such as, in particular,
the scissors mode.

Further developments of the WFM method, namely, the
switch from TDHF to TDHF-Bogoliubov (TDHFB) equa-
tions, i.e., taking into account pair correlations, allowed us
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to improve considerably the quantitative description of the
scissors mode [12,13]: for rare-earth nuclei the energies
were reproduced with ∼10% accuracy and B(M1) values
were reduced by about a factor of two with respect to their
nonsuperfluid values. However, they remained about two times
too high with respect to experiment. We have suspected, that
the reason of this last discrepancy is hidden in the spin degrees
of freedom, which were so far ignored by the WFM method.

In a recent paper [14] the WFM method was applied for
the first time to solve the TDHF equations including spin
dynamics. As a first step, only the spin-orbit interaction was
included in the consideration, as the most important one among
all possible spin-dependent interactions because it enters into
the mean field. The most remarkable result was the discovery of
a new type of nuclear collective motion: rotational oscillations
of “spin-up” nucleons with respect to “spin-down” nucleons
(the spin scissors mode). It turns out that the experimentally
observed group of peaks in the energy interval of 2–4 MeV
corresponds very likely to two different types of motion: the
orbital scissors mode and this new kind of mode, i.e., the spin
scissors mode. The pictorial view of these two intermingled
scissors is shown on Fig. 1, which is just the modification (or
generalization) of the classical picture for the orbital scissors
(see, for example, Refs. [7,9]).

The next step was done in the paper [15], where the
influence of the spin-spin interaction on the scissors modes
was studied. There was hope that, due to spin-dependent
interactions, some part of the force of M1 transitions will be
shifted to the energy region of 5–10 MeV (the area of a spin-flip
resonance), decreasing in such a way the M1 force of scissors.
However, these expectations were not realized. It turned out
that the spin-spin interaction does not change the general
picture of the positions of excitations described in Ref. [14]
pushing all levels up proportionally to its strength without
changing their order. The most interesting result concerns
the B(M1) values of both scissors—the spin-spin interaction
strongly redistributes M1 strength in favor of the spin scissors
mode practically without changing their summed strength.

In the present work we suggest a generalization of the
WFM method which takes into account spin degrees of
freedom and pair correlations simultaneously. According to
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FIG. 1. (Color online) Pictorial representation of two intermin-
gled scissors: the orbital (neutrons versus protons) scissors + spin
(spin-up nucleons versus spin-down nucleons) scissors. Arrows inside
ellipses show the direction of spin projections; p corresponds to
protons; n corresponds to neutrons.

our previous calculations these two factors, working together,
should improve considerably the agreement between the
theory and experiment in the description of nuclear scissors
modes.

The paper is organized as follows: In Sec. II the TDHFB
equations for the 2×2 normal and anomalous density matrices
are formulated and their Wigner transform is found. In Sec. III
the model Hamiltonian and the mean field are analyzed. In

Sec. IV the collective variables are defined and the respective
dynamical equations are derived. In Sec. V the choice of
parameters and the results of calculations of energies and
B(M1) values of two scissors modes are discussed. The
phenomenon of counter-rotating angular momenta with spin
up and spin down, which can be considered also as a
phenomenon of hidden angular momenta, is analyzed in
Sec. VI. Results of calculations for 26 nuclei in the rare-earth
region are discussed in Sec. VII. The summary of the main
results is given in the conclusion section. The mathematical
details are concentrated in Appendixes A–D.

II. WIGNER TRANSFORMATION OF TIME-DEPENDENT
HARTREE–FOCK–BOGOLIUBOV EQUATIONS

The time-dependent Hartree–Fock–Bogoliubov (TDHFB)
equations in matrix formulation are [16,17]

i�Ṙ = [H,R], (1)

with

R =
(

ρ̂ −κ̂

−κ̂† 1 − ρ̂∗

)
, H =

(
ĥ �̂

�̂† −ĥ∗

)
. (2)

The normal density matrix ρ̂ and Hamiltonian ĥ are Hermitian
whereas the abnormal density κ̂ and the pairing gap �̂ are
skew symmetric: κ̂† = −κ̂∗, �̂† = −�̂∗.

The detailed form of the TDHFB equations is

i� ˙̂ρ = ĥρ̂ − ρ̂ĥ − �̂κ̂† + κ̂�̂†,

−i� ˙̂ρ∗ = ĥ∗ρ̂∗ − ρ̂∗ĥ∗ − �̂†κ̂ + κ̂†�̂,

−i� ˙̂κ = −ĥκ̂ − κ̂ ĥ∗ + �̂ − �̂ρ̂∗ − ρ̂�̂,

−i� ˙̂κ† = ĥ∗κ̂† + κ̂†ĥ − �̂† + �̂†ρ̂ + ρ̂∗�̂†. (3)

It is easy to see that the second and fourth equations are
complex conjugate to the first and third equations, respectively.
Let us consider their matrix form in coordinate space keeping
all spin indices s,s ′,s ′′:

i�〈r,s| ˙̂ρ|r′′,s ′′〉 =
∑
s ′

∫
d3r ′(〈r,s|ĥ|r′,s ′〉〈r′,s ′|ρ̂|r′′,s ′′〉 − 〈r,s|ρ̂|r′,s ′〉〈r′,s ′|ĥ|r′′,s ′′〉

− 〈r,s|�̂|r′,s ′〉〈r′,s ′|κ̂†|r′′,s ′′〉 + 〈r,s|κ̂|r′,s ′〉〈r′,s ′|�̂†|r′′,s ′′〉),
i�〈r,s| ˙̂κ|r′′,s ′′〉 = −〈r,s|�̂|r′′,s ′′〉 +

∑
s ′

∫
d3r ′(〈r,s|ĥ|r′,s ′〉〈r′,s ′|κ̂|r′′,s ′′〉 + 〈r,s|κ̂|r′,s ′〉〈r′,s ′|ĥ∗|r′′,s ′′〉

+ 〈r,s|�̂|r′,s ′〉〈r′,s ′|ρ̂∗|r′′,s ′′〉 + 〈r,s|ρ̂|r′,s ′〉〈r′,s ′|�̂|r′′,s ′′〉),
i�〈r,s| ˙̂ρ∗|r′′,s ′′〉 =

∑
s ′

∫
d3r ′(−〈r,s|ĥ∗|r′,s ′〉〈r′,s ′|ρ̂∗|r′′,s ′′〉 + 〈r,s|ρ̂∗|r′,s ′〉〈r′,s ′|ĥ∗|r′′,s ′′〉

+ 〈r,s|�̂†|r′,s ′〉〈r′,s ′|κ̂|r′′,s ′′〉 − 〈r,s|κ̂†|r′,s ′〉〈r′,s ′|�̂|r′′,s ′′〉),
i�〈r,s| ˙̂κ†|r′′,s ′′〉 = 〈r,s|�̂†|r′′,s ′′〉 +

∑
s ′

∫
d3r ′(−〈r,s|ĥ∗|r′,s ′〉〈r′,s ′|κ̂†|r′′,s ′′〉 − 〈r,s|κ̂†|r′,s ′〉〈r′,s ′|ĥ|r′′,s ′′〉

− 〈r,s|�̂†|r′,s ′〉〈r′,s ′|ρ̂|r′′,s ′′〉 − 〈r,s|ρ̂∗|r′,s ′〉〈r′,s ′|�̂†|r′′,s ′′〉). (4)
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We do not specify the isospin indices in order to make formulas more transparent. They will be re-introduced at the end. Let us
introduce the more compact notation 〈r,s|X̂|r′,s ′〉 = Xss ′

rr ′ . Then the set of TDHFB equations (4) with specified spin indices reads

i�ρ̇
↑↑
rr ′′ =

∫
d3r ′(h↑↑

rr ′ρ
↑↑
r ′r ′′ − ρ

↑↑
rr ′ h

↑↑
r ′r ′′ + ĥ

↑↓
rr ′ρ

↓↑
r ′r ′′ − ρ

↑↓
rr ′ h

↓↑
r ′r ′′ − �

↑↓
rr ′κ

†↓↑
r ′r ′′ + κ

↑↓
rr ′ �

†↓↑
r ′r ′′ ),

i�ρ̇
↑↓
rr ′′ =

∫
d3r ′(h↑↑

rr ′ρ
↑↓
r ′r ′′ − ρ

↑↑
rr ′ h

↑↓
r ′r ′′ + ĥ

↑↓
rr ′ρ

↓↓
r ′r ′′ − ρ

↑↓
rr ′ h

↓↓
r ′r ′′ ),

i�ρ̇
↓↑
rr ′′ =

∫
d3r ′(h↓↑

rr ′ρ
↑↑
r ′r ′′ − ρ

↓↑
rr ′ h

↑↑
r ′r ′′ + ĥ

↓↓
rr ′ρ

↓↑
r ′r ′′ − ρ

↓↓
rr ′ h

↓↑
r ′r ′′ ),

i�ρ̇
↓↓
rr ′′ =

∫
d3r ′(h↓↑

rr ′ρ
↑↓
r ′r ′′ − ρ

↓↑
rr ′ h

↑↓
r ′r ′′ + ĥ

↓↓
rr ′ρ

↓↓
r ′r ′′ − ρ

↓↓
rr ′ h

↓↓
r ′r ′′ − �

↓↑
rr ′κ

†↑↓
r ′r ′′ + κ

↓↑
rr ′ �

†↑↓
r ′r ′′ ),

i�κ̇
↑↓
rr ′′ = −�̂

↑↓
rr ′′ +

∫
d3r ′(h↑↑

rr ′κ
↑↓
r ′r ′′ + κ

↑↓
rr ′ h

∗↓↓
r ′r ′′ + �

↑↓
rr ′ρ

∗↓↓
r ′r ′′ + ρ

↑↑
rr ′ �

↑↓
r ′r ′′ ),

i�κ̇
↓↑
rr ′′ = −�̂

↓↑
rr ′′ +

∫
d3r ′(h↓↓

rr ′κ
↓↑
r ′r ′′ + κ

↓↑
rr ′ h

∗↑↑
r ′r ′′ + �

↓↑
rr ′ρ

∗↑↑
r ′r ′′ + ρ

↓↓
rr ′ �

↓↑
r ′r ′′ ). (5)

This set of equations must be complemented by the complex conjugated equations. Writing these equations, we neglected the
diagonal matrix elements in spin, κss

rr ′ and �ss
rr ′ . It is shown in Appendix A that such an approximation works very well in the

case of the monopole pairing considered here.
We work with the Wigner transform [17] of equations (5). The relevant mathematical details can be found in Ref. [12]. The

most essential relations are outlined in Appendix B. Let us recall of some essential details of the Wigner transform of equations (5)
with the example of the first of these equations. Its left-hand side is transformed with the help of formula (B1) without any
approximations, i.e., exactly. The right-hand side of this equation contains the products of two matrices which are transformed
with the help of formula (B4), where the exponent represents an infinite series of terms with increasing powers of �. It was shown
in Refs. [12,13] that, after integration of the obtained equation over phase space with second-order weights xixj , xipj , pipj ,
only terms proportional to powers in � less than 2 survive. That is why we will write out only these terms. From now on, we will
not write out the coordinate dependence (r,p) of all functions in order to make the formulas more transparent. We have

i�ḟ ↑↑ = i�{h↑↑,f ↑↑} + h↑↓f ↓↑ − f ↑↓h↓↑ + i�

2
{h↑↓,f ↓↑} − i�

2
{f ↑↓,h↓↑} − �

2

8
{{h↑↓,f ↓↑}} + �

2

8
{{f ↑↓,h↓↑}}

+ κ�∗ − �κ∗ + i�

2
{κ,�∗} − i�

2
{�,κ∗} − �

2

8
{{κ,�∗}} + �

2

8
{{�,κ∗}} + · · · ,

i�ḟ ↓↓ = i�{h↓↓,f ↓↓} + h↓↑f ↑↓ − f ↓↑h↑↓ + i�

2
{h↓↑,f ↑↓} − i�

2
{f ↓↑,h↑↓} − �

2

8
{{h↓↑,f ↑↓}} + �

2

8
{{f ↓↑,h↑↓}}

+ �̄∗κ̄ − κ̄∗�̄ + i�

2
{�̄∗,κ̄} − i�

2
{κ̄∗,�̄} − �

2

8
{{�̄∗,κ̄}} + �

2

8
{{κ̄∗,�̄}} + · · · ,

i�ḟ ↑↓ = f ↑↓(h↑↑ − h↓↓) + i�

2
{(h↑↑ + h↓↓),f ↑↓} − �

2

8
{{(h↑↑ − h↓↓),f ↑↓}} − h↑↓(f ↑↑ − f ↓↓)

+ i�

2
{h↑↓,(f ↑↑ + f ↓↓)} + �

2

8
{{h↑↓,(f ↑↑ − f ↓↓)}} + · · · ,

i�ḟ ↓↑ = f ↓↑(h↓↓ − h↑↑) + i�

2
{(h↓↓ + h↑↑),f ↓↑} − �

2

8
{{(h↓↓ − h↑↑),f ↓↑}}

−h↓↑(f ↓↓ − f ↑↑) + i�

2
{h↓↑,(f ↓↓ + f ↑↑)} + �

2

8
{{h↓↑,(f ↓↓ − f ↑↑)}} + · · · ,

i�κ̇ = κ (h↑↑ + h̄↓↓) + i�

2
{(h↑↑ − h̄↓↓),κ} − �

2

8
{{(h↑↑ + h̄↓↓),κ}}

+� (f ↑↑ + f̄ ↓↓) + i�

2
{(f ↑↑ − f̄ ↓↓),�} − �

2

8
{{(f ↑↑ + f̄ ↓↓),�}} − � + · · · ,

i�κ̇∗ = −κ∗(h↑↑ + h̄↓↓) + i�

2
{(h↑↑ − h̄↓↓),κ∗} + �

2

8
{{(h↑↑ + h̄↓↓),κ∗}}

−�∗(f ↑↑ + f̄ ↓↓) + i�

2
{(f ↑↑ − f̄ ↓↓),�∗} + �

2

8
{{(f ↑↑ + f̄ ↓↓),�∗}} + �∗ + · · · , (6)
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where the functions h, f , �, and κ are the Wigner transforms of ĥ, ρ̂, �̂, and κ̂ , respectively, f̄ (r,p) = f (r, − p), {f,g} is
the Poisson bracket of the functions f (r,p) and g(r,p) and {{f,g}} is their double Poisson bracket. The dots stand for terms
proportional to higher powers of �—after integration over phase space these terms disappear and we arrive to the set of exact
integral equations. This set of equations must be complemented by the dynamical equations for f̄ ↑↑, f̄ ↓↓, f̄ ↑↓, f̄ ↓↑, κ̄, κ̄∗.
They are obtained by the change p → −p in arguments of functions and Poisson brackets. So, in reality we deal with the set of
twelve equations. We introduced the notation κ ≡ κ↑↓ and � ≡ �↑↓. Symmetry properties of matrices κ̂,�̂ and the properties
of their Wigner transforms (see Appendix B) allow one to replace the functions κ↓↑(r,p) and �↓↑(r,p) by the functions κ̄↑↓(r,p)
and �̄↑↓(r,p).

Following the paper [14] we will write above equations in terms of spin-scalar

f + = f ↑↑ + f ↓↓

and spin-vector

f − = f ↑↑ − f ↓↓

functions. Furthermore, it is useful to rewrite the obtained equations in terms of even and odd functions fe = 1
2 (f + f̄ ) and

fo = 1
2 (f − f̄ ) and real and imaginary parts of κ and �: κr = 1

2 (κ + κ∗), κi = 1
2i

(κ − κ∗), �r = 1
2 (� + �∗), �i = 1

2i
(� − �∗).

We have

i�ḟ +
e = i�

2
[{h+

o ,f +
e } + {h+

e ,f +
o } + {h−

o ,f −
e } + {h−

e ,f −
o }] + i�[{h↑↓

o ,f ↓↑
e } + {h↑↓

e ,f ↓↑
o } + {h↓↑

o ,f ↑↓
e } + {h↓↑

e ,f ↑↓
o }]

+ 4i
([

κi
e�

r
e

] − [
κr

e �
i
e

] + [
κi

o�
r
o

] − [
κr

o�
i
o

]) + · · · ,

i�ḟ +
o = i�

2
[{h+

o ,f +
o } + {h+

e ,f +
e } + {h−

o ,f −
o } + {h−

e ,f −
e }] + 2i�

({
κr

e ,�
r
e

} + {
κi

e,�
i
e

} + {
κr

o ,�
r
o

} + {
κi

o,�
i
o

})
+ i�[{h↑↓

o ,f ↓↑
o } + {h↑↓

e ,f ↓↑
e } + {h↓↑

o ,f ↑↓
o } + {h↓↑

e ,f ↑↓
e }] + · · · ,

i�ḟ −
e = 2(h↑↓

e f ↓↑
e + h↑↓

o f ↓↑
o − h↓↑

e f ↑↓
e − h↓↑

o f ↑↓
o ) + 2i�

({
κr

e ,�
r
o

} + {
κi

e,�
i
o

} + {
κr

o ,�
r
e

} + {
κi

o,�
i
e

})
+ i�

2
[{h+

o ,f −
e } + {h+

e ,f −
o } + {h−

o ,f +
e } + {h−

e ,f +
o }]

− �
2

4
[{{h↑↓

e ,f ↓↑
e }} + {{h↑↓

o ,f ↓↑
o }} − {{h↓↑

e ,f ↑↓
e }} − {{h↓↑

o ,f ↑↓
o }}] + · · · ,

i�ḟ −
o = 2(h↑↓

e f ↓↑
o + h↑↓

o f ↓↑
e − h↓↑

e f ↑↓
o − h↓↑

o f ↑↓
e ) + 4i

([
κi

e�
r
o

] − [
κr

e �
i
o

] + [
κi

o�
r
e

] − [
κr

o�
i
e

])
+ i�

2
[{h+

o ,f −
o } + {h+

e ,f −
e } + {h−

o ,f +
o } + {h−

e ,f +
e }]

− �
2

4
[{{h↑↓

e ,f ↓↑
o }} + {{h↑↓

o ,f ↓↑
e }} − {{h↓↑

e ,f ↑↓
o }} − {{h↓↑

o ,f ↑↓
e }}] + · · · ,

i�ḟ ↑↓
e = (h−

e f ↑↓
e + h−

o f ↑↓
o − h↑↓

e f −
e − h↑↓

o f −
o ) + i�

2
[{h↑↓

e ,f +
o } + {h↑↓

o ,f +
e } + {h+

e ,f ↑↓
o } + {h+

o ,f ↑↓
e }]

+ �
2

8
[{{h↑↓

e ,f −
e }} + {{h↑↓

o ,f −
o }} − {{h−

e ,f ↑↓
e }} − {{h−

o ,f ↑↓
o }}] + · · · ,

i�ḟ ↓↑
e = −(h−

e f ↓↑
e + h−

o f ↓↑
o − h↓↑

e f −
e − h↓↑

o f −
o ) + i�

2
[{h↓↑

e ,f +
o } + {h↓↑

o ,f +
e } + {h+

e ,f ↓↑
o } + {h+

o ,f ↓↑
e }]

− �
2

8
[{{h↓↑

e ,f −
e }} + {{h↓↑

o ,f −
o }} − {{h−

e ,f ↓↑
e }} − {{h−

o ,f ↓↑
o }}] + . . . ,

i�ḟ ↑↓
o = (h−

e f ↑↓
o + h−

o f ↑↓
e − h↑↓

e f −
o − h↑↓

o f −
e ) + i�

2
[{h↑↓

e ,f +
e } + {h↑↓

o ,f +
o } + {h+

e ,f ↑↓
e } + {h+

o ,f ↑↓
o }]

+ �
2

8
[{{h↑↓

e ,f −
o }} + {{h↑↓

o ,f −
e }} − {{h−

e ,f ↑↓
o }} − {{h−

o ,f ↑↓
e }}] + · · · ,

i�ḟ ↓↑
o = −(h−

e f ↓↑
o + h−

o f ↓↑
e − h↓↑

e f −
o − h↓↑

o f −
e ) + i�

2
[{h↓↑

e ,f +
e } + {h↓↑

o ,f +
o } + {h+

e ,f ↓↑
e } + {h+

o ,f ↓↑
o }]

− �
2

8
[{{h↓↑

e ,f −
o }} + {{h↓↑

o ,f −
e }} − {{h−

e ,f ↓↑
o }} − {{h−

o ,f ↓↑
e }}] + · · · ,
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i�κ̇ r
e = i

[
h+

e κi
e + h−

o κi
o

] + i�

2

{
h+

o ,κr
e + h−

e ,κr
o

} + i
[
f +

e �i
e + f −

o �i
o

] + i�

2

{
f +

o ,�r
e + f −

e ,�r
o

} − i�i
e + · · · ,

i�κ̇ r
o = i

[
h+

e κi
o + h−

o κi
e

] + i�

2

{
h+

o ,κr
o + h−

e ,κr
e

} + i
[
f +

e �i
o + f −

o �i
e

] + i�

2

{
f +

o ,�r
o + f −

e ,�r
e

} − i�i
o + · · · ,

i�κ̇ i
e = −i

[
h+

e κr
e + h−

o κr
o

] + i�

2

{
h+

o ,κi
e + h−

e ,κi
o

} − i
[
f +

e �r
e + f −

o �r
o

] + i�

2

{
f +

o ,�i
e + f −

e ,�i
o

} + i�r
e + · · · ,

i�κ̇ i
o = −i

[
h+

e κr
o + h−

o κr
e

] + i�

2

{
h+

o ,κi
o + h−

e ,κi
e

} − i
[
f +

e �r
o + f −

o �r
e

] + i�

2

{
f +

o ,�i
o + f −

e ,�i
e

} + i�r
o + · · · . (7)

The following notation is introduced here: h± =h↑↑ ± h↓↓,

[ab]=ab − �
2

8 {{a,b}}, [ab + cd + · · · ]= [ab] + [cd] + · · · ,
{a,b + c,d + · · · } = {a,b} + {c,d} + · · · .

These twelve equations will be solved by the method
of moments in a small-amplitude approximation. To this
end all functions f (r,p,t) and κ(r,p,t) are divided into
an equilibrium part and a deviation (variation): f (r,p,t) =
f (r,p)eq + δf (r,p,t), κ(r,p,t) = κ(r,p)eq + δκ(r,p,t). Then
equations are linearized neglecting quadratic terms.

From general arguments one can expect that the phase of
� [and of κ , since both are linked, according to equation (20)]
is much more relevant than its magnitude, since the former
determines the superfluid velocity. After linearization, the
phase of � (and of κ) is expressed by δ�i (and δκi), while
δ�r (and δκr ) describes oscillations of the magnitude of �
(and of κ). Let us therefore assume that

δκr (r,p) � δκi(r,p). (8)

This assumption was explicitly confirmed in Ref. [18] for
the case of superfluid trapped fermionic atoms, where it was
shown that δ�r is suppressed with respect to δ�i by one order
of �/EF, where EF denotes the Fermi energy.

The assumption (8) allows one to neglect all terms con-
taining the variations δκr and δ�r in the equations (7) after
their linearization. In this case the “small” variations δκr and
δ�r will not affect the dynamics of the “big” variations δκi

and δ�i . This means that the dynamical equations for the big
variations can be considered independently from that of the
small variations, and we will finally deal with a set of only ten
equations.

III. MODEL HAMILTONIAN

The microscopic Hamiltonian of the model, harmonic
oscillator with spin-orbit potential plus separable quadrupole-
quadrupole and spin-spin residual interactions is given by

H =
A∑

i=1

[
p̂2

i

2m
+ 1

2
mω2r2

i − ηl̂i Ŝi

]
+ Hqq + Hss, (9)

with

Hqq =
2∑

μ=−2

(−1)μ

⎧⎨
⎩κ̄

Z∑
i

N∑
j

+κ

2

⎡
⎣ Z∑

i,j (i �=j )

+
N∑

i,j (i �=j )

⎤
⎦
⎫⎬
⎭

× q2−μ(ri)q2μ(rj ), (10)

Hss =
1∑

μ=−1

(−1)μ

⎧⎨
⎩χ̄

Z∑
i

N∑
j

+χ

2

⎡
⎣ Z∑

i,j (i �=j )

+
N∑

i,j (i �=j )

⎤
⎦
⎫⎬
⎭

× Ŝ−μ(i)Ŝμ(j ) δ(ri − rj ), (11)

where N and Z are the numbers of neutrons and protons and
Ŝμ are spin matrices [19]:

Ŝ1 = − �√
2

(
0 1

0 0

)
, Ŝ0 = �

2

(
1 0

0 − 1

)
,

Ŝ−1 = �√
2

(
0 0

1 0

)
. (12)

A. Mean field

Let us analyze the mean field generated by this Hamiltonian.

1. Spin-orbit potential

Written in cyclic coordinates, the spin-orbit part of the
Hamiltonian reads

ĥls = −η

1∑
μ=−1

(−)μl̂μŜ−μ = −η

(
l̂0

�

2 l̂−1
�√
2

−l̂1
�√
2

−l̂0
�

2

)
,

where [19]

l̂μ = −�

√
2
∑
ν,α

C
1μ
1ν,1αrν∇α, (13)

cyclic coordinates r−1, r0, r1 are also defined in Ref. [19],
C

λμ
1σ,1ν is a Clebsch–Gordan coefficient, and

l̂1 = �(r0∇1 − r1∇0) = − 1√
2

(l̂x + il̂y),

l̂0 = �(r−1∇1 − r1∇−1) = l̂z,

l̂−1 = �(r−1∇0 − r0∇−1) = 1√
2

(l̂x − il̂y),

l̂x = −i�(y∇z − z∇y), l̂y = −i�(z∇x − x∇z),

l̂z = −i�(x∇y − y∇x). (14)
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Matrix elements of ĥls in coordinate space can obviously be
written [14] as

〈r1,s1|ĥls |r2,s2〉
= −�

2
η
[
l̂0(r1)

(
δs1↑δs2↑ − δs1↓δs2↓

) +
√

2 l̂−1(r1)δs1↑δs2↓

−
√

2 l̂1(r1)δs1↓δs2↑
]
δ(r1 − r2). (15)

Their Wigner transform reads [14]:

h
s1s2
ls (r,p) = −�

2
η
[
l0(r,p)

(
δs1↑δs2↑ − δs1↓δs2↓

)
+

√
2l−1(r,p)δs1↑δs2↓ −

√
2l1(r,p)δs1↓δs2↑

]
,

(16)

where lμ = −i
√

2
∑

ν,α C
1μ
1ν,1αrνpα .

2. Quadrupole-quadrupole interaction

The contribution of Hqq to the mean-field potential is easily
found by replacing one of the q2μ operators by the average
value. We have

V τ
qq =

√
6
∑

μ

(−1)μZτ+
2−μq2μ. (17)

Here

Zn+
2μ = κRn+

2μ + κ̄R
p+
2μ , Z

p+
2μ = κR

p+
2μ + κ̄Rn+

2μ ,

Rτ+
2μ (t) = 1√

6

∫
d(p,r)q2μ(r)f τ+(r,p,t), (18)

with
∫

d(p,r) ≡ (2π�)−3
∫

d3p
∫

d3r and τ being the isospin
index.

3. Spin-spin interaction

The analogous expression for Hss is found in a standard
way [15] with the following result for the Wigner transform of
the proton mean field:

V ss ′
p (r,t) = 3χ

�
2

8
[δs↓δs ′↑n↓↑

p + δs↑δs ′↓n↑↓
p

− δs↓δs ′↓n↑↑
p − δs↑δs ′↑n↓↓

p ]

+ χ̄
�

2

8
[2δs↓δs ′↑n↓↑

n + 2δs↑δs ′↓n↑↓
n

+ (δs↑δs ′↑ − δs↓δs ′↓)(n↑↑
n − n↓↓

n )], (19)

where nss ′
τ (r,t) = ∫

d3p

(2π�)3 f
ss ′
τ (r,p,t). The Wigner transform

of the neutron mean field V ss ′
n is obtained from Eq. (19) by the

obvious change of indices p ↔ n.

B. Pair potential

The Wigner transform of the pair potential (pairing gap)
�(r,p) is related to the Wigner transform of the anomalous
density by [17]

�(r,p) = −
∫

d3p′

(2π�)3
v(|p − p′|)κ(r,p′), (20)

where v(p) is a Fourier transform of the two-body interaction.
We take for the pairing interaction a simple Gaussian of
strength V0 and range rp [17]

v(p) = βe−αp2
, (21)

with β = −|V0|(rp

√
π )3 and α = r2

p/(4�
2). For the values of

the parameters, see Sec. V A.

IV. EQUATIONS OF MOTION

Integrating the set of equations (7) over phase space with
the weights

W = {r ⊗ p}λμ, {r ⊗ r}λμ, {p ⊗ p}λμ, and 1, (22)

one gets dynamic equations for the following collective
variables:

Lτς
λμ(t) =

∫
d(p,r){r ⊗ p}λμδf τς

o (r,p,t),

Rτς
λμ(t) =

∫
d(p,r){r ⊗ r}λμδf τς

e (r,p,t),

Pτς
λμ(t) =

∫
d(p,r){p ⊗ p}λμδf τς

e (r,p,t),

F τς (t) =
∫

d(p,r)δf τς
e (r,p,t),

L̃τ
λμ(t) =

∫
d(p,r){r ⊗ p}λμδκτi

o (r,p,t),

R̃τ
λμ(t) =

∫
d(p,r){r ⊗ r}λμδκτi

e (r,p,t),

P̃τ
λμ(t) =

∫
d(p,r){p ⊗ p}λμδκτi

e (r,p,t), (23)

where ς = +, − ,↑↓,↓↑, and {r ⊗ r}λμ = ∑
σ,ν C

λμ
1σ,1νrσ rν.

The required expressions for h±, h↑↓, and h↓↑ are

h+
τ = p2

m
+ m ω2r2 + 12

∑
μ

(−1)μZτ+
2μ (t){r ⊗ r}2−μ

+V +
τ (r,t) − μτ ,

with μτ being the chemical potential of protons (τ = p) or
neutrons (τ = n),

h−
τ = −�ηl0 + V −

τ (r,t), h↑↓
τ = − �√

2
ηl−1 + V ↑↓

τ (r,t),

h↓↑
τ = �√

2
ηl1 + V ↓↑

τ (r,t),

where according to Eq. (19)

V +
p (r,t) = −3

�
2

8
χn+

p (r,t),

V −
p (r,t) = 3

�
2

8
χn−

p (r,t) + �
2

4
χ̄n−

n (r,t),

V ↑↓
p (r,t) = 3

�
2

8
χn↑↓

p (r,t) + �
2

4
χ̄n↑↓

n (r,t),

V ↓↑
p (r,t) = 3

�
2

8
χn↓↑

p (r,t) + �
2

4
χ̄n↓↑

n (r,t), (24)
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and the neutron potentials V
ς
n are obtained by the obvious

change of indices p ↔ n. Variations of these mean fields read:

δh+
τ = 12

∑
μ

(−1)μδZτ+
2μ (t){r ⊗ r}2−μ + δV +

τ (r,t),

where δZ
p+
2μ = κδR

p+
2μ + κ̄δRn+

2μ , δRτ+
λμ (t) ≡ Rτ+

λμ (t), and

δV +
p (r,t) = −3

�
2

8
χδn+

p (r,t),

δn+
p (r,t) =

∫
d3p

(2π�)3
δf +

p (r,p,t).

Variations of h−, h↑↓, and h↓↑ are obtained in a similar way.
Variation of the pair potential is

δ�(r,p,t) = −
∫

d3p′

(2π�)3
v(|p − p′|)δκ(r,p′,t). (25)

We are interested in the scissors mode with quantum
number Kπ = 1+. Therefore, we only need the part of dynamic
equations with μ = 1.

It is convenient to rewrite the dynamical equations in terms
of isoscalar and isovector variables

R̄λμ = Rn
λμ + Rp

λμ, Rλμ = Rn
λμ − Rp

λμ,

P̄λμ = Pn
λμ + Pp

λμ, Pλμ = Pn
λμ − Pp

λμ, (26)

L̄λμ = Ln
λμ + Lp

λμ, Lλμ = Ln
λμ − Lp

λμ.

It also is natural to define isovector and isoscalar strength
constants κ1 = 1

2 (κ − κ̄) and κ0 = 1
2 (κ + κ̄) connected by the

relation κ1 = ακ0 [20]. Then the equations for the neutron and
proton systems are transformed into isovector and isoscalar
ones. Supposing that all equilibrium characteristics of the
proton system are equal to that of the neutron system one
decouples isovector and isoscalar equations. This approxima-
tions looks rather crude. In the paper [13] we tried to improve
it by employing the more accurate approximation which works
very well in the case of collective motion:

Qn/N = ±Qp/Z,

where Q is any of collective variables (23) and the sign + (−) is utilized for the isoscalar (isovector) motion. The corrections
to the more simple approximation turned out of the order ( N−Z

A
)2. For rare-earth nuclei this gives an error about 4%, which is

admissible for us, because the main goal of this paper is to understand the influence of the simultaneous action of pairing and
spin degrees of freedom on the scissors mode. So, to keep final formulas more transparent, we prefer to use the more simple
approximations.

The integration yields the following set of equations for isovector variables:

L̇+
21 = 1

m
P+

21 − [
m ω2 − 4

√
3ακ0R

eq
00 +

√
6(1 + α)κ0R

eq
20

]R+
21 − i�

η

2
[L−

21 + 2L↑↓
22 +

√
6L↓↑

20 ],

L̇−
21 = 1

m
P−

21 −
[
m ω2 +

√
6κ0R

eq
20 −

√
3

20
�

2

(
χ − χ̄

3

)(
I1

a2
0

+ I1

a2
1

)(
a2

1

A2
− a2

0

A1

)]
R−

21 − i�
η

2
L+

21 + 4

�
|V0|I κ�

rp (r ′)L̃21,

L̇↑↓
22 = 1

m
P↑↓

22 −
[
m ω2 − 2

√
6κ0R

eq
20 −

√
3

5
�

2

(
χ − χ̄

3

)
I1

A2

]
R↑↓

22 − i�
η

2
L+

21,

L̇↓↑
20 = 1

m
P↓↑

20 − [
m ω2 + 2

√
6κ0R

eq
20

]R↓↑
20 + 2√

3
κ0R

eq
20 R↓↑

00 − i�
η

2

√
3

2
L+

21

+
√

3

15
�

2

(
χ − χ̄

3

)
I1

[(
1

A2
− 2

A1

)
R↓↑

20 +
√

2

(
1

A2
+ 1

A1

)
R↓↑

00

]
,

L̇+
11 = −3

√
6(1 − α)κ0R

eq
20 R+

21 − i�
η

2
[L−

11 +
√

2L↓↑
10 ],

L̇−
11 = −

[
3
√

6κ0R
eq
20 −

√
3

20
�

2

(
χ − χ̄

3

)(
I1

a2
0

− I1

a2
1

)(
a2

1

A2
− a2

0

A1

)]
R−

21 − �
η

2
[iL+

11 + �F ↓↑] + 4

�
|V0|I κ�

rp (r ′)L̃11,

L̇↓↑
10 = −�

η

2
√

2
[iL+

11 + �F ↓↑],

Ḟ ↓↑ = −η[L−
11 +

√
2L↓↑

10 ],

Ṙ+
21 = 2

m
L+

21 − i�
η

2
[R−

21 + 2R↑↓
22 +

√
6R↓↑

20 ],

Ṙ−
21 = 2

m
L−

21 − i�
η

2
R+

21,

Ṙ↑↓
22 = 2

m
L↑↓

22 − i�
η

2
R+

21,

Ṙ↓↑
20 = 2

m
L↓↑

20 − i�
η

2

√
3

2
R+

21,
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Ṗ+
21 = −2

[
m ω2 +

√
6κ0R

eq
20

]L+
21 + 6

√
6κ0R

eq
20L+

11 − i�
η

2
[P−

21 + 2P↑↓
22 +

√
6P↓↑

20 ]

+ 3
√

3

4
�

2χ
I2

A1A2
[(A1 − A2)L+

21 + (A1 + A2)L+
11] + 4

�
|V0|I κ�

pp (r ′)P̃21,

Ṗ−
21 = −2

[
m ω2 +

√
6κ0R

eq
20

]L−
21 + 6

√
6κ0R

eq
20L−

11 − 6
√

2ακ0L
−
10(eq)R+

21 − i�
η

2
P+

21

+ 3
√

3

4
�

2χ
I2

A1A2
[(A1 − A2)L−

21 + (A1 + A2)L−
11],

Ṗ↑↓
22 = −

[
2m ω2 − 4

√
6κ0R

eq
20 − 3

√
3

2
�

2χ
I2

A2

]
L↑↓

22 − i�
η

2
P+

21,

Ṗ↓↑
20 = −[

2m ω2 + 4
√

6κ0R
eq
20

]L↓↑
20 + 8

√
3κ0R

eq
20L↓↑

00 − i�
η

2

√
3

2
P+

21 +
√

3

2
�

2χ
I2

A1A2
[(A1 − 2A2)L↓↑

20 +
√

2(A1 + A2)L↓↑
00 ],

L̇↓↑
00 = 1

m
P↓↑

00 − m ω2R↓↑
00 + 4

√
3κ0R

eq
20 R↓↑

20 + 1

2
√

3
�

2

[(
χ − χ̄

3

)
I1 − 9

4
χI2

][(
2

A2
− 1

A1

)
R↓↑

00 +
√

2

(
1

A2
+ 1

A1

)
R↓↑

20

]
,

Ṙ↓↑
00 = 2

m
L↓↑

00 ,

Ṗ↓↑
00 = −2m ω2L↓↑

00 + 8
√

3κ0R
eq
20 L↓↑

20 +
√

3

2
�

2χI2

[(
2

A2
− 1

A1

)
L↓↑

00 +
√

2

(
1

A2
+ 1

A1

)
L↓↑

20

]
,

˙̃R21 = −1

�

(
16

5
ακ0K4 + �0(r ′) − 3

8
�

2χκ0(r ′)
)
R+

21,

˙̃P21 = −1

�
�0(r ′)P+

21 + 6�ακ0K0R+
21,

˙̃L21 = −1

�
�0(r ′)L−

21,

˙̃L11 = −1

�
�0(r ′)L−

11, (27)

where

A1 =
√

2 R
eq
20 − R

eq
00 = Q00√

3

(
1 + 4

3
δ

)
,

A2 = R
eq
20

/√
2 + R

eq
00 = −Q00√

3

(
1 − 2

3
δ

)
.

a−1 = a1 = R0

(
1 − (2/3)δ

1 + (4/3)δ

)1/6

,

a0 = R0

(
1 − (2/3)δ

1 + (4/3)δ

)−1/3

are semiaxes of ellipsoid by which the shape of nucleus is
approximated, δ—the deformation parameter, R0 = 1.2A1/3

fm—the radius of the nucleus,

I1 = π

4

∫ ∞

0
drr4

(
∂n(r)

∂r

)2

, I2 = π

4

∫ ∞

0
drr2n(r)2,

n(r) = n0[1 + exp( r−R0
a

)]−1—the nuclear density,

K0 =
∫

d(r,p)κ0(r,p), K4 =
∫

d(r,p)r4κ0(r,p).

The functions κ0(r ′), �0(r ′), I κ�
rp (r ′), and I κ�

pp (r ′) are discussed
in the next section and are outlined in Appendix D. Deriving
these equations we neglected double Poisson brackets con-
taining κ or �, which are the quantum corrections to pair
correlations. The isoscalar set of equations is easily obtained
from Eq. (27) by taking α = 1, replacing χ̄ → −χ̄ , and putting
the marks “bar” above all variables.

V. RESULTS OF CALCULATIONS

The set of equations (27) coincides with the set of equations
(27) of the paper [15] in the limit of zero pairing, i.e., if to omit
the last four equations and to neglect the contributions from
pairing in the dynamical equations for the variables L−

21, L−
11,

and P+
21. On the other hand, the dynamical equations for P̃21

and R̃21 and the contribution from pairing in the dynamical
equation for P+

21 are exactly the same as the ones in the
paper [13]. Only the dynamical equations for L̃21, L̃11 and the
contributions from pairing in dynamical equations forL−

21, L−
11

are completely new.
Imposing the time evolution via eiEt/� for all variables one

transforms (27) into a set of algebraic equations. It contains
23 equations. To find the eigenvalues we construct the 23×23
determinant and seek (numerically) for its zeros. We find seven
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FIG. 2. (Color online) The pair-field (gap) �0(r), the function
� = |V0|I κ�

pp (r), and the nuclear density n(r) as functions of distance
r . The solid lines—calculations without the spin-spin interaction Hss ,
the dashed lines—Hss is included.

roots with exactly E = 0 and 16 roots which are nonzero:
eight positive ones and eight negative ones (situation is exactly
same as with RPA; see Ref. [21] for connection of WFM and
RPA). In this paper we consider only the two lowest roots
corresponding to the orbital and spin scissors. The qualitative
picture of high-lying modes remains practically without any
changes in comparison with Ref. [15].

Seven integrals of motion corresponding to Goldstone
modes (zero roots) can be found analytically. They are written
out in the Appendix C. The interpretation of some of them
has been found in Ref. [15], whereas the interpretation of the
remaining ones seems not to be obvious.

A. Choice of parameters

(i) Following our previous publications [20,21] we take
for the isoscalar strength constant of the quadrupole-
quadrupole residual interaction κ0 the self-
consistent value [22] κ0 = −mω̄2/(4Q00) with Q00 =
3
5AR2, ω̄2 = ω2

0/[(1 + 4
3δ)2/3(1 − 2

3δ)1/3], and �ω0 =
41/A1/3 MeV.

(ii) The equations (27) contain the functions
�0(r ′) ≡ �eq(r ′,pF (r ′)), I κ�

rp (r ′) ≡ I κ�
rp (r ′,pF (r ′)),

I κ�
pp (r ′) ≡ I κ�

pp (r ′,pF (r ′)), and κ0(r ′) ≡ κ(r ′,r ′)
depending on the radius r ′ and the local Fermi
momentum pF (r ′) (see Fig. 2).
The value of r ′ is not fixed by the theory and can be
used as the fitting parameter. We found in our previous
paper [13] that the best agreement of calculated results
with experimental data is achieved at the point r ′
where the function I κ�

pp (r ′,pF (r ′)) has its maximum.
Nevertheless, to get rid off the fitting parameter, we
use the averaged values of these functions: �̄0 =∫

drn0(r)�0(r,pF (r))/A, etc. The gap �(r,pF (r)), as
well as the integrals I κ�

pp (r,pF (r)), K4, and K0, were
calculated with the help of the semiclassical formulae
for κ(r,p) and �(r,p) (see Appendix D), a Gaussian
being used for the pairing interaction with rp = 1.9

fm and V0 = 25 MeV [17]. Those values reproduce
usual nuclear pairing gaps.

(iii) The spin-spin interaction used is repulsive, the val-
ues of its strength constants being taken from the
paper [23], where the notation χ = Ks/A, χ̄ = qχ
was introduced. The constants were extracted by the
authors of Ref. [23] from Skyrme forces following
the standard procedure, the residual interaction be-
ing defined in terms of second derivatives of the
Hamiltonian density H (ρ) with respect to the one-
body densities ρ. Different variants of Skyrme forces
produce different strength constants of the spin-spin
interaction. The most consistent results are obtained
with SG1, SG2 [24], and Sk3 [25] forces. To compare
theoretical results with experiment the authors of
Ref. [23] preferred to use the force SG2. Nevertheless,
they noticed that “As is well known, the energy
splitting of the HF states around the Fermi level is too
large. This has an effect on the spin M1 distributions
that can be roughly compensated by reducing the
Ks value.” According to this remark they changed
the original self-consistent SG2 parameters from
Ks = 88 MeV, q = −0.95 to Ks = 50 MeV, q = −1.
It was found that this modified set of parameters gives
better agreement with experiment for some nuclei in
the description of spin-flip resonance. So we will use
Ks = 50 MeV and q = −1.

(iv) Our calculations without pairing [15] have shown
that the results are strongly dependent on the values
of the strength constants of the spin-spin interaction.
The natural question arises: how sensitive are they to
the strength of the spin-orbital potential? The results
of the demonstrative calculations are shown in Fig. 3.

The M1 strengths were computed by using effective spin
gyromagnetic factors geff

s = 0.7gfree
s . One observes a rather

strong dependence of the results on the value of η: the splitting
�E and the M1 strength of the spin scissors grow with
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FIG. 3. (Color online) (a), (b) The energies E and (c), (d) B(M1)
factors as functions of the spin-orbital strength constant η. (a), (c)
Solid lines are without the spin-spin interaction Hss , dashed lines are
with Hss included. (b), (d) The same as in panels (a) and (c) but with
pair correlations included.
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TABLE I. Scissors mode energies Esc and transition probabilities
B(M1)sc.

164Dy Esc (MeV) B(M1)sc (μ2
N )

Ks = 0 Ks = 50 Ks = 92 Ks = 0 Ks = 50 Ks = 92

Spin �̄0 = 0 1.47 1.67 1.80 5.58 6.45 7.02
Scissors �̄0 �= 0 2.86 2.80 2.82 4.93 4.98 5.66
Orbital �̄0 = 0 2.64 2.76 2.86 1.99 1.82 1.73
Scissors �̄0 �= 0 3.62 3.57 3.58 1.67 1.71 1.55

increasing η, the B(M1) of the orbital scissors being decreased.
At some critical point ηc the M1 strength of the spin scissors
becomes bigger than that of the orbital scissors. The inclusion
of the spin-spin interaction does not change the qualitative
picture, as well as the inclusion of pair correlations (see Fig. 3).

What value of η to use? Accidentally, the choice of η
in our previous papers [14,15] was not very realistic. The
main purpose of the first paper was the introduction of spin
degrees of freedom into the WFM method, and the aim of the
second paper was to study the influence of spin-spin forces on
both scissors—we did not worry much about the comparison
with experiment. Now, both preliminary aims being achieved,
one can think about the agreement with experimental data,
therefore the precise choice of the model parameters becomes
important. Of course, we could try to choose η according to the
standard requirement of the best agreement with experiment.
However, in reality we are not absolutely free in our choice. It
turns out that we are already restricted by the other constraints.
As a matter of fact we work with the Nilsson potential; the
parameters of which are very well known. Really, the mean
field of our model (9) is the deformed harmonic oscillator with
the spin-orbit potential, the Nilsson �2 term being neglected
because it generates the fourth-order moments and, anyway,
they are probably not of great importance. In the original
paper [26] Nilsson took the spin-orbit strength constant
κNils = 0.05 for rare-earth nuclei. Later, the best value of κNils

for rare-earth nuclei was established [17] to be 0.0637. For
actinides, different values of κNils were established for neutrons
(0.0635) and protons (0.0577). The numbers κNils = 0.0637,
κNils = 0.05, and κNils = 0.024 (corresponding to η = 0.36
used in our previous calculations [14,15]) are marked on
Figs. 3 and 5 by the dotted vertical lines. Of course we will
use the conventional [17] parameters of the Nilsson potential
and from now on we will speak only about the Nilsson [26]
spin-orbital-strength parameter κNils, which is connected with
η by the relation η = 2�ωκNils.

B. Discussion and interpretation of results

The energies and excitation probabilities of orbital and spin
scissors modes obtained by the solution of the isovector set of
equations (27) are displayed in Table I. There are results of
calculations with three values of the spin-spin strength constant
and two values of �̄0. As was expected the energies of both
scissors increased approximately by 1 MeV after inclusion
of pairing. The behavior of transition probabilities turned out
to be less predictable. The B(M1) value of the spin scissors
decreased approximately by 1.5μ2

N , whereas the B(M1) value
of the orbital scissors turned out to be practically insensitive
to the inclusion of pair correlations.

We can compare the summed B(M1)� = B(M1)or +
B(M1)sp values and the centroid of both scissors energies:

Ecen = [EorB(M1)or + EspB(M1)sp]/B(M1)�,

with the results of the paper [13] where no spin degrees of
freedom had been considered and with the experimental data.
The respective results are shown in Table II.

It is seen that the inclusion of spin degrees of freedom in
the WFM method does not change markedly our results (in
comparison with previous ones [13]). Of course, the energy
changed in the desired direction and now practically coincides
with the experimental value (especially in the case without
spin-spin forces.) However, the situation with the B(M1)
values did not change (and even becomes worse in the case with
spin-spin forces). Our hope that spin degrees of freedom can
improve the situation with the B(M1) values did not become
true: the theory so far gives two-times-bigger values of B(M1)
than the experimental ones, exactly as was the case in the
paper [13].

The result looks discouraging. However, a phenomenon
which was missed in our previous papers and is described in
the next section saves the situation.

VI. COUNTER-ROTATING ANGULAR MOMENTA OF SPIN
UP AND SPIN DOWN (HIDDEN ANGULAR MOMENTA)

The equilibrium (ground-state) orbital angular momentum
of any nucleus is composed of two equal parts: half of
nucleons (protons + neutrons) having spin projection up and
other half having spin projection down. It is known that the
huge majority of nuclei have zero angular momentum in the
ground state. We will show below that, as a rule, this zero
is just the sum of two rather big counter-directed angular
momenta (hidden angular momenta, because they are not
manifest in the ground state) of the above-mentioned two parts

TABLE II. Scissors mode energy centroid Ecen and summarized transition probabilities B(M1)� . The experimental values of Ecen and
B(M1)� are from Refs. [27,28].

164Dy Ecen (MeV) B(M1)� (μ2
N )

Ks = 0 Ks = 50 Ks = 92 Ref. [13] Expt. Ks = 0 Ks = 50 Ks = 92 Ref. [13] Expt.

�̄0 = 0 1.77 1.91 2.01 2.17 7.57 8.27 8.76 9.59
3.14 3.18

�̄0 �= 0 3.06 2.99 2.98 3.60 6.60 6.69 7.20 5.95
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of any nucleus. Being connected with the spins of nucleons
this phenomenon naturally has great influence on all nuclear
properties connected with the spin; in particular, the spin
scissors mode.

Let us analyze the procedure of linearization of the equa-
tions of motion for collective variables (23). We consider small
deviations of the system from equilibrium, so all variables
are written as a sum of their equilibrium value plus a small
deviation:

L(t) = L(eq) + L(t), . . . .

Neglecting quadratic deviations one obtains the set of lin-
earized equations for deviations depending on the equilibrium
values R

τς
λμ(eq) and L

τς
λμ(eq), which are the input data of the

problem. In the paper [15] we made the following choice:

R+
2±1(eq) = R+

2±2(eq) = 0,
(28)

R+
20(eq) �= 0, R+

00(eq) �= 0,

R
↑↓
λμ(eq) = R

↓↑
λμ(eq) = 0, (29)

L
τς
λμ(eq) = 0, R−

λμ(eq) = 0. (30)

At first glance, this choice looks quite natural. Really,
relations (28) follow from the axial symmetry of the nucleus.
Relations (29) are justified by the fact that these quantities
should be diagonal in spin at equilibrium. The variables L

τς
λμ(t)

contain the momentum p in their definition which incited us to
suppose zero equilibrium values as well (we will show below
that it is not true for L−

10 because of quantum effects connected
with spin).

The relation R−
λμ(eq) = 0 follows from the shell-model

considerations: the nucleons with spin projection “up” and
“down” are sitting in pairs on the same levels, therefore
all average properties of the “spin up” part of the nucleus
must be identical to that of the “spin down” part. However, a
careful analysis shows that, although being undoubtedly true

for variables R
↑↑
λμ, R

↓↓
λμ , this statement turns out erroneous for

variables L
↑↑
10 , L

↓↓
10 . Let us demonstrate it. By definition,

Lss ′
λμ(t) =

∫
d3r

∫
d3p

(2π�)3
{r ⊗ p}λμf ss ′

(r,p,t)

=
∫

d3r{r ⊗ J ss ′ }λμ, (31)

where

J ss ′
i (r,t) =

∫
d3p

(2π�)3
pif

ss ′
(r,p,t)

=
∫

d3ppi

(2π�)3

∫
d3qe− i

�
p·qρ

(
r + q

2
,s; r − q

2
,s ′; t

)
(32)

is the ith component of the nuclear current. In the last relation,
the definition [17] of the Wigner function is used. Performing
the integration over p one finds

J ss ′
i (r,t) = i�

∫
d3q

[
∂

∂qi

δ(q)

]
ρ

(
r + q

2
,s; r − q

2
,s ′; t

)

= −i�

∫
d3qδ(q)

∂

∂qi

ρ

(
r + q

2
,s; r − q

2
,s ′; t

)

= − i�

2
[(∇1i − ∇2i)ρ(r1,s; r2,s

′; t)]r1=r2=r, (33)

where r1 = r + q
2 , r2 = r − q

2 . The density matrix of the
ground-state nucleus is defined [17] as

ρ(r1,s; r2,s
′; t) =

∑
ν

v2
νφν(r1s)φ∗

ν (r2s
′), (34)

where v2
ν are occupation numbers and φν are single-particle

wave functions. For the sake of simplicity we consider the case
of spherical symmetry. Then ν = nljm and

φnljm(r,s) = Rnlj (r)
∑
�,σ

C
jm

l�, 1
2 σ

Yl�(θ,φ)χ 1
2 σ (s), (35)

J ss ′
i (r) = − i�

2

∑
ν

v2
ν [∇iφν(r,s)φ∗

ν (r,s ′) − φν(r,s)∇iφ
∗
ν (r,s ′)] (36)

= − i�

2

∑
nljm

v2
nljmR2

nlj

∑
�,σ,�′,σ ′

C
jm

l�, 1
2 σ

C
jm

l�′, 1
2 σ ′[Y

∗
l�′∇iYl� − Yl�∇iY

∗
l�′]χ 1

2 σ (s)χ 1
2 σ ′(s ′). (37)

Inserting this expression into Eq. (31) one finds

Lss ′
10 (eq) = − i�

2

∑
nljm

v2
nljm

∑
�σ,�′σ ′

C
jm

l�, 1
2 σ

C
jm

l�′, 1
2 σ ′χ 1

2 σ (s)χ 1
2 σ ′(s ′)

∫
d3rR2

nlj [Y ∗
l�′ {r ⊗ ∇}10Yl� − Yl�{r ⊗ ∇}10Y

∗
l�′]

= i

2
√

2

∑
nljm

v2
nljm

∑
�σ,�′σ ′

C
jm

l�, 1
2 σ

C
jm

l�′, 1
2 σ ′χ 1

2 σ (s)χ 1
2 σ ′(s ′)

∫
d3rR2

nlj [Y ∗
l�′ l̂0Yl� − Yl�l̂0Y

∗
l�′]

= i

2
√

2

∑
nljm

v2
nljm

∑
�σ,�′σ ′

C
jm

l�, 1
2 σ

C
jm

l�′, 1
2 σ ′χ 1

2 σ (s)χ 1
2 σ ′(s ′)(� + �′)δ�,�′

= i√
2

∑
nljm

v2
nljm

∑
�σ

�
(
C

jm

l�, 1
2 σ

)2
χ 1

2 σ (s)χ 1
2 σ (s ′). (38)
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Here the definition l̂μ = −�
√

2{r ⊗ ∇}1μ, formula l̂0Yl� = �Yl�, and normalization of functions Rnlj were used. Remembering
the definition of the spin function χ 1

2 σ (s) = δσs we get finally

Lss ′
10 (eq) = i√

2

∑
nljm

v2
nljm

∑
�

�
(
C

jm

l�, 1
2 s

)2
δss ′ = δss ′

i√
2

∑
nljm

v2
nljm

(
C

jm

lm−s, 1
2 s

)2
(m − s). (39)

Now, with the help of analytic expressions for Clebsch–Gordan coefficients one obtains the final expressions

L
↑↑
10 (eq) = i√

2

∑
nl

⎡
⎣ l+ 1

2∑
m=−(l+ 1

2 )

v2
nlj+m

l + 1
2 + m

2l + 1
+

l− 1
2∑

m=−(l− 1
2 )

v2
nlj−m

l + 1
2 − m

2l + 1

⎤
⎦(

m − 1

2

)
, (40)

L
↓↓
10 (eq) = i√

2

∑
nl

⎡
⎣ l+ 1

2∑
m=−(l+ 1

2 )

v2
nlj+m

l + 1
2 − m

2l + 1
+

l− 1
2∑

m=−(l− 1
2 )

v2
nlj−m

l + 1
2 + m

2l + 1

⎤
⎦(

m + 1

2

)
, (41)

where the notation j± = l ± 1
2 is introduced. Replacing in Eq. (40) m by −m we find that

L
↑↑
10 (eq) = −L

↓↓
10 (eq). (42)

By definition (23) L±
10(eq) = L

↑↑
10 (eq) ± L

↓↓
10 (eq). Combining linearly Eqs. (40) and (41) one finds

L+
10(eq) = i√

2

∑
nl

⎡
⎣ l+ 1

2∑
m=−(l+ 1

2 )

v2
nlj+m

2l

2l + 1
m +

l− 1
2∑

m=−(l− 1
2 )

v2
nlj−m

2l + 2

2l + 1
m

⎤
⎦, (43)

L−
10(eq) = i√

2

∑
nl

⎡
⎣ l+ 1

2∑
m=−(l+ 1

2 )

v2
nlj+m

2m2 − l − 1
2

2l + 1
−

l− 1
2∑

m=−(l− 1
2 )

v2
nlj−m

2m2 + l + 1
2

2l + 1

⎤
⎦. (44)

These formulas are valid for spherical nuclei. However, with
the scissors and spin-scissors modes, we are considering
deformed nuclei. For the sake of the discussion, let us consider
the case of infinitesimally small deformation, when one can
continue to use formulas (43), (44). Now only levels with
quantum numbers ±m are degenerate. According to, for
example, the Nilsson scheme [26], nucleons will occupy
pairwise precisely those levels which leads to the zero value
of L+

10(eq).
What about L−

10(eq)? It only enters Eq. (27) in the
equation for Ṗ−

21. Let us analyze the structure of formula (44)
considering for the sake of simplicity the case without pairing.
Two sums over m (let us note them �1 and �2) represent
the two spin-orbital partners: in the first sum the summation
goes over the levels of the lower partner (j = l + 1

2 ) and in the
second sum—over the levels of the higher partner (j = l − 1

2 ).
The values of both sums depend naturally on the values of
occupation numbers nnljm = 0,1. There are three possibilities.
The first one is trivial: if all levels of both spin-orbital partners
are disposed above the Fermi surface, then the respective
occupation numbers nnljm = 0 and both sums are equal to
zero identically. The second possibility: all levels of both
spin-orbital partners are disposed below the Fermi surface.
Then all respective occupation numbers nnlj+m = nnlj−m = 1.
The elementary analytical calculation (for arbitrary l) shows
that, in this case, the two sums in Eq. (44) exactly compensate
each other, i.e., �1 + �2 = 0. The most interesting is the third
possibility, when one part of the levels of two spin-orbital
partners is disposed below the Fermi surface and another part

is disposed above it. In this case the compensation does not
happen and one gets �1 + �2 �= 0 which leads to L−

10(eq) �= 0.
In the case of pairing, things are not so sharply separated and
L−

10(eq) has always a finite value. However, the modifications
with respect to mean field are very small.

Let us illustrate the above analysis by the example of 164Dy
(protons). Its deformation is δ = 0.26 (ε = 0.24) and Z = 66.
Looking at the Nilsson scheme (for example, Fig. 1.5 of
Ref. [16] or Fig. 2.21c of Ref. [17]) one easily finds that
only three pairs of spin-orbital partners give a nonzero
contribution to L−

10(eq). They are N = 4, d5/2 − d3/2 (two
levels of d5/2 are below the Fermi surface, all the rest—above);
N = 4, g9/2 − g7/2 (one level of g7/2 is above the Fermi
surface, all the rest—below); N = 5,h11/2 − h9/2 (four levels
of h11/2 are below the Fermi surface, all the rest—above).
It is possible to make the crude evaluation of L−

10(eq) using
the quantum numbers indicated in Fig. 1.5 of Ref. [16] or in
Fig. 2.21c of Ref. [17]. The result turns out rather close to the
exact result, computed with the help of formulas (31) and (36)
and Nilsson wave functions. The influence of pair correlations
is very small.

Indeed, from the definitions (31) and (38) one can see that
Lss

10(eq) is just the average value of the z component of the
orbital angular momentum of nucleons with the spin projection
s ( 1

2 or − 1
2 ). So, the ground-state nucleus consists of two

equal parts having nonzero angular momenta with opposite
directions, which compensate each other resulting in the
zero total angular momentum. This is graphically depicted in
Fig. 4(a).
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FIG. 4. (Color online) (a) Protons with spins ↑ (up) and ↓ (down)
having nonzero orbital angular momenta at equilibrium. (b) Protons
from panel (a) vibrating against one another.

On the other hand, when the opposite angular momenta
become tilted, one excites the system and the opposite angular
momenta are vibrating with a tilting angle, see Fig. 4(b).
Actually, the two opposite angular momenta are oscillating,
one in the opposite sense of the other. It is rather obvious from
Fig. 1 that these tilted vibrations happen separately in each of
the neutron and proton lobes. These spin-up against spin-down
motions certainly influence the excitation of the spin scissors
mode. So, classically speaking, the proton and neutron parts
of the ground-state nucleus consist each of two identical
gyroscopes rotating in opposite directions. One knows that
it is very difficult to deviate gyroscopes from an equilibrium.
So one can expect that the probability to force two gyroscopes
to oscillate as scissors (spin scissors) should be small. This
picture is confirmed in the next section.

VII. RESULTS OF CALCULATIONS, CONTINUED

We made the calculations taking into account the
nonzero value of L−

10(eq) [which was computed according to
formulas (31) and (36) and Nilsson wave functions]. The
results are shown on Fig. 5.

They demonstrate (in comparison with Fig. 3) the strong
influence of the spin-up vs spin-down angular momenta on
the spin scissors mode, whose B(M1) value is strongly
decreasing with increasing κNils. The B(M1) value of the
orbital scissors also is reduced, but not so much, the value of the
reduction being practically independent of κNils. The influence
of L−

10(eq) on the energies of both scissors is negligible,
leading to a small increase of their splitting. Now the energy
centroid of both scissors and their summed B(M1) value at
κNils = 0.0637 are Ecen = 3.07 MeV and B(M1)� = 3.78 μ2

N .
The general agreement with experiment becomes considerably
better (compare with Table II).

The results of systematic calculations for the rare-earth
nuclei are presented in Tables III and IV and displayed in Fig. 6.
Table III contains the results for well deformed nuclei with
δ � 0.18. It is easy to see that the overall (general) agreement
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FIG. 5. (Color online) (a) The energies E and (b) B(M1) factors
as a functions of the spin-orbital strength constant κNils. The dashed
lines—calculations without L−

10(eq), the solid lines—L−
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taken into account. Hss and pairing are included.

of theoretical results with experimental data is substantially
improved (in comparison with our previous calculations [13]).

The results of calculations for the two groups (“light”
and “heavy”) of weakly deformed nuclei with deformations
0.14 � δ � 0.17 are shown in Table IV. They require some
discussion because of the self-consistency problem. These
two groups of nuclei are transitional between well-deformed
and spherical nuclei. Systematic calculations of equilibrium
deformations [16] predict δth

eq = 0.0 for 134Ba, ±0.1 for 148Nd,
0.15 or −0.12 for 150Sm, 0.1 or −0.14 for 190Os, and −0.1
for 192Os, whereas their experimental values are δeq = 0.14,
0.17, 0.16, 0.15, and 0.14, respectively. As one sees, the
discrepancy between theoretical and experimental δeq is
large. Uncertain signs of theoretical equilibrium deformations
are connected with very small (∼0.1–0.2 MeV) difference
between the values of deformation energies Edef at positive and
negative δeq. Even more so, the values of deformation energies
of these nuclei are very small: Edef = 0.20, 0.50, 0.80, and
0.70 MeV for 148Nd, 150Sm, 190Os, and 192Os, respectively.
This means that these nuclei are very “soft” with respect
to β or γ vibrations and probably have more complicated
equilibrium shapes; for example, hexadecapole or octupole
deformations in addition to the quadrupole deformation. This
means that, for the correct description of their dynamical and
equilibrium properties, it is necessary to include higher-order
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TABLE III. Scissors-mode energy centroid Ecen and summarized transition probabilities B(M1)� . Parameters: κNils = 0.0637, V0 = 25
(V0 = 27 for 182,184,186W). The experimental values of Ecen, δ, and B(M1)� are from Refs. [27,28] and references therein.

Nuclei δ Ecen (MeV) B(M1)� (μ2
N )

Expt. WFM Ref. [13] � = 0 Expt. WFM Ref. [13] � = 0

150Nd 0.22 3.04 2.88 3.44 1.92 1.61 1.64 4.17 7.26
152Sm 0.24 2.99 2.99 3.46 2.02 2.26 2.50 4.68 7.81
154Sm 0.26 3.20 3.10 3.57 2.17 2.18 3.34 5.42 8.65
156Gd 0.26 3.06 3.09 3.60 2.16 2.73 3.44 5.42 8.76
158Gd 0.26 3.14 3.09 3.60 2.19 3.39 3.52 5.72 9.12
160Gd 0.27 3.18 3.14 3.61 2.21 2.97 4.02 5.90 9.38
160Dy 0.26 2.87 3.08 3.59 2.13 2.42 3.60 5.53 9.03
162Dy 0.26 2.96 3.07 3.61 2.14 2.49 3.69 5.66 9.25
164Dy 0.26 3.14 3.07 3.60 2.17 3.18 3.78 5.95 9.59
164Er 0.25 2.90 3.01 3.57 2.10 1.45 3.39 5.62 9.26
166Er 0.26 2.96 3.06 3.53 2.13 2.67 3.86 5.96 9.59
168Er 0.26 3.21 3.06 3.53 2.10 2.82 3.95 5.95 9.67
170Er 0.26 3.22 3.05 3.57 2.09 2.63 4.03 5.91 9.79
172Yb 0.25 3.03 2.99 3.55 2.05 1.94 3.72 5.84 9.79
174Yb 0.25 3.15 2.98 3.47 2.02 2.70 3.80 5.89 9.82
176Yb 0.24 2.96 2.92 3.45 1.94 2.66 3.46 5.54 9.58
178Hf 0.22 3.11 2.81 3.43 1.79 2.04 2.67 4.86 9.00
180Hf 0.22 2.95 2.81 3.36 1.76 1.61 2.69 4.85 8.97
182W 0.20 3.10 3.28 3.30 1.63 1.65 2.05 4.31 8.43
184W 0.19 3.31 3.24 3.28 1.55 1.12 1.72 3.97 8.14
186W 0.18 3.20 3.19 3.26 1.49 0.82 1.40 3.76 7.95

Wigner-function moments (at least fourth order) in addition
to the second-order ones. In this case it would be natural also
to use more complicated mean-field potentials (for example,
the Woods–Saxon potential or the potential extracted from
some of the numerous variants of Skyrme forces) instead of
the too simple Nilsson potential. Naturally, this will be the
subject of further investigations. However, to be sure that the
situation with these nuclei is not absolutely hopeless, one can
try to imitate the properties of the more perfect potential by
fitting parameters of the Nilsson potential. As a matter of fact
this potential contains one single but essential parameter—the
spin-orbital strength κNils. It turns out that changing its value
from 0.0637 to 0.05 (the value used by Nilsson in his original
paper [26]) is enough to obtain a reasonable description
of B(M1) factors (see Table IV). To obtain a reasonable
description of the scissors energies we use the “freedom” of

choosing the value of the pairing interaction constant V0 in
Eq. (21). It turns out that changing its value from 25 MeV to
27 MeV is enough to obtain satisfactory agreement between
the theoretical and experimental values of Esc (Table IV).

The isotopes 182–186W turn out to be intermediate between
weakly deformed and well-deformed nuclei: reasonable results
are obtained with κNils = 0.0637 (as for well deformed) and
V0 = 27 MeV (as for weakly deformed). That is why they
appear in both tables.

Returning to the group of well-deformed nuclei with
δ � 0.18 (Table III) it is necessary to emphasize that all results
presented for these nuclei were obtained without any fitting. In
spite of this, the agreement between the theory and experiment
looks more-or-less satisfactory for all nuclei of this group
except two: 164Er and 172Yb, where the theory overestimates
B(M1) values by approximately two times. However, these

TABLE IV. Scissors-mode energy centroid Ecen and summarized transition probabilities B(M1)� . Parameters: κNils = 0.05 (κNils = 0.0637
for 182,184,186W), V0 = 27.

Nuclei δ Ecen (MeV) B(M1)� (μ2
N )

Expt. WFM Ref. [13] � = 0 Expt. WFM Ref. [13] � = 0

134Ba 0.14 2.99 3.04 3.09 1.28 0.56 0.68 1.67 3.90
148Nd 0.17 3.37 3.22 3.18 1.48 0.78 1.28 2.58 5.39
150Sm 0.16 3.13 3.17 3.13 1.42 0.92 1.12 2.45 5.26
182W 0.20 3.10 3.28 3.30 1.63 1.65 2.05 4.31 8.43
184W 0.19 3.31 3.24 3.28 1.55 1.12 1.72 3.97 8.14
186W 0.18 3.20 3.19 3.26 1.49 0.82 1.40 3.76 7.95
190Os 0.15 2.90 3.14 3.12 1.21 0.98 1.38 2.67 6.64
192Os 0.14 3.01 3.11 3.12 1.15 1.04 1.00 2.42 6.37
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FIG. 6. (Color online) (a) The energies E and (b) B(M1) factors
as a function of the mass number A for nuclei listed in Table III.

two nuclei fall out of the systematics and one can suspect that
the experimental B(M1) values are underestimated. Therefore,
one can hope that new experiments will correct the situation
with these nuclei, as happened, for example, with 232Th [29].

It is interesting to compare our results with that of RPA
calculations. The only systematic calculations for rare-earth
nuclei was done in the frame of the extended RPA formalism
[quasiparticle-phonon nuclear model (QPNM)] [30]. We took
the Table V from this paper, adding here, for the sake of
comparison, the column with our results. It is easy to see that

TABLE V. Scissors-mode summarized transition probabilities∑
B(M1). The experimental values

∑
B(M1) are from Ref. [27].

Nuclei E (MeV)
∑

B(M1) (μ2
N )

Expt. [27] QPNM [30] WFM

156Gd 2.7–3.7 2.73 2.95 3.44
158Gd 2.7–3.7 3.39 3.41 3.52
160Gd 2.7–3.7 2.97 2.86 4.02
160Dy 2.7–3.7 2.42 2.46 3.60
162Dy 2.7–3.7 2.49 2.60 3.69
164Dy 2.7–3.7 3.18 2.92 3.78
166Er 2.4–3.7 2.67 2.51 3.86
168Er 2.4–3.7 2.82 2.87 3.95
172Yb 2.4–3.7 1.94 2.27 3.72
174Yb 2.4–3.7 2.70 2.84 3.80
178Hf 2.4–3.7 2.04 2.30 2.67

QPNM results practically coincide with experimental results,
whereas deviations of our results from experimental data reach
sometimes 50%. However, it is necessary to emphasize here
that such a naive comparison is not fully legitimate because
the objects of comparison are slightly different. The numbers
presented in third column of Table V are just the sums of all
M1 strength found experimentally in the energy interval shown
in second column. Theorists, working in RPA, represent their
results exactly in the same manner—the sum of B(M1) values
of all peaks in the respective energy interval.

In principle, RPA calculations [5,30] predict some M1
strength at energies higher than 3.7 MeV (up to 10 MeV).
“Because of the dominance of spin flip and the high-level
density in this region there is little hope that reliable measure-
ments of this strength will ever be possible” [5]. This just the
point: the WFM approach implicitly takes into account the
whole configuration space. Then the two scissors modes (spin
and orbital) found by the WFM method include this part of
the M1 strength which is inaccessible, even for the modern
experiments.

In the light of the aforesaid it becomes clear that the
summarized M1 strength of spin and orbital scissors is to
become somewhat bigger than the number presented as the
experimental B(M1) value of the scissors mode. So, in
evaluating the quality of agreement between theoretical and
experimental results, one has to have in mind this element of
uncertainty.

VIII. CONCLUSION

The method of Wigner-function moments is generalized to
take into account spin degrees of freedom and pair correlations
simultaneously. The inclusion of the spin into the theory
allows one to discover several new phenomena. One of
them, the nuclear spin scissors, was described and studied
in Refs. [14,15], where some indications of the experimental
confirmation of its existence in actinides nuclei are discussed.
Another phenomenon, the opposite rotation of spin-up and
spin-down nucleons, or in other words, the phenomenon of
hidden angular momenta is described in this paper. Being
determined by the spin degrees of freedom, this phenomenon
has great influence on the excitation probability of the spin
scissors mode. On the other hand the spin-scissors B(M1)
values and the energies of both spin and orbital scissors are very
sensitive to the action of pair correlations. As a result, these
two factors, the spin-up and spin-down counter rotation and
pairing, working together, improve substantially the agreement
between the theory and experiment in the description of the
energy centroid of two nuclear scissors and their summed
excitation probability. More precisely, a satisfactory agreement
is achieved for well-deformed nuclei of the rare-earth region
with standard values of all possible parameters. The accuracy
of the description of the scissors mode by the WFM method
is comparable with that of RPA if we take into account the
principal difference in definitions of scissors in the WFM
method and RPA and experiment. A satisfactory agreement
is also achieved for weakly deformed (transitional) nuclei
of the same region by a very modest refit of the spin-orbit
strength. We suppose that fourth-order moments and more
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realistic interactions are required for the adequate description
of transitional nuclei. This shall be the object of future work.
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APPENDIX A

1. Abnormal density

According to formula (D.47) of Ref. [17] the abnormal
density in coordinate representation κ(r,s; r′,s ′) is connected
with the abnormal density in the representation of the har-
monic oscillator quantum numbers κν,ν ′ = 〈�|aνaν ′ |�〉 by the
relation

κ(r,s; r′,s ′) = 〈�|a(r,s)a(r′,s ′)|�〉
=

∑
ν,ν ′

ψν(r,s)ψν ′(r′,s ′)〈�|aνaν ′ |�〉, (A1)

where ν ≡ k,ς, ν̄≡k, − ς, k≡n,l,j,|m|, ς=sign(m) = ±,
ψν̄(r,s) = T ψν(r,s),T —time reversal operator defined by
formula (XV.85) of Ref. [31]: T = −iσyK0, where σy is the
Pauli matrix and K0 is the complex-conjugation operator.

According to formula (7.12) of Ref. [17]

ak,ς = ukαk,ς − ςvkα
†
k,−ς , αν |�〉 = 0,

〈�|aνaν ′ |�〉 ≡ κνν ′ = −ς ′ukvk′ 〈�|αk,ςα
†
k′,−ς ′ |�〉

= −ς ′ukvk′δk,k′δ−ς,ς ′ . (A2)

This result means that, in accordance with the theorem of
Bloch and Messiah we have found the basis |ν〉 in which the
abnormal density κν,ν ′ has the canonical form. Therefore the
spin structure of κν,ν ′ is

κν,ν ′ =
(

0 ukvk

−ukvk 0

)
, (A3)

or κν̄,ν = −κν,ν̄ and κν,ν = κν̄,ν̄ = 0.
With the help of Eq. (A2), formula (A1) can be transformed

into

κ(r,s; r′,s ′)

=
∑
k,ς

ςukvkψk,ς (r,s)ψk,−ς (r′,s ′)

=
∑
ν>0

uνvν[ψν(r,s)ψν̄(r′,s ′) − ψν̄(r,s)ψν(r′,s ′)], (A4)

which reproduces formula (D.48) of Ref. [17].

2. What is the spin structure of κ(r,s; r′,s′)?

Let us consider the spherical case

ψν(r,s) = Rnlj (r)
∑
�,σ

C
jm

l�, 1
2 σ

Yl�(θ,φ)χ 1
2 σ (s)

≡ Rnlj (r)φljm(�,s),

where φljm(�,s) = ∑
�,σ C

jm

l�, 1
2 σ

Yl�(θ,φ)χ 1
2 σ (s), the spin

function χ 1
2 σ (s) = δσs , and angular variables are denoted

by �.

Time reversal:

T Yl� = Y ∗
l� = (−1)�Yl−�,

T χ 1
2

1
2

= χ 1
2 − 1

2
, T χ 1

2 − 1
2

= −χ 1
2

1
2

→ T χ 1
2 σ = (−1)σ− 1

2 χ 1
2 −σ ,

T
∑
�,σ

C
jm

l�, 1
2 σ

Yl�χ 1
2 σ =

∑
�,σ

C
jm

l�, 1
2 σ

Yl−�χ 1
2 −σ (−1)�+σ− 1

2 =
∑
�,σ

C
jm

l−�, 1
2 −σ

Yl�χ 1
2 σ (−1)−�−σ− 1

2

=
∑
�,σ

C
j−m

l�, 1
2 σ

Yl�χ 1
2 σ (−1)l+

1
2 −j−�−σ− 1

2 =
∑
�,σ

C
j−m

l�, 1
2 σ

Yl�χ 1
2 σ (−1)l−j+m.

As a result

ψν̄(r,s) = (−1)l−j+mRnlj (r)
∑
�,σ

C
j−m

l�, 1
2 σ

Yl�(θ,φ)χ 1
2 σ (s) = (−1)l−j+mRnlj (r)φlj−m(�,s), (A5)

which coincides with formula (2.45) of Ref. [17]. Formula (A4) can be rewritten now as

κ(r1,s1; r2,s2) =
∑

nljm>0

(uv)nljmRnlj (r1)Rnlj (r2)(−1)l−j+m[φljm(�1,s1)φlj−m(�2,s2) − φljm(�2,s2)φlj−m(�1,s1)]

=
∑

nljm>0

(uv)nljmRnlj (r1)Rnlj (r2)(−1)l−j+m
∑
�,�′

[
C

jm

l�, 1
2 s1

C
j−m

l�′, 1
2 s2

Yl�(�1)Yl�′(�2)

−C
jm

l�, 1
2 s2

C
j−m

l�′, 1
2 s1

Yl�(�2)Yl�′(�1)
]

=
∑

nljm>0

(uv)nljmRnlj (r1)Rnlj (r2)(−1)l−j+m
∑
�,�′

Yl�(�1)Yl�′(�2)
[
C

jm

l�, 1
2 s1

C
j−m

l�′, 1
2 s2

− C
jm

l�′, 1
2 s2

C
j−m

l�, 1
2 s1

]
. (A6)
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It is obvious that κ(r, ↑; r′, ↓) �= −κ(r, ↓; r′, ↑), i.e., in the coordinate representation, the spin structure of κ has nothing
common with Eq. (A3).

The anomalous density defined by Eq. (A6) does not have definite angular momentum J and spin S. It can be represented as
the sum of several terms with definite J,S. We have

φljm(1)φlj−m(2) =
∑

0�J�2j

CJ0
jm,j−m{φj (1) ⊗ φj (2)}J0

= C00
jm,j−m{φj (1) ⊗ φj (2)}00 +

∑
1�J�2j

CJ0
jm,j−m{φj (1) ⊗ φj (2)}J0. (A7)

We are interested in the monopole pairing only, so we omit all terms except the first one:

[φljm(1)φlj−m(2)]J=0 = C00
jm,j−m{φj (1) ⊗ φj (2)}00 = (−1)j−m 1√

2j + 1

∑
ν,σ

C00
jν,jσ φjν(1)φjσ (2)

= 1

2j + 1

∑
ν

(−1)ν−mφjν(1)φj−ν(2). (A8)

Remembering the definition of the φ function we find

(−1)m[φljm(�1,s1)φlj−m(�2,s2)]J=0 = 1

2j + 1

∑
ν

(−1)ν
∑
�,σ

∑
�′,σ ′

C
jν

l�, 1
2 σ

C
j−ν

l�′, 1
2 σ ′Yl�(�1)Yl�′(�2)χ 1

2 σ (s1)χ 1
2 σ ′(s2). (A9)

The direct product of spin functions in this formula can be written as

χ 1
2 σ (s1)χ 1

2 σ ′(s2) =
∑
S,�

CS�
1
2 σ, 1

2 σ ′
{
χ 1

2
(s1) ⊗ χ 1

2
(s2)

}
S�

= C00
1
2 σ, 1

2 σ ′
{
χ 1

2
(s1) ⊗ χ 1

2
(s2)

}
00 +

∑
�

C1�
1
2 σ, 1

2 σ ′
{
χ 1

2
(s1) ⊗ χ 1

2
(s2)

}
1�

. (A10)

According to this result the formula for κ consists of two terms: the one with S = 0 and another one with S = 1. It was shown
in the paper [32] that the term with S = 1 is an order of magnitude less than the term with S = 0, so we can neglect by it. Then

χ 1
2 σ (s1)χ 1

2 σ ′(s2) = (−1)
1
2 −σ 1√

2
δσ,−σ ′

{
χ 1

2
(s1) ⊗ χ 1

2
(s2)

}
00

= (−1)
1
2 −σ 1√

2
δσ,−σ ′

∑
ν,ν ′

C00
1
2 ν, 1

2 ν ′χ 1
2 ν(s1)χ 1

2 ν ′ (s2)

= (−1)
1
2 −σ 1√

2
δσ,−σ ′

1/2∑
ν=−1/2

(−1)
1
2 −ν 1√

2
χ 1

2 ν(s1)χ 1
2 −ν(s2)

= (−1)
1
2 −σ 1

2
δσ,−σ ′

[
χ 1

2
1
2
(s1)χ 1

2 − 1
2
(s2) − χ 1

2 − 1
2
(s1)χ 1

2
1
2
(s2)

]
= 1

2
δσ,−σ ′ (−1)

1
2 −σ

[
δs1

1
2
δs2− 1

2
− δs1− 1

2
δs2

1
2

]
. (A11)

Inserting this result into Eq. (A9) we find

(−1)m
[
φljm(�1,s1)φlj−m(�2,s2)

]S=0
J=0

= 1

2

[
δs1

1
2
δs2− 1

2
− δs1− 1

2
δs2

1
2

] 1

2j + 1

∑
�,�′

Yl�(�1)Yl�′(�2)
∑
ν,σ

(−1)ν+ 1
2 −σC

jν

l�, 1
2 σ

C
j−ν

l�′, 1
2 −σ

= 1

2

[
δs1

1
2
δs2− 1

2
− δs1− 1

2
δs2

1
2

] 1

2j + 1

∑
�,�′

Yl�(�1)Yl�′(�2)
∑
ν,σ

(−1)
1
2 +� 2j + 1

2l + 1
(−1)1+j+ 1

2 −lCl�
jν, 1

2 −σ
Cl−�′

jν, 1
2 −σ

= 1

2

[
δs1

1
2
δs2− 1

2
− δs1− 1

2
δs2

1
2

] 1

2l + 1
(−1)j−l

∑
�,�′

Yl�(�1)Yl�′(�2)(−1)�δ�,−�′

= 1

2

[
δs1

1
2
δs2− 1

2
− δs1− 1

2
δs2

1
2

]
(−1)j−l 1

4π
Pl(cos �12), (A12)
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where Pl(cos �12) is Legendre polynomial and �12 is the angle between vectors r1 and r2. With the help of this result formula (A6)
is transformed into

κ(r1,s1; r2,s2)S=0
J=0 = [

δs1
1
2
δs2− 1

2
− δs1− 1

2
δs2

1
2

] 1

4π

∑
nljm>0

(uv)nljmRnlj (r1)Rnlj (r2)Pl(cos �12). (A13)

Now it is obvious that, in the coordinate representation, κ
with J = 0, S = 0 has the spin structure similar to the one
demonstrated by formula (A3):

κ(r1,s1; r2,s2)S=0
J=0 =

(
0 κ(r1,r2)

−κ(r1,r2) 0,

)
, (A14)

with

κ(r1,r2) = 1

4π

∑
nljm>0

(uv)nljmRnlj (r1)Rnlj (r2)Pl(cos �12).

(A15)

APPENDIX B

Wigner transformation

The Wigner transform (WT) of the single-particle operator
matrix F̂r1,σ ;r2,σ ′ is defined as

[F̂r1,σ ;r2,σ ′ ]WT ≡ Fσ,σ ′(r,p) =
∫

d3se−ip·s/�F̂r+s/2,σ ;r−s/2,σ ′ ,

(B1)

with r = (r1 + r2)/2 and s = r1 − r2. It is easy to derive a
pair of useful relations. The first one is

F ∗
σ,σ ′(r,p) =

∫
d3seip·s/�F̂ ∗

r+s/2,σ ;r−s/2,σ ′

=
∫

d3se−ip·s/�F̂ ∗
r−s/2,σ ;r+s/2,σ ′

=
∫

d3se−ip·s/�F̂
†
r+s/2,σ ′;r−s/2,σ = [

F̂
†
r1,σ ′;r2,σ

]
WT,

(B2)

i.e., [F̂ †
r1,σ ;r2,σ ′]WT = [F̂r1,σ ′;r2,σ ]∗WT = F ∗

σ ′σ (r,p). The second
relation is

F̄σσ ′(r,p) ≡ Fσσ ′(r, − p) =
∫

d3seip·s/�F̂r+s/2,σ ;r−s/2,σ ′

=
∫

d3se−ip·s/�F̂r− s
2 ,σ ;r+ s

2 ,σ ′

=
∫

d3se−ip·s/�
[
F̂

†
r+s/2,σ ′;r−s/2,σ

]∗
. (B3)

For the Hermitian operators ρ̂ and ĥ this latter relation gives[
ρ̂∗

r1,σ ;r2,σ

]
WT = ρσσ (r, − p) and[

ĥ∗
r1,σ ;r2,σ

]
WT = hσσ (r, − p).

The Wigner transform of the product of two matrices F and
G is

[F̂ Ĝ]WT = F (r,p) exp

(
i�

2

↔
�

)
G(r,p), (B4)

where the symbol
↔
� stands for the Poisson bracket operator,

↔
�=

3∑
i=1

( ←
∂

∂ri

→
∂

∂pi

−
←
∂

∂pi

→
∂

∂ri

)
.

APPENDIX C

Integrals of motion

Isovector integrals of motion:

const. = i�
η

2
L+

21 − �
2 η2m

8
[R−

21 + 2R↑↓
22 ] +

√
2

3

(
3

8
�

2η2m − c3

)
R↓↑

20 +
√

2

3

1

m
P↓↑

20

+ 1

2
√

3c2

(
(c1 − c2)(c1 + 2c2) + 2c1c3 − 3

2
�

2η2m

)
R↓↑

00 + 1√
3c2m

(
c1 + c2 + 2c3 − 3

2
�

2η2m

)
P↓↑

00 ,

const. = i�
η

2

[
L+

11 − i
�

2
F ↓↑

]
− 3

√
6(1 − α)κ0R

eq
20

[
2√

3c2m
P↓↑

00 + c1√
3c2

R↓↑
00 −

√
2

3
R↓↑

20

]
,

const. = i�
3

4
ηc2L̃11 + �0(r ′)

�

{
i�

η

2

[
P−

21 + m

4
(2c1 + c2)R−

21 −
√

2

3
P↓↑

20

]

−
(

i�
η

4
√

2
− 4

√
6

mc2
κ0αL

eq
10

)
P↓↑

00 −
(

i�
ηm

2

√
2

3
(2c1 + c2) + 4

√
3κ0αL

eq
10

)
R↓↑

20

−
(

i�
ηm

8
√

3
(c1 − 4c2) − 2

√
2
c1

c2
κ0αL

eq
10

)
R↓↑

00

}
,
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const. = P↑↓
22 −

√
2

3
(P↓↑

20 +
√

2P↓↑
00 ) + m

2
(c1 − c2)

[
R↑↓

22 −
√

2

3
(R↓↑

20 +
√

2R↓↑
00 )

]
,

const. = i�
η

2
R̃21 −

(
16

5�
κ0αK4 + �0(r ′)

�
− 3

8
�χκ0(r ′)

)[√
2

3
R↓↑

20 − c1√
3c2

R↓↑
00 − 2√

3mc2

P↓↑
00

]
,

const. = i�
η

2
P̃21 − �0(r ′)

�

[√
2

3
P↓↑

20 + 2(c1 + c2)√
3c2

P↓↑
00 + m

2

(c1 − c2)(c1 + 2c2)√
3c2

R↓↑
00

]

+ 6�κ0αK0

[√
2

3
R↓↑

20 − c1√
3c2

R↓↑
00 − 2√

3mc2

P↓↑
00

]
,

const. = L̃21 + �0(r ′)
�

[
1√
3c2

P↓↑
00 + m

2

(
R−

21 −
√

2

3
R↓↑

20 + c1√
3c2

R↓↑
00

)]
, (C1)

where

c1 = 2mω2 −
√

3

2
�

2χI2
(2A1 − A2)

A1A2
, c2 = 4

√
6κ0R

eq
20 +

√
3

2
�

2χI2
(A1 + A2)

A1A2
,

c3 = m ω2 − 4
√

3ακ0R
eq
00 +

√
6(1 + α)κ0R

eq
20.

Isoscalar integrals of motion are easily obtained from isovector ones by taking α = 1. In the case of harmonic oscillations all
constants “const” are obviously equal to zero.

APPENDIX D

I κ�
pp (r,p) = r3

p√
π�3

e−αp2
∫

κr (r,p′)[φ0(x) − 4α2p′4φ2(x)]e−αp′2
p′2dp′, (D1)

I κ�
rp (r,p) = r3

p√
π�3

e−αp2
∫

κr (r,p′)[φ0(x) − 2αp′2φ1(x)]e−αp′2
p′2dp′, (D2)

where x = 2αpp′,

φ0(x) = 1

x
sinh(x), φ1(x) = 1

x2

[
cosh(x) − 1

x
sinh(x)

]
,

φ2(x) = 1

x3

[(
1 + 3

x2

)
sinh(x) − 3

x
cosh(x)

]
. (D3)

Anomalous density and semiclassical gap equation [17]:

κ(r,p) = 1

2

�(r,p)√
h2(r,p) + �2(r,p)

, (D4)

�(r,p) = −1

2

∫
d3p′

(2π�)3
v(|p − p′|) �(r,p′)√

h2(r,p′) + �2(r,p′)
, (D5)

where v(|p − p′|) = βe−α|p−p′ |2 with β = −|V0|(rp

√
π )3 and α = r2

p/(4�
2).
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