
PHYSICAL REVIEW C 91, 064308 (2015)

Velocity-dependent optical potential for neutron elastic scattering from 1 p-shell nuclei
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Background: The conventional optical model is quite successful in describing the nucleon elastic scattering data
from medium and heavy nuclei. However, its success in describing the light 1p-shell nuclei is somewhat limited.
The velocity-dependent optical potential resulted in a significant improvement in describing the elastic angular
distributions for light nuclei in the low energy region.
Purpose: To extend the formalism of the velocity-dependent potential to higher energies, and to assess its
importance in describing neutron elastic scattering data from light 1p-shell nuclei at high energies.
Method: We fit the angular distribution data for neutron elastic scattering from 12C and 16O using (i) the
velocity-dependent optical potential and (ii) the conventional optical potential. The results of the two models are
then compared. At low energies, we compare our angular distribution fits with the fits of other works that exist
in the literature. Furthermore, the total integrated cross sections in addition to the analyzing power are calculated
using the velocity-dependent optical potential and compared to the experimental data.
Results: The velocity-dependent potential resulted in significant improvements in describing the angular
distributions particularly in the large-angle scattering region and for certain energy ranges. This model is
important where the experimental data show structural effects from nuclear surface deformations, which are
important in light nuclei. Furthermore, the calculated total elastic cross sections and analyzing power are in good
agreement with the experimental data.
Conclusions: The velocity-dependent potential gives rise to surface-peaked real terms in the optical model. Such
terms account, at least partly, for the structural effects seen in the angular distribution data. The energy range over
which the surface terms are needed is found to depend on the target nucleus. Other works that have introduced
real surface terms in the optical potential are discussed.
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I. INTRODUCTION

The phenomenological optical potential is known to provide
an excellent description for the nucleon elastic scattering
process from medium and heavy mass nuclei [1]. For example,
an extensive study presented local and global optical potentials
for neutron and proton elastic scattering from nuclei in
the mass range 24 � A � 209 and over the energy interval
1 KeV up to 200 MeV [2]. However, the conventional optical
model (COM) has not enjoyed the same degree of success
when applied to light nuclei, particularly 1p-shell nuclei, that
have prominent structural effects. In Ref. [3], the differential
cross sections for elastic neutron scattering from the light
12C and the heavy 208Pb were measured at 96 MeV incident
energy in the interval 10◦–70◦. The authors compared their
measured angular distributions with phenomenological [2,4,5]
and microscopic [6–8] optical model calculations. All the
models resulted in good agreements with the 208Pb data.
But for the 1p-shell 12C nucleus, significant differences were
observed between the experimental data and the predictions of
the phenomenological and microscopic models particularly in
the 30◦–50◦ range. The authors suggested that for the light
12C nucleus, surface effects and deformations in addition
to diffuseness of the nuclear edge may be responsible for
the disagreement between the theoretical models and the
experimental data.

*mjaghoub@ju.edu.jo

An older work [9] analyzed neutron and proton elas-
tic scattering data from 1p-shell nuclei over the 9- to
15-MeV energy range covering the angular 25◦–160◦ interval.
Energy-dependent parameter sets were obtained for individual
nuclei that reasonably described the experimental elastic
angular distributions particularly where resonance structure
was not prominent. The authors concluded that the optical
model fits corresponding to nucleon scattering from light
nuclei were not as good as those for the heavy ones, which
show less surface deformations and structural effects. Proton
elastic scattering from 1p-shell nuclei was also considered in
Ref. [10] over the interval 10–50 MeV. For the case of proton
scattering from 12C, the optical model fits corresponding
to incident neutron energies above 19 MeV reproduced
the overall features of the angular distribution data. Below
19 MeV, however, the optical model calculations for the
angular distributions resulted in two minima while only one
was experimentally observed, and the calculated angular distri-
butions were generally below the corresponding experimental
data. One important observation is that for 12C, 14N, and
16O, the positions of the large angle minima in the angular
distributions were not correctly reproduced. Such minima are
usually associated with the presence of nonlocalities that are
partly from coupling of the ground state of the target nucleus
to inelastic excitations [11]. In fact, it was pointed out that
at low incident energies the nucleon elastic scattering from
16O shows a minimum around 120◦, that could not be fitted
with phenomenological or microscopic local optical potentials
[11].
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In a recent work [12] neutron elastic scattering from the
light 12C nucleus was considered over the energy interval
10–20 MeV using a nonlocal velocity-dependent optical
potential (VDP). This model resulted in excellent fits to the
elastic angular distribution data over the full angular range,
particularly the large-angle minima. Although the polarization
data were not used in the search for the fit parameters, the
analyzing power calculations using the VDP resulted in good
agreement with the experimental data. As we shall see in the
next section, the Schrödinger equation for a VDP contains
terms that are proportional to the derivative of a Woods-Saxon
potential. Using the same model, neutron scattering from the
heavier 40Ca was studied in the energy range 10–20 MeV [13],
while proton elastic scattering from 12C, 16O, 40Ca, and 58Ni
was investigated in the 10- to 40-MeV range [14]. In the latter
two works, the calculated VDP elastic angular distributions
agreed well with the corresponding experimental data even
in the large angle scattering region, where the conventional
optical model (COM) does not usually lead to good fits.

In this work, we shall investigate the importance of the
VDP at higher energies corresponding to neutron elastic
scattering from the 12C and 16O 1p-shell nuclei. We shall
start by expressing the Schrödinger equation for a VDP in the
standard form, which leads to a local but energy-dependent
potential with real surface terms that are proportional to the
derivatives of the nuclear matter density. This is important for
light nuclei which have diffused edges and deformed surfaces.
Other formalisms also lead to optical potentials containing a
real surface term. For example, Mau started from the smooth
Hartree-Fock (HF) potential, for the valence neutron in the
mean field of the nuclear core, and calculated the correction
to this HF potential resulting from the coupling of single-
particle states to the random phase approximation collective
one-phonon states of the core [15]. This coupling was found to
be responsible for the inversion of the sequence 1/2− and 1/2+
states in the one-neutron halo 11Be nucleus [15]. Furthermore,
coupling of single-particle states to collective excitations of
the nuclear core in 1p-shell nuclei was considered in [18]
and resulted in a real surface term correction to the smooth
HF potential, thus explaining the ground states of 11Li, 12Be,
and 14C nuclei which are not possible to describe using
usual models suitable for more ‘normal” many-body systems.
Furthermore, the dispersive optical model (DOM) formalism
results in a surface peaked real term as a direct consequence
of the dispersive relation that connects the real part of the
optical potential to the imaginary one, which has a surface term
component [16]. A recent work [17] fitted the elastic angular
distributions for neutron scattering from the light 9Be, which
is known for its anomalously large deformation and surface
effects [19], using two potentials. One is a dispersive optical
potential. The other is a conventional optical potential with a
real surface peaked term similar to that suggested in [18]. The
authors argued that in both cases the surface term simulated the
effects of coupling to surface degrees of freedom. However, as
reported in [17], it is important to note that the COM with a
surface term has resulted in better angular distribution fits for
the n − 9Be elastic scattering process than the DOM model.

The real surface term obtained by considering coupling of
single-particle states to collective core excitations or through

the dispersive relation is essentially a correction to the mean
field HF smooth potential, and accounts for the fact that
the target nucleus may not remain in the ground state dur-
ing the elastic scattering process [20]. One difference between
the aforementioned formalisms and the VDP formalism is
that the later results in three real surface terms which are
proportional to the first and higher order derivatives of the
nuclear matter density, which might better describe the effects
of surface deformations in light nuclei. This might explain the
excellent elastic angular distribution fits for nucleon scattering
from the light 1p-shell nuclei in Refs. [12] and [14].

II. THE NONLOCAL VELOCITY-DEPENDENT
OPTICAL POTENTIAL

The velocity-dependent potential (VDP) was first intro-
duced in [21] to explain the predominantly p-wave nature of
the pion-nucleon scattering. It may be expressed in the form,

V̂ (r,p) = V (r) + �
2

2μ
∇ · ρ(r)∇,

= V (r) + �
2

2μ
[ρ(r)∇2 + ∇ρ(r) · ∇], (1)

where μ is the nucleon-nucleus reduced mass and ρ(r) is a
smooth function of the radial variable r . The last gradient
term that acts on the wave function can be interpreted as the
first term of a Taylor series expansion that displaces the wave
function from point r to a different location r′. Therefore,
the velocity-dependent potential V̂ (r,p) plays the role of a
nonlocal potential V (r,r′) [22]. In Eq. (1) the conventional
optical potential V (r) is given by

V (r) =−V0f (r,x0) + 4iawWd

d

dr
f (r,xw)

+ 2

r

(
�

mπc

)2

(Vso + iWso)
d

dr
f (r,xso)�σ · �I , (2)

where mπ is the pion mass. This is different from all the works
in Refs. [12–14] in which the reduced mass of the nucleon-
nucleus system was used in the spin-orbit term. We have used
the pion mass for ease of comparison with the conventional
optical model (COM). Furthermore, xj denotes (rj ,aj ) and
so on for the rest of the terms. The function f (r,xj ) has the
Woods-Saxon form, namely,

f (r,rj ,aj ) = 1

1 + exp[(r − rjA1/3)/aj ]
, (3)

with A being the mass number of the target nucleus. As we
shall see in Sec. IV, for incident energies around 30 MeV an
additional volume term,

Wv(r) = Wvf (r,x0), (4)

was needed in V (r) to fit the experimental angular distribu-
tions. The function ρ(r) is defined as the first derivative of a
Woods-Saxon potential, namely,

ρ(r) = ρ0 aρ

d

dr
f (r,xρ), (5)
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and hence is proportional to the nuclear matter density. Its
effect is expected to be most important in light nuclei that
mainly consist of diffused edges and deformed surfaces.

For the above VDP, the corresponding Schrödinger equa-
tion takes the form,

(1 − ρ)v′′(r) −
[
v′(r) − v(r)

r

]
ρ ′ − (1 − ρ)

l(l + 1)

r2
v(r)

= 2m

�2
[V (r) − E]v(r), (6)

where the dependencies of the reduced wave function on k
and ρ(r) on r have been suppressed for clarity of presentation.
This form was used to determine the effects of small pertur-
bations in the velocity-dependent potential on the bound-state
energies [23] and the scattering phase shifts [24].

The last equation can be transformed into the standard form
of the Schrödinger equation for an equivalent local but energy-
dependent potential U (r,E), through the transformation of
Krell and Ericson [25], namely,

v(k,r) = ψ(k,r)√
1 − ρ(r)

, (7)

that leads to the following standard Schrödinger equation,

ψ ′′(r) +
[

2μ

�2
E − l(l + 1)

r2
+ U (r,E)

]
ψ(r) = 0, (8)

where

U (r,E) = 1

(1 − ρ)

[
ρ ′′

2
+ ρ ′2

4(1 − ρ)
+ ρ ′

r

− 2μ

�2
V (r) + 2μ

�2
ρE

]
. (9)

Clearly, the above Schrödinger equation contains terms that
are proportional to the first and higher order derivatives of the
Woods-Saxon potential, namely ρ(r), ρ ′(r), and ρ ′′(r). In fact,
the term (ρ ′(r))2 has the same radial form as the real surface
term in Eq. (28) of Ref. [18].

In addition to the real surface terms, the energy-dependent
potential U (r,E) contains imaginary surface terms as given by
the definition of V (r) in Eq. (2), where the second term on the
right-hand side is the well-known surface imaginary absorptive
term. This term is responsible for all the nonelastic processes
that lead to the removal of particle flux from the elastic channel.
As already mentioned in the introduction, this term results in
a real surface term through the dispersive relation within the
framework of the dispersive optical potential. In addition, as
we shall see in Sec. IV, at incident neutron energies greater
than about 30 MeV, a volume imaginary term is needed to
obtain the angular distribution fits. This indicates that for such
energies the incident neutron interactions take place inside the
nucleus and not just at the surface.

III. FITTING PROCEDURE

The issue of how to judge the goodness of an optical
potential fit to experimental data was discussed at length in the
extensive work of Koning and Delaroche [2]. They argued that
the determination of a successful optical potential parameter

set is considered successful provided the following three
conditions are satisfied: (i) physically meaningful parameters,
(ii) the parameters must satisfy a numerical optimization
procedure which is usually a minimal value of χ2, and (iii)
a good visual fit. One may also compare the theoretical
predictions of integrated cross sections with the experimental
values. Because we obtain the VDP parameters by fitting
elastic angular distributions we shall see that the theoretical
predictions for the total elastic cross section agree better with
experimental data than the case for the total reaction cross
section. This is true for the VDP, COM, and the potential of
Dave and Gould in Ref. [9]. In obtaining our fits we always paid
special attention to the quality of the fits at large angles, where
structural effects are expected to be important. Although a χ2

analysis gives an overall indication of the quality of a given fit,
we found that a minimal value of χ2 does not necessarily lead
to a best fit to the data in the backward-scattering region. In fact,
Perey discussed the issue of optimizing the phenomenological
optical potential fits in nuclear scattering and concluded that
the value of χ2 may have little meaning as an estimator of the
goodness-of-fit [26]. In this work we always aimed to satisfy
all the three conditions listed above. However, if a good visual
fit in the large-angle region led to a small increase in the
value of χ2, we chose the fit that best describes the data at
large angles. One slight complication with the χ2 analysis
in this work arose from the fact that the Evaluated Nuclear
Data File (ENDF), which is the source of the experimental
angular distribution data used here, does not list experimental
data errors. However, to still use the χ2 analysis as one of
the indicators for the quality of our fits, we assumed a 10%
error on each data point, which corresponds to the mean value
of the error in the experimental data [27]. We varied the
potential parameters until a satisfactory visual fit was obtained
in addition to obtaining a minimal value for χ2 according to
the formula,

χ2 = 1

N

N∑
i=0

((
dσ (θi )
d�

)
theo − (

dσ (θi )
d�

)
exp

	
(

dσ (θi )
d�

)
)2

, (10)

(dσ (θi)/d�)theo and (dσ (θi)/d�)exp being the theoretical
and experimental differential cross sections, respectively.
A smooth variation in addition to a physical meaning of
the values of the potential parameters were always of our
primary concern. It is known that more than one set of
phenomenological optical potential parameters may result in
the same fit to the angular distribution data. One example is
that different values of the real potential depth V0 and the
diffuseness parameter a0 leading to the same value of their
product V0 a2

0 result in the same fit. To reduce the effect of this
and other ambiguities, the sets of best fit parameters were used
to theoretically calculate the analyzing power Ay(θ ) whenever
data were available. We then chose the set of parameters that
resulted in the best prediction for the experimental analyzing
power.

In searching for the fit parameters, the strengths of the real
and imaginary central potentials were important to generate
the overall behavior of the angular distributions. The fine
tuning to reproduce the large-angle minima was then achieved
by varying the parameters of the real surface and spin-orbit
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terms. In particular, the values of ρ0, rρ , and aρ associated
with surface terms in Eq. (1) were observed to strongly affect
the differential cross section values in the backward-scattering
region, thus leading to a good fit corresponding to large angles.

IV. RESULTS AND DISCUSSION

As a test of the VDP we shall compare our angular
distribution fits to the results of the COM model that exist
in the literature in the low energy range. At higher energies,
however, we shall fit the experimental data twice, the first by
using the VDP, while in the second we use the COM model.
By comparing the fits of both models, we shall investigate
the importance of the VDP as a function of incident energy.
We shall also calculate the total elastic and total reaction
cross sections in addition to the analyzing power using the
VDP. The theoretically determined values shall be compared
to experimental data.

A. The low-energy case

Dave and Gould [9] analyzed neutron elastic angular
scattering data from the light 6Li to 16O 1p-shell nuclei
and over the low 7- to 15-MeV energy range. They fixed
the geometric parameters for each nucleus but allowed the
potential depths to vary with energy. In this work, we compare
our angular distribution fits for neutron elastic scattering from
12C to their fits, which they obtained using the COM potential
given in Eq. (2). For a meaningful comparison, we have fixed
the geometry parameters but allowed a slight variation in the
potential depths and ρ0 as can be seen in Table I. The values of
rρ and aρ were constant at all energies apart from the 15-MeV
case, where our fit at large angles could not be obtained without
modifying their values. The corresponding angular distribution

TABLE I. Velocity-dependent potential best fit parameters for
n − 12C elastic angular distributions. The potential depths are in units
of MeV, the geometric parameters are in units of Fermi, and ρ0 is
dimensionless. The χ 2 values corresponding to the VDP and DG
potentials are also shown.

VDP Elab (MeV)

parameters 9.6 11.0 12.8 14.0 15.0

V0 53.40 52.13 51.98 51.50 49.90
r0 1.20 1.20 1.20 1.20 1.20
a0 0.35 0.35 0.35 0.35 0.35
Wd 13.05 13.10 13.18 13.50 13.80
rw 1.387 1.387 1.387 1.387 1.387
aw 0.163 0.163 0.163 0.163 0.163
ρ0 −0.55 −0.10 −0.39 −0.15 −0.99
rρ 0.60 0.60 0.60 0.60 1.90
aρ 0.35 0.35 0.35 0.35 0.42
Vsor 5.50 5.50 6.00 5.35 4.40
Vsoi 1.00 1.10 2.60 2.30 1.32
rso 1.15 1.15 1.15 1.15 1.15
aso 0.5 0.5 0.5 0.5 0.5
χ 2(VDP) 0.8 1.8 2.6 2.0 1.7
χ 2(DG) 2.9 6.4 9.0 3.4 4.5
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FIG. 1. (Color online) Angular distribution fits for the n − 12C
elastic scattering process using the velocity-dependent potential
(VDP) and the Dave and Gould (DG) models. The experimental
data are obtained from Ref. [28].

fits are displayed in Fig. 1. Clearly, the VDP has improved the
fits in the large-angle region (θcm > 1000) corresponding to
the 12.8-, 14-, and 15-MeV incident energies. This region is
usually associated with nonlocalities [11] part of which is from
coupling of inelastic channels to the ground state of the target
nucleus. Evidently, the VDP has three more fit parameters than
the COM, but those extra degrees of freedom are only needed
when the differential cross sections start to show deep minima
in the large-angle scattering region. This is supported by the
observation that both the VDP and COM resulted in similar
angular distribution fits corresponding to the 9.6-MeV energy,
where no prominent minimum in the back-angle region exists.
We shall come to the same conclusion in the next section when
we extend the VDP to higher energies. It remains to note that,
for all the energies considered, the VDP has resulted in better
overall fits to the elastic angular distribution data as can be
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FIG. 2. (Color online) Analyzing power fits for the n − 12C elas-
tic scattering process using the velocity-dependent potential (VDP)
and the Dave and Gould (DG) models. The experimental data are
obtained from Ref. [28].

seen by inspecting the χ2 values in Table I. It is worth noting
that amongst the strengths of the VDP parts, the strength Wd

of the imaginary part shows the least variation with energy.
This could be a reflection of the real surface terms accounting,
at least partly, for the coupling of the target’s ground state to
inelastic excitations.

We have also used the VDP and COM formalisms to
calculate the analyzing power Ay(θ ). The results are displayed
in Fig. 2. Clearly, at small angles both models resulted
in reasonable fits to the polarization data, with the VDP
calculations being more accurate than the COM results at the
12.9 and 13.9 MeV. At large angles, however, the agreement of
both models with experiment is less accurate, with the COM
calculations being closer to the experimental data. It is worth
noting that the fit to the polarization data could be improved
using either model, but that would be at the expense of the
quality of the fit to the differential cross sections.

B. Extending the VDP formalism to higher energies

In this section we shall investigate the importance of the
VDP at higher energies. We shall consider the cases of elastic
neutron scattering from the light 1p-shell 12C and 16O nuclei
over the energy range 12 up to 90 MeV. In each case, we fit
the elastic angular distributions using the VDP and the COM
formalisms. Wherever experimental polarization data existed,
we shall compare the analyzing power calculations of both
models with the experimental data.

1. n − 12C elastic scattering

As pointed out in the introduction, several conventional
optical and microscopic potentials resulted in significant
differences between the calculated theoretical angular distri-
butions and the elastic angular distribution data for the n − 12C
scattering process [3]. This was proposed to be a consequence
of the surface deformations and diffuseness of the light 12C
nucleus. Surface deformations are important as they allow
coupling of the target’s ground state to inelastic excitation
channels, thus modifying the experimental elastic angular
distribution data. In fact, coupled channel analyses of inelastic
angular distributions of proton scattering from 12C revealed
resonance effects in the angular distributions [29]. Such effects
are responsible for the enhancement and diminishment of
the angular distributions at specific angles particularly in the
backward-scattering region [30]. In what follows we shall test
the ability of the VDP, which contains real surface-peaked
terms, to account for such surface effects.

In this work we have allowed all the potential parameters
of the VDP and COM to be energy dependent but kept that
dependence down to a minimum. Fixing the geometrical pa-
rameters leads to less quality fits compared to those displayed
in Figs. 3 and 4. Clearly, the VDP has resulted in excellent
fits to the differential cross sections particularly the back-
angle scattering regions. The quality of the corresponding fits
obtained using the COM model around θcm ≈ 1200 are less
accurate especially over the 17- to 20-MeV range. However,
Fig. 4 shows that for incident energies greater than 20 MeV,
no deep back-angle minima are present and the COM resulted
in excellent fits to the experimental data for the full angular
range. The VDP and COM fits are almost identical. At those
energies there are no structural effects and hence the need for
the surface terms of the VDP no longer exists. We suggest that
ρ(r) and its derivatives account, at least partly, for the effects
of surface deformations which are responsible for the deep
minima in the large-angle scattering region corresponding to
incident energies up to 20 MeV.

The best fit parameters for the VDP and COM are given in
Tables II and III, respectively. For the VDP and COM models,
the values of the potential strengths and geometric parameters
show comparable variations with energy. An exception is the
behavior of the imaginary surface absorption term, where the
parameters Wd , rw, and aw belonging to the VDP are more
stable than the corresponding values of the COM potential.
Furthermore, in comparison to the COM potential, the values
of the potential strength Wd corresponding to the VDP are
reduced. Because the imaginary surface term accounts for
absorption, a reduced Wd value may be seen as an evidence that
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FIG. 3. (Color online) Angular distribution fits for the n − 12C
elastic scattering process using the velocity-dependent potential
(VDP) and the conventional optical model (COM). The experimental
data are obtained from Ref. [31].

the real surface terms simulate coupling to inelastic excitation
channels. Inspection of Table III shows that an additional
volume term defined by Eq. (4) is needed to achieve the
COM fits starting from the 30-MeV incident energy. In this
energy range, the interactions of the incident neutron are not
limited to the surface region but also take place inside the
nuclear volume. During our search for the best fit parameters,
we noticed that the parameters of the real surface term ρ(r)
have a significant influence on the quality of the fits in the
back-angle scattering region. For example, setting ρ0 = 0
at Elab = 19 MeV significantly reduces the quality of the
fit at large angles. It remains to note that the χ2 values
corresponding to the VDP formalism are clearly smaller than
the corresponding ones obtained for the COM potential.

Finally, as shown in Fig. 5, we compare the calculated
analyzing powers using the VDP and COM. The two models
result in reasonable similar agreements with the experimental

100

103 Exp. Data
COM
VDP

100

103

100

103

100

103

0 60 120 180

10-3

100

103

dσ
/d

Ω
   

(m
b/

sr
)

20 MeV

22 MeV

30 MeV

50 MeV

80 MeV

θc.m. (deg)

FIG. 4. (Color online) Angular distribution fits for the n − 12C
elastic scattering process using the velocity-dependent potential
(VDP) and the conventional optical model (COM). The experimental
data are obtained from Ref. [31].

data. However, at 13.9 MeV the VDP clearly improves the
agreement with the data in the low angle region. At 11.9 MeV,
however, the calculated analyzing power using the COM
potential is better than that of the VDP at large angles.

2. n − 16O elastic scattering

Inspection of the n − 16O elastic angular distribution fits
shown in Figs. 6–8 reveals two main differences with the
n − 12C elastic scattering case. First, there is a significant
deviation between the experimental data and the fits of
the COM potential at the position of the first minimum in
the 50◦–70◦ angular range. This is most obvious for the
14- to 22-MeV incident energies. The corresponding VDP
fits are significantly more accurate. At the lowest 12-MeV
incident energy the discrepancy is shifted to a slightly higher
angular range with the VDP fit better than that of the
COM but does not quite agree with the experimental data.
Furthermore, in the back-angle scattering region, the VDP fits
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TABLE II. Velocity-dependent potential best fit parameters for n − 12C elastic scattering. Potential depths are in units of MeV, geometric
parameters in units of Fermi, and ρ0 is dimensionless.

VDP Elab(MeV)

parameters 12 14 15 17 19 20 22 30 50 80

V0 48.8 49.0 46.5 42.8 41.0 43.3 44.8 44.4 43.8 36.1
r0 1.196 1.264 1.200 1.136 1.176 1.14 1.216 1.216 1.184 1.147
a0 0.499 0.471 0.567 0.643 0.893 0.804 0.645 0.629 0.637 0.576
Wv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 11.05
Wd 5.7 5.5 4.5 5.4 6.9 5.4 6.5 6.5 6.8 4.0
rw 1.233 1.130 1.200 1.160 1.381 1.280 1.232 1.232 1.240 1.336
aw 0.493 0.584 0.596 0.544 0.447 0.560 0.632 0.640 0.640 0.480
ρ0 −2.356 −0.692 −1.283 −1.812 −2.301 −2.220 0 0 0 0
rρ 1.841 1.585 1.451 1.337 1.239 1.181 1.054 1.054 1.054 1.239
aρ 0.169 0.216 0.235 0.264 0.163 0.150 0.152 0.152 0.152 0.163
Vsor 4.8 4.7 4.9 4.4 6.1 4.0 6.0 5.1 4.6 3.4
Vsoi 1.7 0.2 0.1 0.0 1.0 1.1 0.1 0.2 0.1 0.7
rso 1.197 0.921 0.896 0.896 0.761 0.971 1.058 1.067 1.059 1.029
aso 0.418 0.232 0.269 0.330 0.484 0.315 0.478 0.487 0.497 0.527
χ 2 1.0 0.2 0.4 0.2 2.0 1.8 0.5 0.3 0.8 5.8

are accurate showing a significant improvement over those
of the corresponding COM ones particularly at the 17- and
30-MeV incident energies. Second, as can be seen in Figs. 7
and 8, the COM model led to excellent fits to the angular
distributions across the full angular range for incident energies
greater than 30 MeV. This is unlike the 12C case, where the
COM resulted in excellent fits for all angles corresponding to
energies greater than 20 MeV. The change of the energy range
over which the VDP is needed may be traced to differences in
the nuclear structures of the 12C and 16O nuclei. In Fig. 9, we
display the analyzing powers calculated using both models.
Clearly, both models result in reasonable agreement with the
data, with those calculated using the VDP being more accurate
especially at the 14-MeV energy. Once again, the fit to the
polarization data from either model could be improved, but at
the expense of the quality of the angular distribution fits.

The fit parameters for the VDP and COM models are shown
in Tables IV–VII, respectively. The common parameters

between the two models show similar energy dependence.
However, the values of Wd of the VDP model are smaller
than those for the COM as was observed in the 12C case.
The decrease in the strength of the imaginary absorption
term, which accounts for inelastic channels, could be from the
real surface terms contributing in accounting for the inelastic
excitations that couple to the ground state of the target nucleus.
Finally, apart from the case of 27-MeV incident energy, the χ2

values for the VDP are lower than the corresponding ones for
the COM potential.

C. Total cross sections

To test the applicability of the VDP further, we have
calculated the total elastic (σ el

tot) and total reaction (σ r
tot) cross

sections using the DG, VDP, and COM models. The calculated
quantities together with the corresponding experimental values
are shown in Tables VIII and X. Inspection of Table VIII shows
that both the DG and VDP models have resulted in very good

TABLE III. Conventional optical model best fit parameters for n − 12C elastic scattering. Potential depths are in units of MeV, geometric
parameters in units of Fermi, and ρ0 is dimensionless.

COM Elab(MeV)

parameters 12 14 15 17 19 20 22 30 50 80

V0 51.99 51.00 49.99 51.50 51.01 50.00 49.87 47.07 35.00 26.99
r0 1.19 1.25 1.26 1.18 1.36 1.30 1.09 1.13 1.12 1.19
a0 0.59 0.52 0.55 0.63 0.74 0.64 0.74 0.69 0.61 0.80
Wv 0 0 0 0 0 0 0 −2.79 4.62 7.99
Wd 12.99 8.03 9.00 15.00 12.97 12.79 8.05 8.68 4.12 9.01
rw 1.47 1.08 1.06 1.03 1.53 1.57 1.00 1.00 1.42 1.18
aw 0.19 0.47 0.38 0.29 0.32 0.28 0.71 0.74 0.74 0.57
Vsor 6.47 7.00 7.00 7.00 7.00 7.00 9.54 9.72 15.02 10.19
Vsoi 2.15 0.10 0.10 0.0 3.94 4.08 0.08 0 0.75 0.13
rso 0.93 0.90 0.90 0.98 1.00 1.00 1.15 1.05 0.92 0.90
aso 0.35 0.74 0.20 0.20 0.35 0.20 0.70 0.73 0.71 0.56
χ 2 2.4 1.6 1.2 3.9 10.4 9.7 0.2 0.13 1.0 6.7
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FIG. 5. (Color online) Analyzing power fits for the n − 12C elas-
tic scattering process using the velocity-dependent potential (VDP)
and the conventional optical model (COM). The experimental data
are obtained from Ref. [28].

predictions for σ el
tot with χ2 values of almost unity. For the

n − 12C scattering process, Table IX shows that the agreement
between the theoretical total elastic cross sections obtained
using the VDP and COM models is very good with the VDP
predictions being more accurate with χ2 = 0.58. This is also
the case for the predicted integrated elastic cross section for the
n − 16O scattering process as can be seen in Table X. Regard-
ing the total reaction cross section, the agreement between the
theoretical values and the experimental data is less accurate for
the the three VDP, DG, and COM models. Clearly, all the three
models (DG, VDP, and COM) have resulted in much more
accurate predictions for the values of the integrated elastic
cross section compared to the total reaction cross-section case.
This is not surprising as the parameters of all three models
were determined by fitting the elastic angular distribution
data. The theoretical predictions for the total elastic cross
section in addition to the experimental data are displayed in
Fig. 10, where the very good predictions of the VDP are evident
particularly in graphs in Figs. 10(b) and 10(c).

V. CONCLUSIONS

Unlike the case for heavy nuclei, the success of the
conventional optical model in describing nucleon elastic
scattering from the light 1p-shell nuclei was somewhat limited
as we pointed out in the introduction. Light nuclei have
surface deformations that result in resonance structures at
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FIG. 6. (Color online) Angular distribution fits for the n − 16O
elastic scattering process using the velocity-dependent potential
(VDP) and the conventional optical model (COM). The experimental
data are obtained from Ref. [32].

certain angular and energy ranges [30]. One improvement to
the COM would be to include terms that accommodate the
effects of surface deformations and nuclear edge diffuseness.
A good example is the work in Ref. [17] where the authors
added a real surface-peaked term to the optical potential
similar to that in [18]. They were able to fit the angular
distribution data for elastic neutron scattering from the light
9Be nucleus over the 4- to 136-MeV energy range. The authors
interpreted this term as representing the effects of surface
deformations which lead to coupling of the ground state to
inelastic excitation channels. This is most important in light
nuclei which mainly consist of diffused edges. For the n − 9Be
elastic scattering system, the real surface term was also crucial
in obtaining the two resonances at the low 0.7- and 3.1-MeV
laboratory incident energies. Furthermore, the authors fit the
same data using the dispersive optical model (DOM), which
contains a real surface term as a consequence of the dispersive
relation [16]. Furthermore, a real surface term correction to the
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FIG. 7. (Color online) Angular distribution fits for the n − 16O
elastic scattering process using the velocity-dependent potential
(VDP) and the conventional optical model (COM). The experimental
data are obtained from Ref. [32].

smooth Hartree-Fock potential accounted for single-particle
states coupling to collective excitations of the nuclear core
in 1p-shell nuclei, and explained the ground states of 11Li,
12Be, and 14C nuclei, which were not possible to describe
using the usual COM [18]. In addition, a real surface term
correction to the HF potential was obtained from the coupling
of single-particle states to the random phase approximation
collective one-phonon states of the core [15]. Such vibrational
model calculations were successful in explaining the inversion
of the 1/2−,1/2+ states in the one-neutron halo 11Be nucleus.

In this work we have modified the conventional optical
model by introducing a real surface term and its higher order
derivatives as given in Eq. (9). It is worth noting that one of
the resulting surface terms in this work namely (ρ ′(r))2 has
the same radial form as the term used in [17]. Recently, the
VDP was used to describe nucleon elastic scattering from
light, medium, and heavy nuclei. It resulted in significant
improvements in describing the elastic angular distributions
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FIG. 8. (Color online) Angular distribution fits for the n − 16O
elastic scattering process using the velocity-dependent potential
(VDP) and the conventional optical model (COM). The experimental
data are obtained from Ref. [32].

of neutron scattering from the 1p-shell 12C nucleus [12], the
medium 40Ca nucleus [13], and proton elastic scattering from
12C, 16O, 54Fe, and 58Ni [14]. However, the energy ranges
considered in the last three references were 12–20 MeV for
the neutron case and 12–40 for proton scattering.

In the present work we have investigated the importance
of the VDP in describing the light 12C and 16O nuclei by
extending the energy range from 12 up to 90 MeV. No lower
energies were considered to avoid the region of compound
nucleus reactions. For neutron elastic scattering from 12C,
we have compared the results of the VDP to those of Dave
and Gould [9], who fitted the elastic angular distributions
using the COM over the low 7- to 15-MeV energy range.
The angular distribution fits are given in Fig. 1. Clearly, the
VDP has resulted in significant improvements to the angular
distribution fits at large angles for the 12.8-, 14-, and 15-MeV
incident energies. At those energies the extra three parameters
of ρ(r) in the VDP model are needed to improve the fits, while
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FIG. 9. (Color online) Analyzing power fits for the n − 16O
elastic scattering process using the velocity-dependent potential
(VDP) and the conventional optical model (COM). The experimental
data are obtained from Ref. [28].

they are less important at the lower 9.6 incident energy as
both models resulted in an overall similar fits. The presence of
the surface terms seem to be important when the differential
cross sections show structural effects that are manifested as
maxima and minima particularly in the backward-scattering
region. In obtaining their fits, Dave and Gould fixed their
COM geometrical parameters. Consequently, we have also
fixed our geometrical parameters for a meaningful comparison.
An exception are the constant values of rρ and aρ which had
to be modified only at 15 MeV, otherwise the corresponding

TABLE V. VDP best fit parameters for n − 16O elastic scattering.
Potential depths are in units of MeV, geometric parameters in units
of Fermi, and ρ0 is dimensionless.

VDP Elab (MeV)

parameters 35 50 60 70 80 90

V0 40.0 39.5 39.5 36.7 33.2 32.0
r0 1.196 1.196 1.196 1.196 1.196 1.196
a0 0.654 0.654 0.654 0.654 0.661 0.634
Wv 1.0 2.7 7.2 7.2 9.4 12.0
Wd 4.4 4.7 4.7 4.7 4.4 2.7
rw 1.240 1.240 1.240 1.240 1.240 1.240
aw 0.670 0.670 0.670 0.670 0.670 0.670
Vsor 3.5 3.4 3.2 2.9 2.6 2.2
Vsoi 0.0 0.0 0.0 0.0 0.0 0.7
rso 1.050 1.050 1.050 1.050 1.040 1.043
aso 0.470 0.470 0.470 0.470 0.470 0.470
χ 2 0.7 0.7 1.8 2.4 4.2 3.0

excellent fit at large angles becomes less accurate. The χ2

values corresponding to the VDP are clearly lower than those
of the COM potential as can be seen in Table I.

We have also considered the extended 12- to 90-MeV
incident energy range. This time we had to fit the data twice, the
first using the VDP while in the other we employed the COM
potential. To obtain as good fits as possible we have allowed
the potential strengths and geometrical parameters of both
models to vary with energy. However, we kept this variation
down to a minimum. The results are shown in Figs. 3 and 4. As
before, both models lead to similar fits in the forward direction.
But the VDP has clearly improved the angular distribution fits
in the back-angle scattering region corresponding to certain
energies most important of which are 17, 19, and 20 MeV.
Above 20 MeV, the differential cross sections do not have
structural effects and the COM resulted in excellent fits across
the full angular range. Therefore, the surface terms are only

TABLE IV. VDP best fit parameters for n − 16O elastic scattering. Potential depths are in units of MeV, geometric parameters in units of
Fermi, and ρ0 is dimensionless.

VDP Elab(MeV)

parameters 12 14 17 20 22 25 27 29 30

V0 51.6 47.5 46.6 41.8 41.8 40.8 40.8 40.5 40.5
r0 1.188 1.175 1.190 1.195 1.200 1.163 1.150 1.168 1.154
a0 0.591 0.590 0.598 0.700 0.646 0.608 0.646 0.559 0.556
Wv 0 0 0 0 0 0 0 2.1 2.1
Wd 2.3 4.2 5.4 8.0 8.0 6.7 6.9 8.0 8.6
rw 1.493 1.240 1.240 1.318 1.240 1.204 1.319 1.448 1.433
aw 0.661 0.670 0.670 0.503 0.503 0.631 0.670 0.570 0.575
ρ0 −0.257 −2.175 −0.700 −1.325 −1.070 −1.353 −1.278 −1.515 −1.537
rρ 0.957 1.700 1.556 1.533 1.440 1.320 1.320 1.600 1.570
aρ 0.150 0.200 0.200 0.219 0.200 0.200 0.200 0.375 0.375
Vsor 6.6 6.1 3.3 3.1 3.1 2.7 2.4 4.6 4.3
Vsoi 1.0 1.5 3.1 0.0 1.8 1.7 2.8 3.7 3.7
rso 1.191 1.050 0.953 1.050 1.050 0.800 1.100 1.100 1.041
aso 0.502 0.470 0.470 0.470 0.600 0.600 0.470 0.470 0.450
χ 2 1.8 1.6 2.0 1.0 3.1 2.2 4.9 7.0 8.9
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TABLE VI. COM best fit parameters for n − 16O elastic scattering. Potential depths are in units of MeV, geometric parameters in units of
Fermi, and ρ0 is dimensionless.

COM Elab(MeV)

parameters 12 14 17 20 22 25 27 29 30

V0 49.86 48.00 48.83 44.49 42.58 40.00 39.00 38.69 38.00
r0 1.30 1.21 1.23 1.20 1.24 1.34 1.28 1.19 1.27
a0 0.67 0.57 0.60 0.48 0.60 0.69 0.76 0.86 0.74
Wv 0 0 0 0 0 0 0 0 0.74
Wd 7.00 7.00 11.08 10.76 11.99 9.75 8.38 8.59 7.64
rw 1.00 1.42 1.02 1.17 1.10 1.20 1.31 1.3 1.32
aw 0.52 0.39 0.53 0.45 0.43 0.55 0.62 0.55 0.59
Vsor 8.0 6.0 7.0 9.0 8.0 15.84 12.23 9.86 6.57
Vsoi 1.00 1.16 5.20 0.10 2.43 5.00 4.99 1.40 2.37
rso 1.13 0.90 1.00 1.00 0.97 1.08 1.16 1.22 1.05
aso 0.74 0.74 0.35 0.74 0.74 0.62 0.74 0.71 0.69
χ 2 5.2 5.0 5.3 7.0 4.5 3.8 3.8 5.8 10.9

needed up to 20-MeV incident neutron energy where structural
effects are present. The corresponding best fit parameters are
shown in Tables II and III.

The same procedure was followed for the n − 16O elastic
scattering process. The angular fits are shown in Figs. 6–8.
Clearly, the COM fits deviate from the experimental data
around the first minimum ((50◦–70◦) at the 14- to 20-MeV
incident energies. The corresponding VDP fits are clearly
more accurate. In the large-angle scattering region the VDP
leads to much better fits particularly at the 17- and 30-MeV
cases. Above 30 MeV the angular distributions no longer show
large-angle deep minima, and hence the COM reproduced the
experimental data for the full angular range. Consequently, the
surface terms are important up to 30 MeV only, where surface
deformation effects seem to be important. The corresponding
best fit parameters are shown in Tables IV–VII. Because the
VDP is only needed up to 20 MeV for the n − 12C and 30 MeV
for the n − 16O elastic scattering processes, we limited the
upper limit of our energy range to 90 MeV.

TABLE VII. COM best fit parameters for n − 16O elastic scat-
tering. Potential depths are in units of MeV, geometric parameters in
units of Fermi, and ρ0 is dimensionless.

COM Elab (MeV)

parameters 35 50 60 70 80 90

V0 34.99 32.99 30.94 27.00 23.00 21.00
r0 1.27 1.30 1.29 1.20 1.21 1.28
a0 0.71 0.74 0.74 0.68 0.72 0.71
Wv 2.99 3.43 3.04 4.00 6.90 8.00
Wd 7.00 8.00 9.00 8.00 8.02 6.22
rw 1.13 1.27 1.17 1.41 1.18 1.16
aw 0.53 0.54 0.63 0.62 0.70 0.68
Vsor 8.00 6.92 8.36 8.17 14.22 8.45
Vsoi 0 −3.67 −2.85 −4.91 −0.46 −0.42
rso 0.90 1.05 0.98 1.20 0.90 0.90
aso 0.75 0.52 0.66 0.51 0.72 0.68
χ 2 1.1 1.3 1.4 1.9 2.7 3.3

By inspecting the best fit parameters in Tables II–VII,
one observes that in each of the carbon and oxygen cases
the parameters of the VDP and COM formalisms have
similar energy variations apart form the strength Wd of the
imaginary surface absorption term. In each case the values of
Wd corresponding to the VDP are reduced compared to the
corresponding values of COM. This could be a consequence
of the real surface terms ρ(r) and its higher derivatives
given in Eq. (9) accounting, at least partly, for the effects
of the nuclear surface deformations. Such deformations play
an important role in coupling the ground state of the target
nucleus to inelastic excitations, thus modifying the elastic
angular distribution data.

In all the cases considered above, we have compared
the analyzing powers calculated using the VDP and COM
formalism. The plots are shown in Figs. 2, 5, and 9. The
analyzing powers calculated using the VDP and COM lead
to reasonable descriptions of the experimental polarization
data. However, the VDP was found to be more accurate in
describing the data at small angles. At large angles, however,
the analyzing power values of both models are less accurate
with the COM values being closer to the experimental data at
some specific incident energies.

TABLE VIII. Total elastic and reaction cross sections using the
VDP and DG models corresponding to the n − 12C elastic scattering
process. The experimental values are obtained from Ref. [31].

Elab Total elastic Total reaction
(MeV) cross section (mb) cross section (mb)

Experimental VDP DG Experimental VDP DG

9.6 691.0 609.1 665.4 538.3 413.9 445.0
11.0 901.3 733.0 730.5 522.6 413.9 428.5
12.8 904.4 802.5 805.1 473.8 371.1 418.3
14.0 803.3 847.1 848.7 499.8 371.1 414.3
15.0 851.4 814.5 880.8 550.3 424.2 411.0
χ 2 1.3 1.1 5.2 3.4
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TABLE IX. Total elastic and reaction cross sections using the
VDP and COM models corresponding to the n − 12C elastic scattering
process. The experimental values are obtained from Ref. [31].

Elab Total elastic Total reaction
(MeV) cross section (mb) cross section (mb)

Experimental VDP COM Experimental VDP COM

12 927.6 751.5 799.2 525.1 595.2 542.8
14 803.3 738.9 718.8 499.8 601.8 587.1
15 851.4 857.1 776.2 550.3 617.6 553.4
17 842.9 885.4 752.5 549.0 615.2 536.2
19 957.8 985.0 882.2 529.2 691.0 748.3
20 1008.9 969.5 914.4 522.7 620.1 634.7
22 905.2 923.1 854.8 501.5 614.6 672.5
30 891.4 901.8 856.1 412.3 545.2 561.8
50 640.2 699.1 549.0 309.6 504.7 530.7
80 367.5 380.2 358.4 250.8 375.2 442.2
χ 2 0.58 0.90 10.2 15.9

In Table VIII we compare the total elastic and reaction cross
sections calculated using the VDP and Dave and Gould models
to the experimental results. Judging by the χ2 ≈ 1 values,
both models have resulted in very good predictions for the
integrated elastic cross section. For the n − 12C and n − 16O
scattering processes Tables IX and X show the VDP and COM
theoretical predictions for the total elastic cross section in
addition to the experimental data. The χ2 values show that
both the VDP and COM models result in very good predictions
for the total elastic cross section with the VDP predicting
more accurate values particularly for the 16O case especially
at low energies where the surface terms are important. For all
three models the theoretical predictions for the total reaction

TABLE X. Total elastic and reaction cross sections using the VDP
and COM models corresponding to the n − 16O elastic scattering
process. The experimental values are obtained from Ref. [31].

Elab Total elastic Total reaction
(MeV) cross section (mb) cross section (mb)

Experimental VDP COM Experimental VDP COM

12 1036.8 873.9 752.9 611.9 632.6 759.8
14 946.3 844.5 888.4 635.5 767.6 676.6
17 1005.3 957.4 821.5 601.6 739.3 714.1
20 998.7 999.3 780.8 640.3 795.9 625.7
22 1046.5 991.1 844.8 622.5 692.1 625.0
25 1017.6 973.8 845.0 612.0 695.4 722.3
27 1023.1 994.4 989.4 583.0 769.0 782.4
29 1032.9 1027.3 1044.6 537.0 905.6 709.5
30 1042.8 998.0 1033.0 524.1 910.9 717.4
35 1012.9 1039.7 948.8 467.0 527.6 537.4
50 809.8 862.9 910.8 390.1 513.1 549.2
60 663.1 709.9 748.9 370.0 559.6 559.0
70 578.1 625.3 646.1 336.7 530.2 602.6
80 485.3 516.4 452.5 321.9 524.1 567.3
90 404.2 447.2 368.2 300.0 465.4 487.8
χ 2 0.52 1.93 18.0 16.9
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FIG. 10. (Color online) Total elastic cross section calculated
using the DG, VDP, and COM models compared to the experimental
data which is obtained from Ref. [31]. Graphs (a) and (b) correspond
to the n − 12C elastic scattering process, while graph (c) is for the
n − 16O elastic scattering process.

cross section are less accurate compared to the corresponding
total elastic cross-section case. This is not surprising as
the parameters of each potential were determined by fitting
the elastic angular distribution data. In Fig. 10 we display the
integrated elastic cross sections for the three models together
with the experimental data.

In summary, the VDP has resulted in significant im-
provement in fitting the elastic n − 12C and n − 16O angular
distributions particularly in the back-angle scattering region
corresponding to certain energy ranges. It is worth noting that
several earlier works that we discussed in the introduction have
reported difficulties in fitting the elastic angular distribution
data corresponding to nucleon scattering from light 1-p shell
nuclei, particularly in the back-angle region. The VDP has also
resulted in very good theoretical predictions for the integrated
elastic cross section in addition to good predictions for the
analyzing power Ay(θ ). We propose that the real surface terms
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ρ(r) and its higher derivatives are important in accounting
for the effects of surface deformations and edge diffuseness
in light nuclei, and might simulate coupling of the ground
state to inelastic excitation channels. This conclusion is in
line with the results of other works that introduced a real
surface term in the optical model which were discussed in the
introduction.

Finally, coupling of the elastic channel to inelastic excita-
tions is simulated by the imaginary part of the optical potential
and leads to a loss of particle flux into the open reaction
channels. In the Feschbach formalism, such couplings also
result in a second-order complex potential term. The real part
of this second-order term is called a polarization potential and
renormalizes the bare real part of the optical potential [33]
and [34]. This polarization potential arises whenever coupled-
channel calculations are reduced to a one-channel problem.
Consequently, the hypothesis that the real surface terms
introduced by the VDP simulate coupling of the elastic channel

to inelastic excitations imply that they represent a polarization
potential. One may test this hypothesis by investigating the
effect of a complex ρ(r) term on the VDP angular distribution
fits and theoretical integrated cross section predictions. If ρ(r)
represents a polarization potential, then the imaginary part of
ρ(r) would add to the second-order complex term, while its
real part represents the polarization potential. An improvement
in the model’s predictions would support the claim that the
current real surface terms represent a polarization potential
and, therefore, simulate coupling to open reaction channels.
If no improvement in the model’s predictions is obtained, the
origin of the real surface terms may be from a change in the
real part of the nucleon-nucleus potential inside the nuclear
medium and hence might simulate effects that are represented
by real potentials such as, for example, exchange or knock-on
effects. Obviously, further investigations are needed to shed
more light on the physical origin of the real surface terms
introduced by the VDP.
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