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In a recent work [Phys. Rev. C 84, 044321 (2011)] M. J. Ermamatov and P. R. Fraser have studied rotational and
vibrational excited states of axially symmetric nuclei within the Bohr Hamiltonian with different mass parameters.
However, the energy formula that the authors have used contains some inaccuracies. So the numerical results
they obtained seem to be controversial. In this paper, we revisit all calculations related to this problem and
determine the appropriate formula for the energy spectrum. Moreover, in order to improve such calculations, we
reconsider this problem within the framework of the deformation-dependent mass formalism. Also, unlike the
work of Bonatsos et al. [Phys. Rev. C 83, 044321 (2011)], in which the mass parameter has not been considered,
we will show the importance of this parameter and its effect on numerical predictions.
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I. INTRODUCTION

Thanks to its relatively simple structure the Bohr Hamil-
tonian [1] continues to play an undeniable role in the
study of nuclear structure within collective models [2,3]
in competition with more sophisticated methods such as
the quasiparticle random phase approximation (QRPA) [4,5]
and the interacting boson model (IBM) [6]. Moreover, its
advantage in respect to these microscopic methods resides
in its ability to provide collective-states eigenenergies and
corresponding wave functions of nuclei in analytical form. So
far, the Bohr Hamiltonian has been widely used with a constant
mass parameter [7–13]. Recently, this assumption has been
reexamined in the framework of the deformation-dependent
mass formalism (DDMF) [14,15], emphasizing that the mass
tensor of the collective Hamiltonian cannot be taken as a
constant but it has to depend on the collective coordinates.
Such a formalism allows us to enhance the precision of
numerical calculations of nuclear characteristics. Moreover,
Jolos et al. [16–19] have shown that this mass parameter
should split into a ground-state band and β-band and γ -band
coefficients for deformed nuclei. Each coefficient is set to its
average value over the wave function of the corresponding
band state. Following the latter procedure, M. J. Ermamatov
et al. have studied rotational and vibrational spectra of axially
symmetric nuclei [20]. Their calculations have been based on
an analytical energy formula that the authors claimed they
obtained in a previous work [21]. However, the used formula
in Ref. [20] together with the corresponding wave functions
were inaccurate as we will show in this paper. Therefore,
the calculated transition rates by the same authors are also
questionable. Besides, the Bohr Hamiltonian’s dependence on
two separable collective coordinates β and γ , where β also
represents nuclear shape deformation, enables one to choose
nuclear collective potentials as a sum of two separate terms,
namely a β potential V (β) and a γ term V (γ ). In the present
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paper, where we revisit the M. J. Ermamatov et al. work [20]
with the purpose of improving their calculations within the
DDMF, the potential term V (β) is chosen to be equal to the
Davidson potential [22] as in Ref. [20] and the γ potential V (γ )
is taken to be equal to the harmonic oscillator. Such a problem
has been solved in Ref. [14] but with equal mass coefficients
by means of the supersymmetric quantum mechanical method
(SUSYQM) [23,24]. Furthermore, we will display the essential
role played by the mass parameter in the evaluation of nuclear
characteristics unlike the Bonatsos et al. work [11–15] in
which this parameter has been hidden. Thus, the eigenenrgies
formula and the corresponding wave functions are derived
by means of the asymptotic iteration method (AIM) [25].
This method has proved to be a useful tool when dealing
with physical problems involving Schrödinger-type equations
[26–28].

This paper is organized as follows: In Sec. II the position-
dependent mass formalism is briefly described. In Sec. III,
we propose the Bohr Hamiltonian with three different mass
coefficients that we use in Sec. IV in accordance with the
deformation-dependent mass formalism. The exact separation
of the Bohr Hamiltonian in the case of axially symmetric
prolate deformed nuclei and the solutions of angular equation
are achieved in Sec. V. The radial equation is given in
Sec. VI. Analytical expressions for the energy levels and
excited-state wave functions are presented in Secs. VII and
VIII, respectively, while the B(E2) transition probabilities
are given in Sec. IX. Finally, Sec. X is devoted to the
numerical calculations for energy spectra and B(E2) transition
probabilities with their comparisons with experimental data
and the available IBM ones, while Sec. XI contains the
conclusion. An overview of the asymptotic iteration method is
given in Appendix A, while in Appendix B, we give the used
formulas for the calculations of B(E2).

II. POSITION-DEPENDENT MASS FORMALISM

The general form of the Hamiltonian with effective mass
depending on position was originally introduced by Von Roos
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[29],

H = −�
2

4
[mδ′

(x)∇mκ ′∇mλ′ + mλ′
(x)∇mκ ′∇mδ′

] + V (x),

(1)

where V is the relevant potential and the parameters δ′,κ ′,λ′
are constrained by the condition δ′ + κ ′ + λ′ = −1. Assuming
a position-dependent mass of the form [30]

m(x) = m0M(x),M(x) = 1

[f (x)]2
,f (x) = 1 + g(x), (2)

where m0 is a constant mass and M(x) is a dimensionless
position-dependent mass, the Hamiltonian (1) becomes [30]

H = − �
2

4m0
[f δ(x)∇f κ∇f λ + f λ(x)∇f κ∇f δ] + V (x),

(3)

with δ + κ + λ = 2. It is known [30] that this Hamiltonian can
be put into the form

H = − �
2

2m0

√
f (x)∇f (x)∇

√
f (x) + Veff(x), (4)

with

Veff(x) = V (x) + �
2

2m0

{
1

2
(1 − δ − λ)f (x)∇2f (x)

+
(

1

2
− δ

)(
1

2
− λ

)
[∇f (x)]2

}
, (5)

where δ and λ are free parameters.

III. BOHR HAMILTONIAN WITH MASS COEFFICIENTS

In the laboratory frame, the Bohr Hamiltonian can be
written as [17]

H = 1

4

[∑
μ

π+
2μπ2μ

1

B(α2)
+ 1

B(α2)

∑
μ

π+
2μπ2μ

]
+ V (α2),

(6)

where α2μ is a collective variable and π2μ is an operator of the
conjugate momentum. In the intrinsic frame we obtain from
Eq. (6)

H = − �
2

4B(β,γ )

[
1

β4

∂

∂β
β4 ∂

∂β
+ 1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

− 1

4β2

∑
k=1,2,3

Q2
k

sin2
(
γ − 2

3πk
)
]

−
[

1

β4

∂

∂β
β4 ∂

∂β

+ 1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
− 1

4β2

∑
k=1,2,3

Q2
k

sin2
(
γ − 2

3πk
)
]

× �
2

4B(β,γ )
+ V (β,γ ). (7)

For small amplitudes of γ vibration around γ = 0 and β
vibration around β = β0 �= 0, the collective coordinates could

be considered as separable in the axial symmetry nuclei case.
Thus, we can consider three separable states of nuclei, namely
the ground state and the β- and γ -vibrational states. Each
one of these states will have its own mass parameter equal
to its average value over the wave function of the state under
consideration:

(1) The ground-state mass parameter

〈g.s.|B(β,γ )|g.s.〉 ≡ Brot, (8)

where we consider the ground-state rotational band;
(2) the γ -mass parameter,

〈γ |B(β,γ )|γ 〉 ≡ Bγ , (9)

where we consider the γ -vibrational state; and
(3) the β-mass parameter,

〈β|B(β,γ )|β〉 ≡ Bβ, (10)

where we consider the β-vibrational state.

The procedure described above assumes the use of projec-
tion operators. Using Eqs. (8)–(10), we obtain from Eq. (7) the
following Hamiltonian:

H = − �
2

2〈i|B|i〉

[
1

β4

∂

∂β
β4 ∂

∂β
+ 1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

− 1

4β2

∑
k=1,2,3

Q2
k

sin2
(
γ − 2

3πk
)
]

+ V (β,γ ), (11)

where i = g.s., β, or γ band depending on which state
is considered. In the case of a small axially symmetric
deformation of nuclei, the Bohr Hamiltonian with three
different mass coefficients can be written as [17]

H = Hrot + Hγ + Hβ, (12)

where

Hrot = �
2

6Brotβ2

( �̂Q2 − Q̂2
3

)
, (13)

Hγ = − �
2

2Bγ β2

1

γ

∂

∂γ
γ

∂

∂γ
+ �

2

2Bγ

Q̂2
3

4β2γ 2
+ V (γ )

β2
, (14)

and

Hβ = −�
2

2

(
1

Bβ

∂2

∂β2
+ 2

Bγ

1

β

∂

∂β
+ 2

Bβ

1

β

∂

∂β

)
+ V (β).

(15)

IV. BOHR HAMILTONIAN WITH DIFFERENT
DEFORMATION-DEPENDENT MASS PARAMETERS

To construct a Bohr Hamiltonian with a mass depending
on the deformation coordinate β, in accordance with the
formalism described in Sec. II,

B = 〈i|B0|i〉
[f (β)]2

, (16)

we have to follow the procedure in Ref. [17]. Since the
deformation function f depends only on the radial coordinate
β, only the β part of the resulting equation will be affected.
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The final result reads [14]

�
2

2〈i|B0|i〉
[
−

√
f

β4

∂

∂β
β4f

∂

∂β

√
f

− f 2

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

+ f 2

4β2

∑
k=1,2,3

Q2
k

sin2(γ − 2
3πk)

]

 + Veff
 =E
 (17)

with

Veff = V (β,γ ) + �
2

2〈i|B0|i〉
[

1

2
(1 − δ − λ)f 
2 f

+
(

1

2
− δ

)(
1

2
− λ

)
(
f )2

]
. (18)

V. SEPARATION OF THE BOHR HAMILTONIAN OR
AXIALLY SYMMETRIC PROLATE DEFORMED NUCLEI

Exact separation of the variables β and γ may be achieved
when the potential is chosen as in Refs. [10,31]:

V (β,γ ) = U (β) + f 2

β2
W (γ ), (19)

where the potential W (γ ) has a minimum around γ = 0. Then
one can write the angular momentum of Eq. (17) in the form
[32]

∑
k=1,2,3

Q2
k

sin2
(
γ − 2

3πk
)

≈ 4

3

(
Q2

1 + Q2
2 + Q2

3

) + Q2
3

(
1

sin2 γ
− 4

3

)
. (20)

In the same context, we consider a wave function of the form
[32]


(β,γ,θi) = FnβL(β)ηnγ ,K (γ )DL
M,K (θi), (21)

where D(θi) are Wigner functions of the Euler angles θi(i =
1,2,3) and L is the total angular momentum, where M and K
are the eigenvalues of the projections of angular momentum
on the laboratory-fixed z axis and the body-fixed z′ axis,
respectively. As a result, Eq. (17) can be approximately
separated into three equations:{

�
2

2〈i|B0|i〉
[
−

√
f

β4

∂

∂β
β4f

∂

∂β

√
f + f 2

β2


+1

2
(1 − δ − λ)f 
2 f +

(
1

2
−δ

)(
1

2
−λ

)
(
f )2

]

+V (β)

}
FnβL(β) = EFnβL(β), (22)

[
− �

2

2Bγ

(
1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
− K2

4

1

sin2 γ

)

+W (γ )

]
ηnγ ,K (γ ) = ̄ηnγ ,K (γ ), (23)

and

�
2

6Brot

( �̂Q2 − Q2
3

)DL
M,K (θi) = ′DL

M,K (θi). (24)

The eigenvalues of the rotational part equation (24) are easily

obtained since �̂Q2 is the quadratic casimir operator of O(3)

and �̂Q2
3 is the projection of the angular momentum on the z

axis,

′ = �
2

6Brot
[L(L + 1) − K2]. (25)

Note that Eq. (23) for γ ≈ 0 can be treated as in Ref. [32].
For the γ part, we use a harmonic oscillator potential [20],

W (γ ) = 1
2

(
β4

0Cγ

)
γ 2, (26)

where β0 denotes the position of the minimum of the potential
in β and Cγ is a free parameter. In this case, Eq. (23) transforms
into the usual harmonic oscillator equation[

− �
2

2Bγ

(
1

γ

∂

∂γ
γ

∂

∂γ
− K2

4

1

γ 2

)

+1

2

(
β4

0Cγ

)
γ 2

]
ηnγ ,K (γ ) = ̄ηnγ ,K (γ ). (27)

To solve this equation through AIM, we propose the following
ansatz for the γ -part eigenvectors ηnγ ,K (γ ):

ηnγ ,K (γ ) = γ |K/2|e− γ 2

2g �nγ ,K (γ ) (28)

with g = 1
β2

0

�√
Bγ Cγ

. For this form of the angular wave function,

the γ -part equation (27) reduces to a standard form given in
Eq. (A1) in Appendix A. According to the AIM procedure,
the eigenvalues are calculated by means of the termination
condition Eq. (A5) and the recurrence relations Eq. (A4), hence
one can derive the generalized form of the eigenvalues,

̄ = 2

g

�
2

Bγ

(
2ñγ + K

2
+ 1

)
, ñγ = 0,1,2, . . . . (29)

By inserting ñγ = nγ −|K/2|
2 in Eq. (28), where nγ is the

quantum number related to γ oscillations, one obtains

̄ = 2

g

�
2

Bγ

(nγ + 1), nγ = 0,1,2, . . . . (30)

As a result, we found

Bβ

�2
 =

{
2

g

Bβ

Bγ

(nγ + 1) + 1

3

Bβ

Brot
[L(L + 1) − K2]

}
. (31)

The allowed bands are characterized by

nγ = 0, K = 0;
nγ = 1, K = ±2;
nγ = 2, K = 0, ± 4; . . . . (32)

In the standard case of constant mass where Bγ = Bβ= Brot = 1
and � = 1, our formula Eq. (31) matches up with Eq. (41) of
Ref. [14]. In Ref. [14], the coefficient of γ 2 in u(γ ) is equal to
(3c)2 compared to (β4

0Cγ ) Eq. (26) used in this work.
The eigenfunctions corresponding to eigenvalues (30)

are obtained in terms of the confluent hypergeometric
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function

�nγ ,K (γ ) = Nnγ ,K 1F1

(
−ñγ ,1 + |K|

2
,
γ 2

g

)
, (33)

where Nnγ ,K is a normalization constant. According to the
relation between hypergeometric functions and the Laguerre
polynomials, the γ angular wave functions for axially sym-
metric prolate deformed nuclei can be written as:

ηnγ ,K = Nnγ ,K γ |K/2| e− γ 2

2g L
|K/2|
ñγ

(
γ 2

g

)
, (34)

where L
K/2
ñγ

represents the Laguerre polynomial and Nγ the
normalization constant, determined from the normalization
condition ∫ π/3

0
η2

nγ ,K (γ )| sin 3γ |dγ = 1. (35)

In the case of small γ vibration, we can write | sin 3γ | � |3γ |,
and then the integral Eq. (35) is easily calculated by using
Eq. (8.980) of Ref. [33]. This leads to

Nnγ ,K =
[

2

3
g−1−|K/2| ñγ !

�(ñγ + |K/2| + 1)

]1/2

. (36)

The normalization constants for the (nγ ,K) = (0,0) and
(nγ ,K) = (1,2) states are found to be N2

0,0 = 2
3g

, N2
1,2 = 2

3g2 ,

respectively, and then
N2

0,0

N2
1,2

= g. This result will be used to

calculate the B(E2) values in the γ → ground and γ → β
transitions (�K = 2).

VI. THE RADIAL SCHRÖDINGER EQUATION

The β-vibrational states of deformed nuclei with mass
parameter are determined by the solution of the radial
Schrödinger equation,

�
2

2

{
1

Bβ

f 2F ′′ +
(

1

Bβ

+ 1

Bγ

)(
ff ′ + 2f 2

β

)
F ′

+
(

1

Bβ

+ 1

Bγ

)[
(f ′)2

8
+ ff ′′

4
+ ff ′

β

]
F

}

− f 2

2β2
F + EF − VeffF = 0 (37)

with

Veff = V + �
2

2

(
1

Bβ

+ 1

Bγ

)[
1

4
(1 − δ − λ)ff ′′

+ 1

2

(
1

2
− λ

)(
1

2
− λ

)
(f ′)2

]
. (38)

Setting a standard transformation of the radial wave
function

FnβL(β) = β−(1+Bβ/Bγ )RnβL(β), (39)

we get

−f 2R′′ −
(

1+Bβ

Bγ

)
ff ′R′ −

(
1 + Bβ

Bγ

)[
(f ′)2

8
+ ff ′′

4

]
R

+2UeffR = 2Bβ

�2
ER, (40)

where

Ueff = Bβ

�2
Veff + 1

2

Bβ

Bγ

(
1 + Bβ

Bγ

)
f 2 + βff ′

β2
+ Bβ

�2

f 2

2β2
.

(41)

In the frame without mass parameters, we can reduce the first
three terms in Eq. (44) by (

√
f d

dβ

√
f )2

R.

VII. THE EFFECTIVE POTENTIAL
AND ENERGY LEVELS

As in Ermamatov et al. [20], we use in our calculations the
Davidson potential [22]

V (β) = V0

(
β

β0
− β0

β

)2

, (42)

where V0 represents the depth of the minimum, located at β0.
According to the specific form of the potential Eq. (42),

we are also going to consider for the deformation function the
special form

f (β) = 1 + aβ2, a � 1. (43)

Inserting these forms for the potential and the deformation
function in Eq. (41) one gets

2Ueff = k2β
2 + k0 + k−2

β2
(44)

with

k2 =a2

2

{(
1 + Bβ

Bγ

)[
6
Bβ

Bγ

+ (1 − 2δ)(1 − 2λ)

+ (1 − δ − λ)

]
+ 2

Bβ

�2


}
+ 2

gβ

β4
0

k0 =a

2

{(
1+Bβ

Bγ

)[
8
Bβ

Bγ

+(1 − δ − λ)

]
+ 4

Bβ

�2


}
− 4

gβ

β2
0

k−2 =Bβ

Bγ

(
1 + Bβ

Bγ

)
+ Bβ

�2
 + 2gβ, (45)

where gβ = BβV0β
2
0

�2 .
To solve the radial equation Eq. (40) through the AIM [25],

one needs the following parametrization:

RnβL(y) = yρ(1 + ay)νχnβL(y), y = β2, (46)

where

ρ = 1

4
(1 +

√
1 + 4k−2)

ν = −1

2

{
Bβ

Bγ

+
[(

Bβ

Bγ

+ 1

2

)(
Bβ

Bγ

− 1

)
+ k−2 − k0

a

+ k2

a2
+ 2Bβ

a�2
E

]1/2}
. (47)
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For this form of the radial wave function, the Eq. (40) reads

χ ′′
nβ

(y) = −
[1 + 4ρ + ay

(
3 + 2 Bβ

Bγ
+ 4ρ + 4ν

)
2y(1 + ay)

]
χ ′

nβ
(y)

− a

[2(ρ + ν)
(
1 + 2 Bβ

Bγ
+ 2ν + 2ρ

) + 1 + Bβ

Bγ
− k2

a2

4y(1 + ay)

]
χnβ

(y).

(48)

The first and the second terms on the right-hand side of Eq. (48)
represent λ0 and s0 of Eq. (A1), respectively. After calculating
λn and sn, by means of the recurrence relations of Eq. (A4),
we get the generalized formula of the radial energy spectrum
from the roots of the termination condition of Eq. (A5),

Enβnγ LK = �
2

2Bβ

[
k0 + a

2

(
2 + Bβ

Bγ

+ 2p + 2q + pq

)

+ 2a(2 + p + q)nβ + 4an2
β

]
, (49)

where nβ is the principal quantum number of β vibrations and

q ≡ qnγ
(L,K) =

√
1 + 4k−2

p ≡ pnγ
(L,K) =

√
4
Bβ

Bγ

− 3 + 4
k2

a2
. (50)

The quantities k2, k0, k−2 are given by Eq. (45), where  is
the eigenvalue of the γ -vibrational part of the Hamiltonian for
axially symmetric prolate deformed nuclei. In the numerical
results part of the paper, the energies are normalized to the first
excited state. So, the results depend on six parameters Bβ/Bγ ,
Bγ /Brot, g, gβ , a, and β0.

A few interesting low-lying bands are classified by the
quantum numbers nβ , nγ , and K , such as the ground-state
band (g.s.) with nβ = 0, nγ = 0, K = 0; the β band with
nβ = 1, nγ = 0, K = 0; and the γ band with nβ = 0, nγ = 1,
K = 2.

A. Special case 1: Without mass coefficients

If we assume Bβ = Bγ = Brot = 1, one gets from Eq. (45)

k2 = a2[(1 − δ − λ) + (1 − 2δ)(1 − 2λ) + 6 + ] + 2
V0

β2
0

k0 = a[(1 − δ − λ) + 8 + 2] − 4V0

k−2 = 2 +  + 2V0β
2
0 . (51)

Thus, the energy spectrum formula Eq. (49) is identical to
Eq. (82) of Ref. [14] obtained by means of the SUSYQM
[23,24]. The slight difference between our coefficients k2,
k0, and k−2 and those of Ref. [14] comes from the adopted
expression of Davidson potential.

B. Special case 2: No dependence of the mass
on the deformation

If a = 0, the dependence of the mass on the deformation,
is canceled, then one obtains from Eq. (45)

k2 = 2
gβ

β4
0

, k0 = −4
gβ

β2
0

k−2 = Bβ

Bγ

(
1 + Bβ

Bγ

)
+ Bβ

�2
 + 2gβ. (52)

In this case, the energy spectrum becomes

Enβnγ LK = �
2

2Bβ

{
k0 +

√
4k2

[
1 + 2nβ + 1

2
qnγ

(L,K)

]}
.

(53)

For axially symmetric prolate deformed nuclei, the energy
formula reads

Enβnγ LK =
√

2
V 2

0

gβ

[
1 + 2nβ + 1

2
qnγ

(L,K) − √
2gβ

]
(54)

with

1

2
qnγ

(L,K) =
√

1

4
+ Bβ

Bγ

(
1 + Bβ

Bγ

)
+ Bβ

�2
 + 2gβ (55)

and

Bβ

�2
 = 2

g

Bβ

Bγ

(nγ + 1) + 1

3

Bβ

Brot
[L(L + 1) − K2]. (56)

Note that Eq. (54) represents the correct formula of the energy
spectrum, compared to Eq. (11) given in Ref. [20], where
the mass parameter term is missed in the analog formula of
Eq. (55).

It is also worth noting that, in this case, Eq. (37) reduces
to a standard confluent hypergeometric equation which can be
converted to a Laguerre differential equation. The resolution
of such a problem is carried out in Sec. VIII B.

C. Special case 3: Standard case

For γ -unstable nuclei, in the limit case of a = 0 and
Bβ = Bγ = Brot, our Eq. (49) reduces to

EnβL =
√

2
V 2

0

gβ

(
1 + 2nβ +

√
9

4
+  + 2gβ

)
− 2V0 (57)

with

 = τ (τ + 3) (58)

and τ = L/2 is the seniority quantum number. This formula
is similar to the energy spectrum Eq. (80) in Ref. [34].

VIII. EXCITED-STATE WAVE FUNCTIONS

The used wave functions in our calculations are given by


(β,γ,θi) = β
−1− Bβ

Bγ Rnβ,L(β)ηnγ ,K (γ )DL
M,K (θi). (59)

The radial function Rnβ,L(β) corresponds to the nth eigenstate
of Eq. (40), ηnγ ,K (γ ) is given by Eq. (34), and the symmetries
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TABLE I. The values of free parameters used in the calculations.

Nucleus g gβ Bβ/Bγ Bβ/Brot g(Bβ = Bγ = Brot) gβ (Bβ = Bγ = Brot)

154Sm 0.0187 281.66 1.36 3.99 0.0489 0.357
156Gd 0.0252 308.84 1.53 4.64 0.0673 0.884
172Yb 0.0064 2469.46 1.32 11.14 0.0453 − 1.909
182W 0.0249 619.74 2.01 6.62 0.0714 0.512

TABLE II. The comparison of the theoretical predictions of
energy levels Eq. (49) of the ground-state band and the β and γ

bands normalized to the energy of the first excited state E(2+
g.s.) using

the parameters given in Table I for 154Sm for this work with those
from Ref. [18] and experimental values taken from Ref. [38]. β0 and
a indicate the position of the minimum of Davidson potential Eq. (42)
and the deformation dependence of the mass Eq. (43), respectively,
while σ is the quality measure Eq. (77).

L Expt. Bβ �= Bγ �= Brot Bβ = Bγ = Brot Ref. [18]

a = 0 DDM a = 0 DDM

g.s.
4 3.26 3.31 3.31 3.25 3.27 3.28
6 6.63 6.89 6.89 6.59 6.68 6.76
8 11.01 11.65 11.65 10.82 11.07 11.28
10 16.26 17.52 17.52 15.75 16.29 16.65
12 22.27 24.41 24.41 21.22 22.24 22.68
σ 1.289 1.289 0.592 0.043 0.320
a 0.0000 0.0483
β0 22.41 0.54
β1

0 13.40 13.40 13.03 13.40 13.13 13.40
2 14.37 14.40 14.03 14.40 14.14 14.40
4 16.32 16.71 16.35 16.65 16.41 16.68
6 19.23 20.29 19.94 19.99 19.78 20.16
8 25.05 24.73 24.22 24.08 24.68
10 30.93 30.64 29.15 29.11 30.05
12 37.81 37.58 34.62 34.73 36.08
σ 0.651 0.501 0.479 0.384 0.576
a 0.0335 0.0039
β0 0.88 0.88
γ1

2 17.56 17.56 18.01 17.56 18.67 17.56
3 18.77 18.47 18.97 18.28 19.49 16.56
4 20.30 19.68 20.26 19.23 20.57 19.87
5 22.01 21.18 21.86 20.39 21.91 21.48
6 23.73 22.96 23.78 21.77 23.50 23.38
7 26.27 25.03 26.01 23.33 25.33 25.53
8 27.36 28.56 25.08 27.40 27.93
9 29.95 31.41 26.99 29.70 30.55
10 32.79 34.58 29.05 32.21 33.36
11 35.88 38.06 31.26 34.94 36.33
12 39.19 41.84 33.60 37.87 39.44
13 42.73 45.93 36.06 40.99 42.65
σ 0.812 0.260 1.817 0.743 1.097
a 0.0199 0.0086
β0 11.53 1.67
σtotal 0.895 0.874 1.153 0.754 0.728
a 0.0219 0.0054
β0 1.07 1.60

TABLE III. The comparison of the theoretical predictions of
energy levels Eq. (49) of the ground-state band and the β and γ

bands normalized to the energy of the first excited state E(2+
g.s.) using

the parameters given in Table I for 156Gd for this work with those
from Ref. [18] and experimental values taken from Ref. [38]. β0 and
a indicate the position of the minimum of Davidson potential Eq. (42)
and the deformation dependence of the mass Eq. (43), respectively,
while σ is the quality measure Eq. (77).

L Expt. Bβ �= Bγ �= Brot Bβ = Bγ = Brot Ref. [18]

a = 0 DDM a = 0 DDM

g.s.
4 3.24 3.31 3.30 3.23 3.25 3.29
6 6.57 6.87 6.82 6.49 6.60 6.76
8 10.84 11.62 11.50 10.55 10.87 11.22
10 15.91 17.44 17.30 15.22 15.92 16.51
12 21.63 24.25 24.18 20.34 21.62 22.38
σ 1.575 1.492 0.747 0.025 0.470
a 0.0600 0.0217
β0 60.00 1.11
β1

0 11.79 11.79 9.93 11.79 11.79 11.79
2 12.69 12.79 10.94 12.79 12.79 12.79
4 14.68 15.10 13.29 15.02 15.02 15.08
6 17.30 18.66 16.93 18.28 18.28 18.54
8 20.76 23.41 21.82 22.34 22.34 23.01
10 24.94 29.23 27.89 27.01 27.01 28.30
12 30.43 36.04 35.09 32.13 32.13 34.17
σ 3.135 2.585 1.339 1.339 2.311
a 0.0230 0.0000
β0 2.77 43.81
γ1

2 12.97 12.97 12.97 12.97 13.75 12.97
3 14.02 13.90 13.90 13.70 14.58 13.96
4 15.22 15.12 15.12 14.66 15.67 15.27
5 16.93 16.64 16.64 15.83 17.02 16.88
6 18.47 18.45 18.45 17.20 18.61 18.76
7 20.79 20.54 20.54 18.75 20.44 20.90
8 22.60 22.90 22.90 20.47 22.50 23.27
9 25.28 25.51 25.51 22.34 24.78 25.85
10 27.44 28.38 28.38 24.35 27.28 28.60
11 30.19 31.48 31.48 26.49 29.97 31.50
12 32.84 34.80 34.80 28.74 32.86 34.52
13 35.67 38.34 38.34 31.08 35.94 37.63
σ 1.122 1.122 2.725 0.390 0.982
a 0.0000 0.0219
β0 32.35 1.42
σtotal 1.897 1.866 2.029 1.008 1.379
a 0.0499 0.0582
β0 0.98 0.80
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eigenfunctions of the angular momentum are

DL
M,K (θi) =

√
2L + 1

16π2(1 + δK0)

[
DL∗

MK + (−1)LDL∗
M−K

]
. (60)

To get the radial eigenvectors Rnβ,L(β) of Eq. (40), we insert
the expression of the energy spectrum Eq. (49) into Eq. (47).

TABLE IV. The comparison of the theoretical predictions of
energy levels Eq. (49) of the ground-state band and the β and γ

bands normalized to the energy of the first excited state E(2+
g.s.) using

the parameters given in Table I for 172Yb for this work with those
from Ref. [18] and experimental values taken from Ref. [38]. β0 and
a indicate the position of the minimum of Davidson potential Eq. (42)
and the deformation dependence of the mass Eq. (43), respectively,
while σ is the quality measure Eq. (77).

L Expt. Bβ �= Bγ �= Brot Bβ = Bγ = Brot Ref. [18]

a = 0 DDM a = 0 DDM

g.s.
4 3.29 3.33 3.30 3.25 3.28 3.32
6 6.84 6.96 6.84 6.58 6.78 6.91
8 11.54 11.87 11.54 10.79 11.45 11.71
10 17.34 18.02 17.33 15.69 17.26 17.65
12 24.14 25.36 24.15 21.12 24.21 24.64
σ 0.719 0.087 1.766 0.076 0.309
a 0.0036 0.0800
β0 40.09 1.98
β1

0 13.20 13.20 11.68 13.20 13.20 13.20
2 14.15 14.20 12.69 14.20 14.20 14.20
4 16.34 16.53 15.02 16.45 16.45 16.52
6 19.53 20.16 18.67 19.78 19.78 20.11
8 23.54 25.07 23.62 23.99 23.99 24.93
10 28.10 31.22 29.83 28.89 28.89 30.89
12 33.11 38.56 37.27 34.32 34.32 37.91
σ 4.593 2.135 0.628 0.628 2.311
a 0.0418 0.0000
β0 1.74 1.60
γ1

2 18.63 18.63 18.71 18.63 19.08 18.63
3 19.68 19.59 19.69 19.33 19.89 19.63
4 21.06 20.87 20.98 20.26 20.95 20.95
5 22.60 22.47 22.60 21.39 22.28 22.60
6 24.38 24.54 22.73 23.87 24.56
7 26.60 26.80 24.26 25.73 26.83
8 29.12 29.37 25.96 27.84 29.39
9 31.95 32.26 27.83 30.20 32.24
10 35.07 35.46 29.85 32.83 35.37
11 38.48 38.97 32.01 35.70 38.76
12 42.17 42.78 34.29 38.83 42.20
13 46.15 47.91 36.70 42.22 46.28
σ 0.121 0.065 0.862 0.347 0.070
a 0.0075 0.0600
β0 17.10 2.19
σtotal 1.719 1.413 1.067 3.458 1.495
a 0.0010 0.0100
β0 11.12 90.01

Then we get from Eq. (48) and Eq. (46):

Rnβ,L(y) = y
1
4 (1+q)(1 + ay)−nβ− 1

2 (1+ Bβ
Bγ

)− 1
4 (q+p)

χnβ,L(y),
(61)

where q and p are given in Eq. (50).

TABLE V. The comparison of the theoretical predictions of
energy levels Eq. (49) of the ground-state band and the β and γ

bands normalized to the energy of the first excited state E(2+
g.s.) using

the parameters given in Table I for 182W for this work with those
from Ref. [18] and experimental values taken from Ref. [38]. β0 and
a indicate the position of the minimum of Davidson potential Eq. (42)
and the deformation dependence of the mass Eq. (43), respectively,
while σ is the quality measure Eq. (77).

L Expt. Bβ �= Bγ �= Brot Bβ = Bγ = Brot Ref. [18]

a = 0 DDM a = 0 DDM

g.s.
4 3.29 3.32 3.29 3.22 3.29 3.30
6 6.80 6.91 6.78 6.45 6.78 6.81
8 11.44 11.71 11.40 10.47 11.40 11.41
10 17.12 17.65 17.07 15.05 17.07 16.94
12 23.72 24.64 23.77 20.07 23.76 23.2
σ 0.548 0.042 2.161 0.037 0.276
a 0.0335 0.0470
β0 18.49 1.25
β1

0 11.36 11.36 11.36 11.36 11.36 11.36
2 12.57 12.36 12.36 12.36 12.36 12.36
4 15.10 14.68 14.68 14.58 14.58 14.66
6 18.26 18.26 17.81 17.81 18.17
8 23.07 23.07 21.83 21.83 22.77
10 29.01 29.01 26.41 26.41 28.30
12 36.00 36.00 31.43 31.43 34.57
σ 0.335 0.335 0.395 0.395 0.345
a 0.0000 0.0000
β0 53.35 52.55
γ1

2 12.21 12.21 12.42 12.21 12.76 12.21
3 13.31 13.16 13.19 12.94 13.55 13.21
4 14.43 14.41 14.46 13.89 14.60 14.52
5 16.24 15.97 16.03 15.05 15.90 16.14
6 17.70 17.83 17.90 16.41 17.42 18.05
7 19.71 20.07 17.95 19.17 20.24
8 22.61 22.41 22.52 19.65 21.13 22.68
9 25.11 25.26 21.50 23.28 25.35
10 28.08 28.26 23.48 25.62 28.24
11 31.31 31.53 25.58 28.14 31.31
12 34.78 35.06 27.79 30.83 34.55
13 38.49 38.83 30.10 33.68 37.92
σ 0.168 0.158 0.935 0.380 0.194
a 0.0538 0.0215
β0 0.95 1.07
σtotal 0.358 0.357 1.369 1.019 0.240
a 0.0000 0.0054
β0 50.35 2.16
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After inserting Eq. (61) into Eq. (40), we obtain

χ ′′
nβ ,L(y) = −

[
1 + q

2 + a
(
1 − 2nβ − p

2

)
y

y(1 + ay)

]
χ ′

nβ ,L(y)

−
[
anβ

(
nβ + p

2

)
y(1 + ay)

]
χnβ,L(y). (62)

The excited-state wave functions of this equation are obtained
through Eq. (A2),

χ (y) = Nnβ,L2F1

[
−nβ,−nβ − p

2
; −2nβ − (q+p)

2
; 1+ay

]
,

(63)

where Nnβ,L is a normalization constant and 2F1 are hyperge-
ometrical functions. Therefore, according to the relation be-
tween hypergeometrical functions and the generalized Jacobi

polynomials, Eq. (4.22.1) of Ref. [35], the radial wave function
can be written as

Rnβ,L(t) = Nnβ,L2−(1+ Bβ
Bγ

)/2−(q+p)/4
a−(1+q)/4

(1 − t)(1+2
Bβ
Bγ

+p)/4(1 + t)(q+1)/4P (q/2,p/2)
nβ

(t),

t =−1 + ay

1 + ay
. (64)

To determine Nnβ,L, we use the usual orthogonality relation of
Jacobi polynomials Eq. (7.391.7) of Ref. [33]. This leads to

Nnβ,L = (
2aq/2+1nβ!

) 1
2

[ �
(
nβ + q+p

2 + 1
)
�

(
2nβ + q+p

2 + 1 + Bβ

Bγ

)
�

(
nβ + q

2 + 1
)
�

(
nβ + Bβ

Bγ
+ p

2

)
�

(
2nβ + q+p

2 + 1
)
] 1

2

.

(65)

TABLE VI. The comparison of the theoretical predictions of B(E2) in units of B(E2; 2+
g.s. → 0+

g.s.) using the parameters given in Table I
for 154Sm in this work with those from Ref. [18] and experimental values.

Expt. Bβ �= Bγ �= Brot Bβ = Bγ = Brot Ref. [18]

a = 0 DDM a = 0 DDM

B(E2;Lg.s.+2−→Lg.s.)

B(E2;2+
g.s.−→0+

g.s.)

4+
g.s. −→ 2+

g.s. 1.40(5) 1.44 1.44 1.47 1.47 1.44

6+
g.s. −→ 4+

g.s. 1.67(7) 1.61 1.61 1.70 1.70 1.61

8+
g.s. −→ 6+

g.s. 1.83(11) 1.72 1.72 1.90 1.90 1.72

10+
g.s. −→ 8+

g.s. 1.81(11) 1.81 1.81 2.10 2.10 1.82

12+
g.s. −→ 10+

g.s. 1.90 1.90 2.30 2.30 1.91

B(E2;Lβ−→Lg.s.)

B(E2;2+
g.s.−→0+

g.s.)
× 103

2+
β −→ 0+

g.s. 5.4(13) 6.5 6.4 23.3 24.3 6.7

4+
β −→ 2+

g.s. 5.5 5.5 20.0 21.3 5.6

6+
β −→ 4+

g.s. 3.1 3.1 12.4 13.7 2.9

2+
β −→ 2+

g.s. 12.9 11.9 46.4 47.9 13.3

4+
β −→ 4+

g.s. 11.7 11.6 42.3 43.6 12.1

6+
β −→ 6+

g.s. 11.5 11.4 41.5 42.9 11.9

0+
β −→ 2+

g.s. 59.7 59.0 216.5 221.5 61.7

2+
β −→ 4+

g.s. 25(6) 42.2 35.6 152.0 154.4 43.8

4+
β −→ 6+

g.s. 48.5 47.7 169.9 171.8 51.3

6+
β −→ 8+

g.s. 57.4 56.2 191.6 193.1 62.8

B(E2;Lβ−→Lg.s.)

B(E2;2+
g.s.−→0+

g.s.)
× 103

2+
γ −→ 0+

g.s. 18.4(29) 18.4 14.8 46.5 48.7 18.4

2+
γ −→ 2+

g.s. 26.5 21.3 68.6 71.4 26.2

2+
γ −→ 4+

g.s. 3.9(6) 1.4 1.1 3.7 3.8 1.3

3+
γ −→ 2+

g.s. 33.1 29.3 85.0 88.8 32.8

3+
γ −→ 4+

g.s. 13.5 11.8 36.5 37.6 13.0

4+
γ −→ 2+

g.s. 11.0 9.7 28.0 29.4 11.0

4+
γ −→ 4+

g.s. 33.0 28.7 88.6 91.7 32.1

4+
γ −→ 6+

g.s. 2.9 2.4 8.4 7.8 2.7

5+
γ −→ 4+

g.s. 29.8 25.8 79.4 82.65 29.3

5+
γ −→ 6+

g.s. 17.6 14.8 49.9 51.0 16.5
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(i) In the case where Bβ = Bγ = Brot = 1 and � = 1, the
wave function Eq. (64) and the normalization constant
Eq. (65) match up with Eq. (108) and Eq. (112) of
Ref. [14], respectively.

(ii) In the limit case a → 0, no dependence of the mass on
the deformation, the second-order differential equation
Eq. (40) must have a solution of the form

Rnβ,L(β) = β
1
2 [1+qnγ (L,k)]e−bβ2

Gnβ,L(β), (66)

where b =
√

gβ

2β4
0
. By using this radial function in

Eq. (40) and introducing a new variable y = β2, one

can get

G′′
nβ ,L(y) = −

(
1 + q

2 − 2by

y

)
G′

nβ ,L(y)

− 2bnβ

y
Gnβ,L(y). (67)

From Eq. (A1) of the AIM, one can define λ0(0) and s0(y).
Then λn(y) and sn(y) are calculated by use of the recurrence
relations given in Eq. (A4) and the solution of this equation is
found through Eq. (A2) to be

Gnβ,L(y) = Nnβ,LL
1
2 qnγ (L,k)
nβ

(2by), (68)

where L denotes the Laguerre polynomials and Nnβ,L is a
normalization coefficient determined from the normalization

TABLE VII. The comparison of the theoretical predictions of B(E2) in units of B(E2; 2+
g.s. → 0+

g.s.) using the parameters given in Table I
for 156Gd in this work with those from Ref. [18] and experimental values.

Expt. Bβ �= Bγ �= Brot Bβ = Bγ = Brot Ref. [18]

a = 0 DDM a = 0 DDM

B(E2;Lg.s.+2−→Lg.s.)

B(E2;2+
g.s.−→0+

g.s.)

4+
g.s. −→ 2+

g.s. 1.41(5) 1.44 1.37 1.48 1.48 1.44

6+
g.s. −→ 4+

g.s. 1.58(6) 1.61 1.42 1.73 1.73 1.61

8+
g.s. −→ 6+

g.s. 1.71(10) 1.72 1.38 1.96 1.95 1.73

10+
g.s. −→ 8+

g.s. 1.68(9) 1.82 1.32 2.19 2.18 1.83

12+
g.s. −→ 10+

g.s. 1.60(16) 1.91 1.26 2.43 2.42 1.93

B(E2;Lβ−→Lg.s.)

B(E2;2+
g.s.−→0+

g.s.)
× 103

2+
β −→ 0+

g.s. 3.4(3) 6.1 4.4 24.7 24.7 6.3

4+
β −→ 2+

g.s. 4.6 3.9 19.5 19.5 4.7

6+
β −→ 4+

g.s. 2.1 1.9 11.0 11.0 0.9

2+
β −→ 2+

g.s. 18(2) 12.6 4.2 51.9 51.9 13.0

4+
β −→ 4+

g.s. 11.5 9.4 47.3 47.3 11.8

6+
β −→ 6+

g.s. 11.2 3.6 46.4 46.4 11.6

0+
β −→ 2+

g.s. 60.5 48.9 251.1 251.1 62.5

2+
β −→ 4+

g.s. 22(2) 44.2 1.9 181.4 181.4 46.0

4+
β −→ 6+

g.s. 52.0 41.2 204.9 204.9 53.3

6+
β −→ 8+

g.s. 62.4 48.9 230.6 230.6 68.9

B(E2;Lβ−→Lg.s.)

B(E2;2+
g.s.−→0+

g.s.)
× 103

2+
γ −→ 0+

g.s. 25.0(8) 25.0 25.0 65.9 68.3 25.0

2+
γ −→ 2+

g.s. 38.7(13) 36.1 36.1 97.7 100.6 35.5

2+
γ −→ 4+

g.s. 4.1(2) 1.8 1.8 5.3 5.3 1.8

3+
γ −→ 2+

g.s. 39.0(75) 44.9 44.9 121.1 125.2 44.6

3+
γ −→ 4+

g.s. 27.2(35) 18.3 18.3 52.3 53.3 17.7

4+
γ −→ 2+

g.s. 9.6(27) 14.9 14.9 39.9 41.5 14.9

4+
γ −→ 4+

g.s. 53.16(16) 44.9 44.9 127.2 130.3 43.6

4+
γ −→ 6+

g.s. 4.0 4.0 12.1 11.1 3.7

5+
γ −→ 4+

g.s. 43(43) 40.5 40.5 114.1 117.6 39.8

5+
γ −→ 6+

g.s. 59(59) 23.9 23.9 72.1 72.8 22.4
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condition ∫ ∞

0
β

2(1+ Bβ
Bγ

)
F 2(β)dβ = 1, (69)

leading to

Nnβ,L =
[

2(2b)
1
2 qnγ (L,k)+1 nβ!

�
(
nβ + 1

2qnγ
(L,k) + 1

)]1/2

.

(70)

IX. B(E2) TRANSITION RATES

The electric quadrupole operator for axially deformed
nuclei around γ = 0 is given by [32]

T
(E2)
M = tβ

[
D(2)

M,0 cos γ + 1√
2

(D(2)
M,2 + D(2)

μ,−2

)
sin γ

]
, (71)

where t is a scaling factor. The first term describes �K = 0
transitions and the second is for �K = 2 transitions.

The B(E2) transition rates from an initial to a final state
are given by [36]

B(E2; LiKi → Lf Kf ) = 5

16π

|〈Lf Kf ‖T (E2)‖LiKi〉|2
2Li + 1

,

(72)

and the reduced matrix element can be obtained by using the
Wigner-Eckrat theorem [36],

〈Lf Mf Kf |T (E2)
M |LiMiKi〉

= (Li2Lf |MiMMf )√
2Lf + 1

〈Lf Kf ‖T (E2)‖LiKi〉. (73)

TABLE VIII. The comparison of the theoretical predictions of B(E2) in units of B(E2; 2+
g.s. → 0+

g.s.) using the parameters given in Table I
for 172Yb in this work with those from Ref. [18] and experimental values.

Expt. Bβ �= Bγ �= Brot Bβ = Bγ = Brot Ref. [18]

a = 0 DDM a = 0 DDM

B(E2;Lg.s.+2−→Lg.s.)

B(E2;2+
g.s.−→0+

g.s.)

4+
g.s. −→ 2+

g.s. 1.42(10) 1.43 1.37 1.47 1.34 1.43

6+
g.s. −→ 4+

g.s. 1.51(7) 1.59 1.41 1.70 1.36 1.59

8+
g.s. −→ 6+

g.s. 1.89(19) 1.67 1.36 1.90 1.31 1.67

10+
g.s. −→ 8+

g.s. 1.77(11) 1.74 1.29 2.11 1.26 1.74

12+
g.s. −→ 10+

g.s. 1.79 1.31 2.32 1.22 1.79

B(E2;Lβ−→Lg.s.)

B(E2;2+
g.s.−→0+

g.s.)
× 103

2+
β −→ 0+

g.s. 1.1(1) 2.4 3.6 23.5 23.5 2.4

4+
β −→ 2+

g.s. 2.0 2.1 19.9 19.9 2.0

6+
β −→ 4+

g.s. 1.1 1.2 12.3 12.3 1.0

2+
β −→ 2+

g.s. 4.8 4.6 47.1 47.1 4.17

4+
β −→ 4+

g.s. 4.4 4.3 42.8 42.8 4.4

6+
β −→ 6+

g.s. 4.3 4.2 42.1 42.1 4.3

0+
β −→ 2+

g.s. 22.3 21.4 220.3 220.3 22.5

2+
β −→ 4+

g.s. 12(1) 15.9 6.3 155.1 155.1 16.0

4+
β −→ 6+

g.s. 18.4 17.1 173.7 173.7 18.8

6+
β −→ 8+

g.s. 22.1 20.3 195.8 195.8 22.8

B(E2;Lγ −→Lg.s.)

B(E2;2+
g.s.−→0+

g.s.)
× 103

2+
γ −→ 0+

g.s. 6.3(5) 6.3 3.7 42.3 23.4 6.3

2+
γ −→ 2+

g.s. 9.0 5.5 62.6 34.9 9.0

2+
γ −→ 4+

g.s. 0.60(5) 0.5 0.3 3.4 1.8 0.4

3+
γ −→ 2+

g.s. 11.3 10.3 77.5 43.0 11.2

3+
γ −→ 4+

g.s. 4.6 4.2 33.4 18.1 4.4

4+
γ −→ 2+

g.s. 33(24) 3.8 3.4 25.5 14.1 3.8

4+
γ −→ 4+

g.s. 11.1 10.1 81.1 43.8 11.0

4+
γ −→ 6+

g.s. 1.0 0.9 7.7 3.6 0.9

5+
γ −→ 4+

g.s. 10.1 9.1 72.5 39.0 10.0

5+
γ −→ 6+

g.s. 5.8 5.2 45.9 23.0 5.7
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The final result [37] reads

B(E2; nβLnγ K → n′
βL′n′

γ K ′)

= 5

16π
〈L,K,2,K ′ − K|L′,K ′〉2I 2

nβL,n′
βL′C

2
nγ K,n′

γ K ′ (74)

with

Inβ,L,n′
β ,L′ =

∫
βFL,nβ

(β)FL′,n′
β
(β)β−2−2

Bβ
Bγ dβ

=
∫

βRL,nβ
(β)RL′,n′

β
(β)dβ, (75)

where Cnγ K,n′
γ K ′ contains the integral over γ . For �K = 0

corresponding to transitions (g.s. → g.s.,γ → γ,β → β and
β → g.s.), the γ -integral part reduces to the orthonor-
mality condition of the γ -wave functions: Cnγ K,n′

γ K ′ =
δnγ ,n′

γ
δK,K ′ . While for �K = 2 corresponding to transitions

(γ → g.s.,γ → β), this integral takes the form

Cnγ K,n′
γ K ′ =

∫
sin γ ηnγ Kηn′

γ K ′ | sin 3γ |dγ. (76)

In the next sections, all values of B(E2) are calculated in units
of B(E2; 2+

1 → 0+
1 ).

X. NUMERICAL RESULTS AND DISCUSSION

Before starting any calculations of the energy spectra and
transition rates for the axially symmetric prolate deformed
nuclei 154Sm, 156Gd, 172Yb, and 182W, which have been the
object of Ermamatov et al. study [20], and before trying to
improve them within the DDMF, we have to reevaluate the
parameters of the problem through the corrected formulas
of these nuclear characteristics Eqs. (54) and (55). For this
purpose, we determine the free parameters Bγ /Bβ,g, and gβ

TABLE IX. The comparison of the theoretical predictions of B(E2) in units of B(E2; 2+
g.s. → 0+

g.s.) using the parameters given in Table I
for 182W in this work with those from Ref. [18] and experimental values.

Expt. Bβ �= Bγ �= Brot Bβ = Bγ = Brot Ref. [18]

a = 0 DDM a = 0 DDM

B(E2;Lg.s.+2−→Lg.s.)

B(E2;2+
g.s.−→0+

g.s.)

4+
g.s. −→ 2+

g.s. 1.43(8) 1.44 1.36 1.49 1.48 1.44

6+
g.s. −→ 4+

g.s. 1.46(6) 1.60 1.40 1.74 1.72 1.60

8+
g.s. −→ 6+

g.s. 1.53(10) 1.71 1.35 1.98 1.92 1.71

10+
g.s. −→ 8+

g.s. 1.48(9) 1.79 1.28 2.22 2.11 1.80

12+
g.s. −→ 10+

g.s. 1.87 1.23 2.48 2.30 1.88

B(E2;Lβ−→Lg.s.)

B(E2;2+
g.s.−→0+

g.s.)
× 103

2+
β −→ 0+

g.s. 6.6(10) 4.4 4.4 25.1 25.1 5.2

4+
β −→ 2+

g.s. 3.2 3.2 19.2 19.2 2.1

6+
β −→ 4+

g.s. 1.4 1.4 10.5 10.5 0.1

2+
β −→ 2+

g.s. 4.6(6) 9.3 9.3 53.6 53.6 13.7

4+
β −→ 4+

g.s. 8.4 8.4 48.8 48.8 12.5

6+
β −→ 6+

g.s. 8.3 8.3 47.9 47.9 12.2

0+
β −→ 2+

g.s. 44.9 44.9 262.3 262.3 77.0

2+
β −→ 4+

g.s. 13(1) 33.1 33.1 191.1 191.1 64.1

4+
β −→ 6+

g.s. 39.4 39.4 216.3 216.3 81.3

6+
β −→ 8+

g.s. 47.81 47.81 243.2 243.2 101.6

B(E2;Lγ −→Lg.s.)

B(E2;2+
g.s.−→0+

g.s.)
× 103

2+
γ −→ 0+

g.s. 24.8(8) 24.8 24.8 70.2 72.1 24.8

2+
γ −→ 2+

g.s. 49.2(13) 35.7 35.7 104.2 106.5 35.3

2+
γ −→ 4+

g.s. 0.2(2) 1.8 1.8 5.6 5.7 1.8

3+
γ −→ 2+

g.s. 44.5 44.6 129.2 132.5 44.2

3+
γ −→ 4+

g.s. 18.1 18.1 56.0 56.8 17.6

4+
γ −→ 2+

g.s. 17.2(17) 14.8 14.8 42.6 43.8 14.8

4+
γ −→ 4+

g.s. 75.9(73) 44.3 44.3 136.3 138.7 43.3

4+
γ −→ 6+

g.s. 3.9 3.8 13.0 11.8 3.7

5+
γ −→ 4+

g.s. 40.0 40.1 122.2 125.0 39.5

5+
γ −→ 6+

g.s. 23.4 23.4 77.5 78.1 22.3
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from the experimental data of E(2+
γ )/E(2+

1 ), E(0+
β )/E(2+

1 ),
and B(E2; 2+

γ → 0+
1 /B(E2; 2+

1 → 0+
1 ) by solving a system

of three nonlinear algebraic equations (Appendix B), while
Bβ/Brot is fixed to the value given in Ref. [18]. With the new
parameters (Table I) we have calculated the correct values that
Ermamatov et al. [20] should obtain the ratios E(L+

g.s.)/E(2+
g.s.)

for the ground-state band, E(L+
β)/E(2+

g.s) for the β band, and
E(L+

γ )/E(2+
g.s.) for the γ band. Here E(L+

i ) (i = g.s.,β,γ ) is
the energy of the level characterized by the angular momentum
L+ in the band i and E(2+

g.s.) is the energy of the first
excited level of the ground-state band. As a qualitative test of
agreement between the theoretical results and the experimental
data, we evaluated the rms differences given by

σ =
√

�n
i=1[Ei(exp) − Ei(th)]2

(n − 1)E(2+
1 )2

, (77)

where Ei(exp) is the experimental energy of the i th level, Ei(th)
the corresponding theoretical value, n the maximum number
of considered levels, and E(2+

1 ) the head energy of the band
under consideration.

In Table II, we compare our results for 154Sm in both cases
Bβ �= Bγ �= Brot (the third column with a = 0) and Bβ =
Bγ = Brot (the fifth column with a = 0) with experimental
data [38] and the data from Ref. [18]. One can see that
our results for Bβ �= Bγ �= Brot agree with experimental data,
particularly in the β and γ bands (σ < 1), but slightly differ
from the data of Ref. [18]. This slight discrepancy could

be reduced within the framework of the DDMF. While in
the ground-state band the precision of our results (σ > 1) is
obviously affected by the energy value of the level L = 12,
which is nearly 10% higher than the experimental one. From
the same table, we can also see that the obtained values
in the case Bβ �= Bγ �= Brot are more precise (σtotal < 1)
than those for which Bβ = Bγ = Brot (σtotal > 1). For 156Gd
(Table III) our results are relatively better in the γ band
for Bβ �= Bγ �= Brot but are globally more precise than for
Bβ = Bγ = Brot. Moreover, our energy spectrum for 172Yb
given in Table IV well reproduce the standard ones, particularly
in the ground-state and γ bands with Bβ �= Bγ �= Brot unlike
those of the case where these mass parameters are taken to be
equal to 1. On the other hand, our results for the nucleus 182W
(Table IV) are more accurate (σ < 1) in the three bands with
Bβ �= Bγ �= Brot than in the case of Bβ = Bγ = Brot.

In order to improve the obtained numerical results, we
recalculated the energy ratios in the framework of the DDMF
with the more elaborated formula given in Eq. (49). Such a
formula contains two supplementary parameters, namely a
and β0. The optimal values of both parameters are evaluated
through rms fits of energy levels by making use of Eq. (77) for
each band of each nucleus.

From Tables II–V one can see that a fair enhancement of
numerical results has been achieved within the DDMF in both
cases Bβ �= Bγ �= Brot and Bβ = Bγ = Brot. Indeed, from the
numerical calculations for nuclei 154Sm, 156Gd, 172Yb, and
182W, we note that the precision in the case of Bβ �= Bγ �= Brot

increases with the mass number.

TABLE X. The comparison of the theoretical predictions of E(L+
i ) (i = g.s.,β,γ bands) normalized to the energy of the first excited state

E(2+
g.s.) using the parameters given in Table I for 154Sm and 182W in this work with those from IBM-1 Refs. [39,40] and experimental values

Ref. [38].

154Sm 182W

L Expt. a = 0 DDM IBM-1 [39] Expt. a = 0 DDM IBM-1 [40]

g.s.

4 3.26 3.31 3.31 3.19 3.29 3.32 3.29 3.33

6 6.63 6.89 6.89 7.33 6.80 6.91 6.78 6.95

8 11.01 11.65 11.65 12.44 11.44 11.71 11.40 12.00

10 17.12 17.65 17.07 18.33

σ 0.490 0.490 1.127 0.350 0.039 0.775

β1

0 13.40 13.40 13.03 14.04 11.36 11.36 11.36 11.41

2 14.37 14.40 14.03 14.78 12.57 12.36 12.36 11.46

4 16.32 16.71 16.35 17.31 15.10 14.68 14.68 13.81

6 19.23 20.29 19.94 17.66 18.26 18.26 17.50

σ 0.651 0.501 1.158 0.332 0.332 1.204

γ1

2 17.56 17.56 18.01 18.53 12.21 12.21 12.24 12.41

3 18.77 18.47 18.97 18.97 13.31 13.16 13.19 12.47

4 20.30 19.68 20.26 21.72 14.43 14.41 14.46 14.94

5 22.01 21.18 21.86 24.12 16.24 15.97 16.03 15.48

6 23.73 22.96 23.78 17.70 17.83 17.90 18.69

σ 0.623 0.298 1.576 0.168 0.158 0.801
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TABLE XI. The comparison of the theoretical predictions of B(E2) in units of B(E2; 2+
g.s. −→ 0+

g.s.) using the parameters given in Table I
for 154Sm and 182W in this work with those from IBM-1 Refs. [39,40] and experimental values in Ref. [38].

154Sm 182W

Expt. a = 0 DDM IBM-1 [39] Expt. a = 0 DDM IBM-1 [40]

B(E2;Lg.s.+2−→Lg.s.)

B(E2;2+
g.s.−→0+

g.s.)

4+
g.s. −→ 2+

g.s. 1.40(5) 1.44 1.44 1.35 1.43(8) 1.44 1.36 1.33

6+
g.s. −→ 4+

g.s. 1.67(7) 1.61 1.61 1.53

B(E2;Lβ−→Lg.s.)

B(E2;2+
g.s.−→0+

g.s.)
× 103

2+
β −→ 0+

g.s. 5.4(13) 6.5 6.4 7.78 6.6(10) 4.4 4.4 113.0

4+
β −→ 2+

g.s. 5.5 5.5 29.57 3.2 3.2 56.3

2+
β −→ 2+

g.s. 12.9 12.8 15.33 4.6(6) 9.3 9.3 48.4

2+
β −→ 4+

g.s. 25(6) 42.2 41.4 30.67 13(1) 33.1 33.1 3.7

B(E2;Lβ−→Lg.s.)

B(E2;2+
g.s.−→0+

g.s.)
× 103

2+
γ −→ 0+

g.s. 18.4(29) 18.4 16.5 16.43

2+
γ −→ 2+

g.s. 26.5 23.6 24.10

2+
γ −→ 4+

g.s. 3.9(6) 1.4 1.2 0.99 0.2(2) 1.8 1.8 153.6

Similarly, we have also calculated transition rates
B(E2; L+

g.s. + 2 → L+
g.s.), B(E2; L+

β → L+
g.s.), and

B(E2; L+
γ → L+

g.s.) in units of B(E2; 2+
g.s. → 0+

g.s.) for
the same nuclei in both cases Bβ �= Bγ �= Brot and
Bβ = Bγ = Brot within and without the DDMF. Within
the DDMF, we have used the same optimal values of the two
parameters a and β0 previously obtained for the energy ratios.

Then, in Tables VI–IX, it is clearly shown that our results
in the case of Bβ �= Bγ �= Brot are better than those with Bβ =
Bγ = Brot. Indeed, in the β band and in the case of different
mass coefficients with a = 0, the mean difference between the
theoretical value of transition rate and the experimental one
corresponding to transition 2+

β → 0+
g.s. is about 1.8, while in

the case of equal mass parameters, it is equal to 20. Likewise,
in the transition 2+

β → 4+
g.s., the mean difference between the

theory and the experiment in the first case is about 15.9 and
in the second one it is equal to 152. For a �= 0, in the case of
different mass coefficients, for the same transitions 2+

β → 0+
g.s.

and 2+
β → 0+

g.s., the mean difference value is about 1.7 and
14, respectively, while in the case of equal mass coefficients it
is equal to 20.3 and 152.5, respectively. Such a fact can also
be seen in the γ band. We underline here that, in the case of
equal mass parameters, the obtained results reproduce those of
Bonatsos et al. [14]. The slight difference between them came
from the fact that the Bonatsos et al. fitting calculations have
been carried on a given number of levels which differ from the

number we considered in our calculations. This is further proof
that our formulas, given in Eq. (49) and Eq. (64), respectively,
for the energy and the wave functions, are more accurate
than those erroneously derived by Ermamatov et al. [20].
Moreover, this comparison corroborates the fact that the mass
parameter should be taken into account in such calculations.
As mentioned in the Introduction, the Bohr Hamiltonian is
a quite competitive method in respect to other methods like
IBM-1 [6]. To make a simple comparison between them, we
give in Tables X–XI our obtained results compared with the
available IBM-1 data.

XI. CONCLUSION

In this paper we have revisited all calculations performed in
a recent work [20] based on inaccurate formulas for the energy
spectrum and transition rates for axially symmetric prolate nu-
clei. With the asymptotic iteration method we have derived the
correct formulas for these nuclear observables. Morover, we
have extended our calculations into a deformation-dependent
effective masses formalism in order to improve the numerical
results. Moreover, we have shown the importance of the mass
parameter to be introduced in numerical calculations, unlike
what has been done by other authors who have neglected the
important role played by this parameter in such calculations.
Through a comparison with IBM-1, the Bohr Hamiltonian with
mass parameters has proved to be more accurate.

APPENDIX A: ASYMPTOTIC ITERATION METHOD (AIM)

The asymptotic iteration method [25] is proposed to solve the second-order homogeneous differential equation of the form

y ′′(x) = λ0(x)y ′(x) + s0(x)y(x), (A1)

where the variables λ0 and s0 are sufficiently differentiable.
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The differential equation (A1) has a general solution [25],

y(x) = exp

[
−

∫ x

α(x1)dx1

](
C2 + C1

∫ x

exp

{∫ x1

[λ0(x2) + 2α(x2)]dx2

}
dx1

)
. (A2)

If we have n > 1, then for sufficiently large n α(x) values can be obtained,

sn(x)

λn(x)
= sn−1(x)

λn−1(x)
= α(x), (A3)

with the sequences

λn(x) = λ′
n−1(x) + sn−1(x) + λ0(x)λn−1(x) (A4a)

sn(x) = s ′
n−1(x) + s0(x)λn−1(x), n = 1,2,3, . . . , (A4b)

and the energy eigenvalues are then computed by means of the following termination condition [25]:

δ = snλn−1 − λnsn−1 = 0. (A5)

APPENDIX B: FORMULAS USED FOR THE CALCULATIONS OF THE B(E2)

In this Appendix we present the expressions used for calculations of the transition probabilities B(E2):

B(E2; L′+
g.s. → L+

g.s.)

B(E2; 2+
g.s. → 0+

g.s.)
= 5

(
CL0

L′020

)2
(

�{0.5[q0(L′,0) + q0(L,0)] + 1.5}
�[0.5[q0(2,0) + q0(0,0)] + 1.5]

)2
�[q0(2,0) + 1]�[q0(0,0) + 1]

�[q0(L′,0) + 1]�[q0(L,0) + 1]
(B1)

B(E2; L′+
β → L+

g.s.)

B(E2; 2+
g.s. → 0+

g.s.)
= 5

4

(
CL0

L′020

)2
(

�{0.5[q0(L′,0) + q0(L,0)] + 1.5}
�{0.5[q0(2,0) + q0(0,0)] + 1.5}

)2
�[q0(2,0) + 1]�[q0(0,0) + 1]

�[q0(L′,0) + 1]�[q0(L,0) + 1]

× [q0(L′,0) − q0(L,0) − 1]2

q0(L′,0) + 1
(B2)

B(E2; L′+
γ. → L+

g.s.)

B(E2; 2+
g.s. → 0+

g.s.)
= 5g

(
CL0

L′020

)2
(

�{0.5[q0(L′,0) + q0(L,0)] + 1.5}
�{0.5[q0(2,0) + q0(0,0)] + 1.5}

)2
�[q0(2,0) + 1]�[q0(0,0) + 1]

�[q0(L′,0) + 1]�[q0(L,0) + 1]
, (B3)

where CL0
L′020 is the Clebsch-Gordan coefficient.
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