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We present a detailed formalism of the microscopic particle-rotor model for hypernuclear low-lying states
based on a covariant density functional theory. In this method, the hypernuclear states are constructed by
coupling a hyperon to low-lying states of the core nucleus, which are described by the generator coordinate
method (GCM) with the particle number and angular momentum projections. We apply this method to study in
detail the low-lying spectrum of 13

� C and 21
� Ne hypernuclei. We also briefly discuss the structure of 155

� Sm as an
example of heavy deformed hypernuclei. It is shown that the low-lying excitation spectra with positive-parity
states of the hypernuclei, which are dominated by � hyperon in the s orbital coupled to the core states, are similar
to that for the corresponding core states, while the electric quadrupole transition strength, B(E2), from the 2+

1

state to the ground state is reduced according to the mass number of the hypernuclei. Our study indicates that
the energy splitting between the first 1/2− and 3/2− hypernuclear states is generally small for all the hypernuclei
which we study. However, their configurations depend much on the properties of a core nucleus, in particular
on the sign of deformation parameter. That is, the first 1/2− and 3/2− states in 13

� C are dominated by a single
configuration with � particle in the p-wave orbits and thus provide good candidates for a study of the � spin-orbit
splitting. On the other hand, those states in the other hypernuclei exhibit a large configuration mixing and thus
their energy difference cannot be interpreted as the spin-orbit splitting for the p orbits.
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I. INTRODUCTION

The development in �-hypernuclear spectroscopy has
enabled one to explore several aspects of hypernuclear
structure [1,2]. Since hyperon-nucleon and hyperon-hyperon
scattering experiments are difficult to perform, the information
on the �N and �� interactions have been extracted from
such studies. Moreover, since a � hyperon is free from the
Pauli principle from other nucleons, it can go deeply inside a
nucleus, which can also be used as a sensitive probe in order
to study the structure of normal nuclei. Theoretically, many
methods have been developed to investigate the spectroscopy
of hypernuclei, such as the cluster model [3–9], the shell
model [10–12], the ab initio method [13], the antisymmetrized
molecular dynamics (AMD) [14–17], and self-consistent
mean-field models [18–26]. Among them, the self-consistent
mean-field approach is the only microscopic method which
can be globally applied from light to heavy hypernuclei.

One of the characteristic features of atomic nuclei is
deformation in the body-fixed frame. In the mean-field
approach, the optimized deformation is automatically obtained
by minimizing the total energy of a system in the mean-field
approximation. It was shown, however, that the potential
energy surface of a hypernucleus is generally softer against
deformation than that of the corresponding core nucleus [21].
This implies that the shape fluctuation effect, which is not
included in the pure mean-field approximation, will be more
important in hypernuclei than in normal nuclei. Furthermore,
in order to connect mean-field results to spectroscopic observ-

ables, such as B(E2) values, one has to transform the results to
the laboratory frame. To this end, one has to rely on additional
assumptions such as the rigid rotor model, which, however,
would not work for, e.g., nuclei with small deformation or
with shape coexistence. To quantify the impurity effect of �
particle on nuclear structure, one thus has to go beyond the
pure mean-field approximation.

In our previous publication [27], we have proposed a new
approach using a microscopic particle-rotor model (PRM) for
the low-lying states of single-� hypernuclei. In this method,
the � particle is coupled to the core nucleus states while
the � hyperon interacts with the nucleons inside the nuclear
core. For the core nucleus, a beyond-relativistic-mean-field
approach is applied for low-lying states by carrying out the
angular momentum and the particle number projections as
well as the configuration mixing with the generator coordinate
method (GCM). We have successfully applied this method to
the spectrum of 9

�Be.
The motivation of the present work is to introduce a detailed

formalism of this method. At the same time, we also apply it
systematically in order to study the low-lying states of single-
� hypernuclei in the mass region from light to heavy. For
this purpose, we first discuss the 13

� C hypernucleus, which
is an ideal hypernucleus in order to discuss the spin-orbit
splitting. We then discuss 21

� Ne as an example of hypernuclei
in the sd-shell region with a prolate deformation. The 155

� Sm
hypernucleus, which is a well-deformed system and has a well-
developed ground-state rotational band, is also considered as
an example of heavy hypernuclei.
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The paper is organized as follows. In Sec. II we present a
detailed introduction to the formalism of microscopic PRM
based on the covariant density functional theory (CDFT). In
Sec. III, the results for the low-lying states of hypernuclei
and the corresponding core nuclei are presented. Finally, we
summarize the conclusions of this paper in Sec. IV.

II. MICROSCOPIC PARTICLE-ROTOR MODEL
FOR � HYPERNUCLEI

A. Coupled-channels equations

The basic idea of the microscopic PRM for a single-�
hypernucleus is that the valence � hyperon couples to the
low-lying states of nuclear core, as is illustrated in a schematic
picture of Fig. 1. In this approach, a hypernucleus is described
in the laboratory frame and the wave function of the whole �
hypernucleus is constructed as

�JM (r,{rN }) =
∑

n,j,�,I

Rj�In
(r)F JM

j�In
(r̂,{rN }), (1)

where

F JM
j�In

(r̂,{rN }) = [Yj�(r̂) ⊗ �In
({rN })](JM) (2)

with r and rN being the coordinates of the � hyperon and
the nucleons, respectively. J is the angular momentum for
the whole system while M is its projection onto the z axis.
Yj�(r̂) is the spin-angular wave function for the � hyperon.
|�In

〉 is the wave functions of the low-lying states of nuclear
core, where I represents the angular momentum of the core
state and n = 1,2, . . . distinguish different core states with
the same angular momentum I . For convenience, hereafter
we introduce the shorthand notation k = {j�In} to represent
different channels.

In the relativistic approach, Rk(r) is the radial wave
function of a four-component Dirac spinor and it can be written

FIG. 1. (Color online) A schematic picture of the microscopic
particle-rotor model for � hypernucleus, in which r denotes the
coordinate of the � hyperon. In this approach, the nuclear core
states are described microscopically with the multireference density
functional theory.

in the following form:

Rk(r) =
(

fk(r)

igk(r)σ · r̂

)
. (3)

The Hamiltonian Ĥ for the whole � hypernucleus can be
written as

Ĥ = T̂� +
Ac∑
i=1

[
V̂

(N�)
V (r,rNi

) + V̂
(N�)
S (r,rNi

)
] + Ĥc, (4)

where Ac is the mass number of the core nucleus. The first
term in Eq. (4), T̂�, is the kinetic energy of � hyperon,

T̂� = −iα · ∇� + γ 0m�. (5)

Here, m� is the mass of the � hyperon and α and γ 0 are
Dirac matrices. The second term in Eq. (4) represents the N�
interaction term between the valence � and the nucleons in the
core nucleus. It is composed of both a repulsive vector-type
term V̂

(N�)
V and an attractive scalar-type term V̂

(N�)
S , for which

we take the following contact coupling forms:

V̂
(N�)
V (r,rN ) = αN�

V δ(r − rN ), (6)

V̂
(N�)
S (r,rN ) = αN�

S γ 0
�δ(r − rN )γ 0

N. (7)

These N� interactions correspond to the leading-order four-
fermion coupling terms in the effective interaction proposed in
Ref. [28]. For simplicity, the possible higher-order derivative
and tensor coupling terms are neglected in the present study.
We note here that the spin-orbit interaction of hyperon is
automatically taken into account in the relativistic framework
without introducing an additional parameter. The last term in
Eq. (4) is the many-body Hamiltonian for the core nucleus
satisfying the equation Ĥc|�In

〉 = EIn
|�In

〉. In this paper, we
use Hc that corresponds to the following point-coupling energy
density functional (EDF) [29],

Ec[{ρi},{jμ
i }] = Tr[(α · p + βm)ρV ]

+
∫

d r
(

αS

2
ρ2

S + βS

3
ρ3

S + γS

4
ρ4

S

+ δS

2
ρS�ρS + αV

2
jμjμ + γV

4
(jμjμ)2

+ δV

2
jμ�jμ + αT V

2
j

μ
T V (jT V )μ

+ δT V

2
j

μ
T V �(jT V )μ + e

2
jμ
p Aμ

)
, (8)

where Aμ is the four-component electromagnetic field, and
the densities ρi and currents j

μ
i are bilinear combinations of

Dirac spinors, namely ψ̄�iψ with i = S,V,T V representing
the symmetry of the coupling. The subscript S stands for
isoscalar-scalar (�S = 1), V for isoscalar-vector (�V = γ μ),
and T V for isovector-vector (�T V = γ μt3) types of coupling
characterized by their transformation properties in isospin and
in space time.

In order to obtain the radial wave function given by
Eq. (3) and the energy of hypernuclear low-lying states,
we multiply 〈F JM

k | to the total Schrödinger equation,
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Ĥ |�JM〉 = EJ |�JM〉, and integrate it over r̂ and {rN }. This
leads to the following coupled-channels equations:(

d

dr
− κ − 1

r

)
gk(r) + (EIn

− EJ )fk(r)

+
∑
k′

[
Ukk′

V (r) + Ukk′
S (r)

]
fk′(r) = 0, (9a)

(
d

dr
+ κ + 1

r

)
fk(r) − (

EIn
− 2m� − EJ

)
gk(r)

−
∑
k′

[
Ukk′

V (r) − Ukk′
S (r)

]
gk′(r) = 0, (9b)

where κ is defined as κ = (−1)j+�+1/2(j + 1/2). With the
multipole expansion for the δ function in coordinate space,

δ(r − r ′) = δ(r − r ′)
rr ′

∑
λ,μ

Yλμ(r̂)Y ∗
λμ(r̂ ′), (10)

the vector and scalar coupling potentials in Eqs. (9a) and (9b)
read

Ukk′
V (r) ≡ 〈

F JM
k

∣∣αN�
V

Ac∑
i=1

δ(r − rNi)
∣∣F JM

k′
〉

= (−1)j
′+I+J

∑
λ

〈j�||Yλ||j ′�′〉
{
J I j
λ j ′ I ′

}

×αN�
V ρ

InIn′
λ,V (r), (11)

and

Ukk′
S (r) ≡ 〈

F JM
k

∣∣αN�
S

Ac∑
i=1

γ 0
i δ(r − rNi)

∣∣F JM
k′

〉

= (−1)j
′+I+J

∑
λ

〈j�||Yλ||j ′�′〉
{
J I j
λ j ′ I ′

}

×αN�
S ρ

InIn′
λ,S (r), (12)

where ρ
InIn′
λ,V (r) and ρ

InIn′
λ,S (r) are the reduced vector and scalar

transition densities defined, respectively, as

ρ
InIn′
λ,V (r) =

〈
�In

∥∥∥∥∥
Ac∑
i=1

δ(r − rNi)

rNir
Yλ(r̂Ni)

∥∥∥∥∥�In′

〉
, (13a)

ρ
InIn′
λ,S (r) =

〈
�In

∥∥∥∥∥
Ac∑
i=1

γ 0
i

δ(r − rNi)

rNir
Yλ(r̂Ni)

∥∥∥∥∥�In′

〉
, (13b)

between the nuclear initial state In′ and the final state In. The
detailed expression for the transition densities in the nonrel-
ativistic multireference DFT framework has been derived in
Ref. [30] by one of the present authors. The formalism has also
been generalized to the relativistic case within a multireference
CDFT (MR-CDFT) to study a “bubble” structure in light
nuclei [31,32]. In this work, we extend this formalism to study
low-lying states of hypernuclei.

With the radial wave function Rk(r) in the coupled-
channels equations (9a) and (9b), one can compute the
probability Pk of the channel k in the total wave function

�JM as

Pk =
∫

r2dr |Rk(r)|2 =
∫

r2dr[|fk(r)|2 + |gk(r)|2]. (14)

The wave function is normalized as
∑

k Pk = 1.

B. Projected potential energy surface

In order to apply the formalism presented in the previous
subsection, one has to specify the core states �In

. A simple
choice for this is to construct them as the projected mean-field
states with the intrinsic deformation β∣∣�IMI

(β)
〉 = P̂ I

MI K
P̂ N P̂ Z|ϕ(β)〉, (15)

where the particle number projector P̂ Nτ has the form

P̂ Nτ = 1

2π

∫ 2π

0
dϕτ e

iϕτ (N̂τ −Nτ ), (τ = n,p), (16)

and the operator P̂ I
MI K

is the three-dimensional angular
momentum projection operator given by

P̂ I
MI K

= 2I + 1

8π2

∫
d�DI∗

MI K
(�)R̂(�). (17)

Here, � represents a set of Euler angles (φ,θ,ψ), and the
measure is d� = dφ sin θdθdψ . R̂(�) and DI

MI K
(�) are the

rotation operator and the Wigner D function, respectively [33].
In Eq. (15), the wave function |ϕ(β)〉 is a Slater determinant of
quasiparticle states with quadrupole deformation β generated
with the constrained relativistic mean-field (RMF) calculation.
For simplicity, in this paper we consider only the axial
deformation for the nuclear core and thus the K quantum
number is zero in Eq. (15).

In this approach, the hypernuclear states �JM are given for
each deformation β. This allows one to construct the projected
energy surface for hypernuclei. That is, one can define the total
energy EJ (β) by taking 〈�JM |Ĥ |�JM〉 at each deformation β
and for each spin-parity, Jπ . Notice that the coupled-channels
equations (9a) and (9b) are solved at each deformation, and
thus the effect of core excitations is taken into account in the
projected energy surface so obtained.

C. Multireference covariant density functional for nuclear core
states and transition densities

One can improve the calculations in the previous subsection
by using �In

from the MR-CDFT calculation in the context of
generator coordinate method (GCM) [34–36], that is,∣∣�InMI

〉 =
∑

β

F I
n (β)P̂ I

MI K
P̂ N P̂ Z|ϕ(β)〉. (18)

In this wave function, a set of Slater determinants with
different quadrupole deformation β is superposed according
to the idea of GCM. The weight function F I

n (β) in the wave
function (18) is determined by requiring that the energy expec-
tation value is stationary with respect to an arbitrary variation
of F I

n (β), which leads to the Hill-Wheeler-Griffin (HWG)
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equation [37],∑
β ′

[H I (β,β ′) − EIn
N I (β,β ′)]F I

n (β ′) = 0. (19)

Here, N I (β,β ′) = 〈ϕ(β)|P̂ I
00P̂

N P̂ Z|ϕ(β ′)〉 and H I (β,β ′) =
〈ϕ(β)|Ĥ P̂ I

00P̂
N P̂ Z|ϕ(β ′)〉 are the norm and the energy kernels,

respectively. In the calculations, the energy overlap in the
energy kernel is taken to be the same functional form as in
the nuclear mean-field energy, but replacing the densities and
currents with mixed ones, that is, off-diagonal components of
the density and current matrices [34–36].

Since the projected mean-field states do not form an
orthogonal basis and the weights F I

n (β) in Eq. (18) are not
orthogonal functions, it is convenient to construct a set of
orthonormal collective wave functions gI

n as [38]

gI
n(β) =

∑
β ′

[N I ]1/2(β,β ′)F I
n (β ′). (20)

Notice that the modulus square of gI
n(β) does not represent

the probability to find the deformation β in the GCM state.
For the axial symmetric case, however, gI

n(β) provides a good
indication about the dominant configurations in the collective
states.

With the GCM wave functions for |�In
〉, one can cal-

culate the reduced vector transition density in Eq. (13a) as
follows [30]:

ρ
InI

′
n′

λ,V (r) = (−1)I
′−I Î 2

Î ′
∑
β,β ′

F I∗
n (β)F I

′

n′ (β ′)
∑
Kν

〈I0λν|I ′0〉

×
∫

d r̂Y ∗
λν(r̂)〈ϕ(β)|ρ̂V (r)P̂ I ′

0KP̂ N P̂ Z|ϕ(β ′)〉,
(21)

where the notation Î = √
2I + 1 is introduced for simplicity,

and the vector density operator is defined as follows:

ρ̂V (r) =
Ac∑
i=1

δ(r − rNi). (22a)

The reduced scalar density in Eq. (13b) can also be expressed
in a similar way.

D. Electric quadrupole transition strengths between
hypernuclear states

The electric quadrupole (E2) transition strength from an
initial state |Ji〉 to a final state |Jf 〉 in � hypernuclei is defined
as

B(E2; Ji → Jf ) = 1

2Ji + 1
|〈Jf ||Q̂2||Ji〉|2. (23)

Here, the E2 operator reads Q̂2μ = ∑
i∈p r2

i Y2μ(r̂i). Substitut-
ing the wave function for the hypernuclear states, Eq. (1), in
this equation, one finds the reduced matrix element to be

〈Jf ||Q̂2||Ji〉 =
∑
ki ,kf

∫
drr2R†

kf
(r)Rki

(r)
〈
F

Jf

kf

∥∥Q̂2

∥∥F Ji

ki

〉
(24)

with〈
F

Jf

kf

∥∥Q̂2

∥∥F Ji

ki

〉
= δjf ji

δ�f �i
(−1)If +ji+Ji Ĵi Ĵf

{
If Jf ji

Ji Ii 2

} 〈
Inf

∥∥Q̂2

∥∥Ini

〉
(25)

(see Eq. (7.1.8) in Ref. [33]). Here, 〈Inf
||Q̂2||Ini

〉 is the reduced
E2 transition matrix element between the nuclear core states
|If ,nf 〉 and |Ii,ni〉 and it is related to the proton vector
transition density in Eq. (21) as〈

Inf

∥∥Q̂2

∥∥Ini

〉 = Îi

∫
drr4ρ

Inf
Ini

2,V (r). (26)

III. RESULTS AND DISCUSSION

We now numerically solve the coupled-channels equations and
discuss low-lying spectrum of hypernuclei. The procedure of
the calculations and the numerical details are listed as follows.

(i) Self-consistent deformation constrained RMF+BCS
calculation for the nuclear core states. This step is to generate
a set of deformed states |ϕ(β)〉 with different quadrupole
deformation β. The Dirac equation for nucleons is solved
with the basis of a three-dimensional harmonic oscillator
(3DHO) with Nsh = 10 major shells for 12C and 20Ne, and
with Nsh = 12 for 154Sm. The oscillator length parameter in
the 3DHO is chosen as bx = by = bz = √

�/mω0, where m is
the nucleon mass and the oscillator frequency is determined to
be �ω0 = 41A

−1/3
c MeV. In the most of calculations shown

below, we employ the nonlinear point-coupling EDF with
the PC-F1 [29] set for the particle-hole channel, although we
also use the PC-PK1 set [39] for 20Ne in order to study the
parameter set dependence. In these energy density functionals,
a density-independent δ force is used for the particle-particle
channel, supplemented with an energy-dependent cutoff for
the pairing active space [40].

(ii) MR-CDFT calculation for the low-lying states of
nuclear core. This step is to obtain the wave functions �In

for
the core state In. The mean-field wave functions are projected
onto good particle numbers (N,Z) and angular momentum I ,
which form a set of nonorthogonal basis. The Gauss-Legendre
quadrature is used for integrals over the Euler angle θ in the
calculations of the norm and Hamiltonian kernels. For the 12C
nucleus, the number of mesh points in the interval [0,π ] for θ
is chosen to be 14. The number of gauge angle ϕ for the particle
number projection is chosen to be 7. For 20Ne and 154Sm, we
use the mesh points of 16 and 9 for the angular momentum and
the particle number projections, respectively. The energy and
wave function of the core state In are determined by solving the
HWG equation, Eq. (19) [34–38]. With the wave functions of
nuclear core states, one can calculate the transition densities
which are used to determine the coupling potentials in the
coupled-channels equations.

(iii) Coupled-channels calculation for the low-lying states
of � hypernuclei. With the coupling potentials so obtained,
the coupled-channels equations are solved by expanding the
radial wave function Rj�In

(r) on the basis of eigenfunctions of
a spherical harmonic oscillator with 18 major shells. From the
solutions of the coupled-channels equations, we construct the
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spectrum of hypernucleus and calculate the B(E2) transition
strengths.

A. Application to 13
� C

1. Properties of the core states

We first apply the method to 13
� C. Figure 2 shows the energy

curves for the core nucleus, 12C. The dotted line is obtained in
the mean-field approximation, while the other lines show the
projected energy surface for each angular momentum I . The
mean-field energy curve exhibits a pronounced minimum at
the spherical configuration with a steep rise with deformation
β, as expected for a nucleus with large neutron and proton
shell gaps. The energy gained from restoration of rotational
symmetry increases with deformation β and together with the
particle number projection the location of energy minimum is
shifted on the curve. The minimum of the energy curve with 0+
is found on the oblate side with β = −0.3. Besides, the second
minimum appears around β = 2.4 in the mean-field energy
curve, which is shifted to β = 2.7 in the projected energy
curve for Iπ = 0+. It has been shown that the configuration
for this minimum has a 3α linear-chain structure [41].

After mixing the projected mean-field configurations, one
obtains the energies of low-lying states (see the filled squares in
Fig. 2). The wave function of these states is displayed in Fig. 3
for the lowest three states with I = 0,2,4, and 6. The ground
state of 12C is dominated by the spherical configuration. The
collective wave functions and the energy spectrum indicate that
there is a coexistence of an anharmonic spherical vibrator and
an oblate deformed band at low excitation energies of 12C.
Both structures are not pure and distorted by their strong
mixing. The high-lying 0+

3 ,2+
3 , and 4+

2 states seem to form
a rotational band dominated by the 3α-linear configuration,
in which the collective wave functions are much extended

FIG. 2. (Color online) The energy curve of the mean-field state
and the particle-number and angular momentum projected (Iπ =
0+,2+, and 4+) states for 12C as a function of the intrinsic quadrupole
deformation β. The filled squares indicate the lowest three GCM
solutions for each Iπ , which are plotted at their average deformation
β̄ ≡ ∑

β |gI
n(β)|2β, where gI

n(β) is the collective wave functions
defined by Eq. (20). The results are obtained with the PC-F1 force.

-1 0 1 2 3 4
-1.0

-0.5

0.0

0.5

-1.0

-0.5

0.0

0.5

1.0

-1 0 1 2 3 4

4+

n=1
=2
=3

n
n

12C

0+ 2+

6+

 g
I

 g
I

β β

FIG. 3. (Color online) The collective wave functions gI
n given by

Eq. (20), for the first three states in 12C with spin parities of 0+,2+,4+,
and 6+.

to a large deformation region. A similar rotational band
corresponding to a 4α-linear configuration has also been found
in the high-lying states of 16O [42].

Figure 4 shows the vector and scalar transition densities
ρ0λ

λ in the low-lying yrast states (n = 1) of 12C, where the
multipolarity λ is taken as 0,2, and 4. ρ00

0 (r) is nothing but
the total nucleon density for the 0+

1 ground state multiplied
by a factor

√
4π . It is shown that the transition density ρ0λ

λ

decreases by one order of magnitude as λ increases from 0 to
2 and from 2 to 4. Besides, we also plot the transition densities
ρ22

λ with λ = 0,2, and 4, ρ24
λ with λ = 2,4, and 6, and ρ26

λ with
λ = 4,6, and 8. Notice that the vector and scalar transition
densities are slightly different from one another.

The convolution of the proton vector transition densities in
Fig. 4 with a Gaussian form factor for a finite proton size yields

the charge transition densities, ρ
InI

′
n′

L,ch (r), which are related to
the form factor FL(q) for electron scattering with an angular
momentum transfer L by the following relation [30]:

FL(q) =
√

4π

Z

∫ ∞

0
drr2ρ

InI
′
n′

L,ch (r)jL(qr), (27)

where jL(qr) is the spherical Bessel function. The coefficient√
4π/Z is chosen so that the elastic part of the form factor

F0(q) is unity at q = 0. A comparison of our results with the
data is shown in Fig. 5. One can see that the form factors
FL(q) are in rather good agreement with the data except
for the underestimation of the elastic form factor after the
first minimum, as was found also in the recent studies for
12C [45] and 24Mg [30] based on the Skyrme forces. This
may be because the spreading of the collective wave function
in quadrupole deformation space is somewhat overestimated
in the calculations, decreasing the weights of the large-q
components of the transition density [30,45]. In fact, the charge
radius of 12C by the present GCM calculation is 2.57 fm, which
is larger than the empirical value of 2.47 fm [46].

Figure 6 shows the charge form factors for the interband
transitions between the two bands with n = 1 and n = 2
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FIG. 4. (Color online) The vector transition density, ρ
In,I ′

n
λ,V , given by Eq. (13a), and the scalar transition density, ρ

In,I ′
n

λ,S , given by Eq. (13b),
in the low-lying states (n = 1) of 12C. These are plotted by the solid and the dashed lines, respectively. The insets show the difference of the
vector and scalar transition densities.
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FIG. 5. (Color online) The charge form factor for the transition
from the ground state to (a) the ground state, (b) the excited 2+

1 state,
and (c) the excited 4+

1 state in 12C calculated with the GCM method
with the PC-F1 force, in comparison with the available data [43,44].
R on the top panel is the root-mean-square charge radius of 12C.
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FIG. 6. (Color online) The charge form factors between the two
bands with n = 1 and n = 2 in 12C calculated with the GCM method
with the PC-F1 force, in comparison with the available data from
Ref. [47].
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FIG. 7. (Color online) The spectrum of 12C obtained with several
methods, that is, the GCM with the PC-F1 interaction (the present
calculation), GCM with the Skyrme SLy4 force [45], antisymmetrized
molecular dynamics (AMD) [48], and the α cluster model [47]. The
excitation energies are given in units of MeV. The solid and the
dashed arrows are the quadrupole transition strength B(E2) (e2 fm4)
and the electric monopole transition matrix element |M(E0)| (e fm2),
respectively. The experimental data are taken from Refs. [50,51].

in 12C. Since the 0+
2 state is the Hoyle state with dilute 3α

structure, which is beyond the model space of the present
calculation, the inelastic form factor F0(q) corresponding to
the transition from the 0+

1 to the 0+
2 states is significantly un-

derestimated in the high-q region beyond the first minimum. It
is worthwhile to mention that the calculated electric monopole
transition matrix element |M(E0 : 0+

2 → 0+
1 )| = 4.1 efm2 and

the charge radius of 0+
2 (2.73 fm) are in good agreement with

the results (4.5 ± 0.2 efm2 and 2.73 ± 0.02 fm, respectively)
of the recent configuration mixing calculation based on a
Skyrme force [45]. These values should be compared with the
data |M(E0 : 0+

2 → 0+
1 )| = 5.4(2) efm2 and the charge radius

from other calculations for the Hoyle state, such as 3.27 fm
by the antisymmetrized molecular dynamics [48], 3.38 fm by
the fermionic molecular dynamics [47], and 3.83 fm by the
α-condensation model [49].

The low-lying spectrum of 12C with MR-CDFT calculation
is shown in Fig. 7, in which the results are compared with the
experiment data [50,51] as well as with other model calcu-
lations [45,47,48]. One can see that the low-lying spectrum
is reproduced rather well by the present calculation, although
the excitation energies are systematically overestimated. The
electric monopole transition matrix element |M(E0)| and
the quadrupole transition strength B(E2) are also in good
agreement with the data and the other model calculations.

2. �N interaction

The core states obtained in the previous subsection are
used as inputs for the coupled-channels calculations for the
hypernucleus 13

� C. To this end, the parameters αN�
S and αN�

V

in the N� interaction, Eqs. (6) and (7), are fitted with
the microscopic particle-rotor model to the experimental �

binding energy of 13
� C, that is, B(exp.)

� = 11.38 ± 0.05 MeV [1].
Figure 8(a) shows a contour plot of the absolute value of
the difference between the theoretical and the experimental
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FIG. 8. (Color online) (a) A contour plot of the absolute value of
the difference between the theoretical and the experimental hyperon
binding energies of 13

� C hypernucleus as a function of the coupling
strength parameters αN�

S and αN�
V in the N� interaction. The

calculated energies are obtained with the microscopic particle-rotor
model. (b) Energy levels of the 3/2+, 3/2−, and 1/2− states in 13

� C
calculated with the strength parameters denoted by the dots in the
panel (a).

hyperon binding energies as a function of αN�
S and αN�

V . This
is obtained by including in Eq. (1) the core states up to ncut = 2
and Icut = 4. Obviously, the two strength parameters cannot
be uniquely determined by fitting only to B� and are linearly
correlated as illustrated in Fig. 8(a).

Taking a few sets of the parameters along the valley with
B th

� = B
exp
� in Fig. 8(a), we calculate the energy of each of

the low-lying excited states of 3/2+, 3/2−, and 1/2− in 13
� C

[see Fig. 8(b)]. One can see that the excitation energies of
3/2+, 3/2− depend on the choice of the parameters only
weakly. The energy of 1/2− state slightly decreases with the
decrease of the absolute value of the coupling strengths. For
all the sets of the parameters (αN�

S ,αN�
V ) in the region of

concerned, the energy splitting between the first 1/2− and 3/2−
states is in agreement with the data 152 ± 54(stat) ± 36(syst)
keV [53,54]. Therefore, as one of the choices, we first fix the
value of αN�

S to be −4.2377 × 10−5 MeV−2, which is the
same value as in the PCY-S2 set [28], and determine αN�

V to
be 1.969 × 10−5 MeV−2. With this parameter set for the �N
interaction, the energy splitting between the 1/2− and 3/2−
states is 198.9 keV.

3. Projected potential energy surface

With the N� interaction determined in the previous
subsection, let us first investigate the projected potential energy
surface for 13

� C. Figure 9 shows the resultant energy EJ (β) for
the Jπ = 1/2+, 1/2−, and 3/2− states in 13

� C as a function
of the deformation β of the core nucleus. These are obtained
by solving the coupled-channels equations for each β. For
comparison, the figure also shows the potential energy curve in
the single-channel calculations without taking into account the
core excitations (the dot-dashed lines) as well as those for the
core nucleus (the dashed lines). The energy surfaces obtained
with the coupled-channel calculations are systematically lower
than that with the single-channel calculation due to the
additional configuration mixing effect. One can see that the
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FIG. 9. (Color online) The potential energy surfaces of hypernu-
cleus 13

� C obtained with the single-channel calculation (the dot-dashed
lines) and the coupled-channel calculation (the solid lines) with spin
parity of (a) J π = 1/2+, (b) J π = 1/2−, and (c) J π = 3/2− as a
function of deformation parameter β. For comparison, the figure also
shows the energy surface for the nuclear core with spin-parity of
Iπ = 0+ (the dashed lines). The energy surfaces for hypernuclei are
shifted by a constant amount as indicated in each panel.

hypernuclear energy curve with spin parity of 1/2+ has an
oblate minimum with |β| significantly smaller than that of 12C
with 0+, indicating a smaller collectivity. On the other hand,
for Jπ = 1/2−, the deformation around the oblate minimum is
similar to that of 12C, but with a higher barrier at the spherical
shape. This leads to a smaller effect of shape mixing between
the prolate and oblate configurations and thus a larger average
deformation in 13

� C. The main component of the 1/2+ and 1/2−
hypernuclear states are the � particle in s1/2 and p1/2 orbits
coupled to the ground state of 12C, respectively. It implies

that a � particle in the s (p) orbit decreases (increases) the
collectivity of 12C, which is consistent with the findings in the
recent studies [14,23].

4. Single-channel calculations

Let us now employ the core states described with the GCM
method and discuss the spectrum of 13

� C. Before we present
the results of full coupled-channels calculations, we first
discuss the results of single-channel calculations, restricting
the �-hyperon to a specific orbital coupled to a single core
state. In this case, we take only the diagonal component in
the coupling potentials, Eqs. (11) and (12), in the coupled-
channels equations. The coupled-channels equations are then
simplified as(

d

dr
− κ − 1

r

)
gk(r) + (

EIn
− EJ

)
fk(r)

+ [
Ukk

V (r) + Ukk
S (r)

]
fk(r) = 0, (28)(

d

dr
+ κ + 1

r

)
fk(r) − (

EIn
− 2m� − EJ

)
gk(r)

− [
Ukk

V (r) − Ukk
S (r)

]
gk(r) = 0. (29)

The results for the � particle in the s1/2, p1/2, and p3/2

orbitals are shown in the columns (d)–(g) of Fig. 10. For
comparison, the figure also shows the spectrum of the core
nucleus 12C in Figs. 10(a)–10(c) (these are actually the same
as those in Fig. 7). A ��j hyperon coupled to the core state
with angular momentum I+ produces several hypernuclear
states with Jπ , with the total angular momentum J running
from J = |I − j | to J = I + j , with the parity of π = (−1)�.
When the � particle is restricted to the s1/2 orbit, a doublet
states with (I − 1/2)+ and (I + 1/2)+ are yielded, which are
degenerate in energy for I > 0. On the other hand, a spectrum
is more complex for the case of � particle in the p3/2 orbital.

FIG. 10. (Color online) The low-energy excitation spectra of 12C [(a)–(c)] and 13
� C [(d)–(l)]. For 12C, the full GCM calculations are

compared with the experimental data taken from Ref. [52]. The columns (h) and (i) show the positive-parity states in 13
� C, while the columns (j)

and (k) show the negative-parity states. The experimental data of 13
� C are taken from Refs. [53,54]. For comparison, the results of single-channel

calculation for 13
� C with the � particle in the s1/2, p1/2 and p3/2 orbitals are also plotted in the columns (d)–(g).
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In this case, the multiplet states with J ∈ [|I − j |,(I + j )] are
ordered according to the properties of the coupling potential
in Eq. (28).

For instance, in the case of �p3/2 ⊗ 2+
1 , the multiplets are

ordered as 5/2−,3/2−,7/2−, and 1/2− [see Fig. 10(g)]. In
order to understand this, we write the coupling potentials for
the configuration k as

Ukk
m = (−1)j+I+J

∑
λ

〈j�||Yλ||j�〉
{
J I j
λ j I

}
αN�

m ρ
InIn

λ,m

≡ C0

∑
λ

C1λC2λα
N�
m ρ

InIn

λ,m , (30)

where the indices m = S and V represent the scalar and vector
potentials, respectively. The coefficients Cn(n = 0,1, and 2)
are defined as C0 ≡ (−1)j+I+J ,

C1λ ≡ 〈j�||Yλ||j�〉

= (−1)j+1/2

√
4π

ĵ 2λ̂

(
j λ j

1/2 0 −1/2

)
δλ,even, (31)

and

C2λ ≡
{
J I j

λ j I

}
. (32)

Table I lists the value of each of the coefficients Cn. The
transition densities αN�

m ρ22
λ,m(r) and the potential Ukk

V (r) +
Ukk

S (r) with k ≡ (j,�,In) = ( 3
2 ,1,21) are displayed in Fig. 11

as a function of radial coordinate r . It is seen that the
potential Ukk

V (r) + Ukk
S (r) becomes gradually deeper in the

order of Jπ = 1/2−,7/2−,3/2−,5/2−, which is consistent
with the distribution of energy levels of these multiplets. It
is seen in Table I that the product C0C1λC2λ is the same
among the multiplets for λ = 0, and thus the origin for the
energy difference among these four hypernuclear states is
the nonzero λ = 2 term in the potential (30). That is, the
splitting of Jπ = 1/2−,7/2−,3/2−, and 5/2− hypernuclear
states is originated from the nonzero transition density ρ22

2 (r)
[cf. Fig. 11(a)] due to the reorientation effect (that is, the
transition between the same state) of 2+

1 state in the deformed
shape of 12C. Since αN�

m ρ22
λ,m(r) is negative as shown in

Fig. 11(a), the potential is most attractive for Jπ = 5/2−,
which has a positive C0C12C22.

TABLE I. The coefficients in the potential for the [�lj ⊗ 2+](J )

configurations [see Eqs. (31) and (32)].

[�lj ⊗ 2+] J π C0 C20 C0C10C20 C22 C0C12C22

[�p3/2 ⊗ 2+] 1/2− 1.00 1√
20

1√
20π

√
14

20 −
√

14/π

20

[�p3/2 ⊗ 2+] 3/2− −1.00 − 1√
20

1√
20π

0.00 0.00

[�p3/2 ⊗ 2+] 5/2− 1.00 1√
20

1√
20π

−
√

14
28

√
14/π

28

[�p3/2 ⊗ 2+] 7/2− −1.00 − 1√
20

1√
20π

−
√

14
70 −

√
14/π

70

[�p1/2 ⊗ 2+] 3/2− 1.00 1√
10

1√
20π

0.00 0.00

[�p1/2 ⊗ 2+] 5/2− −1.00 − 1√
10

1√
20π

0.00 0.00
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FIG. 11. (Color online) (a) The transition densities αV ρ22
λ,V +

αSρ
22
λ,S (λ = 0 and λ = 2) and (b) the potential Ukk

V (r) + Ukk
S (r) in

Eq. (28) for the hypernuclear states J = 1/2−,3/2−,5/2−,7/2− with
the �p3/2 ⊗ 2+

1 configuration as a function of the radial coordinate r .

For the configuration with � in p1/2 orbital coupled to
the nuclear core 2+

1 state, the resultant doublet states 3/2−
and 5/2− are degenerate in energy, since the coefficient C =
C0C1λC2λ is not zero only for λ = 0, having the same value of
1/

√
20π between those two states (see Table I).

5. Coupled-channels calculations

Let us now solve the coupled-channels equations for 13
� C.

To this end, we first examine the convergence feature of the
excitation energies with respect to the cutoff of core states ncut

and the core angular momentum Icut. Figure 12 shows that
ncut = 2 and Icut = 4 yield a good convergence for the low-
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FIG. 12. (Color online) Excitation energy of low-lying states in
13
� C as a function of the cutoff of core states n [(a) and (b)] and the
cutoff of core angular momentum I [(c) and (d)] for the coupled-
channels calculations.
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TABLE II. The probability PjlIn for the dominant components
in the wave function for low-lying states of 13

� C obtained by the
microscopic particle-rotor model. Only those components which
have PjlIn larger than 0.1 are shown. E is the energy of each state
obtained by solving the coupled-channels equations, while E

(0)
1ch is

the unperturbed energy obtained with the single-channel calculations.
The energies are listed in units of MeV.

J π E (lj ) ⊗ Iπ
n PjlIn E

(0)
1ch

1/2+
1 0.00 s1/2 ⊗ 0+

1 0.94 0.00

3/2+
1 5.61 s1/2 ⊗ 2+

1 0.94 5.59

5/2+
1 5.62 s1/2 ⊗ 2+

1 0.94 5.59

7/2+
1 17.01 s1/2 ⊗ 4+

1 0.98 16.37

9/2+
1 17.02 s1/2 ⊗ 4+

1 0.98 16.37

1/2+
2 10.14 s1/2 ⊗ 0+

2 0.91 9.21

3/2+
2 15.20 s1/2 ⊗ 2+

2 0.90 14.26

5/2+
2 15.21 s1/2 ⊗ 2+

2 0.90 14.26

1/2−
1 12.69 p1/2 ⊗ 0+

1 0.92 12.26

3/2−
1 12.49 p3/2 ⊗ 0+

1 0.93 12.08

5/2−
1 16.27 p3/2 ⊗ 2+

1 0.82 15.70

p1/2 ⊗ 2+
1 0.17 16.53

7/2−
1 17.24 p3/2 ⊗ 2+

1 0.97 16.62

1/2−
2 17.22 p1/2 ⊗ 0+

1 0.60 17.36

p3/2 ⊗ 2+
1 0.38 17.11

3/2−
2 16.32 p3/2 ⊗ 2+

1 0.54 16.39

p1/2 ⊗ 2+
1 0.45 16.53

5/2−
2 17.38 p1/2 ⊗ 2+

1 0.80 16.53

p3/2 ⊗ 2+
1 0.17 15.70

lying excited states, and we use these cutoffs in the calculations
presented below.

Figures 10(h)–10(k) show the calculated low-energy exci-
tation spectra of 13

� C, in comparison with the corresponding
data. One can see that the low-lying spectra for 13

� C are
reproduced rather well, although the excitation energies are
slightly overestimated.

In the coupled-channels calculation, the doublets
(5/2+,3/2+) and (9/2+,7/2+) in Fig. 10(h) mainly consist of
the configuration of �s1/2 ⊗ 2+

1 and �s1/2 ⊗ 4+
1 , respectively.

See Table II for the probabilities for the dominant components
in each state. These doublets are degenerate in the single-
channel calculation, as already shown in Fig. 10(d). The states
of 3/2+ and 5/2+ are different from each other by 10 keV
due to the weak mixing of other configurations. The levels in
Fig. 10(i) correspond to the configuration of �s1/2 coupled
to the second band (n = 2) in 12C. These levels share similar
features as those in Fig. 10(h).

The negative-parity states are shown in Figs. 10(j)
and 10(k). The energy splitting between the 3/2− and 1/2−
states is as small as 199 keV. Notice that in the single-
channel calculation the energy difference between the pure
configurations of �p3/2 ⊗ 0+

1 and �p1/2 ⊗ 0+
1 is 180 keV. That

is, the energy splitting of 3/2− and 1/2− states reflects mainly
the spin-orbit splitting of � hyperon in the p3/2 and p1/2 states.

A small splitting between the 3/2− and 1/2− states has been
shown also in our previous calculation for 9

�Be [27], although
it does not reflect the Lambda spin-orbit splitting because of
a strong mixing between the �p1/2 ⊗ 0+ and the �p3/2 ⊗ 2+
configurations in the 1/2− state.

For the second 1/2− and 3/2− states, one can see a large
configuration mixing (see Table II). This is because there are
two states whose unperturbed energy in the single-channel
calculations, E

(0)
1ch, is close to one another. These two states

are strongly coupled due to the off-diagonal components of
the coupling potentials in the coupled-channels equations.
Notice that, in 9

�Be, this happens already in the first 1/2−
state [27], because the reorientation effect discussed in the
previous subsection brings the �p3/2 ⊗ 2+ configuration close
to the �p1/2 ⊗ 0+ configuration in energy due to the prolate
nature of the 2+ state of 8Be.

According to our calculation, the experimentally observed
level at excitation energy of 11.8 MeV has the spin parity
of 1/2+, dominated by the configuration �s1/2 ⊗ 0+

2 [cf.
Fig. 10(e)] or the first radial excitation state of the configuration
�s1/2 ⊗ 0+

1 [cf. Fig. 10(d)].
Figure 13 shows a comparison of low-energy excitation

spectra of 13
� C obtained with the present microscopic particle-

rotor model (MPRM), the multichannel algebraic scattering
(MCAS) approach [55], and the 3α + � cluster model [56],
together with the experimental data [1]. The basic idea of
MCAS approach for � hypernuclei [55] is similar to the
microscopic PRM model in a sense that the hypernuclear
wave function is given by the � hyperon coupled to the
low-lying states of nuclear core. In contrast to our full
microscopic models, in which all the inputs are from the
multireference CDFT calculation, the MCAS approach adopts
the experimental data for the energies of nuclear core states
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FIG. 13. (Color online) A comparison of low-energy excitation
spectra of 13

� C obtained with the present microscopic particle-rotor
model (MPRM), the multi-channel algebraic scattering (MCAS)
approach [55], the 3α + � cluster model [56], and the experimental
data [1].
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TABLE III. The calculated E2 transition strengths (in units of
e2 fm4) for low-lying positive-parity states of 12C and 13

� C. The
cB(E2) values are calculated according to Eq. (33). The changes in
the B(E2) are indicated with the quantity defined by � ≡ (cB(E2) −
B(E2; 12C))/B(E2; 12C). The value in the parenthesis for 12C is the
experimental data taken from Ref. [50].

12C 13
� C

Iπ
i → Iπ

f B(E2) J π
i → J π

f B(E2) cB(E2) �(%)

2+
1 → 0+

1 6.62 3/2+
1 → 1/2+

1 5.68 5.68 −14.17
(7.6 ± 0.4) 5/2+

1 → 1/2+
1 5.68 5.68 −14.17

4+
1 → 2+

1 14.60 7/2+
1 → 3/2+

1 10.34 11.48 −21.36
7/2+

1 → 5/2+
1 1.15 11.49 −21.35

9/2+
1 → 5/2+

1 11.48 11.48 −21.36

with an assumption of a pure collective rotational states and
a phenomenological deformed Woods-Saxon potential for the
coupling potentials. In contrast to the MCAS approach and
cluster model calculation, the ordering of the first degenerate
3/2+ and 5/2+ states are not reproduced in the microscopic
PRM calculation, since we do not include a spin-spin interac-
tion in our calculation. Except for this, the ordering of low-
lying states and the structure of spectrum are the same between
the microscopic PRM and the MCAS approach. The main
components of each state obtained with the microscopic PRM
calculation are similar to those in the cluster model calculation.

Table III shows the calculated E2 transition strengths for
low-lying positive-parity states of the hypernucleus and the
corresponding core nucleus. In order to remove the trivial
factor due to the angular momentum coupling for s1/2 for the
� particle and see more clearly the impurity effect of � particle
on nuclear collectivity, we define the cB(E2) value (that is,
the B(E2) value for the core part) as

cB(E2 : Ii → If ) ≡ Îi
−2

Ĵf
−2

{
If Jf ji

Ji Ii 2

}−2

×B(E2 : Ji → Jf ), (33)

where ji is the value for the main channel in the initial
state. The impurity effect of � particle can be discussed by
comparing the B(E2) values for the core nucleus and the
cB(E2) values for the corresponding hypernucleus. One can
see that the E2 transition strength for 2+

1 → 0+
1 in 12C is

significantly reduced, by a factor of ∼14%, due to the addition
of a � particle.

B. Low-energy spectroscopy of 21
� Ne

We next consider an application to hypernuclei in the
sd-shell region. For this purpose, we discuss the 21

� Ne
hypernucleus. Since the � binding energy in 21

� Ne has not
yet been measured, we fit the value of coupling strength
parameters αN�

S and αN�
V to the � binding energy estimated

with a deformed relativistic mean field calculation [23]. With
the PC-F1 and PCY-S1 forces for NN and N� interactions,
respectively, B� is estimated to be 14.35 MeV for the lowest
� hyperon state. With the same process as in Sec. III A 2, we
obtain a parameter set of αN�

S = −4.2377 × 10−5 MeV−2 and
αN�

V = 1.6694 × 10−5 MeV−2.
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FIG. 14. (Color online) A comparison of the yrast rotational
states of 20Ne obtained with several methods. The results of the
cluster model and the AMD are taken from Refs. [57] and [14],
respectively.

Figure 14 shows the calculated yrast rotational states of
20Ne. In order to see the parameter set dependence for the
NN interaction, we use both PC-F1 and PC-PK1 parameter
sets. For a comparison, the figure also shows the results of
α +16 O cluster model [57] and the AMD model [14]. One
sees that all these models reproduce the rotational character of
the yrast states, although they tend to overestimate the moment
of inertia.

Figure 15 shows the obtained energy curve EJ (β) for the
Jπ = 1/2+ and 1/2− states in 21

� Ne as a function of the
deformation β of the core nucleus. The left and the right panels
show the result with PC-F1 and PC-PK1 forces, respectively.
For the latter, we use the same N� interaction as in the former
calculation, even though the parameters are determined with
PC-F1. We have confirmed that this yields the B� value of
14.33 MeV with PC-PK1, which is similar to the value with
the PC-F1 set, that is, 14.35 MeV. For PC-F1, the hypernuclear
energy curve with spin-parity of 1/2+ and 1/2− has a prolate
minimum with a smaller β than that of 20Ne with 0+. For
PC-PK1, on the other hand, the value of β at the energy
minimum remains almost the same for the 1/2+ configuration
while that for the 1/2− configuration increases as compared
to the deformation for 20Ne with 0+. Notice that the energy
surface for 1/2− has a higher barrier at the spherical shape than
the barrier for 20Ne for both the interactions. This indicates that
21
� Ne with 1/2+ and 1/2− has a smaller and a larger collectivity
than that of 20Ne, as in 13

� C. The energy differences between
the 1/2+ state in 21

� Ne and the ground state of 20Ne, as well as
the 1/2− state in 21

� Ne and the ground state of 20Ne, are shown
in Figs. 15(c) and 15(d). Even though PC-F1 and PC-PK1
forces predict somewhat different energy curves, those energy
curves are qualitatively similar to each other, especially when
those are plotted with respect to the energy curve for 20Ne.

Figure 16 shows the spectra of both 20Ne and 21
� Ne. To

examine the channel-coupling effect on hypernuclear states,
we also include the results from single-channel calculations.
The figure only shows the results with PC-F1, since the
results with PC-PK1 are similar (see also Fig. 18 below). The
probability of the main components is summarized in Table IV.
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FIG. 15. (Color online) Energy curve EJ (β) for the J π = 1/2+

(solid line) and 1/2− (dot-dashed line) states in 21
� Ne as a function

of the deformation β of the core nucleus. These are obtained with
PC-F1 (left panel) and PC-PK1 (right panel) forces. In order to make
a comparison easy, each hypernuclear curve is shifted by a constant
value so that the energy at the absolute minimum coincides with that
for 20Ne with Iπ = 0+. The difference between the energy curve of
21
� Ne and that of 20Ne is shown in the panels (c) and (d) for the PC-F1
and PC-PK1 forces, respectively.

It is shown that the hypernuclear states with positive parity
plotted in the columns (i) and (j) from the full coupled-channels

TABLE IV. Same as Table II, but for 21
� Ne hypernucleus with the

PC-F1 and PC-PK1 forces.

PC-F1 PC-PK1

J π (lj ) ⊗ Iπ
n E PjlIn E

(0)
1ch E PjlIn E

(0)
1ch

1/2+
1 s1/2 ⊗ 0+

1 0.00 0.98 0 0.0 0.98 0.0

3/2+
1 s1/2 ⊗ 2+

1 1.18 0.98 1.15 1.35 0.98 1.30

5/2+
1 s1/2 ⊗ 2+

1 1.18 0.98 1.15 1.35 0.98 1.30

7/2+
1 s1/2 ⊗ 4+

1 3.08 0.99 3.06 3.24 0.98 3.20

9/2+
1 s1/2 ⊗ 4+

1 3.09 0.99 3.06 3.24 0.98 3.20

1/2+
2 s1/2 ⊗ 0+

2 5.61 0.99 5.47 5.24 0.99 5.02

3/2+
2 s1/2 ⊗ 2+

2 8.36 0.99 8.19 8.27 0.99 8.04

5/2+
2 s1/2 ⊗ 2+

2 8.36 0.99 8.19 8.27 0.99 8.04

1/2−
1 p3/2 ⊗ 2+

1 9.52 0.54 11.67 9.55 0.52 11.75

p1/2 ⊗ 0+
1 0.42 12.03 0.45 11.87

3/2−
1 p3/2 ⊗ 0+

1 9.48 0.46 11.80 9.50 0.48 11.64

p3/2 ⊗ 2+
1 0.26 12.94 0.25 13.00

p1/2 ⊗ 2+
1 0.24 13.17 0.23 13.23

5/2−
1 p1/2 ⊗ 2+

1 10.91 0.46 13.17 10.98 0.45 13.23

p3/2 ⊗ 4+
1 0.36 13.93 0.37 14.00

p3/2 ⊗ 2+
1 0.15 13.81 0.15 13.87

7/2−
1 p3/2 ⊗ 2+

1 10.85 0.63 12.58 10.92 0.63 12.65

p1/2 ⊗ 4+
1 0.19 15.07 0.19 15.15

p3/2 ⊗ 4+
1 0.15 15.19 0.15 15.28

calculation are close to the results of single-channel calculation
shown in the columns (e) and (f). The analysis of hypernuclear
wave functions demonstrates that these states are dominated by
the configuration of �s1/2 coupled to the state I in the first (n =
1) and the second (n = 2) bands in 20Ne, respectively, with the
weight between 98% and 99%. It is seen that the hypernuclear

FIG. 16. (Color online) The low-energy excitation spectra of 20Ne and 21
� Ne obtained with the microscopic particle-rotor model

calculations.
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doublet states ( 2I−1
2 , 2I+1

2 )π with configuration ��1/2 ⊗ I+ are
degenerate, as discussed in Sec. III A 4. Moreover, it is seen
that the spectra of positive-parity states in 21

� Ne are close to that
of 20Ne with similar excitation energies to each other. In other
words, the presence of a �s1/2 does not change significantly
the low-energy structure of the core nucleus 20Ne.

The negative-parity states in 21
� Ne are shown in the columns

(k) and (l). One can see that the channel-coupling effect plays
an important role in their excitation energies. Moreover, we
note that the energy difference between the first 1/2− and
3/2− states is less than 40 keV. Notice that the 1/2− state
is a strong admixture of the configurations �p1/2 ⊗ 0+

1 and
�p3/2 ⊗ 2+

1 . On the other hand, the 3/2− state is a strong
admixture of the configurations �p3/2 ⊗ 0+

1 , �p3/2 ⊗ 2+
1 , and

�p1/2 ⊗ 2+
1 . Therefore, the splitting of the 1/2− and 3/2−

levels in 21
� Ne does not reflect the strength of � spin-orbit

interaction, which is in marked difference from the case in
13
� C. From yet another point of view, it is interesting to point
out that a typical rotational band having Lπ = 1−, 3−, 5−, . . .
is realized as seen in Fig. 16(k), apart from the spin of the
hyperon. This group can be characterized by the Kπ = 0−
band based on the strong coupling between the nuclear rotation
and the hyperon in the p state, and thus this band manifests a
genuinely hypernuclear state with the [5](90) symmetry which
is similar to the [5](50) band verified in 9

�Be [3]. This feature of
negative parity states in hypernuclei has already been discussed
in Ref. [58] with the traditional particle-rotor model with the
Elliot SU(3) model for the core states. A similar feature is
found also in 155

� Sm.
The underlying reason for the difference between 13

� C
and 21

� Ne is due to the different properties of the core
nuclei. 20Ne is well deformed with a much larger transition
density ρ02

2 (r) than that in 12C. Notice also that the ordering
of the �p3/2 ⊗ 2+

1 multiplet states is opposite to that in 13
� C,

reflecting the fact that the sign of quadrupole moment is
opposite (that is, prolate deformation for 20Ne and oblate
deformation for 12C). In Fig. 17, we plot the transition
density for the 21

� Ne hypernucleus. One can see that the λ = 2
component has the opposite sign as compared to the transition
density for 13

� C shown in Fig. 11. Similar to the 9
�Be case,

these result in several 1/2− and 3/2− states close in energy in
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FIG. 17. (Color online) Same as Fig. 11, but for 21
� Ne.

FIG. 18. (Color online) A comparison of low-energy excitation
spectra of 21

� Ne obtained with the cluster model [57], the AMD [14],
and the present microscopic particle-rotor model (MPRM) calcula-
tions with the PC-F1 and PC-PK1 forces.

the single-channel calculations, which are strongly mixed in
the full coupled-channels treatment. Similarly to the 1/2− and
3/2− states, the 5/2− and 7/2− states also show the strong
configuration mixing between � hyperon in p1/2 and p3/2

orbits. We have found that this feature of strong mixing found
in 9

�Be and 21
� Ne persists also in heavier systems, such as 31

� Si
and 155

� Sm.
Notice that the 20Ne nucleus has prominent negative-parity

bands originated from the α + 16O structure. For simplicity, in
the present calculations, we have assumed reflection symmetry
for 20Ne. The inclusion of these negative-parity states in the
coupled-channels calculations is thus beyond the scope of the
present paper. It would be an interesting future work to include
them and study how the negative-parity states in 21

� Ne are
perturbed.

Figure 18 shows a comparison of low-energy excitation
spectra of 21

� Ne obtained with the cluster model [57], the
AMD [14], and the present microscopic PRM calculations
based on the PC-F1 and PC-PK1 interactions. The positive-
parity band in the microscopic PRM is closer to the result of
cluster model as compared to the result of AMD, which has a
slightly larger moment of inertia. The negative-parity states are
similar to the AMD results but with lower excitation energies,
which might be due to the large channel-coupling effect taken
explicitly into account in the present work; see Fig. 16 and
Table IV.

Table V lists the E2 transition strengths for low-lying states
of 21

� Ne with PC-F1. For comparison, the table also shows the
change in B(E2) from 20Ne to 21

� Ne obtained with the PC-PK1
force, the cluster model [57], and the AMD [14]. The B(E2)
value decreases by adding a � hyperon in s orbit in these
calculations. However, the cluster model and AMD model
predict more reduction compared to the microscopic PRM.
A further study would be necessary in order to reconcile this
difference.
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TABLE V. The calculated E2 transition strengths (in units of
e2 fm4) for low-lying states of 21

� Ne with the PC-F1 force for the
core states. The results for the change in the B(E2) value from
20Ne to 21

� Ne is compared with the results with PC-PK1, the cluster
model [57], and the AMD [14] calculations, where � is defined in
the caption of Table III.

Transition PC-F1 PC-PK1 AMD Cluster

J π
i → J π

f B(E2) cB(E2) �(%) �(%) �(%) �(%)

3/2+
1 → 1/2+

1 54.28 54.28 −3.19 −7.16 −11.8 −23.9

5/2+
1 → 1/2+

1 54.28 54.28 −3.19 −7.16 −11.5

7/2+
1 → 3/2+

1 65.90 73.22 −3.95 −4.80 −17.8 −22.6

7/2+
1 → 5/2+

1 7.32 73.22 −3.95 −4.80

9/2+
1 → 5/2+

1 73.22 73.22 −3.95 −4.81 −13.0

We have also applied the microscopic particle-rotor model
to study another sd-shell hypernucleus, 31

� Si. We have found
that the impurity effect of � hyperon in 31

� Si is qualitatively
the same as that in 21

� Ne.

C. Low-energy spectroscopy of 155
� Sm

One of the advantages of the microscopic particle-rotor
model is that this method is not limited to light hypernuclei but
it can also be applied to medium-heavy and heavy hypernuclei.
As an example of application to heavy deformed hypernuclei,
we next consider 154Sm and 155

� Sm. By fitting to B� =
24.98 MeV estimated with the deformed RMF calculation,
we obtain a parameter set of �N interaction as αN�

S =
−4.2377 × 10−5 MeV−2 and αN�

V = 1.0401 × 10−5 MeV−2.
Figure 19 shows the projected energy curves for 154Sm and
155
� Sm obtained with this N� interaction together with PC-F1

for the NN interaction. For the 1/2+ state, the polarization
effect of � particle in s orbit on the properties of 154Sm is
much smaller than that on 12C and 20Ne due to the large mass
number, although the effect is still large for the negative-parity
states due to the strong channel coupling effects.

Figure 20 shows the calculated low-energy spectrum of
154Sm and 155

� Sm with the PC-F1 force. The ground-state band
and the two β bands in 154Sm are reasonably reproduced,

FIG. 19. (Color online) Same as Fig. 9, but for 154Sm and 155
� Sm.

FIG. 20. (Color online) Low-energy excitation spectra of 154Sm
[(a)–(f)] and 155

� Sm [(g)–(i)].

although the bandhead energy of the β bands are overes-
timated. The low-lying positive-parity states Jπ in 155

� Sm
are dominated by the single configuration of �s1/2 ⊗ I+ with
similar excitation energy as that of the nuclear core state with
I+. As shown in Table VI, the positive-parity states J+, except

TABLE VI. Same as Table II, but for 155
� Sm hypernuclei.

J π E (lj ) ⊗ Iπ
n PjlIn E

(0)
1ch

1/2+
1 0.00 s1/2 ⊗ 0+

1 0.98 0.00

3/2+
1 0.11 s1/2 ⊗ 2+

1 0.98 0.11

5/2+
1 0.11 s1/2 ⊗ 2+

1 0.98 0.11

7/2+
1 0.35 s1/2 ⊗ 4+

1 0.98 0.35

9/2+
1 0.35 s1/2 ⊗ 4+

1 0.98 0.35

1/2+
2 1.68 s1/2 ⊗ 0+

2 0.99 1.58

3/2+
2 1.99 s1/2 ⊗ 2+

2 0.99 1.90

5/2+
2 1.99 s1/2 ⊗ 2+

2 0.99 1.90

1/2−
1 6.28 p3/2 ⊗ 2+

1 0.66 7.58

p1/2 ⊗ 0+
1 0.32 8.51

3/2−
1 6.27 p3/2 ⊗ 0+

1 0.35 8.31

p3/2 ⊗ 2+
1 0.32 8.42

p1/2 ⊗ 2+
1 0.29 8.61

5/2−
1 6.44 p3/2 ⊗ 4+

1 0.53 8.08

p1/2 ⊗ 2+
1 0.33 8.61

p3/2 ⊗ 2+
1 0.11 8.96

7/2−
1 6.44 p3/2 ⊗ 2+

1 0.47 8.19

p1/2 ⊗ 4+
1 0.28 8.86

p3/2 ⊗ 4+
1 0.22 8.89
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TABLE VII. Same as Table III, but for 154Sm and 155
� Sm. The

experimental data for 154Sm, shown in the parentheses, are taken
from Ref. [59].

154Sm 155
� Sm

Iπ
i → Iπ

f B(E2) J π
i → J π

f B(E2) cB(E2) �(%)

2+
1 → 0+

1 9358.49 3/2+
1 → 1/2+

1 9284.69 9284.69 −0.79
(8720 ± 100) 5/2+

1 → 1/2+
1 9284.23 9284.23 −0.79

4+
1 → 2+

1 13512.18 7/2+
1 → 3/2+

1 12081.04 13423.38 −0.66
7/2+

1 → 5/2+
1 1342.25 13422.54 −0.66

9/2+
1 → 5/2+

1 13422.25 13422.25 −0.67

for 1/2+, are nearly twofold degenerate. These characters are
similar to the hypernuclei in the light-mass region. On the
other hand, one can see that the negative-parity bands are
well separated from the positive-parity ground band in 155

� Sm,
which is different from the light hypernuclei. It is because the
energy scale of the rotational motion is proportional to A−7/3

(see Eq. (1.50) in Ref. [38]), while that of single-� excitation
from s to p orbit is proportional to A−1/3. Therefore, with the
increase of mass number A, the rotational energy spectrum
is compressed faster than the single-� excitation spectrum.
Besides, the low-lying negative-parity states J− are nearly
twofold degenerate, even though there are strong configuration
mixing in these states.

Table VII presents the E2 transition strengths in 154Sm
and 155

� Sm. It is shown that the change in the B(E2) values
by adding a � hyperon in s orbital is less than 1%, which
is much smaller than that in the light hypernuclei studied in
this paper. This is consistent with the small polarization effect
of � particle discussed in connection to the projected energy
surface shown in Fig. 19.

IV. SUMMARY

We have presented the detailed formalism of the micro-
scopic particle rotor model based on a covariant density
functional theory for the low-lying states of single-� hyper-
nuclei. In this formalism, the wave functions for hypernuclei
have been constructed by coupling the � hyperon to the
low-lying states of the core nucleus. The radial wave functions
are obtained by solving the corresponding coupled-channel
equations, in which the coupling potentials are provided in

terms of the transition densities of the nuclear core states. For
simplicity, in this paper we have adopted only the leading-order
four-fermion coupling terms of scalar and vector types for
the �N effective interaction. Applying this method to 13

� C,
we have reproduced reasonably well the experimental energy
spectrum of this hypernucleus. We have applied this method
also to 21

� Ne and 155
� Sm, and have achieved a good agreement

with other model studies both for the excitation energies
and the compositions of wave functions. We mention that
no other microscopic methods have been applied so far to
low-lying states of such heavy hypernuclei as 155

� Sm. We
have found that the NN interaction with the PC-F1 and
PC-PK1 sets leads to similar hypernuclei spectra to each
other. For all the hypernuclei, the low-lying excited states
with positive-parity J+, except for 1/2+, are nearly twofold
degenerate and dominated by the single configuration of
�s1/2 ⊗ I+, where I+ is the spin parity of the nuclear core
states. In contrast, in general there is large configuration
mixing in the negative-parity states. We have, however, found
an exception for this, that is, for the first 3/2− and 1/2− states
in 13

� C the effect of configuration mixing is rather small, and
thus the energy splitting of these states reflects the spin-orbit
splitting of � hyperon in the p3/2 and p1/2 states. Concerning
the electromagnetic transitions, we have found that for all
the systems the B(E2) value from the first 2+ to the ground
states in the core nuclei is reduced by adding a � particle in
the positive-parity states. The reduction factor is about 14%
for 13

� C, 3.2% for 21
� Ne, and 0.79% for 155

� Sm, and thus the
reduction factor is larger for the oblate hypernuclei. For 21

� Ne
and 31

� Si, a slightly larger impurity effect was found with the
PC-PK1 force as compared to the PC-F1 force.

New measurements of γ -ray spectroscopy of hypernuclei
will soon start at the new generation experimental facilities
such as J-PARC. It would be interesting if the low-lying spectra
predicted in this paper are confirmed in near future.
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