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Nuclear pairing within a configuration-space Monte Carlo approach
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Pairing correlations in nuclei play a decisive role in determining nuclear drip lines, binding energies, and
many collective properties. In this work a new configuration-space Monte Carlo (CSMC) method for treating
nuclear pairing correlations is developed, implemented, and demonstrated. In CSMC the Hamiltonian matrix is
stochastically generated in Krylov subspace, resulting in the Monte Carlo version of Lanczos-like diagonalization.
The advantages of this approach over other techniques are discussed; the absence of the fermionic sign problem,
probabilistic interpretation of quantum-mechanical amplitudes, and ability to handle truly large-scale problems
with defined precision and error control are noteworthy merits of CSMC. The features of our CSMC approach
are shown using models and realistic examples. Special attention is given to difficult limits: situations with
nonconstant pairing strengths, cases with nearly degenerate excited states, limits when pairing correlations in
finite systems are weak, and problems when the relevant configuration space is large.
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I. INTRODUCTION

Pairing correlations are a salient component of the nuclear
many-body dynamics which has a profound impact on most
of the nuclear properties, and on the nuclear landscape in
general. The recently published volume Fifty Years of Nuclear
BCS [1] offers a unique overview of more than fifty years of
research in this area. Advances in experimental techniques and
emergence of many new facilities made it possible to explore
nuclear systems at the edge of stability. Interest in pairing
is reinvigorated by extraordinary effects observed recently
in near-drip-line nuclei. This includes the so-called nuclear
halo effect in neutron rich nuclei, such as the case of the
borromean nucleus 11Li which is bound only due to the
specifics of the pairing dynamics of the two neutrons above
the 9Li core. Recent observations of dineutron decay [2] and
other remarkable manifestations of pairing, seen in structure
and reactions with exotic nuclei [3,4], all encourage theoretical
effort to be continued.

The pairing interaction involves pairs of time-conjugate
single-particle states. We use p

†
k , pk , and n̂k to denote the

corresponding pair creation, pair annihilation, and number-
of-pairs operators; index k is used to identify various distinct
pair-states in the system. The pairing Hamiltonian of interest
is defined as

H = 2
∑

k

εkn̂k −
∑
k,k′

Gkk′p
†
kpk′ . (1)

Here εk are the single-particle energies and Gkk′ are the
matrix elements of pairing interaction. In this work we limit
our discussion to fully paired systems of n pairs in ω pair
states, which corresponds to 2n fermions within the total
particle capacity 2ω of the valence space. Working under the
assumption of a fully paired state is completely general: any
unpaired nucleons remain untouched by the Hamiltonian (1);
these nucleons effectively block some part of the valence space
so that the problem is then reduced to a fully paired state in a
reduced space. Thus, the configuration space of interest spans

over all (ωn) basis states

|n〉 = |n1,n2, . . . ,nω〉. (2)

Here we use occupation representation where for each pair
state nk = 〈n|n̂k|n〉 = 1 or 0 depending on whether the pair
state is occupied or not. Clearly, the total number of pairs n =∑

k nk. Any state can be represented as a linear combination
of the basis states, |�〉 = ∑

n〈n|�〉 |n〉.
Pairing correlations have been traditionally explored with

the help of the BCS theory of superconductivity [5]. This
variational technique, which is formally exact in the ther-
modynamic limit, is very well integrated into more general
mean-field approaches and into techniques beyond mean field.
Starting from pioneering works [6,7], the BCS theory has
been applied in nuclear physics with great success. However,
nonconservation of the particle number and difficulty in
handling limits where pairing is weak, as compared to the
characteristic mean-field single-particle level spacing, have
proven to be significant drawbacks in applications of BCS to
finite nuclear systems [1,8–11]. Over the years a number of
remedies have been proposed to overcome these drawbacks.
For example, the issue of the particle number nonconservation
has been addressed with a variety of techniques proposed in
Refs. [12–19].

With theoretical and computational advances a growing
number of pairing problems in mesoscopic systems, such as
atomic nuclei, can be treated exactly, thus avoiding the BCS
and its drawbacks. There are several major groups of exact
methods. Symmetry-based algebraic methods were introduced
by Racah [20–22] even before the BCS theory. These methods
found wide applicability both independently [23–27] and as
components of other techniques [28,29].

Presented more than 40 years ago by Richardson [30–
34], an exact solution that reduces the pairing eivenvalue
problem to a set of nonlinear equations have been successfully
generalized and applied [35–38] in multiple situations. Some
generalizations and interpretations, such as those related
to electrostatic analogies [39], are of particular theoretical
interest [36].
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Computational advances and iterative sparse matrix di-
agonalization algorithms allowed for direct diagonalization
methods to emerge as extremely simple, stable, and ro-
bust alternatives [40–42]. Nevertheless, the dimension of
the Hamiltonian matrix in the relevant basis space grows
exponentially with the number of pairs, eventually rendering
these methods computationally impractical especially for
model spaces required for problems with a continuum of
scattered states. The Monte Carlo approach, which is the
main subject of this work, so far appears to provide the only
reasonable technique that overcomes, in a controlled way, the
exponentially growing computational difficulty. There exist
numerous variations of the Monte Carlo approach, varying
in philosophy and implementation. Many of these methods
can be found in the textbook [43]. The shell model Monte
Carlo approach [44,45] and quantum Monte Carlo approach
involving variational, auxiliary-field, and Green’s function
versions (see review [46]) are among well-known successful
examples used in low energy nuclear physics. Random Monte
Carlo sampling, either for variational purposes or in order to
evaluate multidimensional integrals, such as those emerging in
Hubbard-Stratanovich transformation, is at the center of these
techniques.

The pairing Hamiltonian (1) is equivalent to a Hamiltonian
describing ω spin-1/2 particles, where one can assume
nk = 1 and 0 for up and down spin orientations, respec-
tively, [10,41,42]. This offers opportunities for a broad class
of Monte Carlo methods known in spin systems [43] to
be applied. The idea of using the connection between spin
physics in condensed matter and quasispin in pairing problems
was originally explored by Cerf and Martin [47,48]. In their
approach the ground state |�0〉 is found as an asymptotic state
that emerges from an arbitrary initial state � as a result of
evolution along imaginary time:

|�〉 � e−τE0〈�0|�〉|�0〉, as τ → ∞. (3)

In order to propagate the initial state along the imaginary
time, Cerf and Martin proposed breaking the Hamiltonian
into the two noncommuting parts H1 and H2, corresponding
to one-body and two-body terms. Then the propagation can
be done in small steps �τ using Trotter-Suzuki operator
decomposition [49,50],

e−�τ (H1+H2) = e−�τ
H1
2 e−�τH2e−�τ

H1
2 + O(�τ 3). (4)

The principal advantage of the technique is that H1 is diagonal
in the basis states |n〉 and the corresponding exponent can
be easily evaluated. Assuming a constant pairing, where
Gkk′ ≡ G, Cerf and Martin proposed to evaluate e−�τH2

stochastically by breaking the exponent into a Taylor series
and taking advantage of the fact that for constant pairing
strength the probability of a walk in configuration space to
have a given number of steps is exactly Poissonian. Given that
for constant pairing H2 can be diagonalized analytically using
quasispin algebra, it may be possible to use the Trotter-Suzuki
propagation without involving a Monte Carlo method.

With some degree of success, the method of Cerf and Martin
was picked up recently by other research groups [51,52]. The
algorithm has so far been applied mainly to problems with

constant pairing matrix elements. This apparent limitation
is not well addressed in the literature, but appears to be
related to unknown quality and reliability of the stochastic
evaluation of exponential operator of the two-body interaction
with nonconstant matrix elements.

In the configuration-space Monte Carlo (CSMC) algorithm
presented in this work we completely avoid the imaginary
time evolution and Trotter-Suzuki decomposition; instead,
using a stochastic process of nucleon-pair diffusion through
the configuration space, we built a Krylov subspace which
contains the set of lowest eigenvalues. The resulting algorithm
can be seen as a Monte Carlo version of the well-known
Lanczos algorithm. This class of algorithms are often referred
to as projector algorithms [43] since repeated application of
the Hamiltonian operator to a random state eventually amounts
to the ground state being projected out. Excited states can be
obtained as well by storing the wave functions and by enforcing
orthogonality.

II. CONFIGURATION SPACE MONTE CARLO

In this section we present the configuration-space Monte
Carlo method. It should be mentioned that the method is
generic, and is not limited to pairing, but the specifics of
the pairing Hamiltonian offer some big advantages, which is
discussed in Sec. II C and demonstrated in Sec. III.

A. CSMC formalism

Let us consider a sequence of states

|�L〉 ≡ V L|�0〉 (5)

which is generated by a repeated application of the Hamilto-
nian H = −V onto a random initial vector |�0〉. These states
span over the Krylov subspace. Eigenvalues of the Hamiltonian
matrix in this subspace converge, after enough iterations, to
the eigenvalues (greatest in absolute value) of the Hamiltonian
in the entire space. Since we are interested in the lowest, most
negative states it is convenient to carry out this discussion using
V = −H. The repeated application of the operator V can be
written as a summation over all possible L + 1 intermediate
states which are given by the sets {n}L ≡ {n0,n1, . . . ,nL},

|�L〉 =
∑
{n}L

|nL〉A({n}L), (6)

where the amplitude is

A({n}L) ≡ 〈nL|V |nL−1〉〈nL−1|V |nL−2〉
× · · · × 〈n1|V |n0〉〈n0|�0〉. (7)

One advantage of evaluating powers of the Hamiltonian
operator is that the summation in Eq. (6) is restricted to all
possible paths n0 → n1 → · · · → nL where each consecutive
configuration is connected to the previous one by the matrix
element of the interaction V. Therefore, in what follows {n}L
denotes a connected L-step long path n0 → n1 → · · · → nL.

The path summation can be performed using Monte
Carlo sampling. To be more specific, if one generates N

paths {n}(s)
L ≡ n(s)

0 → n(s)
1 → · · · → n(s)

L , labeled here with
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superscript s = 1, . . . ,N, then

|�L〉 ≈ 1

N

N∑
s=1

∣∣n(s)
L

〉
B

({n}(s)
L

)
, (8)

where

B
({n}(s)

L

) ≡ A
({n}(s)

L

)
P({n}(s)

L

) (9)

is the amplitude for the sth random path weighted by the
inverse of the probability to generate this path P({n}(s)

L ). In
applications where sampling is done with uniform probability
P({n}(s)

L ) ≡ P , the common term 1/P is just the total number
of all possible paths {n}L which equals the number of terms in
the sum in Eq. (6).

Each sampling path can be generated as a random walk.
The amplitude in Eq. (7) is subject to the recursion relation

A({n}L+1) = 〈nL+1|V |nL〉A({n}L), (10)

where A ({n}0) = 〈n0|�0〉. Similarly, the probability for a path
is the product of probabilities for each step. Therefore, starting
from the probability to pick the first configuration P(n0) ≡
P ({n}0) , the probability for the entire path is generated
recursively as

P({n}L+1) = P(nL → nL+1)P({n}L); (11)

here P(n0 → nL+1) is the conditional probability to move to
configuration nL+1 given the current position at nL. Thus,
while going along a random path the coefficients B are
generated recursively,

B({n}0) = 〈n0|�0〉
P(n0)

and (12)

B({n}L) = 〈nL|V |nL−1〉
P(nL−1 → nL)

B({n}L−1). (13)

The probability distribution for selecting an initial position in
configuration space P(n0) and the distribution of conditional
probabilitiesP (nL−1 → nL) describing the direction in which
each next random step is to be taken, are both arbitrary user-
supplied functions. Strategies for selecting these functions are
discussed in what follows.

It is important that the probability of taking a certain
step depends only on the current position and not on the
preceding history, therefore the process represents a Markov
chain [43]. The computational implementation of the Markov
Chain Monte Carlo methods is a well studied subject; see
Ref. [43] and references therein.

The configuration space Monte Carlo approach, defined by
Eq. (8), is implemented using an ensemble of N “walkers”
starting from configurations n0; the initial configurations are
generated with the probability distribution P(n0). Then each
walker independently takes L random steps; the probability
distribution P (nL → nL+1) is used to generate steps. We
envision that each walker carries a “bag” B that is initialized
and modified along the path following Eqs. (12) and (13).
Contributions from the bags of all walkers arriving to a given
configuration nL comprise the component 〈nL|�L〉 as shown
by Eq. (8).

As the most straightforward application of the method, one
could assume the probabilities for steps in all “directions” to
be equal, then the conditional probability P (

n → n′) depends
only on the initial configuration n and the inverse of it equals
to the number of configurations connected to n. In most cases
the number of connected configurations is the same for all
states, which makes the conditional probability for each step
being an absolute constant, i.e., independent of initial and final
positions. For example, for any paired configuration with n
pairs and ω pair-spaces the pairing Hamiltonian can generally
move one of the n pairs onto one of the ω − n + 1 unoccupied
pair-states (this includes diagonal move back to the same
pair-state). Thus, in the pairing case, for equiprobable steps the
conditional probability becomes a configuration-independent
constant P(n → n′) = (n(ω − n + 1))−1 and the resulting
random paths are all generated with equal probability. This
amounts to uniform Monte Carlo sampling of terms in sum (6).

B. Importance sampling

Uniform sampling is convenient and effective when
contributions from most paths are nearly equal; constant-
strength pairing Hamiltonian discussed by Cerf and Martin
in Refs. [47,48] is a good example of this situation. However,
sampling uniformly can be extremely ineffective if certain
amplitudes A ({n}L) are very small or equal to zero; importance
sampling can be introduced as a remedy. In the CSMC the
contributions from different sampling paths can be made com-
parable in magnitude if steps are generated with probabilities
proportional to the magnitude of the corresponding matrix
elements,

P (nL−1 → nL) ∝ |〈nL|V |nL−1〉|. (14)

This way the scaling factor in Eq. (13) would not depend
on the direction of the step. It should be emphasized, that
satisfying the proportionality (14) exactly, which may be
computationally expensive, is not necessary. Any probability
distribution that in some general way follows the distribution
of the matrix elements is sufficient.

The approach described here, referred to as configuration
space Monte Carlo, allows one to build stochastically the
Krylov subspace and find the eigenstates and eigenvalues of the
Hamiltonian using steps similar to those in Lanczos approach.
Clearly, the method is applicable to any Hamiltonian; however,
different signs of matrix elements 〈nL+1|V |nL〉 and thus
different signs of the amplitudes can lead to poorly convergent
sums. This issue, commonly known as the Monte Carlo sign
problem, is not present in applications of the CSMC to pairing
problems that are discussed next.

C. Features of the pairing Hamiltonian

Let us summarize some of the important features of the
pairing problem that boost the effectiveness of the CSMC
method.

(i) For fully paired systems the diagonal pairing matrix
elements Gkk are equivalent to the single-particle
energies. Thus, by redefining the diagonal pairing
matrix elements as Gkk → Gkk − εk/2, the pairing
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Hamiltonian can be written in the following form

V ≡ −H, where V =
∑
k,k′

Gkk′p
†
kpk′ . (15)

(ii) The pairing interaction is attractive. Therefore, with
the proper choices of phases all off-diagonal matrix
elements Gkk′ can be made non-negative. Without
any loss of generality the single-particle energies can
be measured relative to some chemical potential μ;
and the constant μ can be selected so that all diagonal
many-body matrix elements 〈n|V |n〉 are also positive.

(iii) The nucleon pairs are the only degrees of freedom,
and the entire dynamics is represented by the “hop-
ping” of the pairs between available states. Each pair
hopping leads to a step in configuration space where

〈n′|V |n〉 = 〈. . . ,nk = 1, . . . ,nk′ = 0, . . . |V | . . . ,
nk = 0, . . . ,nk′ = 1, . . .〉

= Gkk′ � 0 if k �= k′,

and 〈n|V |n〉 = ∑
k Gkknk > 0 for the diagonal. For

any initial configuration there are n(ω − n + 1) dif-
ferent final configurations that can be reached in one
step.

(iv) Given that the matrix elements of V are all positive,
the Monte Carlo sign problem does not appear.

(v) Positive matrix elements of V imply that if in the
initial wave function �0 all components 〈n|�0〉 � 0,
which can always be accomplished by defining phases
of the basis states |n〉, then all components of any �L

are non-negative, that is, 〈n|�L〉 � 0 for any L and
any n. This also allows one to introduce a linear L1

norm

||�L|| ≡
∑

n

〈n|�L〉. (16)

(vi) Asymptotically, as L → ∞,

|�L〉 � (−E0)L〈�0|�0〉|�0〉, (17)

where |�0〉 is the ground state wave function and
E0 is the ground state energy. Since E0 < 0, in fact
for the negative-definite Hamiltonian, all eigenvalues
are negative, and the phase of the ground state wave
function can be selected so that 〈�0|�0〉 > 0, and
all components of the ground state wave function are
also non-negative: 〈n|�0〉 � 0.

(vii) Given that all many-body states that span the Krylov
subspace have positive-definite amplitudes relative to
the basis states |n〉, these amplitudes can be treated
as probabilities. Therefore in the ideal limit of the
importance sampling Monte Carlo method, when
Eq. (14) is satisfied exactly, all walkers’ bags are
equal. In this limit the number of walkers arriving
to a certain many-body configuration n on step L is
proportional to 〈n|�L〉. The linear norm can be used
to normalize the wave function.

III. NUCLEAR PAIRING WITH CONFIGURATION
SPACE MONTE CARLO

In what follows we demonstrate the CSMC applications to
pairing problems. We organize our presentation by progressing
from simple to more elaborate applications, and we use model
and realistic examples to highlight the CSMC and to address
technical details.

In the following subsections A–D we consider a system
consisting of ω double-degenerate equally spaced single
particle orbitals, εk = ε k with k = 0,1, . . . ,ω − 1, where the
single-particle level spacing ε defines the unit of energy.
This system, often referred to as a picket-fence or ladder
model, is commonly used for testing various approaches to
pairing [42]. The model has a minimal symmetry, time-reversal
only, making it the most computationally challenging one.
For the set of studies using the ladder model we assume
constant pairing interaction, where Gkk′ = G in Eq. (1). This
choice is not related to any limitation, it merely minimizes the
number of parameters and is convenient for comparison with
numerous previous studies where the same model was used.
For the half-occupied ladder model the critical BCS strength
is approximately Gcr = ε/ ln(2ω); see Ref. [42].

Realistic examples with nonconstant pairing strength and
large scale application are discussed in subsections E and F.

A. Linear norm

We start with a very simple and quick technique that can
be used to determine the ground state energy and requires
no storage for wave functions. Despite certain limitations, the
method is elegant, simple in implementation, very computa-
tionally efficient, and is an important component in the general
approach.

In the implementation of the CSMC through multiple
walkers in configuration space the construction of the wave
function |�L〉 is the most challenging task because, according
to Eq. (8), it requires organizing walkers based on their arrival
locations. Even if performed in parallel, this is still a daunting
task when the number of contributing configurations becomes
large. As we show next, for certain observables, and for the
ground state energy in particular, this task can be avoided;
thanks to the properties of pairing interaction outlined in
Sec. II C.

According to Eq. (8) the average of all bags gives the linear
norm (referred to as L1) of the wave function

1

N

N∑
s=1

B
({n}(s)

L

) ≈
∑

n

〈n|�L〉 ≡ ||�L||; (18)

computing the bag average is a simple and fast operation.
Following Eq. (17), the bag averages for two consecutive

values of L as L → ∞ give an estimate for the ground state
energy as

E0 � E0(L) ≡ −
∑

n〈n|�L+1〉∑
n〈n|�L〉 = −||�L+1||

||�L|| . (19)

Clearly, any procedure on the Hamiltonian leading to the
ground state can be subjected to the linear norm. For example,
using projection (3) one could evaluate energy in the limit
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FIG. 1. (Color online) The half-occupied ladder model with ω = 18, n = 9, and G = 1 is used to show the convergence of ground state
energy using an approach based on the linear norm. The left panel (a) shows the method based on ground state projection with a power law,
Eq. (19), and the right panel (b) shows projection using imaginary time evolution, Eq. (20). In both panels BCS and exact values of energy are
shown with horizontal grid lines; the four curves represent two initial states and two methods: with and without wave functions being built.

τ → ∞ as

E0 � E0(τ ) ≡ ||He−τH�0||
||e−τH�0|| , (20)

where exponents are evaluated in the CSMC approach using a
Taylor series,

||e−τH�0|| =
∞∑

L=0

τL

L!
||�L||. (21)

Obviously, it is possible to compute the linear norm for any
operator ||O�|| ≡ ∑

n〈n|O|�〉, but unfortunately in most
situations this linear norm does not have a transparent physical
meaning.

This quick linear-norm-based technique for evaluating the
ground state energy within the CSMC algorithm is illustrated
in Fig. 1, and is compared to the general approach discussed in
the following subsection. A ladder model with ω = 18 levels
and n = 9 nucleon pairs, where G = 1, is used in this example.
Two different starting wave functions |�0〉 are considered. In
the Fermi state all lowest single-particle levels are occupied
up to the Fermi surface,

∣∣�(Fermi)
0

〉 =
n∏

k=1

p
†
k|0〉 = | 1,1, . . . ,1︸ ︷︷ ︸

n spaces

,0,0, . . . 〉. (22)

The Fermi state is an exact ground state of noninteracting
fermions (G = 0 limit).

The BCS solution offers a second convenient starting
wave function

∏ω
k=1(uk + vk p

†
k)|0〉. In our applications it is

projected onto an appropriate number of particles; therefore
|�(BCS)

0 〉 is defined via amplitudes as

〈
n
∣∣�(BCS)

0

〉 =
ω∏

k=1

(
ukδnk,0 + vkδnk,1

)
. (23)

The coefficients uk and vk are determined by solving the usual
BCS equations. Our procedure does not require the starting

wave function to be normalized. Given a product form of
Eq. (23), it is efficient to generate the BCS based initial
state stochastically by selecting |n0〉 in a process where each
randomly selected state k is chosen to be occupied or empty
with a probability proportional to the corresponding vk and
uk; the process is stopped once a desired number of occupied
states given by the total number of particles is reached. It is
important that variations in implementation of the projected
BCS or not following Eq. (23) exactly are not essential since
the starting wave function can be arbitrary.

In Fig. 1(a) the convergence of energy as a function of L,
following Eq. (19), is shown for the two initial wave functions.
The method just outlined is based on evaluation of the linear
norm, the sum of all walkers’ bags, and since the actual wave
functions are never constructed these are labeled as “no-wf”
in Fig. 1. In panel (b) the convergence is shown as a function
of the imaginary time τ using Eq. (20). The common energy
scale is used in both panels and the energy obtained from the
BCS approach and from the exact diagonalization of the pair-
ing Hamiltonian are shown with horizontal grid lines. The
magnified energy scale used here allows one to clearly see the
difference between BCS and the exact solution.

As appropriate in a variational technique, the BCS ground
state energy is above the exact one. However, the estimates for
the ground state energy, using the linear norm, approach the
exact value from below. This feature, as discussed in Sec. III B,
is used for providing a lower bound for the ground state energy
estimate.

In order to compare the projection with power function
in Eq. (19), and using the exponential in Eq. (20), Fig. 1(b)
includes an additional L scale shown at the top. The quantity
L is defined as the average number of steps that needs to be
taken by walkers in order for the series (21) to converge for a
given imaginary time τ. While panels (a) and (b) look similar,
using the exponential as a projector is more computationally
expensive as it requires almost three times as many steps.

The use of an exponent to project a ground state does
not provide any additional numerical stability; fluctuations at
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remote times, in cases with no wave function, are seen in both
panels of Fig. 1. These fluctuations are removed by recon-
structing wave functions at certain steps; the corresponding
curves in Fig. 1 are labeled with “wf”. The origin of these
fluctuations and error analysis are addressed next. Since the
exponential projection using imaginary time is deemed to be
less effective we will not discuss it any further.

B. Error and convergence control

In the CSMC there are generally two kinds of errors. The
first one is the statistical error that emerges as a result of
stochastic evaluation; for example, estimating wave functions
using Eq. (8) or evaluation of the linear norm in Eq. (18).
The second error is associated with the algorithm used to
obtain physical quantities of interest; for example, in projection
technique this concerns the quality of approximation E0(L) ≈
E0 in Eq. (19). In this subsection we examine both of these
errors and methods of their control.

The central limit theorem (CLT) is at the core of statistical
error control. It is usually expected that as the number of
samples N grows, the associated standard deviation σ of the
ensemble average goes down as σ ∝ 1/

√
N. However, in

CSMC the main disadvantage of independent walks is that
the variance grows exponentially as the path length increases.
Therefore, for a large number of steps the average of bags in
Eq. (18) is hard to evaluate because the distribution of bags
becomes too broad. This is the cause of fluctuations seen in
Fig. 1 at large L.

Let us analyze this problem. Consider an ensemble of all
L-step bags for all possible paths {BL}; let σ 2{BL} be its
variance and BL its mean. According to Eq. (18) BL = ||�L||.
As proved earlier, all bags are positive, making the coefficient
of variation Cv{BL} ≡ σ {BL}/BL an appropriate measure of
relative error. Indeed CLT implies that with N estimates of
energy using Eq. (19) the relative error is

�E0(L)/E0(L) ≈ 1√
N

Cv{BL+1}. (24)

The problem with divergent behavior of Cv{BL} as a
function of L arises due to B

(s)
L for each walker s being a

product of matrix elements weighted by the corresponding
probability; see Eq. (13). The product of a large number of
random matrix elements is poorly behaved. Let us assume
that c gives the coefficient of variation for all possible matrix
elements weighted by chosen probabilities, then each term in
the product (13) has a coefficient of variation,

Cv

{ 〈nL|V |nL−1〉
P(nL−1 → nL)

}
≡ c2. (25)

Then the standard statistical treatment of a product leads to

Cv{BL} =
√

(1 + c2)L − 1; (26)

this simple form is obtained under the assumption of uniform
initial distribution in Eq. (12). With the exemption of some
special cases, c > 0; in most situations of interest c ≈ 0.5,
therefore Cv{BL} grows exponentially with L. Thus, it is
practically impossible to compete with the exponentially
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FIG. 2. (Color online) The half-occupied ladder model with n =
9, ω = 18, and G = 1. The coefficient of variation Cv{BL} is shown
as a function of L. The figure includes four curves with two possible
initial states: (a) the Fermi state �

(Fermi)
0 , Eq. (22), and (b) the constant-

component state where 〈n|�(const)
0 〉 = 1; and for calculations with and

without wave functions being obtained.

increasing variance of the distribution by increasing the
number of walkers.

In Fig. 2 the behavior of Cv{BL} as a function of L is shown
for the half-occupied 18-level ladder model. The results for two
different starting states are shown. The exponential divergence
in Eq. (26) pertains to the situation involving independent
walkers, where the actual wave function is not obtained.
The two corresponding curves, labeled with “no-wf”, both
display the same exponential divergence with c ≈ 0.42 which
corresponds to asymptotic behavior, Cv{BL} ∝ 1.086L.

The limitation on the number of independent steps is rela-
tively easy to overcome. The exponential growth of Cv{BL} is
usually weak, and in most cases, such as the example in Fig. 1,
no problems emerge for L less than 30 or 50. Moreover, the
choice of probabilities that follows importance sampling in
Eq. (14) would lead to c = 0. Practically, numerical noise
never allows one to reach this ideal limit but the the growth
of variance can be delayed. In addition to that, with a good
initial wave function, such as the one from BCS theory, the
convergence is reached in a few steps, before the onset of
statistical problems; see the example in Fig. 1.

Preventing walkers from taking long independent walks, by
combining them in wave functions after a certain number of
steps with Eq. (8), allows one to avoid the problem completely.
This is demonstrated in Fig. 1 with curves labeled “wf”.
The intermediate summation at a moment when bags are
combined, due to the CLT, prevents an exponential increase of
the variance. In the implementation of the CSMC the statistical
error is tracked by controlling the coefficient of variation
in the bags as L is increased. This allows one to apply a
computationally expensive procedure of reconstructing the
wave function only when necessary, typically once in every
5–20 steps. At a moment when the full wave function is built,
the convergence of the projection technique (the second kind
of error) can be assessed using the usual square, L2 norm.
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FIG. 3. (Color online) The half-occupied ladder model with n =
9, ω = 18, and G = 1. Deviation of the energy estimates using linear
L1 and square L2 norms from Eqs. (19) and (27), respectively, is
shown as a function of L. The curves correspond to exact, CSMC
with, and CSMC without wave function reconstruction.

The second kind of errors, which is convergence E0(L) →
E0 in these examples, is a part of any iterative diagonalization
technique, such as Lanczos or Davidson algorithms, and it has
been well studied in the past. However, the specifics of the
pairing problem described in Sec. II C and the use of the linear
norm allow one to place exact upper and lower limits on the
value of energy.

The convergence of the projection algorithm is examined in
Fig. 3. Here, using the same half-occupied ladder model with
ω = 18, we show deviation of the predicted energy from the
exact value as a function of the number of steps. Three curves,
that are essentially indistinct, show E0(L) − E0 where E0(L)
was evaluated using the linear norm L1, Eq. (19). The three
sets of results are obtained by evaluating |�L〉 exactly with
matrix-vector multiplication (dotted line); using CSMC with
the wave function being reconstructed at each step (dashed
line); and without the wave function using bag average in
Eq. (18) (solid line). The slight difference between exact and
CSMC results is only due to an intermediate shift by chemical
potential. These three curves approach the exact energy from
below, which is a distinct property of the L1 norm.

The other two, nearly indistinct curves show the conver-
gence of energy evaluated using the traditional square norm,
labeled as L2

E0(L) = 〈�L|H |�L〉
〈�L|�L〉 . (27)

The L2 norm can be used only when the wave function is
available; for that reason only the curves for exact (dash-dot)
and CSMC with wave function (short dash) approaches appear
in Fig. 3. Naturally, the expectation value of the Hamiltonian
in Eq. (27) is subject to the variational principle, and all curves
with L2 norm approach ground state energy from above. Thus,
the estimates using L1, Eq. (19), and L2, Eq. (27) norms give
the lower and upper bounds for the value of ground state
energy.

To summarize, in our algorithm we rely on computationally
inexpensive independent propagation of walkers in configu-
ration space until the coefficient of variation of their bags
exceeds some critical value. At that moment the full wave
function is reconstructed and is used to evaluate energy from
Eq. (27) and all other operators of interest. The combination
of energy estimates from linear and square norms gives lower
and upper bounds for the actual value of energy. If the desired
convergence is not reached, the process is continued starting
from the current wave function.

C. Weak pairing limit

As mentioned earlier, superconducting paired states in
small systems face a lot of competition from other incoherent
interactions as well as from the single-particle shell structure.
Thus, relatively weak and fragile superconducting states
is one of the distinct characteristics of pairing in nuclei.
Unfortunately, the BCS theory is not designed to work in
this limit, and having CSMC as a computationally inexpensive
alternative is one of the main motivations of this work. In Fig. 4
we demonstrate the effectiveness of CSMC in the limit of weak
pairing using our half-filled 18-level ladder model. In the limit
when the pairing strength G = 0, the system settles in the
Fermi state with 9 lowest double-degenerate single-particle
states being occupied. As soon as G > 0, pair excitation
promotes particles up, and the occupation of the upper 9 levels
becomes nonzero. For very strong pairing, G  ε, the limit of
degenerate model with equal occupancy of all states is reached.
This limit leads to half of the 18 particles being on the lower
9 levels and half on the upper ones.

In Fig. 4 the net occupation of the upper 9 levels as a
function of G is shown. This plot includes results from BCS,
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FIG. 4. (Color online) The half-occupied ladder model with ω =
18 and G = 1. The net occupancy (total number of particles) on the
upper 9 orbitals is shown as a function of the pairing strength. The
weak pairing limit is magnified in inset. The three curves correspond
to BCS solution, CSMC (MC) solution, and the exact solution by
means of diagonalization. The CSMC and exact results are indistinct
and the corresponding curves are overlaid. For the CSMC solution
we used N = 7.5 × 105 walkers, limiting the number of independent
steps to 5.
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CSMC (labeled as “MC”) and exact diagonalization. While
on a large scale all results are similar, in the region of low
pairing strength, which is shown in inset, the well-known
problem with the BCS solution, shown with the dotted (black)
line, is noticeable. At the same time, exact and CSMC results
are indistinct; the dashed (crimson color) line goes right on
top of the solid (sea-green color) line. This test illustrates
that CSMC is well suited for all limits of pairing strength.
Moreover, in the limit of weak pairing, the computational effort
in CSMC is reduced as the contribution from rare excursions
above Fermi surface can be easily evaluated with importance
sampling.

D. Excited states

Obtaining excited states with CSMC is more computation-
ally difficult. One can no longer use a linear norm since all
amplitudes cannot be positive definite simultaneously; that
is, statement (vi) in Sec. II C is not valid for excited states.
Therefore, the usual quadratic L2 norm has to be used and the
bag values can be negative. Nevertheless, features (i)–(v) in
Sec. II C remain valid and useful. In particular, since the matrix
elements of V are positive definite, the importance sampling is
still an effective strategy and the signs of bags are not altered
by repeated application of the Hamiltonian which curtails the
typical MC sign problem. Similarly to the Lanczos technique,
the CSMC approach requires orthogonalization, therefore the
wave functions have to be built each time the orthogonalization
is to be performed. The need for orthogonalization limits the
number of independent steps, which is the main reason for
higher computational demand.

In Fig. 5 we show the CSMC applied to the study of excited
states in the same half-occupied 18-level ladder model. The
ladder model example is particularly challenging since the
density of states above the gap is high. In this model the level
spacing between the ground and first excited states, which is
about twice the BCS gap, is E1 − E0 ≈ 14.6 (in units of level
spacing ε = 1). At the same time, the spacing between the
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FIG. 5. (Color online) The half-occupied ladder model with ω =
18 and G = 1. Convergence of CSMC to ground state, to first excited
state, and to double-degenerate second excited state is shown.

following states E2 − E1 ≈ 0.3 is very small. Moreover, the
second excited state is double degenerate.

E. Pairing in Sn isotopes

In order to illustrate the CSMC algorithm in a realistic
case where pairing matrix elements are not all equal to a
constant, we consider isotopes of tin. The role of pairing
in 100–132Sn isotopes has been extensively explored in the
literature [10,28,29,53]. Apart from questions of scientific
interest such as pairing matrix elements and their connection
to superconducting state in infinite matter, near constancy of
the excitation energy of the lowest 2+ states, and unexplained
behavior of electric quadruple transition rates, the tin case
emerged as a benchmark for computational techniques. In
Table I we present comparison of energies and occupation
numbers for 116Sn, 118Sn, and 120Sn. The model space here
includes five single-particle levels (with total ω = 16); their
energies and spins are listed in the first two columns of
Table I, and the matrix elements are taken from the G-matrix
calculation in Ref. [54], see also Table 1 of Ref. [10]. The
results in Table I show the expected level of agreement.
The energies are quoted relative to the 100Sn core; the high
quality of the effective Hamiltonian assures good agreement
with experimental data. The experimentally measured rela-
tive ground state energies of 116Sn, 118Sn, and 120Sn are
−153.8 ± 1.0, −170.3 ± 1.0, and −186.2 ± 1.0 MeV [55],
respectively. The experimental uncertainty in these numbers
is related to the poorly known mass of 100Sn and of other
light tin isotopes. Good agreement is seen in the two-neutron
separation energies; for 118Sn and 120Sn the observed values
are 16.269 ± 0.001 and 15.588 ± 0.001 MeV [55], whereas
our calculation gives 16.348 and 15.832 MeV, respectively.

With increased computational effort, mainly using a large
number of walkers, any desired level of precision can be
obtained; our goal here was to use minimal effort and to solve
the pairing problem with a precision that exceeds any practical
need, which is set to be 5 keV uncertainty for energy and 0.01
for occupation numbers.

F. Large-scale model

As a final illustration of the CSMC algorithm we explore
a model of the 24O nucleus intended to reflect the nature
of pairing correlations in a system containing both bound
states and a continuum of scattering states. Our main goal
is to demonstrate the capabilities of our algorithm while
addressing the problem of pairing in a continuum qualitatively.
Quantitative studies require good knowledge of the effective
interaction Hamiltonian; construction of this Hamiltonian is
outside the scope of this presentation.

For our study we select the Woods-Saxon potential with
parameters from Ref. [56] to model the mean field of the
weakly bound 24O nucleus. We discretize this potential using
a large quantization box of size 500 fm. This allows us to
generate a dense continuum of states. We limit scattering states
by about 8 MeV of energy, which leads to ω of about 100.
For the pairing interaction between neutrons we use a density
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TABLE I. Comparison of exact and CSMC results for selected isotopes of tin. After the header, the first row shows a comparison of energies;
the remaining five rows show occupation numbers for five single-particle states. The calculation of energies is done with N = 5 × 106 walkers
using the linear norm. The final error is about 5 keV.

116Sn 118Sn 120Sn

Exact CSMC Exact CSMC Exact CSMC

j E0(MeV) − 153.766 − 153.765 − 170.115 − 170.113 − 185.945 − 185.945

5/2 − 9.736 4.99 4.99 5.13 5.13 5.25 5.25
7/2 − 8.957 5.88 5.89 6.28 6.27 6.60 6.60
1/2 − 7.302 0.67 0.67 0.76 0.76 0.86 0.86
3/2 − 7.634 1.18 1.17 1.63 1.63 2.08 2.09
11/2 − 7.544 3.29 3.28 4.21 4.20 5.21 5.21

dependent contact interaction from Refs. [57–59],

V (r,r′) = −G0

(
1 − η

ρ(r)

ρ0

)
δ(r − r′). (28)

Here ρ(r)/ρ0 is the nucleonic density expressed relative to the
saturation density. This quantity is assumed to be given by the
Woods-Saxon form factor. The density dependence of pairing
is controlled by a parameter η which is selected as η = 0.5.
Following Refs. [57,59], we also introduce a momentum cutoff
function that gradually reduces the pairing matrix elements to
zero for scattering states at energies above 5 MeV, and the
diffuseness parameter of the cut-off function is 0.5 MeV; see
also Ref. [60].

For our example we assume an inert 16O core which
leaves two bound s1/2 and d5/2 valence single-particle states.
Therefore, the bound states can accommodate n = 4 pairs
of valence neutrons in 24O. The pairing matrix elements
involving these states are known from the phenomenological
shell model Hamiltonian in Ref. [61]. Following previous
studies, we adopt the value of G0 = 1 GeV fm3 for treating
the pairing interaction involving the continuum of scattered
states. This value is also consistent with the pairing strength
in phenomenological Hamiltonians [61]. Here we limit our
consideration to the s-wave single-particle continuum. Due to
the centrifugal barrier the overlap between bound and unbound
d-wave states is small; this inhibits virtual pair excitations to
d-wave states in the continuum.

Our goal in this investigation is to estimate the role of
the continuum. We do this by comparing the full calculation
with the one where the continuum is ignored. In Fig. 6 the
change in the ground state energy �E0 is shown as a function
of the single-particle energy ε of the s1/2 state. We present
two different cases. In case (a) the parameters of the pairing
Hamiltonian, which includes the single-particle energies and
pairing matrix elements, are first evaluated with a realistic
choice of Woods-Saxon parametrization for 24O and then
the ε which corresponds to s1/2 state is varied while all
other parameters remain unchanged. In the self-consistent case
(b) the depth of the Woods-Saxon potential is varied which
moves the s1/2 state, and each time a new configuration space
Hamiltonian matrix is calculated and studied.

Let us summarize this study. First, the correction from pair
excitations into continuum appears to be relatively small; here
it is of the order of one kilovolt. For all reasonable choices
of pairing strength G0 the effect is not expected to exceed a

few tens of kilovolts; see Ref. [60]. The smallness of the effect
does not seem to contradict observations. So far there has been
no significant near-threshold discontinuity observed in nuclear
structure that can be attributed to two-body decay or to pair
excitations. The decay of 26O is observed to be very slow, see
discussion [62], which through dispersion relations indicates
weakness of the continuum coupling.

Second, as expected, the effect increases sharply as the
bound state approaches the continuum threshold. This is
similar to the results known for the single-particle states, while
the exact near threshold behavior is defined by the phase space
volume; see Refs. [63,64].

Third, the difference between the two models highlights the
importance of thehalo phenomenon and its proper treatment.
In model (b) the wave function of the single-particle s1/2 state
spatially extends as its energy approaches the threshold. This
facilitates pairing in the continuum and the resulting effect is
significantly stronger than that in model (a) where the spatial
structure of the single-particle wave function was not modified.

Finally, we find that this example successfully demonstrates
the potential of the CSMC method for applications to pairing
problems in the presence of a continuum.
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FIG. 6. (Color online) The energy correction due to the inclusion
of continuum states for a pairing model with ω = 100 and n = 4.
The correction, �E0, is the difference between the CSMC result with
continuum states and an exact answer for a model including only
the two bound states. The ε along the lower axis is the energy of the
s-wave bound state as it is moved closer to the continuum. The Monte
Carlo error is negligible.
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IV. SUMMARY

In this work we put forward a new configuration-space
Monte Carlo method for solving the many-body pairing
problem in finite systems. Unlike previous Monte Carlo
techniques that deal with pairing interaction in a way
similar to MC methods in physics of spin systems, our
approach does not use evolution in imaginary time, does
not need Trotter-Suzuki propagator breakup, and does not
depend on the pairing matrix elements being constant. We
propose to evaluate the Hamiltonian and other observables
by stochastically evaluating the corresponding operators in
the Krylov subspace spanned by states formed as a result of
powers of the Hamiltonian acting on an arbitrary initial state.
States in the Krylov subspace are evaluated using random
walks in the many-body configuration space. Importance
sampling is used to effectively probe components of the wave
functions. We emphasize several important features of the
pairing Hamiltonian that make the MC approach appealing.
In particular, we stress the boson-like behavior of nucleon
pairs, absence of the fermion sign problem, the potential
for probabilistic interpretation of transitions in configuration
space, and the probabilistic interpretation of ground state
amplitudes. In addition to the traditional quadratic quantum
mechanical norm, probabilistic interpretation allows us to use
a linear norm. We demonstrate that the approach based on
the linear norm is computationally efficient, is perfect for

parallelization, and provides effective methods for control of
errors of both stochastic and nonstochastic origins.

The workings of the CSMC method are demonstrated with
several examples. With a classic ladder model we demonstrate
convergence using several variations of the method; we
discuss errors and present effective means of their control.
The effectiveness of CSMC in small systems where pairing
can be effectively weak is shown; the CSMC method in its
most complete form is used for obtaining degenerate and
nearly-degenerate excited states in the ladder model.

As a realistic example we use isotopes of tin, which
represents another well studied classic case of pairing in nuclei.
The energies and occupation numbers in this nonconstant
pairing example are consistent with exact results. Large-scale
study of pairing correlations is illustrated using a model of 24O
that includes a continuum of scattering states. While our last
example is still far from realistic, it highlights the effectiveness
of CSMC, and suggests an arena for future applications of the
method.
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