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Theoretical study of the d∗(2380) → dππ decay width
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The decay widths of the d∗ → dπ 0π 0 and d∗ → dπ+π− processes are explicitly calculated in terms of our
chiral quark model. By using the experimental ratios of cross sections between various decay channels, the partial
widths of the d∗ → pnπ 0π 0, d∗ → pnπ+π−, d∗ → ppπ 0π−, and d∗ → nnπ+π 0 channels are also extracted.
Further including the estimated partial width for the d∗ → pn process, the total width of the d∗ resonance is
obtained. In the first step of the practical calculation, the effect of the dynamical structure on the width of d∗ is
studied in the single �� channel approximation. It is found that the width is reduced by a few tens of MeV, in
comparison with the one obtained by considering the effect of the kinematics only. This presents the importance
of such an effect from the dynamical structure. However, the obtained width with the single �� channel wave
function is still too large to explain the data. It implies that the d∗ resonance will not consist of the �� structure
only, and instead there should be enough room for other structures such as the hidden-color (CC) component.
Thus, in the second step, the width of d∗ is further evaluated by using a wave function obtained in the coupled
�� and CC channel calculation in the framework of the resonating group method (RGM). It is shown that the
resultant total width for d∗ is about 69 MeV, which is compatible with the experimental observation of about
75 MeV and justifies our assertion that the d∗ resonance is a hexaquark-dominated exotic state.
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I. INTRODUCTION

In recent years, the CELSIUS/WASA and WASA@COSY
Collaborations successively reported the observation of a
resonancelike structure in the double pionic fusion channels
pn → dπ0π0 and pn → dπ+π− when they studied the ABC
effect and in the polarized neutron-proton scattering [1–3].
They mentioned that because the width of the structure is
rather narrow, which is three more times smaller than 2��

in the conventional �� process, the observed data cannot be
explained by the contribution from either the Roper excitation
or the t-channel �� process. Therefore, they proposed a d∗
hypothesis, in which its quantum number, mass, and width
are I (JP ) = 0(3+), M ≈ 2360 MeV, and � ≈ 80 MeV [1]
(in their recent paper [4], they take averaged values over
the results from elastic scattering and two-pion production,
i.e., M ≈ 2375 MeV and � ≈ 75 MeV), respectively, to
accommodate the data. Because “the structure, containing six
valence quarks, constitutes a dibaryon, and could be either an
exotic compact particle or a hadronic molecule” [5], this result
draws physicists’ special attention.

In fact, the existence of the nontrivial six-quark configu-
ration with I (JP ) = 0(3+) (called d∗ lately) has intensively
been studied since Dyson’s estimation [6]. A variety of
methods or models, such as group theory [6], the bag quark
model [7], the quark potential model [8–10], etc., has been
employed to investigate the structure of d∗, among which
some investigations have produced a mass close to the recent
data; they either are not a dynamical calculation or are a
calculation without the width prediction or with an incorrect
width prediction. It should specially be noted that in one of
those papers [10], one performed a coupled-channel dynamical

calculation in 1999 where a �� channel and a hidden-color
channel (denoted by CC) are included and the predicted
binding energy is about 40–80 MeV. This means that in this
structure there might exist a six-quark configuration, which
coincides with COSY’s assertion. Nevertheless, in that paper,
the width of the state has not been calculated.

After COSY reported their finding, many investigations
have been devoted to this aspect. There are mainly three kinds
of models on the structure of the d∗ resonance. (a) It is a ��
resonance [11]. Huang et al. [11] performed a multichannel
scattering calculation and obtained a binding energy of about
71 MeV with respect to the �� threshold and a width of
about 150 MeV where �NN = 14 MeV and �inel = 136 MeV.
(b) It is dominated by a “hidden-color” six-quark configura-
tion. Bashkanov et al. [12] argued in 2013 that this hidden-
color structure is necessary for understanding the strong
coupling of d∗ to ��. Later, Huang and his collaborators
made an explicit dynamic calculation in the framework of the
resonating group method (RGM) [13] and showed a binding
energy of about 84 MeV and almost 67% of “hidden-color”
configuration in d∗. This implies that d∗ is probably a six-quark
dominated exotic state. (c) It is a result of the �Nπ three-body
interaction [14]. To justify which one of these three is more
reasonable, a detailed calculation, especially the decay width,
should be performed and further experimental investigation
should be carried out.

In this paper, we focus on d∗ width study. We first examine
the effect of the dynamical structures of the d∗ and deuteron
bound states on the decay width of d∗ and consequently
fetch the contribution from the �� structure of d∗ with
JP = 3+. Then, we estimate the total width of d∗ by including
the contributions from other possible decay channels. At the
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beginning, we temporarily assume that d∗ is composed of
the �� structure only. In the calculation, the extended chiral
SU(3) quark model is employed, because this constituent quark
potential model can successfully reproduce the spectra of
baryon ground states, the binding energy of the deuteron, the
nucleon-nucleon (NN ), the Kaon-nucleon (KN ) scattering
phase shifts, and the hyperon-nucleon (YN ) cross sections
(for details see Refs. [15–17]). With the same set of model
parameters fixed in explaining the abovementioned data, the
bound state problem of the �� system is solved and the
realistic wave functions of d∗ and deuterons are obtained via
the dynamical RGM calculation. With these wave functions,
the two-pion decay width of d∗(2380) in the process of d∗ →
dππ is calculated on the quark level, where the chiral effective
Lagrangian of the quark-quark-pion is employed. In terms of
the experimental data of other observed decay channels such
as d∗ → npπ0π0, d∗ → npπ+π−, d∗ → nnπ+π0, d∗ →
ppπ0π−, etc., the total width of d∗ is estimated, and the role
of dynamical structures to the decay width is analyzed. The
result with the single �� channel assumption exhibits the
importance of the dynamical structure effect, which reduces
the decay width by about a few tens of MeV. However, the
width is still larger than the experimentally observed value, so
that the other structure in d∗ should further be considered.
Subsequently, we evaluate the width of d∗ with the wave
function obtained in the coupled �� and CC channel RGM
calculation [13]. The resultant total width of d∗ is about
69 MeV, which is compatible with the experimental data. In
the next section, the formalism is briefly given. The numerical
results and discussion are presented in the final section.

II. BRIEF FORMALISM

Referring to Ref. [18], the phenomenological effective
Hamiltonian for the quark-quark-pion interaction in the non-
relativistic approximation is

Hqqπ = gqqπ �σ · �kπτ · φ
1

(2π )3/2
√

2ωπ

, (1)

where gqqπ is the coupling constant, φ stands for the π meson
field, ωπ and �kπ are the energy and three-momentum of the
π meson, respectively, and σ (τ ) represents the spin (isospin)
operator of a single quark. In the conventional constituent
quark model, the wave functions are

|N〉 = 1√
2

[χρψρ + χλψλ]N ( �ρ,�λ) (2)

for the nucleon and

|�〉 = χsψs�( �ρ,�λ) (3)

for the �(1232) resonance. In Eqs. (2) and (3), χ and ψ stand
for their spin and isospin wave functions, N ( �ρ,�λ) and � are
the spatial wave functions of the nucleon and the � resonance,
respectively, and ρ and λ are the Jacobi coordinates for the
internal motion. Then, the decay width for � → πN reads

��→πN = 4

3π
k3
π (gqqπIo)2 ωN

M�

, (4)

where ωπ,N =
√

M2
π,N + �k2

π are the energies of the pion and
the nucleon, respectively, kπ ∼ 0.229 GeV, and Io denotes
the spatial overlap integral of the internal wave functions of
the nucleon and the � resonance. By fitting the measured
width of 117 MeV for �3/2+ (1232) [19], one gets the value
of the factor G = gqqπIo ∼ 5.41 GeV−1, which is an effective
coupling of � to the nucleon and π , and involves the coupling
constant gqqπ and the spatial integral I0. With this G value
and the employed conventional constituent quark model, the
remaining calculation would be meaningful.

Now using the knowledge of M�→πN obtained above, we
can estimate the decay width in the d∗ → dππ process. The
transition matrix element between the initial state d∗ and the
final state dπ0π0 can be written as

Mπ0π0

if = 1√
3

∑
F1F2k1,μk2,νI

0
S I 0

I C
jmj

1ν,1μC
1md

3md∗ ,jmj

×
∫

d3q

[
χ∗

d

(�q − 1
2
�k12

)
E�(q) − EN (q − k1) − ω1

+ χ∗
d

(�q + 1
2
�k12

)
E�(q) − EN (q − k2) − ω2

+ χ∗
d

(�q + 1
2
�k12

)
E�(−q) − EN (−q − k1) − ω1

+ χ∗
d

(�q − 1
2
�k12

)
E�(−q) − EN (−q − k2) − ω2

]
χd∗ (�q), (5)

where i and f stand for the initial d∗ state with quantum
numbers [(SmS) = (3md∗ )] and the final deuteron state with
[(SmS) = (1md )], respectively, I 0

S(I ) is the spin (isospin)
factor shown in the Appendix, F1,2 = F (k2

1,2) = 4G
(2π)3/2√ω1,2

,

�k12 = �k1 − �k2, and ω1,2 =
√

m2
π + �k2

1,2 . χd (�q) and χd∗ (�q) are,
respectively, the relative wave functions of the final deuteron
(between the two nucleons) and the initial d∗ (between the
two �s), where �q = 1

2 ( �p1 + �p2 + �p3 − �p4 − �p5 − �p6) with
�pi being the momentum of the ith quark. Four terms in the
brackets of Eq. (5) are related to the propagators of four
subdiagrams in Fig. 1. In our calculations, we only consider
the process in which these two pions are emitted from two
constituent �s, respectively, due to the fact that the dominant
decay mode of the � resonance is Nπ .

With the transition matrix element Mπ0π0

if , the decay width
of d∗ in the d∗ → dππ channel can be evaluated by

�d∗→dπ0π0 = 1

2!

∫
d3k1d

3k2d
3pd (2π )δ3(�k1 + �k2 + �pd )

× δ
(
ωk1 + ωk2 + Ep

d
− Md∗

)∣∣Mπ0π0

if

∣∣2
,

(6)

where ωk1 and ωk2 are the energies of the two outgoing pions,
Ep

d
is the energy of the outgoing deuteron with momentum

pd , and the bar on the top of the transition matrixMπ0π0

if means
that this matrix element is averaged over the initial states and
summed over the final states. The factor of 2! is due to the two
identical pions in the final states.
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FIG. 1. Four possible emission paths in the decay of the d∗ resonance composed of the �� structure only. Two pions with momenta of �k1

and �k2 are emitted from one of the three quarks in two �s, respectively.

In the practical decay width calculation, one needs the
explicit relative wave functions of the deuteron and d∗(2380)
systems. These wave functions can usually be taken from the
realistic solutions of the systems considered. In this work, we
acquire these wave functions by dynamically solving the RGM
equation in the extended chiral SU(3) quark model [13]. In
this calculation, the resultant binding energy is ε = 2.2 MeV
for the deuteron and ε ≈ 62 MeV and ε ≈ 84 MeV for d∗
in the single �� channel approximation and in the coupled
�� + CC channel case, respectively. Then, the definition of
the d∗ mass is Md∗ = 2M� − ε. In the coordinate space, the
wave functions of the deuteron and d∗ systems can also be
expressed, respectively, as

�d = [
φN (ξ1,ξ2)φN (ξ4,ξ5)χd (R)

+φd
C(ξ1,ξ2)φd

C(ξ4,ξ5)χd
CC(R)

]
ζ(SI)=(10),

(7)
�d∗ = [

φ�(ξ1,ξ2)φ�(ξ4,ξ5)χ��(R)

+φd∗
C (ξ1,ξ2)φd∗

C (ξ4,ξ5)χd∗
CC(R)

]
ζ(SI)=(30),

where φN and φ� denote the internal wave functions of N
and � in the coordinate space, φ

d,d∗
C stands for the internal

wave function of C (color-octet cluster in the deuteron and
d∗, respectively, χd describes the relative wave functions of
the deuteron between two nucleons, χ�� and χ

d,d∗
CC represent

the relative wave functions between �s and between Cs
for the deuteron and d∗, respectively, and ζ(SI) stands for the
spin-isospin wave function of the corresponding system. In the
single �� channel approximation, the CC component is not
considered in both the deuteron and the d∗ wave functions;
however, in the coupled �� + CC case, it is omitted only in
the deuteron wave function, because it is negligibly small. It
should be specially noted that the wave function in Eq. (7)
is normally called the channel wave function [13]. In the
coupled-channel calculation, this wave function is obtained by

projecting the totally antisymmetrized wave function, as the
solution of the RGM equation, onto the physical basis, namely,
the cluster internal wave function in each component, so that
the effect of the total antisymmetrization of the wave function
can be absorbed in the channel wave function. An important
feature of such a wave function is that the channel wave
functions are orthogonal to each other. The relevant channel
wave functions of the concerned systems are plotted in Fig. 2.

Here we would like to mention that, in the RGM calculation,
the trial wave function of the d∗ system is assumed to have two
major components, �� and CC, which are totally antisym-
metrized. Solving the RGM equation, one obtains the relative
wave functions of the system. By projecting the resultant
wave function onto the cluster internal wave function in each
component, we get the intercluster relative wave function,
namely, the channel wave function, for the corresponding
channel. Now, the contribution from the CC channel via the
quark exchange is included in the projected wave function (or
the channel wave function) χ��(R) already [13]. We should
specially emphasis that the channel wave functions obtained
in Eq. (7) are orthogonal to each other. Therefore, in the lowest
order, by using this channel wave function, there is no quark
exchange between the two physical particles and thus the
colored clusters (color octet) cannot turn into the uncolored
clusters (color singlet).

For the sake of convenience, we expand the relative wave
function in the following:

χ (R) =
4∑

i = 1

ci exp

(
− R2

2b2
i

)
. (8)

We would also mention that the D-wave contribution is omitted
due to its relatively small contribution, although both the S-
and D-wave functions exist in our resultant wave functions.

With these wave functions, two additional assumptions
are employed in the estimation of the decay width in
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FIG. 2. Relative wave functions in the S wave in the extended chiral SU(3) quark model: (a) for deuteron, (b) for χ�� in the single ��

channel case for d∗(2380), and (c) for χ�� in the coupled �� and CC channel case for d∗(2380).

d∗ → dππ . One is associated with the energy denominators
in Eq. (5), where the pole position is simply taken, as is
usually done in the K-matrix approximation approach. The
other one is related to the directions of the two outgoing pions.
Because the experimental data show that the angle between
the two outgoing pions is almost zero, namely, the pions
are propagating in the same direction, we can employ this
experimental fact to constrain the directions of two emitted
pions, namely, add the condition �k1 ‖ �k2 ‖ ẑ to the directions of
the momenta of emitted pions, so that the numerical calculation
can be greatly simplified. It is clear that our approach, under
this condition, would give an upper limit for the width.

III. NUMERICAL RESULTS AND DISCUSSION

In the calculation, the masses of deuterons, �, nucleons,
and pions are taken from the Particle Data Group [19]. The
mass of d∗ is Md∗ = 2M� − ε with ε being 62 MeV for the
single �� channel case and ∼84 MeV for the coupled ��
and CC channel case, respectively. The value of G is already
fixed by using the � → πN decay data. The decay width in
the d∗ → dππ process with realistic wave functions from the
RGM calculation can numerically be obtained by using Eq. (6).

Moreover, the experimental data [1,2,20,21] and one of
theoretical calculations [22] have shown that, for the d∗
resonance at

√
s = 2370 MeV, the decay cross section in the

d∗ → pnπ+π− process is about 0.20 mb, which is comparable

with that of 0.24 mb in the d∗ → dπ0π0 process, and the
decay cross section in the d∗ → ppπ0π− process (also its
mirrored channel d∗ → nnπ+π0) has a visible value of about
0.10 mb as well. Therefore, contributions in these processes
should also be accounted for in the d∗ width estimation.
Using the Breit-Wigner formalism and those cross-section
data, the branching ratios of various decay modes have been
estimated [4,23]. For reference, we tabulate them in the second
to the last column in Table I. It should be noted that if the
isospin symmetry of pions is not broken, due to the multiplicity
of pion, a simple count leads to a factor 2 for the cross section
ratio of the d∗ → dπ+π− process to the d∗ → dπ0π0 process.
However, a small isospin symmetry breaking, namely, a small
mass difference between π± and π0, would reduce this factor
to about 1.6 [2,4,23]. In our explicit calculation, this factor
is about 1.81, which is again smaller than 2, but larger than
the factor 1.6 found in Refs. [2,4,23]. Based on the resultant
decay widths for d∗ → dπ0π0 and d∗ → dπ+π− and the
cross sections mentioned above, we get the branching ratios,
and consequently the partial decay widths, for all possible
decay modes. Finally, we achieve the total width of d∗.

To see the dynamical effect on the decay width, we should
compare our estimated width with that noted by Bashkanov
et al. [12] under the same mass condition (namely, with the
same phase space factor) in the single �� channel case.
Because the binding energy of d∗ in our single-channel
case is 62 MeV (Md∗ ≈ 2402 MeV), we have to readjust

TABLE I. Decay width.

Md∗ (MeV) Ours Expt.

Mode Single channel �� Two channels �� + CC [4,20,21,23]
2374 2380 2375

�(MeV) Br �(MeV) Br �(MeV)

d∗ → dπ 0π 0 16.6 13.3% 9.2 14(1)% 10.2
d∗ → dπ+π− 30.1 24.3% 16.8 23(2)% 16.7
d∗ → pnπ 0π 0 14.1 11.3% 7.8 12(2)% 8.7
d∗ → pnπ+π− 34.6 27.8% 19.2 30(4)% 21.8
d∗ → ppπ 0π− 7.06 5.65% 3.9 6(1)% 4.4
d∗ → nnπ+π 0 7.06 5.65% 3.9 6(1)% 4.4
d∗ → pn 8.24 12.0% 8.3 12(3)% 8.7
Total 117.7 99.9% 69.1 103(14)% 74.9
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our model parameter to get a binding energy of about
90 MeV (Md∗ ≈ 2374 MeV) to fit the condition in Ref. [12].
Fortunately, the resultant relative wave function of the ��
system, which represents the dynamical feature of the system
in some sense, has a tiny deviation from that in the case of the
binding energy of 62 MeV. Thus, the results with this wave
function (ε ∼ 90 MeV) contain both the dynamical feature of
the �� system and the same phase space factor as in Ref. [12].
We tabulate these results in the second column in Table I.

From this table, one sees that in the single �� channel
calculation, the resultant total width of d∗ justifies the fact that
in a composite system, due to the binding behavior, namely,
the attractive interaction between constituents, the decay width
of the system is much smaller than the total decay widths of
its constituents if they are assumed to be free particles. And
even more, deeper binding would cause narrower width. This
feature is reasonable, because the width is not only related
to the phase space but also depends on the overlap of the
wave functions of the bound states d∗ and the deuteron. In
comparison with the width of about 160 MeV estimated by
Bashkanov et al. [12] with a binding energy of 90 MeV, where
the effect of the phase space is considered only, we conclude
that the contribution to the width from the dynamical effect
is about a few tens of MeV. This conclusion tells us how
important the effect of the dynamics on the width of an unstable
composite system is, namely, the decay width is not only
related to the phase space but also depends on the dynamical
structure of the system. It also shows that the width of d∗ in the
single �� channel case still exceeds the experimental value
of 75 MeV. This means that the �� structure alone cannot
provide a reasonable width of d∗.

With the same scenario, we further exam the width
contributed by the �� component in d∗ if d∗ has the
�� + CC structure proposed in Refs. [10,13]. The results
are also tabulated in Table I. It shows that with the wave
function of the �� component in Ref. [13], the decay widths
for the d∗ → dπ0π0 and d∗ → dπ+π− modes are about 9 and
17 MeV, respectively. If we further consider the d∗ → pnππ ,
ppπ0π−, nnπ+π0, and NN modes, the total width would be
about 69.1 MeV. Of course, we should remember that there are
uncertainties in our approach; small variations of our model
parameter values in reasonable regions may produce about
10% uncertainties in our estimated decay widths.

Here we would like to emphasize again, in our RGM
calculation, that the trial wave function of the d∗ system
is assumed to have two major components, �� and CC,
which are totally antisymmetrized. By using the projection
technique mentioned above, we obtain corresponding channel
wave functions, which are orthogonal to each other and include
the required total antisymmetrization effect. Then, with these
channel wave functions, there is no quark exchange between
the two physical clusters in the lowest order and between
the two bases as well, and thus the colored clusters (color
octet) cannot turn into the uncolored clusters (color singlet).
As a consequence, the width contributed by the projected CC
component would almost be zero. Combining this point with
the contribution from the �� component, one sees that total
width of d∗ in our �� + CC model is about 69.1 MeV,
which is compatible with the experimental data of 75 MeV.

Apparently, because the fraction of the wave function of the CC
component in our �� + CC model is about 67%, the resultant
width of d∗ justifies our assertion that the d∗ resonance is a
hexaquark-dominated exotic state.

Finally, it should also be mentioned that the existence of
d∗ should further be checked in other experimental processes.
Now, except the γ + d (or e + d) reaction and pp collision,
the strong decay of the hidden heavy flavor meson, such as the
bb̄ meson and the cc̄ meson, is also a place to hunt for d∗. In
particular, searching for its antiparticle d̄∗ in these processes is
even plausible, because the antideuteron d̄ and consequently
d̄∗ can only be created from quark-pair productions, so that
the background would be very clean [24]. Now, at

√
s ≈

10.6 GeV, the integrated luminosity is about 470 fb−1 at
BaBar and about 3 fb−1 at CLEO. And both collaborations
have observed d̄ production at

√
s ≈ 10.6 GeV [25,26].

Thus, one might search for d̄∗ in the ϒ(nS) → d̄∗ + p + n
process. Moreover, the Belle Collaboration has collected
even more data of about 1000 fb−1 around

√
s ≈ 10.6 GeV,

and they might have the chance to observe the d̄ and d̄∗
productions in a similar process. Also, BEPCII/BESIII has
reached an integrated luminosity of 1 fb−1 at

√
s = 4.42 GeV

and 0.57 fb−1 at
√

s = 4.6 GeV. It might be possible to detect
d̄∗ in the e+ + e− → d̄∗ + p + n process as well. If one
could observe d∗ in the data set accumulated by BaBar, Belle,
CLEO, and BEPCII/BESIII, it would definitely be helpful in
confirming the existence of d∗(2380) and its structure.
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APPENDIX: SPIN-ISOSPIN PART

The spin matrix element in the calculation is

IS =
∑

C
SABmAB

SAmA,SBmB
C

S ′
ABm′

AB

S ′
Am′

A,S ′
Bm′

B
C

S ′
Am′

A

SAmA,1μC
S ′

Bm′
B

SBmB,1ν

=
∑

(−)S
′
AB−SAB+SA+SB−S ′

A−S ′
B Ŝ ′

AŜ ′
BŜABĵ 2

23ĵ

×
{

1 SA S ′
A

S ′
B S ′

AB j23

}{
1 SB S ′

B

SA j23 SAB

}

×
{
SAB 1 j23

1 S ′
AB j

}
C

jmj

1ν,1μC
S ′

ABm′
AB

SABmAB,jmj

= I 0
S C

jmj

1ν,1μC
S ′

ABm′
AB

SABmAB,jmj
, (A1)

where â = √
2a + 1. For the present process, the initial d∗ and

the final deuteron have SAB = 3 and S ′
AB = 1, respectively.

Moreover, � and the nucleon have SA = SB = 3/2 and S ′
A =

S ′
B = 1/2, respectively. Therefore, in the present case j23 =

j = 2 is restricted.
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Moreover, one can deal with the isospin matrix element
similarly. The isospins of �, the nucleon, d∗, and the deuteron

are 3/2, 1/2, 0, and 0, respectively. Then j = 0 and j23 = 1
are constraints for the isospin part.
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