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Role of strangeness in hybrid stars and possible observables
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We study the effects of strangeness on the quark sector of a hybrid-star equation of state. Since the model
we use to describe quarks is the same as the one we use to describe hadrons, we can also study the effects of
strangeness on the chiral symmetry restoration and deconfinement phase transitions (first order or crossover).
Finally, we analyze the combined effects of hyperons and quarks on global properties of hybrid stars such as
mass, radius, and cooling profiles. It is found that a large amount of strangeness in the core is related to the
generation of twin-star solutions, which can have the same mass as the lower or zero strangeness counterpart, but
with smaller radii.
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I. INTRODUCTION

Recently, it has been understood that any realistic cal-
culation for neutron-star equations of state must take into
account hyperons and/or quark degrees of freedom, since
densities of several times nuclear saturation density can be
reached in the center of the star. Moreover, many models that
include hyperon and quark degrees of freedom are able to
describe massive stars with masses around 2M� (see [1,2]
and references therein). This means that the role played by
strangeness at high densities has again become the focus of
intense discussions. The interplay between the appearance of
hyperons and quarks has also been discussed, as for example
in Refs. [3,4].

In addition, recent studies of neutron-star radii have
indicated that these objects might have smaller radii than
previously expected, around 10 km or less [5,6]. Although
recent small radii measurements have been criticized (see, for
instance, Refs. [7,8]), the idea of small radii stars together
with the constraint of stars with 2M� [9,10] pushes toward
equations of state very close to the causal limit, beyond
which the speed of sound is larger than the speed of light.
The so-called “hyperon puzzle,” discussed in Ref. [3], refers
to the larger radii of massive stars containing hyperons. A
possible solution, in this case, is the coexistence of strange
hadronic and quark stars, which would separately fulfill mass
and radius constraints. Such a possibility is achieved through
another family of stars, referred to as “twin stars” or tertiary
stars [11–21]. These are stars containing quarks and with
smaller radii than the respective stars containing hadrons. In
this work, we investigate this possibility but in the context of
stars with different strangeness content.
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We make use of a self-consistent approach that includes
hadrons and quarks in the same model to study the interplay
between different degrees of freedom. We do that by changing
the strength of the strange-meson coupling to the quarks. This
makes it straightforward to study the effect of the appearance
of strangeness in neutron stars and allows, in addition, the
study of the effect of different kinds of phase transitions
in the system. Note that the effect of the strength of the
strange-meson couplings to baryons has recently been studied
in detail, for example, in Refs. [22–25]. Within our framework,
we study the possibility of smooth crossovers and first-order
phase transitions from hadronic-dominant to quark-dominant
matter and from nonstrange-dominant to strange-dominant
matter. We then use our equation of state to obtain observables
such as mass, radius, and cooling profiles for neutron stars.

II. MODEL

Chiral σ models are effective quantum relativistic models
that describe hadrons interacting via meson exchange and,
most importantly, are constructed from symmetry relations.
They are constructed in a chirally invariant manner as the
particle masses originate from interactions with the medium
and, therefore, go to zero at high density and/or high tempera-
ture. The nonlinear realization of the σ model is an alternative
approach to the widely used linear σ model [26–28] and it is
in good agreement with nuclear physics results [29,30].

The Lagrangian density of the SU(3) nonlinear realization
of the σ model constrained further by astrophysics data can be
found in Refs. [31,32]. A recent extension of this model which
includes quarks as dynamical degrees of freedom [33–35] is
described in the following. The Lagrangian density of the
model in the mean field approximation reads

L = Lkin + Lint + Lself + Lsb , (1)
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where, besides the kinetic energy term for hadrons, quarks,
and leptons, the terms
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∑
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i ]ψi,
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,

Lsb = −m2
πfπσ −

(√
2m2

kfk − 1√
2
m2

πfπ

)
ζ , (2)

represent the interactions between baryons (and quarks) and
vector and scalar mesons, the self-interactions of scalar and
vector mesons, and an explicit chiral symmetry breaking term
(responsible for producing the masses of the pseudoscalar
mesons). The underlying flavor symmetry of the model is
SU(3) and the index i denotes the baryon octet and the three
light quarks. The mesons included are the vector-isoscalars
ω and φ (strange quark-antiquark state), the vector-isovector
ρ, the scalar-isoscalars σ and ζ (strange quark-antiquark
state), and the scalar-isovector δ, with τ3 being twice the
isospin projection of each particle. The isovector mesons affect
isospin-asymmetric matter and are consequently important
for neutron-star physics. Note, that different self-interaction
schemes for the vector mesons (g4 term) can be included in
the model, as long as they conform with chiral symmetry [31].
The parameter α results from a renormalization of the vector
fields in order to obtain their correct vacuum masses. Assuming
equal contributions of the ω and ρ mesons, these constants can
be absorbed in the coupling g4 and only the φ field terms are
affected (see Ref. [26] for a detailed discussion).

In the model presented in Refs. [33,34], the degrees of
freedom change due to the effective masses of the baryons and
quarks. Here, we adopt a different formalism, explained in the
following, and the effective masses for baryons and quarks
are simply generated by the scalar mesons, except for a small
explicit mass term m0:

M∗
B = gBσσ + gBδτ3δ + gBζ ζ + m0B

,

M∗
q = gqσ σ + gqδτ3δ + gqζ ζ + m0q

. (3)

The coupling constants of the model are shown in
Table I. They were fitted to reproduce the vacuum masses
of the baryons and mesons, nuclear saturation properties
(density ρ0 = 0.15 fm−3, binding energy per nucleon B/A =
−15.65 MeV, nucleon effective mass M∗

N = 0.67 MN , com-
pressibility K = 318.76 MeV), asymmetry energy (Esym =
32.43 MeV with slope L = 102.77 MeV), and reasonable
values for the hyperon potentials (U = −30.44 MeV, U� =
2.47 MeV, U� = −26.28 MeV). The vacuum expectation

TABLE I. Coupling constants for the model, using χ =
401.93 MeV.

gNω = 11.46 gNρ = 3.83 gNφ = 0
gNσ = −9.83 gNδ = 0 gNζ = 1.22
gω = 7.64 gρ = 0 gφ = 7.06
gσ = −5.39 gδ = 0 gζ = −2.21
g�ω = 7.64 g�ρ = 7.64 g�φ = 7.06
g�σ = −3.88 g�δ = 0 g�ζ = −4.36
g�ω = 3.82 g�ρ = 3.82 g�φ = 14.11
g�σ = −1.54 g�δ = 0 g�ζ = −7.66
guω = gdω = 4.70 guρ = gdρ = −2.00 guφ = gdφ = 0
guσ = gdσ = 3.80 guδ = gdδ = 0 guζ = gdζ = 0
gsω = 0 gsρ = 0 gsφ = variable
gsσ = 0 gsδ = 0 gsζ = −3.80
g4 = 38.5 k0 = 1.19χ 2 k1 = −1.40
k2 = 5.55 k3 = 2.66χ k4 = −0.07χ 4

m0u = m0d
= 6 MeV m0s = 72 MeV m0N

= 150 MeV
m0

= 376.58 MeV m0�
= 376.58 MeV m0�

= 376.58 MeV

values of the scalar mesons are constrained by reproducing
the pion and kaon decay constants fπ and fκ .

The slope of the symmetry energy has become a very
prominent constraint for the equation of state in the past
years as its measurements (through, for example, neutron skin
experiments) have become more accurate. These results seem
to indicate low values for this quantity (L ∼ 50–70 MeV).
See Refs. [36–38], and see Ref. [39] for a recent review
on the topic. Notice, however, that some works such as the
one in Ref. [40] found much higher values for the slope
of the symmetry energy (L ∼ 100 MeV). A detailed work
on the role of the symmetry energy in the Lagrangian density
of the SU(3) nonlinear realization of the σ model is in progress
and it will be available soon.

To suppress the hadrons at high density and/or high
temperature and allow the quarks to dominate, we introduce an
excluded volume for the baryons. The use of such a technique
was proposed long ago in Refs. [41–53] and recently used
in Refs. [4,54,55]. This is done by introducing the volume
occupied by baryons and quarks as

vB = 0.64 fm3 and vq = 0 . (4)

The vB value is chosen to represent the effect of the
repulsive baryonic hard core with a corresponding radius of
r = 0.34 fm. In this case, the chemical potential for baryons
and quarks needs to be further modified in order to maintain
thermodynamical consistency

μ̂i = μ∗
i − viP , (5)

with

μ∗
i = QBi

μB − QiμQ − giωω − gφφ − giρτ3ρ , (6)

with P being the total pressure of the system, QBi
the baryon

number of each particle, μB the baryon chemical potential, Qi

the electric charge of each particle, and μQ the charge chemical
potential. In this way, the chemical potentials of the baryons
are decreased by the appearance of quarks, but not vice versa.
Furthermore, to be thermodynamically consistent, all particle
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FIG. 1. (Color online) Population (particle density normalized
by baryon number) as a function of baryon density for symmetric
matter.

densities, i.e., number density, energy density, entropy density,
etc., have to be multiplied by a volume correction factor f ,
defined as the ratio of the unoccupied (excluded) volume V ′
and the total volume V

f = V ′

V
=

(
1 +

∑
i

viQBi
ρi

)−1

, (7)

where ρi is the density of each particle. In this way, the
quarks effectively suppress the baryons by changing their
chemical potential, while the quarks are only affected through
the volume correction factor f .

As a result, for symmetric matter, the model used in this
work predicts that protons and neutrons are only suppressed at
high densities, when a significant amount of quarks appear.
This can be seen in Fig. 1. Due to the zero strangeness
constraint, only the up and down quarks slowly appear at about
2.3 times the saturation density. The strangeness constraint is
necessary in order to compare theoretical results with nuclear
and particle experimental results, which take place in a time
interval much shorter than the weak equilibration time.

III. STELLAR MATTER AND STRUCTURE

To study neutron stars, we take into account charge neutral-
ity and chemical equilibrium. Strangeness is not constrained
since, for neutron stars, the time scale is large enough for
strangeness not to be conserved. The equation of state for such
a system is shown in Fig. 2. Depending on the strength of the
quark couplings, the stiffness of the equations of state and the
kind of phase transitions obtained are different.

We show curves for different strengths of the quark coupling
to the strange vector meson compared to the nonstrange
vector meson defined as ξ = gqφ/gqω, keeping gqω constant.
Larger values of the parameter ξ reproduce stiffer equations
of state due to extra repulsion at intermediate and/or larger
densities. This can be seen in Fig. 2. While most values
of ξ reproduce smooth equations of state, negative values
below ξ = −1.10 reproduce first-order phase transitions. So
far, it is not understood what kind of deconfinement and
chiral restoration phase transitions take place at small and
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FIG. 2. (Color online) Equation of state for different strengths of
the quark couplings.

zero temperatures. In Refs. [56,57], for example, it has been
proposed that the phase transition in such a limit is a smooth
crossover, as in the high-temperature and low-density regime.

To understand better the results from Fig. 2, we show the
variation of the scalar meson and the strange scalar meson
fields for different strengths of the quark couplings in Figs. 3
and 4. The σ field, usually referred to as the chiral condensate,
is intrinsically related to the restoration of chiral symmetry
and it is shown here also for the symmetric case. The ζ
field is related to the quantity of strange particles in the
system, meaning that a larger deviation from the vacuum value
enhances the amount of hyperons (specially �’s, which have
larger strangeness) and strange quarks.

Now, we discuss the particle population present in the stars
reproduced by the parametrizations discussed above. For ξ =
3.62, Fig. 5 shows that the down quark appears very early
in the system, followed by the hyperons , �−, �−, �0,
�0, and �+, followed by the up and strange quarks. As the
density increases, the down quark is temporarily suppressed
by the appearance of hyperons, but it becomes dominant at
high densities. The strange quark only appears at very high
densities, as it not only has a larger bare mass, but is also
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FIG. 3. (Color online) Scalar meson field (normalized by vacuum
value) as a function of chemical potential for different strengths of
the quark couplings.
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FIG. 4. (Color online) Same as Fig. 3, but for the strange scalar
meson field.

suppressed by the strong positive coupling to the strange vector
meson.

Note that a sequential occurrence of deconfined quarks with
different flavors at high densities has already been discussed
in Ref. [58]. In that work, the chiral symmetry restoration
(associated with the quark deconfinement) is calculated in the
Nambu and Jona-Lasinio (NJL) model by solving the gap
equations and taking into account charge neutrality in such a
way that, similar to our case, it depends on the quark chemical
potentials. These chemical potentials are in turn dependent on
the electric charge and bare mass of particles. In this scenario,
the down quark drips out of the baryons first, followed by the
up and strange quarks. At high temperature and zero chemical
potential, sequential quark deconfinement has also been seen
in lattice QCD calculations [59].

Figure 6 shows that the down quark appears once more
very early in the system for ξ = 0, followed by the hyperon
 together with the strange quark, and then the hyperons �−,
�0, �+, �0, and �−, followed by the up quarks. Note that the
early presence of the strange quarks in this case (without the
influence of the φ meson) suppresses the negatively charged
hyperons, which would normally appear before the others to
fulfill charge neutrality (now taken care of by the strange
quark).
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FIG. 5. (Color online) Population (particle density normalized
by baryon number) as a function of baryon density for ξ = 3.62.
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FIG. 6. (Color online) Same as Fig. 5, but for ξ = 0.

Note also that we could have used any positive value for the
parameter ξ . The choices of zero and ξ = 3.62 were only made
to show the largest possible span of effects. After ξ = 3.62, the
effect of different φ coupling with the strange quark saturates,
not showing further changes. This is because at ξ = 3.62, the
strange quarks appear after all of the other possible particles,
and in a small amount.

For negative values of the ξ parameter, there is no change
in the order of the appearance of the quarks and hyperons
with respect to density, since the strange quark appears
basically at the same low density as in the ξ = 0 case.
Nevertheless, for negative enough values of the ξ parameter
(ξ < −1.10), the transition from hadronic-dominant to quark-
dominant matter, and the transition from nonstrange-dominant
to strange-dominant matter (which so far have been smooth
crossovers) become a first-order phase transition.

This had already been shown in Fig. 2 but can be better
understood in Fig. 7 plotted for ξ = −1.29, where a jump in
the baryon density (which is a first derivative of the baryon
chemical potential) can be observed. The grey shaded area
in the figure represents an unphysical region, which would
collapse to a point in the presence of gravity, as it corresponds
to a single value of pressure.

The equations of state (EOS’s) for the three cases already
discussed are analyzed under the influence of gravity in
Fig. 8, from the solutions of the Tolman-Oppenheimer-Volkoff
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FIG. 7. (Color online) Same as Fig. 5, but for ξ = −1.29.
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FIG. 8. (Color online) Mass-radius diagram considering differ-
ent strengths of the quark couplings. The inset highlights the twin-star
configurations.

equations [60,61]. When ξ = 3.62, a maximum mass of
2.31M� is obtained with a corresponding radius of 12.58 km.
When ξ = 0, a maximum mass of 2.05M� is obtained with a
corresponding radius of 13.07 km. Finally, when ξ = −1.29,
a maximum mass of 1.97M� is obtained with a corresponding
radius of 13.61 km.

An interesting feature of negative values of the ξ parameter
is that a secondary family of stars appears (at ξ = −1.26)
with significantly smaller radii. This feature is related to the
baryon density discontinuity at the phase transition and it is
often called “twin-star solution.” These stars have equivalent
masses (to the normal branch), but different radii.

As ξ becomes more negative, the amount of stars in
the twin family increases. When ξ = −1.29, the first-order
phase transition to dominant quark strange matter reproduces
twin stars with radii spanning from 9.60 to 10.22 km and
a maximum mass of 1.68M�. The discontinuity, across the
phase transition that allows for such a configuration is quite
small, �ρB = 0.18 fm−3 (equivalent to an energy density
discontinuity of �ε = 238.40 MeV/fm3).

Note that the star branch with smaller radii in Fig. 8,
with hyperon and quark contributions, has significantly more
strangeness than the normal branch. Observation of such
configurations would point to the confirmation of first-
order phase transitions in stars, as already pointed out by
Refs. [13,14,17,21]. In the context of hadronic matter, the
possibility of smooth and strong phase transitions to strange
matter has been explored in Ref. [62]. For ξ = −1.29, for
example, a star mass of 1.68M�, corresponding to radii of
14.00 and 9.60 km in different branches, contains strangeness
of fs = 0.01 and fs = 1.68, respectively, at the center. The
total strangeness is defined as fs = ∑

i ρ(i)QSi
/ρB , where

QSi
is the strangeness of each particle. For values of ξ more

negative than −1.29, the twin-star solutions exist, but their
equations of state becomes supraluminal for high enough
densities. Therefore, we will not discuss them in this work.
For a complete review on the topic of the behavior of models
containing the excluded volume technique at high densities,
see Ref. [63]. For a review on the topic of the sound speed in
neutron stars see Ref. [64].

FIG. 9. (Color online) Diagram showing different models for
neutron stars placed with respect to their compactness. Adapted from
Refs. [65,66] by Lattimer and Prakash.

Figure 9 (modified from Refs. [65,66]) shows the relation
between the maximum mass star and the corresponding central
density predicted by several classes of models from the liter-
ature, such as nonrelativistic (NR) potential or Skyrme-like,
relativistic (R) field theoretical, EOS’s containing significant
amounts of quarks, and EOS’s with significant contributions
from hyperons or meson condensates. Note that the EOS’s
from Refs. [31,33], which derive from another version of
the model discussed in this work, are also shown marked
by the letters A and B Finally, we analyze the compactness
of the equation of state generated from the parametrization
ξ = −1.29 discussed in this work (marked by C and D in
the figure). The letter C denotes the maximum mass star of the
normal branch, and the letter D the one of the twin branch. Note
that D is beyond the limiting curve s = 1/3, which delimits
the supraluminal behavior for quark stars when modeled by
the simple MIT bag model. It is interesting to note that this line
is also a limit to many models which reproduce a substantial
amount of quarks in stars. The distance between C and D
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FIG. 10. (Color online) Gap energy for the neutron triplet pairing
shown for different temperatures.
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points to the difference between the compactness of both star
families reproduced (normal and twin).

In addition, we would like to compare our results with
those in Ref. [67] by Alford et al., which discusses different
categories of twin stars assuming a Maxwell construction
between different phases of matter and a constant speed
of sound. Although our case with ξ = −1.29 reproduces
twin-star solutions, it shows no connected branch (stars with
density beyond the phase transition jump but still in the stable
part of the main star branch in the mass-radius diagram) within
our numerical accuracy. We believe that we might reproduce
a connected branch in agreement with Ref. [67]; however,
in practice, it may be too small to be seen. We reproduce
a ratio of �ε/εtrans = 0.33, where �ε is the jump in energy
density across the phase transition and εtrans the energy density
at which the transition takes place, and we reproduce a ratio
Ptrans/εtrans = 0.16, where Ptrans is the pressure at which the
transition takes place. These values are important as they
are connected to the ability of the low-density phase to be
supported by a large enough high-density phase in the core.
An intermediate size for the high-density phase in the core
necessarily turns the star unstable, originating disconnected
solutions for stars. In other words, the existence of the twin
branch depends on the size of the discontinuity across the
phase transition and the stiffness of the equations of state of
both phases.

IV. THERMAL EVOLUTION

We now turn our attention to the thermal evolution of the
objects whose structures and compositions were discussed
above. The thermal behavior of a compact star strongly
depends on its microscopic and macroscopic properties, thus,
when combined with observational data, it is a formidable
way of probing the characteristics of these objects. The
thermal evolution of a compact star is governed by the general
relativistic thermal balance and transport equations, given by
(G = c = 1) [68]

∂(le2φ)

∂m
= − 1

ρ
√

1 − 2m/r

(
ενe

2φ + cv

∂(T eφ)

∂t

)
, (8)

∂(T eφ)

∂m
= − (leφ)

16π2r4κρ
√

1 − 2m/r
, (9)

where the macroscopic dependence is given by the variables
r , ρ(r), and m(r), which represent the radial distance, energy
density, and stellar mass, respectively. The thermal properties
are represented by the temperature T (r,t), luminosity l(r,t),
neutrino emissivity εν(r,T ), thermal conductivity κ(r,T ), and
specific heat cv(r,T ). Furthermore, the boundary conditions of
Eqs. (8) and (9) are provided by the vanishing heat flux at the
center of the star and the luminosity at its surface, defined
by the relationship between the mantle and photosphere
temperature [69–71].

In our study, we consider all state-of-the-art neu-
trino emission processes for the thermal evolution. In the
hadronic phase, we take into account the direct Urca, mod-
ified Urca, and bremsstrahlung processes, as well as the
pair-breaking-formation (PBF) process that accompanies pair-

FIG. 11. (Color online) Thermal evolution (red-shifted surface
temperature as a function of time) of stars for ξ = −1.29.

ing (described below) [72]. For the quarks we consider
the quark direct Urca, quark modified Urca, and quark
bremsstrahlung processes. Furthermore, we consider the pos-
sibility of hadronic as well as quark pairing. For the hadronic
model, we consider proton singlet pairing (1S0), neutron triplet
pairing (3P2) for the core region, and neutron singlet (1S0)
pairing for the crustal region. To illustrate gap values, we show
in Fig. 10 the neutron triplet gap energy as a function of density,
for several values of temperature. Note that the proton pairing
has a similar behavior, except for much stronger pairing, which
is necessary to explain the behavior of Cassiopeia A (Cas
A) [73,74]. For the quarks, we consider pairing with a gap
� = 10 MeV.

We start by showing the results for the thermal evolution of
stars generated using the parameter ξ = −1.29 for the strength
of the quark coupling, which we display in Fig. 11. In the
case of neutron stars of relatively low masses (1.4M� and
1.6M�) their composition is similar enough that their thermal
evolution is almost indistinguishable. As the star masses
increase, however, the thermal evolution starts to exhibit a
faster behavior, as expected in this case. Such a qualitative
behavior is also exhibited in the thermal evolution of stars
generated using the parameters ξ = 0 and ξ = 3.62, as shown
in Figs. 12 and 13.

FIG. 12. (Color online) Same as Fig. 11, but for ξ = 0.
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FIG. 13. (Color online) Same as Fig. 11, but for ξ = 3.62.

The similarity among the thermal evolution of different
model parametrizations of the quark coupling to the strange
vector meson compared to the nonstrange vector meson ξ is
not surprising, in particular for the low-mass stars, where quark
matter is not strongly present. A possible way of differentiating
between the parametrizations studied is to investigate the
cooling of the maximum mass star for each of them. These
objects have the highest possible quark matter content (in the
normal branch) allowed by each parametrization and, thus,
should exhibit differences in their cooling. This is shown in
Fig. 14. Note that, in this way, we can also obtain information
about the strangeness (through the mass of the star) in
the cooling curves. Although we do not have observational
information regarding the mass of isolated stars, we could at
the very least infer some constraints by using the fact that
we know that larger strangeness implies slower star cooling,
among other things, due to the smaller underlying stellar
mass.

As shown in Fig. 14, although all parametrizations exhibit
the same qualitative behavior, the parametrization ξ = −1.29
seems to be slightly better if one is to interpret recent
thermal observations such as in Cas A. The core-crust
thermal coupling in this case (signaled by the sudden drop
in surface temperature) takes place at later ages (when

FIG. 14. (Color online) Thermal evolution of the maximum mass
star from Figs. 11–13.

compared to the other parametrizations). This might facilitate
the interpretation of Cas A data as this object exhibits a
surface temperature drop at around ∼300 yr. In practice,
there are other factors in play, in particular the patterns of
the superconducting and superfluidity phases. A thorough
investigation of this subject will be performed in a future
investigation.

V. CONCLUSIONS

We studied the dependance of neutron-star properties on the
strength of the quark couplings (strange vector to vector quark
coupling ratio). The choice of values for this quantity affects
the stiffness of the equation of state and the strength of the
phase transition to (dominantly) deconfined strange matter,
ranging from crossovers to first-order phase transitions. We
performed this task in a controlled way by making use of a self-
consistent model that includes hadron and quark degrees of
freedom. In this model, the interactions determine the density
at which deconfinement and chiral symmetry restoration take
place and the inclusion of an excluded volume for the hadrons
ensures that they are not present at high densities.

The effect of strangeness in neutron stars emerges in the
mass-radius relation, where a large amount of strangeness is
related to the generation of twin stars, which can have the
same mass as the lower or zero strangeness counterpart, but
with smaller radii. The measurement of such stars would be a
clear indication of a first-order phase transition taking place at
high densities and low temperatures, at least for charge-neutral
and β-equilibrated matter. Nevertheless, this would provide us
priceless insight into the QCD phase diagram.

With respect to the thermal evolution of stars, we have
shown that the three quark coupling parametrizations stud-
ied present distinct behaviors for massive stars, where the
quark phase manifests itself differently for the three cases
investigated. All three parametrizations, however, seem to
be in agreement with the current cooling picture, in which
high-mass objects present a relatively faster thermal evolution
than those objects with less mass and pairing in the hadronic
and quark phases is necessary if one is to agree with recent
data such as that obtained for Cassiopeia A. Among the
three parametrizations studied, in the one with the smaller
strange vector to vector quark coupling ratio, the core-crust
thermal coupling (indicated by the sudden drop in the surface
temperature) occurs at later times. This indicates agreement
with Cas A data, but a more detailed study of the topic will be
performed in future investigations.

In the future, we intend to extend our calculations to
include relativistic excluded volume effects. Such a consistent
approach will provide us with a better idea of the stiffness
of the equation of state around deconfinement, and also at
higher densities. Work on relativistic versions of excluded
volume techniques have been already pursued, for example
in Refs. [51,75,76], but so far with no guarantee of a physical
speed of sound. We also intend to extend our calculation to
finite temperature and include neutrino trapping. In this way,
we will also be able to study the behavior of strangeness in
supernova explosions.
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