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A potential explanation [U. D. Jentschura, Phys. Rev. A 88, 062514 (2013)] of the proton radius puzzle
originating from the nonperturbative lepton-pair content of the proton is studied. Well-defined quantities that
depend on this lepton-pair content are evaluated. Each is found to be of the order of 10( α

π
)2, so that such a

lepton-pair content does exist in the proton. However, I argue that this relatively large result and general features
of loop diagrams rule out the possibility of lepton-pair content as an explanation of the proton radius puzzle. The
contributions of a class of potential explanations of the proton radius puzzle (for which the dependence on the
μp relative distance is as contact interaction) are shown to be increase very rapidly with atomic number.
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I. INTRODUCTION

Recent high precision experimental studies of muonic
hydrogen [1,2] obtain a value of the proton radius that is
about 4% smaller than that obtained from ordinary electronic
hydrogen. The problem of understanding this difference has
become known as the proton radius puzzle, and has generated
a vast array of possible solutions, see the review [3]. One of the
novel suggested solutions [4] is that a nonperturbative feature
of the proton’s structure, namely the possible presence of light
sea fermions as constituent components of the proton, could
account for the difference in the extracted radii. In particular, it
is argued that the assumption that the presence of 2.1 × 10−7

light sea positrons per quark, leads to an extra term in the
electron-proton versus muon-proton interaction, which has the
right sign and magnitude to explain the proton radius puzzle.

The basic idea is that a bound electron may annihilate with
a positron that is part of the nonperturbative e−e+ cloud of the
proton. The annihilation leads to a virtual photon, which in turn
decays to a bound electron and a positron that is also part of the
e−e+ cloud of the proton, see Fig. 1. The term nonperturbative
here refers to a component of the proton Fock-space wave
function that can be seen at small values of momentum transfer.
If one could take a snapshot of a proton in isolation one would
see electron-positron or muon-antimuon pairs pop in and out of
existence. This effect is therefore different from the generation
of pairs by evolution in momentum transfer that is akin to the
source of the qq̄ sea of perturbative QCD.

A natural question to ask is whether or not this diagram is
part of a contribution that is already included. In particular, a
look at Fig. 1 might lead one to conclude that the intermediate
baryonic state is that of an excited nucleon. If so, this diagram
would be a particular time-ordering of the proton polarizability
contribution to the two-photon exchange diagram. However,
if the lepton pair is a specific Fock-space component of
the complete proton wave function (including QED effects)
one may argue [4] that the intermediate state is part of the
proton wave function, and therefore not part of the proton
polarizability contribution. Here I accept this argument and
seek to determine its logical consequences.

This acceptance comes with severe difficulties. If one
adopts this Fock-space approach, one must recognize that
computing the contribution of a given component may only

correspond to computing a particular time ordering of a
Feynman diagram, with the consequent obligation to find any
remaining time ordering terms of the same order in α. To be
specific, the term of Fig. 1 corresponds to a particular time
ordering of the graphs that give the radiative corrections to
the general two photon exchange diagrams, see for example,
Fig. 2. In this figure, the intermediate blob is meant to
contain the proton and all of its excited states. Thus this
graph contains the time-ordering that is included in Fig. 1.
One may immediately estimate the size of the contribution
of this term to the energy to be of order α/π times the
polarizability correction, and is therefore negligible. The
explicit calculations for muonic hydrogen are in accord with
this estimate [5]. For electronic hydrogen the contribution is
again of order α/π times the polarizability correction, which
is relatively much less important for electronic hydrogen than
for muonic hydrogen [6]. This means that a correct evaluation
of the contribution of the effects of the proton’s lepton-pair
content must give a negligible result.

I pursue the idea of Ref. [4] even though the result of any
correct calculation will be that the effect is negligible. Inves-
tigating the lepton-pair content of the nucleon is interesting
in its own right, and it is useful to see how the correct result
arises from the Fock-space idea. The argument of Ref. [4]
starts by considering the photon annihilation term occurring in
positronium. This term leads to the effective interaction [7]:

δH = πα

2m2
e

(3 + σ+ · σ−) δ(r) . (1)

This Hamiltonian gives a nonzero interaction of the bound
electron and the light sea positron if their spins add up to
one. Reference [4] assumes that the electron-positron pairs
within the proton are not polarized and replaces �σ+ · �σ− →
0 after averaging over the polarizations of the sea leptons.
Further it is argued [4] that for atomic (electronic) hydrogen,
the additional interaction of the electron with the proton due
to the annihilation channel takes the form

Hann = εp

3πα

2m2
e

δ(r) , (2)

where εp measures the amount of electron-positron pairs
within the proton. For muonic hydrogen, the effect is expected
to vanish because the dominant contribution to the sea leptons
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FIG. 1. (Color online) Typical Feynman diagram of Ref. [4] il-
lustrating the virtual annihilation of a bound electron with a “light sea
lepton” (positron) inside the proton. The up (u) and down (d) quarks,
which carry noninteger charge numbers, interact electromagnetically.
The vertical dashed lines indicate the lepton-sea component of the
proton wave function. The light sea lepton annihilates with the bound
electron that enters the diagram from the left.

comes from the lightest leptons, namely, electron-positron
pairs and thus the annihilation channel is not available.
Reference [4] finds that a value of εp = 2.1 × 10−7 is sufficient
to account for the different values of the extracted radii. Note
that the 1/m2

e dependence appearing in Eqs. (1) and (2) occurs
as the result of assuming that both the electron and positron
are at rest.

The hypothesis of sea leptons and the use of Eq. (2) raises
a number of interesting questions. Is the quantity εp well
defined? If so, what is its likely range of values? Any positron
in the nonperturbative nucleon sea is not likely to be at rest, so
one could also ask if the Eq. (2) is applicable. Does the term
of Eq. (2) really exist? My purpose here is to investigate these
questions.

Here is an outline of the remainder of this paper. The
difficulties in computing and defining εp are discussed in
Sec. II. Observables that depend on lepton-pair content and
can be computed in a gauge invariant manner are discussed in
Secs. III and IV. The results of these two sections are analyzed
and used to understand more detailed loop calculations in

e

p

FIG. 2. (Color online) Radiative correction to two photon ex-
change. Including the full gauge invariant set, including crossing the
photons arising from the proton (p) and all of the one-loop self-energy
terms on the electron (e), is implied.

X

   q

p

j

k

p
X

(a) (b)
q

FIG. 3. The solid line represents a single quark. (a) Diagram for
counting antileptons. The notation X with the arrow coming into
it represents the operator J μ bringing in a four-momentum j . (b)
Lepton-pair contribution to the vertex function.

Sec. V. The nuclear dependence of all models in which the
contribution to the Lamb shift arises from an interaction
containing a Dirac δ function in the lepton-nucleon separation
is studied in Sec. VI. Some concluding remarks are made in
Sec. VII.

II. ATTEMPTING TO COUNT POSITRONS
IN THE PROTON

One might proceed to count positrons by defining an
antilepton number current density operator, J

μ

l̄
,

J
μ

l̄
= ψ̄l̄γ

μψl̄, (3)

and take its expectation value in the physical proton wave
function. The operator J

μ

l̄
is defined to act only on antileptons

(l̄), so its zeroth component is the antilepton density. I may take
the expectation value of this operator in the proton by assuming
that the lepton pair arises from the interactions on a single
quark, as in Fig. 3(a), (Fig. 3(b) is used in Sec. III.) In Fig. 3(a)
j represents the incoming momentum, p and p′ = p + j are,
respectively, the incoming and outgoing quark momenta, m
and mq are, respectively, the lepton mass and the constituent
quark mass, q is the momentum flowing into the inner loop,
and k is the momentum on one branch of the inner loop.

It is necessary to discuss why the focus is on a single quark.
In general the momentum in the loop q is very large. Any
operator that removes a large momentum from one quark and
gives a large momentum to another quark, suffers a vastly
reduced matrix element in the proton wave function because
each quark can only support a momentum of the order of
the inverse radius of the proton, or about 200 MeV/c. There
are significant implications to this single-quark dominance see
below in Sec. VI.

One immediate problem with the amplitude of Fig. 3(a) is
that the integrations over the virtual lepton momenta contain
an ultraviolet divergence. This means that an unknown counter
term is needed to determine a value, and predictive power
is lost. Furthermore, the use of Eq. (3) does not respect
current conservation, because J

μ

l̄
does not act on all of the

charges. Thus any result would be gauge-dependent. These
two drawbacks lead me to conclude that the short answer to
the question, “is the quantity εp well defined?”, is simply no.
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Thus the validity of Eq. (2), which contains a factor of εp, is
questionable.

However, one may compute matrix elements that depend
on the pair content that are free of ultraviolet divergences and
are gauge invariant. This is the procedure adopted here.

III. ANOMALOUS MAGNETIC MOMENT OF
THE ELECTRON

The goal of this section is to find a simple gauge invariant
quantity free of ultraviolet and infrared divergent terms, that
depends on the lepton-pair content of the proton and to
evaluate that quantity. Computation of the influence of virtual
lepton-pairs provides such an example. A leading-order effect
of pairs is shown in Fig. 3(b), in which the X represents the
usual electromagnetic current operator. In this diagram, the
incoming momentum is denoted as q and k is the momentum
of the virtual photon. The intermediate electron line exists only
if the lepton-pair exists, and computing only the contribution
to the magnetic moment insures that gauge invariance is
maintained without encountering an ultraviolet or infrared
divergence. The effects of this diagram have been evaluated
long ago, so the purpose is merely to find an illustrative
example.

The effect of pairs is accounted for by dressing the photon
propagator using [8]

−igμν

q2
→ −igμν

q2

1

1 − 
̂2(q2)
≈ −igμν

q2
(1 + 
̂2(q2)), (4)

for a virtual photon of four-momentum q, with


̂2(q2) = −2α

π

∫ 1

0
dz z(1 − z) log

m2
l

m2
l − z(1 − z)q2

, (5)

where ml is the lepton mass and the subscript 2 stands for
second order in e. It is useful to rewrite this term as


̂2(q2) = −2α

π

∫ 1

0
dz z(1 − z) q2

∫ 1

0

dλ

λ

1

m̂2
l − q2

, (6)

where

m̂2
l ≡ m2

l

z(1 − z)λ
. (7)

The use of Eq. (6) allows the evaluation of a Feynman
diagram involving 
2 via the usual technique of combining
denominators.

The order e4 correction term to the vertex function, δ�μ(q)
is given by using Eq. (4) in the standard expression [8] for the
e2 term:

δ�μ(q) = 2ie2
∫

d4k

(2π )4

ū(p′)(k/γ μk/′ + m2γ μ − 2m(k + k′)μ)u(p)

((p − k)2 + iε)(k′2 − m2 + iε)(k2 − m2 + iε))

̂2((p − k)2), (8)

where p is the initial quark momentum, p′ = p + q, k′ = k + q and m is the quark mass, which is chosen as a constituent value
of one-third of the mass of a proton. The use of Eq. (6) in Eq. (8) gives the result

δ�μ(q) = 2ie2 2α

π

∫ 1

0
dz z(1 − z)

∫ 1

0

dλ

λ

∫
d4k

(2π )4

ū(p′)
(
k/γ μk/′ + m2γ μ − 2m(k + k′)μ

)
u(p)(

(p − k)2 − m̂2
l + iε)(k′2 − m2 + iε)(k2 − m2 + iε)

) . (9)

The above correction term contributes to both the Dirac
and Pauli form factors of the quark. Evaluating the Dirac form
factor requires treatments of infrared and ultraviolet diver-
gences that are not present in the Pauli form factor. I therefore
compute only the contribution to the Pauli form factor, and
proceed by combining denominators, and integrating over the
four-momentum and two of the Feynman parameters and λ.

The relevant momentum transfer for atomic physics is the
inverse of the Bohr radius, this is much, much smaller than the
quark mass. Therefore I need only evaluate δ�μ(q) at q2 = 0,
with the result:

δ�μ(q2 = 0) = 2

(
α

π

)2

ū(p′)
iσμνqν

2m
u(p)I

(
m2/m2

l

)
, (10)

I
(
m2/m2

l

) =
∫ 1

0
dz z(1 − z)

×
∫ 1

0
dz′ log

(
1 + (1 − z′)2z(1 − z)

z′
m2

m2
l

)
.

(11)

Numerical evaluation leads to the result

I (electron) = 1.7, I (muon) = 0.17, (12)

and the virtual e+e− pair contribution to the magnetic moment
of the quark is given by 3.4 ( α

π
)2 or 1.8 × 10−5. This number is

about 100 times larger than the value of εp used to account for
the proton radius puzzle. Moreover, if the value of the lepton
mass in the loop were to dominate the value I would expect
a muon to electron ratio of about 1/200 instead of the ratio
∼ 1/10 of the values of Eq. (20).

It is useful to attempt to relate the results of Eq. (20)
to access the value of εp, even though this can only be
done heuristically. In nonrelativistic quantum mechanics the
contribution of a component n to the expectation value of an
operator O is written as 〈O〉 = ∫

d3rψ∗
n (r)Oψn(r). This can

be interpreted as
∫

d3r|ψn(r)|2 × Ō = PnŌ. where Ō is the
average of O in the component n. If this operator is written in
natural dimensionless units, such as a coefficient multiplying
the factor ū(p′) iσμνqν

2m
u(p), then Ō can be expected to be of

the order of unity. In that case the numerical coefficient,
here 1.8 × 10−5 can be expected to be of the order of the
probability for the electron-positron pair to exist. Thus, I state,
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very roughly, that

εp ∼ 1.8 × 10−5. (13)

Note that the dimensionless factor, I , multiplying ū(p′) iσμνqν

2m
u(p) depends on the ratio of the quark to lepton masses. This is

not surprising—at q2 = 0 the only parameters with dimension are m,ml and the only way to make a dimensionless number is a
dependence on the ratio. The consequences of this are discussed below in Sec. V.

IV. AXIAL COUPLING

I seek another example of a divergent-free matrix element that depends on the lepton-pair content of the proton. Consider the
axial coupling γ μγ 5 operator as an insertion (X) in Fig. 3(b). The resulting term is defined as δAμ, with

δAμ = ie2
∫

d4k

(2π )4

ū(p′)γρ(k/′ + m)γ μγ 5(k/ + m))γ ρu(p)

((p − k)2 + iε)(k′2 − m2 + iε)(k2 − m2 + iε))

̂2((p − k)2). (14)

Using parity conservation and time reversal invariance tells us that δAμ takes the form

δAμ = ū(p′)
[
GA(q2)γ μγ 5 + i

GT (q2)

2m
σμνqνγ

5 + GP (q2)

2m
qμγ 5

]
u(p). (15)

The term GA, as computed from Eq. (14) will contain an ultraviolet divergence, and is determined after a renormalization
procedure. The terms GT ,GP are free of such problems, so I will examine only those terms, again taking q2 = 0.

I proceed by using Eq. (6) in Eq. (14) to find

δAμ = ie2 2α

π

∫ 1

0
dz z(1 − z)

∫ 1

0

dλ

λ

∫
d4k

(2π )4

ū(p′)γρ

(
k/′ + m)γ μγ 5(k/ + m)

)
γ ρu(p)(

(p − k)2 − m̂2
l + iε)(k′2 − m2 + iε)(k2 − m2 + iε)

) . (16)

Combining the propagators, shifting the origin of integration, integrating over the shifted four-momentum, integrating over
one of the Feynman parameters, taking q2 = 0, and keeping only the contribution to GT ,GP leads to the result is

δA
μ
T,P (q2 = 0) = 1

2

(
α

π

)2

m

∫ 1

0
dz z(1 − z)

∫ 1

0

dλ

λ

∫ 1

0
dz′

×
∫ 1−z′

0
dy[qμγ 5(2 + z′(1 + z′)) + iσμνqνγ

5(−2yz′ + z′(1 − z′)]
1

(1 − z′)2m2 + z′m̂2
l + iε

. (17)

The integration over y gives a factor of 1 − z′ to the term
proportional to qμγ 5, but leads to a cancellation in the term
proportional to iσμνqνγ

5. Thus the GT term vanishes at q2 =
0. This cancellation does not occur for other values of q2. The
integration over λ is performed to give the result

δA
μ
P (q2 = 0) = 1

2

(α

π

)2 qμγ 5

m
J (m2/m2

l ), (18)

J
(
m2/m2

l

) ≡
∫ 1

0
dz z(1 − z)

∫ 1

0
dz′ ((2 + z′(1 + z′))

1 − z′

× log

[
1 + (1 − z′)2z(1 − z)

z′
m2

m2
l

]
. (19)

The remaining integrals are handled numerically. The result is
that

J (q2 = 0,electron) = 18.3, J (q2 = 0,muon) = 0.593.

(20)

I again see that the effect of e+e− pairs is much larger than
the 2 ×10−7 that is supposed to enter in the proton radius
puzzle. Using the logic of the previous section leads to the

approximate relation

εp ∼ 5 × 10−5. (21)

This has about 250 times larger than the value used in Ref. [4].
The numbers displayed in Eqs. (13) and (21) are of the same
order of magnitude, which is all that can be expected from the
quantitative approach used here.

V. ASSESSMENT

I have provided arguments that the lepton pair content is
an order of magnitude larger than the value of εp needed to
account for the proton radius puzzle. One might expect that
this strengthens the case for the explanation of Ref. [4].

That this is not so can be understood by examining the
validity of Eq. (2), derived by assuming that the electron
and positron annihilate when both are at rest. Firstly, if this
equation is correct, and the lepton-pair probabilities are as
large as obtained in this paper, then the computed effect
would be between 100 and 250 times times too big, causing
a disagreement with experiment that would rule out the
explanation of Ref. [4]. But it is necessary to assess the
lepton mass dependence that arises from evaluating the loop
diagrams. This is in both examples approximately a logarithm
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FIG. 4. (Color online) Dependence on the ratio m2/m2
l . The

functions I (m2/m2
l )/ log(m2/m2

l ), Eq. (11) (blue, solid) and
J (m2/m2

l )/ log(m2/m2
l ), Eq. (19) (red, dashed) are displayed.

of the ratio m2/m2
l , as shown in Fig. 4. This means that a

dependence as the inverse square of the lepton mass will not
result from evaluating any loop diagram.

Moreover, one may use dimensional analysis to argue that a
complete evaluation of the effect depicted in Fig. 1 would lead
to a 1/m2 dependence. This is because the inverse factor of 4m2

e

appearing in Eq. (1) arises from the propagator of the virtual
photon that is produced by the annihilation. In the diagram
this factor would be (p−

e + p+
e )2. The momentum p−

e of the
external electron is given almost entirely by the electron mass,
but the four-momentum of the space-like virtual positron, p+

e ,
is dominated by its three-momentum. This in turn is governed
in loop integrals by the largest mass, which is that of the quark,
m. In particular, a correct and complete evaluation would lead
one to obtain

δHann ∝ πα

2m2
(3 + σ+ · σ−) δ(r) (22)

instead of Eq. (1). Since m ≈ 600 me the effect is about 4 ×
105 times smaller than what is needed and therefore can be
said to negligible.

I have used the term “a full and complete evaluation”. What
would be needed for that? The minimum requirement is gauge
invariance. That the diagram of Fig. 1 cannot satisfy gauge
invariance by itself is apparent because there are many other
diagrams of the same order. In particular, there is a diagram
corresponding to crossing of the photons emitted by the u and
d quarks of Fig. 1. Terms with both crossed and uncrossed
photons are needed to satisfy gauge invariance in Compton
scattering. This means that the lepton pair content cannot be
evaluated without also including the effects of the 2γ e− e+
component. One simply needs to compute the complete gauge
invariant set of diagrams corresponding to those implied in
Fig. 2. This has been done for the case of muonic hydrogen.
Given the insensitivity of the results to the value of the lepton
mass, I expect that for electronic hydrogen the lepton-pair
effect will be of order of α/π of the proton polarizability
correction and therefore negligible.

VI. NUCLEAR DEPENDENCE

Models such as the contact interactions of Eq. (2) which
behave as a δ function in the separation between the lepton
and nucleon contain very specific predictions for the nuclear
dependence of the Lamb shift.

The first example to consider is the model of Ref. [4].
To make a prediction for the nucleus, one needs to know
the contribution of the neutrons. Using the single-quark
dominance idea of Sec. II gives a specific result obtained by
considering the factors of the square of the quark charge that
would appear in the calculation. A proton contains two up
quarks and one down quark, with a resulting quark charge
squared factor of 2(2/3)2e2 + 1(1/3)2e2 = e2. For a neutron
one would have 1(2/3)2e2 + 2(1/3)2e2 = 2/3e2. Thus the
neutron contribution would be 2/3 that of the proton. As result,
if one considers the Lamb shift in the electron-deuteron atom,
the effect would 5/3 as large as for a proton. Such an effect
would contradict the existing good agreement between theory
and experiment [9].

More generally, suppose the contribution of a proton to
the Lamb shift is Ep (0.3 meV) to resolve the proton radius
puzzle and that of the neutron is En. Then for a nucleus with
A nucleons and Z protons, I find

EA =
(

1 + mμ

mp

1 + mμ

Amp

)3

Z3(ZEp + NEn)

(
1 − O

(
R2

A

a2
μ

))

≈
(

1 + mμ

mp

1 + mμ

Amp

)3

Z3(ZEp + NEn), (23)

where aμ is the muon Bohr radius (>100 times larger than
nuclear radius, RA). The meaning of Eq. (23) is that the
contributions of such contact interactions increase very rapidly
with atomic number.

In particular, the prediction of Ref. [4] (with En = 2/3Ep)
for 4He is a Lamb shift that is (1.27) 8 (2)5/3 ≈ 10 meV, a
huge number. The expression Eq. (23) applies to all models in
which the contribution to the Lamb shift enters as a δ function
(or of very short range) in the lepton-nucleon coordinate,
including [10,11]. In Ref. [10], which concerns polarizability
corrections, the neutron contribution, En could vanish, so
that the contribution for 4He would be 20 Ep = 6 meV. In
Ref. [11], which concerns a gravitational effect, En = Ep,
so the prediction for 4He would be 40Ep = 12 meV. These
various predictions will be tested in an upcoming experiment
[12]. It is also worth mentioning the muon proton scattering
experiment (MUSE) [13], a simultaneous measurement of
μ+ p and e+ p scattering and also a simultaneous measurement
of μ− p and e− p scattering that is particularly sensitive to the
presence of contact interactions [10].

VII. SUMMARY

The work presented here supports the idea of the existence
of a nonperturbative lepton-pair content of the proton. Such
components are not forbidden by any symmetry principle
and therefore can appear. However, the presented calculations
show that such a content is not a candidate to explain the
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proton radius puzzle. This is because computation of the
necessary loop effects cannot yield an effective Hamiltonian
of the strength and form of Eq. (2). The 1/m2

l behavior
of that equation in Ref. [4] is necessary to obtain the
needed magnitude of the separate electron and muon Lamb
shifts. Instead, loop calculations are expected to lead to a a
dependence of 1/m2, with m the constituent quark mass. This
means that the effect of Ref. [4] is expected to be entirely
negligible. This is in accord with the estimate: (α/π ) times the
polarizability correction that is obtained from evaluating the
relevant Feynman diagrams.

More generally: it can be said that the proton may be
considered to have Fock-space components containing lepton

pairs. However, the simplest and most reliable method of
treating such pairs is to compute gauge-invariant sets of
Feynman diagrams using QED perturbation theory.
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