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Equation of state and sound velocity of a hadronic gas with a hard-core interaction
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Thermodynamic properties of hot and dense hadronic systems with a hard-sphere interaction are calculated
in the Boltzmann approximation. Two parametrizations of pressure as a function of density are considered: the
first one, used in the excluded-volume model and the second one, suggested earlier by Carnahan and Starling.
The results are given for one-component systems containing only nucleons or pions, as well as for chemically
equilibrated mixtures of different hadronic species. It is shown that the Carnahan–Starling approach can be used
in a much broader range of hadronic densities as compared to the excluded-volume model. In this case the
superluminal sound velocities appear only at very high densities, in the region where the deconfinement effects
should be already important.
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I. INTRODUCTION

Physics of strongly interacting matter under extreme con-
ditions is in the focus of research in several fields including
relativistic heavy-ion collisions, compact stars, and the early
universe. In recent years, significant progress was achieved
in lattice calculations of the equation of state (EoS) at
high temperatures and low baryon densities. However, the
lattice approach cannot be used reliably at low temperatures
and high baryon densities. The information on the EoS in
this domain remains a subject of model calculations. It is
obvious that realistic calculations of the EoS of dense hadronic
systems should take into account a strong interaction between
hadrons.

A hard-sphere interaction (HSI) is one of the most popular
methods to implement short-range repulsion effects for cal-
culating thermodynamic properties of multiparticle systems.
In this approach the particles of a sort i are represented by
hard spheres of radius Ri . It is assumed that particles move
freely unless the distance rij between centers of any pair i,j
becomes equal to Ri + Rj . It is postulated that the potential
energy of an ij interaction is infinite at smaller rij . Originally
such an approximation was suggested by van der Waals [1]
to describe properties of dense gases and liquids. Later on the
HSI-based models were successfully used by many authors
in condensed matter physics [2,3]. A similar approach, the
so-called excluded-volume model (EVM), was applied in
Refs. [4–11] to describe the EoS of hot and dense hadronic
matter. These studies revealed a very strong sensitivity of
the EoS to parameters of the short-range repulsion between
hadrons. In particular, it was shown in Refs. [5–7] that a
reasonable phase diagram of strongly interacting matter can
only be obtained after accounting for the finite size of hadrons.
Our present study is aimed at a more realistic description of
the HSI effects in the hadronic EoS.

Unfortunately, the van der Waals approach is essentially
nonrelativistic. As a consequence, it cannot be safely applied
when the sound velocity of matter cs becomes comparable
with the light velocity. It is well known that the EVM

violates the casuality condition1 cs < 1 at sufficiently high
baryon densities [7]. Attempts to remove this drawback were
made in Refs. [8,12] (see also Refs. [13,14]). Moreover, it
will be shown below that the EVM becomes inaccurate at
high densities when the total volume of constituents exceeds
10%–20% of the system volume. By comparing with the
virial expansion [2,15] one may conclude that this model
overestimates the contribution of nonbinary interactions to
pressure.

On the other hand, numerical simulations of one-
component liquids with HSI show [2] that the Carnahan–
Starling approximation (CSA) of pressure [16] successfully
works up to much higher densities than in the EVM. Below
we use the CSA and EVM to calculate properties of thermo-
dynamically equilibrated hadronic systems containing mesons
and (anti)baryons.2 An important feature of such systems is
that partial numbers of different species π,N,�, . . . are, in
general, not conserved due to presence of inelastic processes
and resonance decays. These numbers are not independent
and should be determined from the conditions of chemical
equilibrium [7].

Up to now information about properties of multicomponent
systems with HSI is rather scarce [3]. In this paper we consider
several representative cases: first, we study the N + � and
π + N + � mixtures with equal sizes of all hadrons and
second, the π + N + � system assuming that baryons have
equal radii, R� = RN , and pions are point like, Rπ = 0.3

Finally, we make calculations for hadronic systems with an
extended set of baryons, antibaryons, and mesons. The main
emphasis is given to calculating the sound velocity. According

1Units � = c = 1 are used throughout the paper.
2For simplicity, we disregard the isospin and Coulomb effects and

neglect nonzero widths of resonances.
3Note that small [10] or even vanishing [11] pion radii are favored

by recent fits of hadron multiplicities measured in central heavy-ion
collisions at the AGS, SPS, and RHIC bombarding energies.
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to our analysis, the CSA predicts a much softer EoS, with
smaller cs values than in the EVM. Choosing reasonable values
of hadronic radii, we show that acausal states in the CSA are
shifted to baryon densities nB � 1 fm−3. It is expected that
at such densities the deconfinement effects, in particular, the
formation of a quark-gluon phase, should already be important.

The paper is organized as follows: In Sec. II we consider
one-component systems with hard-sphere particles. First we
introduce parametrizations of pressure in the EVM and
CSA. Then we calculate properties of an ideal gas in the
Boltzmann approximation. Analytic expressions for shifts of
thermodynamic functions due to HSI are obtained in Secs. II C
and II D. The EoS and sound velocities of nucleonic and pion
matter are analyzed in Secs. II D and II E. In Sec. III we study
properties of hadronic mixtures. In the end of this section we
discuss the importance of quantum-statistical corrections. The
summary and outlook are given in Sec. IV.

II. ONE-COMPONENT HADRONIC SYSTEMS

A. Compressibility and virial expansion

In this section we consider a one-component system
containing only one sort of hard-sphere particles with radius
R. Below we disregard the effects of Fermi or Bose statistics
i.e., all calculations are done in the classical (Boltzmann)
approximation (the accuracy of this approximation will be
discussed in Sec. III F). In this case one can write the following
expression for pressure as a function of temperature and
particle density n = N/V [2,3]:

P = nT Z(n) = PidZ(n). (1)

Here Pid is the ideal-gas pressure and Z is the “compress-
ibility” factor, which depends only on the dimensionless
“packing” fraction η = nv where v = 4πR3/3 is the proper
volume of a single particle. At small η one can use a universal
virial expansion [2]

Z = 1 + 4η + 10η2 + · · · . (2)

This expansion is not applicable4 for η exceeding about 0.5.
Equation (2) may be applied to estimate the accuracy of EoS
calculations for multiparticle systems with HSI.

Instead of Eq. (2), different analytical approximations for
Z are used by many authors. For example, the following van
der Waals-motivated parametrization is used in the EVM:

ZEVM = 1

1 − 4η
. (3)

One can see that such an ansatz leads to inaccurate results at
sufficiently high η. Indeed, comparison of the right-hand side
(r.h.s.) of Eq. (3), decomposed in powers of η, with Eq. (2)
shows that only first two terms of the virial expansion are

4The most dense state of the considered systems corresponds
to the ordered (face-centered cubic) lattice with η = π

3
√

2
� 0.74.

Direct Monte Carlo simulations show [3] that the liquid-solid phase
transition in a one-component matter with HSI occurs in the interval
0.49 < η < 0.55.

correctly reproduced in the EVM. It is clear that densities n >
0.25/v cannot be reached in this model due to the divergence
of pressure at η = 0.25. As demonstrated in Ref. [7], the EVM
leads to superluminal sound velocities already at η � 0.2. This
is a consequence of a too stiff density dependence of pressure
assumed in this model.

On the other hand, the Carnahan–Starling parametriza-
tion [16]

ZCSA = 1 + η + η2 − η3

(1 − η)3
(4)

is able to reproduce rather accurately [2] the first eight terms
of the virial expansion for Z(n). It agrees well with numerical
calculations at η � 0.5, i.e., up to the boundary of liquid
phase. Note that both above-mentioned parametrizations give
similar results in the region η � 1 where Z � 1 + 4η. This is
illustrated in Fig. 1. One can see that at η � 0.2 the Carnahan–
Starling EoS is indeed noticeably softer as compared with the
EVM.

Equation (1) gives pressure as a function of canonical
variables: temperature T and density n. As explained above,
in the situation when particle densities are not fixed, more
appropriate variables are temperature and chemical potential
μ. It is possible to calculate other thermodynamic functions,
in particular the energy and entropy densities, ε and s, if the
dependence μ = μ(T ,n) is known. To get explicit expressions
for these functions, it is convenient to calculate first the
free-energy density f = μn − P as a function of T and n.
Then one can use thermodynamical identities [15]

ε = f + T s, s =−
(

∂f

∂T

)
n

. (5)

FIG. 1. (Color online) Compressibility factor Z and function ψ

[see Eq. (21)] for different values of packing fraction η calculated
within the EVM and CSA.
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B. Thermodynamic functions of ideal gas

Let us start by calculating thermodynamic functions of an
ideal gas of particles with the mass m and the spin-isospin
degeneracy factor g. In the Boltzmann approximation one can
write down [7] the equation relating the particle density and
the chemical potential:

n = φ(T ) exp

(
μid

T

)
, φ(T ) ≡ gm3

2π2

K2(x)

x
. (6)

Here x = m/T , Kn(x) is the McDonald function of nth order,
and the subscript “id” implies the ideal-gas limit. The function
φ has the meaning of the ideal-gas density in the case of zero
chemical potential.

From Eq. (6) and formulas of preceding section we get
the following expressions for thermodynamic functions of the
ideal gas:

μid = T ln
n

φ(T )
, (7)

fid = μidn − Pid = nT

[
ln

n

φ(T )
− 1

]
, (8)

sid = n

[
ln

φ(T )

n
+ ξ (T )

]
, (9)

εid = nT [ξ (T ) − 1], (10)

where

ξ (T ) = T
φ′(T )

φ(T )
+ 1 = x

K3(x)

K2(x)
. (11)

Unless otherwise stated, we denote by prime the derivative
with respect to T . According to Eq. (10), in the ideal-gas limit,
the heat capacity per particle C̃ = n−1( ∂ε

∂T
)n is a function of

temperature only:

C̃ = [T (ξ − 1)]′ = x2 + 3ξ − (ξ − 1)2. (12)

The sound velocity is an important characteristic of EoS
which gives the propagation speed of small density perturba-
tions in the matter rest frame. In absence of dissipation the
adiabatic sound velocity squared is equal to [17]

c2
s =

(
∂P

∂ε

)
σ

, (13)

where the subscript σ in the r.h.s. means that the derivative is
taken along the Poisson adiabat, i.e., at constant entropy per
particle:5 σ = s/n = const. One can rewrite Eq. (13) in the
form

c2
s = (∂P/∂n)T + (∂P/∂T )n(∂T /∂n)σ

(∂ε/∂n)T + (∂ε/∂T )n(∂T /∂n)σ
. (14)

Using Eqs. (9), (12), and the relation dσ = dn∂σ/∂n +
dT ∂σ/∂T = 0 we get in the ideal-gas limit

n

(
∂T

∂n

)
σ

= T

C̃
. (15)

5In a general case, when particle numbers are not conserved, σ

equals the entropy per baryon.

After calculating the derivatives of P,ε in (14) and using
Eq. (15) we obtain the following formula for the sound velocity
of a one-component ideal gas:

cid
s =

√
ξ−1(1 + C̃−1). (16)

One can see that the sound velocity of the classical ideal gas
is a function of temperature only.

In the nonrelativistic limit, T � m, using the asymptotic
formulas for McDonald functions, one gets the approximate
expressions

ξ � x + 5

2
+ 15

8x
+ · · · , C̃ � 3

2
+ 15

4x
− 15

2x2
+ · · · .

(17)
Substituting Eq. (17) into Eq. (16), we get the well-known

nonrelativistic expression cid
s �

√
5T
3m

for the sound velocity of
a monatomic ideal gas.

In the opposite, high-temperature limit, T � m, one ob-
tains from Eqs. (11)–(12)

ξ � 4 + x2

2
+ · · · , C̃ � 3 − x2

2
+ · · · . (18)

This leads to the ultrarelativistic result cid
s � 1/

√
3 � 0.577.

One can show that cid
s (T ) is a monotonically increasing

function with the asymptotic value 1/
√

3 .

C. Contribution of hard-sphere interaction

In this section we consider deviations from the ideal-gas
limit for particles with HSI. Let us denote by �A the shift of
any quantity from its ideal-gas value:

�A ≡ A − Aid. (19)

It is clear that �A → 0 in the dilute gas limit n → 0. Inte-
grating the thermodynamic relation [15] dμ = 1

n
(dP − sdT )

along the density axis (at fixed T ), one obtains the equation

�μ(T ,n) =
∫ n

0

dn1

n1

∂�P (T ,n1)

∂n1
. (20)

Here we have used the condition limn→0 �μ = 0. Substituting
�P = nT (Z − 1), one arrives at the relation �μ = T ψ(n)
where

ψ(n) = Z(n) − 1 +
∫ n

0

dn1

n1
[Z(n1) − 1]. (21)

The same formula for �μ has been obtained earlier in
Ref. [18]. Using further Eq. (7) we finally get the equation
for the chemical potential μ = μid + �μ as a function of T
and n:

μ = T

[
ln

n

φ(T )
+ ψ(n)

]
. (22)

By solving Eq. (22) with respect to n and substituting the
result into Eq. (1) one can calculate pressure as a function
of grand-canonical variables T ,μ. In particular, this may be
useful for finding possible phase transitions by using the Gibbs
construction. Parametrizations of the compressibility factor
introduced in Sec. II A are rather useful because they permit
an analytical integration in Eq. (21). For example, in the EVM
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Eqs. (1), (3), and (21) give the following result:

ψEVM = Z − 1 + ln Z = bP

T
+ ln

(
1 + bP

T

)
, (23)

where b = 4v is the “excluded volume” introduced by van der
Waals. Substituting Eq. (23) into Eq. (22) leads to a simple
formula for chemical potential:

μ = T ln
P

T φ(T )
+ bP (EVM). (24)

One can regard Eq. (24) as the implicit equation for P =
P (T ,μ). In the case considered, solving Eq. (24) with respect
to P is equivalent to solving Eq. (22) with respect to n. It is
worth noting that, in the EVM, the shift of chemical potential
from the ideal-gas value (b = 0) is linear in pressure. But this
conclusion is not universal: it does not hold in the CSA.

Indeed, substituting (4) into Eq. (21) gives the following
formula:

ψCSA = 3 − η

(1 − η)3
− 3. (25)

In Fig. 1 we present numerical values of ψ(n) in the EVM
and CSA. One can see that at given T ,n the values of ψ and,
therefore, deviations of chemical potential from the ideal-gas
values are larger in the EVM.

D. Nucleonic matter

Let us consider first a system consisting of nucleons
(m = 939 MeV, g = 4). In this case n is the conserved
baryon density, which together with temperature defines the
thermodynamic state. At fixed n and T the shift of free-energy
density due to nucleon interactions equals �f = n�μ − �P .
Using further Eqs. (8) and (21) we obtain the expression for
the free-energy density of interacting nucleons,

f = nT

{
ln

n

φ(T )
− 1 +

∫ n

0

dn1

n1
[Z(n1) − 1]

}
. (26)

Equations (5) and (26) lead to the following formulas for
entropy and energy densities:

s = n

{
ln

φ(T )

n
+ ξ (T ) −

∫ n

0

dn1

n1
[Z(n1) − 1]

}
, (27)

ε = f + T s = nT [ξ (T ) − 1], (28)

where ξ (T ) is defined in Eq. (11).
From Eqs. (10) and (28) one can see that HSI does not

produce any shift of the energy density as compared to the
ideal gas of point-like nucleons.6 As a consequence, the
isochoric heat capacity CV = (∂ε/∂T )n is the same as in the
ideal gas: CV = nC̃(T ) where C̃(T ) is given by Eq. (12).
According to Eq. (27), the entropy per particle σ = s/n is

6This result is rather obvious. It is clear that the energy per particle,
ε/n, for a one-component system with classical hard-sphere particles
should depend only on temperature, at least for densities below the
liquid-solid transition. Therefore, increasing the density at fixed T

does not change ε/n.

reduced due to hard-core interaction of nucleons. This leads to
a modification of the Poisson adiabat (σ = const) in the n-T
plane as compared to the ideal gas. Indeed, using Eq. (27), we
obtain for the isentropic process,

n

(
∂T

∂n

)
σ

= ZT C̃−1. (29)

Comparing this result with Eq. (15) we conclude that the slope
of the Poisson adiabat of nucleonic matter increases with
density due to the appearance of the compressibility factor
Z > 1.

The sound velocity can be obtained from Eqs. (1), (14),
and (28)–(29). This leads to the analytical expression

c2
s = 1

ξ + Z − 1
[(nZ)′ + Z2C̃−1], (30)

where prime means the derivative with respect to n. In the
ideal-gas limit Z → 1 this formula coincides with Eq. (16).
In the case of a nucleon gas at realistic temperatures T � m,
using the relations (17) one can derive the approximate formula

c2
s � (nZ)′ + 2Z2/3

Z + x + 3/2
, (31)

where x = m/T . Equations (30) and (31) clearly show
that HSI leads to superluminal sound velocities cs > 1 at
sufficiently high densities where Z is large (for further
discussion, see Ref. [7]). This is especially evident in the EVM
where (nZ)′ = Z2. According to Eq. (31), in this case c2

s is
proportional to Z at large Z.

In Fig. 2 we compare the sound velocities calculated by
using the parametrizations (3) and (4) for two typical values of

FIG. 2. (Color online) Sound velocity of nucleon gas as a func-
tion of density for two values of temperature T = 100 (thick lines)
and 200 (thin lines) MeV. The solid and dashed curves are calculated
by using compressibility functions proposed in the CSA and EVM.
The dash-dotted lines are obtained in the limit of point-like nucleons
(R = 0).
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FIG. 3. (Color online) Sound velocity of nucleonic matter as a
function of density for different values of parameter R. The dashed
and solid curves are calculated, respectively, in the EVM and CSA.
The dash-dotted line corresponds to point-like nucleons.

temperature. We have chosen the nucleon radius R = 0.39 fm
which corresponds to the excluded volume b = 1 fm3, used
previously in Ref. [7]. Again one can see that the CSA
predicts a much softer EoS (i.e., smaller cs) than the EVM.
Our calculations show that, at realistic temperatures T �
200 MeV, the sound velocity in the CSA remains below unity
up to rather large densities n � 0.9 fm−3. On the other hand,
superluminal sound velocities appear in the EVM at much
smaller n. According to Fig. 2, deviations from the ideal-
gas limit R → 0 become significant already at subnuclear
densities n ∼ 0.1 fm−3.

Figure 3 demonstrates that the sound velocity is very
sensitive to the choice of the particle size R. Note that a
20% reduction of R, from 0.39 to 0.31 fm, corresponds to
the twofold decrease of the excluded volume b. It is seen that
the difference between CSA and EVM is smaller for lower R.
Figure 4 shows the results for the baryon chemical potential as
a function of nucleon density and pressure. One can see that
at n � 0.4 fm−3 the CSA indeed predicts significantly smaller
values of μ as compared to the EVM. On the other hand, at
given μ the pressure in the CSA is noticeably larger than in
the EVM. This makes the nucleon phase more stable at high
densities as compared to the EVM.

E. Pion matter

Let us consider now thermodynamic properties of matter
composed of finite-size “thermal” pions with the vacuum mass
mπ = 140 MeV and the statistical weight gπ = 3. As before,
we assume the hard-sphere interaction of particles and perform
all calculations in the Boltzmann approximation. To emphasize
specific features of the pion system we introduce the subscript
“π .” Using Eqs. (1), (22), one can write the following equations
for pressure and chemical potential of pions

Pπ = T nπZ(nπ ), μπ = T

[
ln

nπ

φπ (T )
+ ψ(nπ )

]
, (32)

where φπ and ψ are defined in Eqs. (6) and (21) (with
m = mπ,g = gπ ).

At fixed temperature one can find equilibrium values of
density nπ = nπ (T ) and other thermodynamic functions from
the condition of chemical equilibrium μπ = 0. Then we obtain
the following implicit equation for density of pions:

nπ = φπ (T )e−ψ(nπ ). (33)

As one can see from Eq. (33), finite-size effects suppress the
pion density as compared to the ideal-gas limit ψ → 0. This
is illustrated in Fig. 5 where we compare the results of the

FIG. 4. (Color online) Chemical potential of nucleon gas as a function of (a) density and (b) pressure calculated in the CSA (solid lines)
and EVM (dashed lines) at temperatures of 100 and 200 MeV. The dash-dotted lines correspond to point-like nucleons.
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FIG. 5. (Color online) Equilibrium density of pions as a function
of temperature for different values of parameter R. The dashed and
solid curves are obtained, respectively, in the EVM and CSA. The
dash-dotted line corresponds to ideal gas of point-like pions.

EVM and CSA, for several values of the hadronic radius R.
One can see noticeable deviations from the ideal gas already
at T � 150 MeV, but a significant difference between the
CSA and EVM calculations appears only at unrealistically
high temperatures T � 400 MeV. Such behavior follows
from a relatively slow increase of pion packing ratio with
temperature. Note that short-range repulsive interactions of
pions also suppress possible Bose-enhancement effects at high
temperatures (see Sec. III F).

One can easily calculate the entropy density of interacting
pion gas. In the case μπ = 0, using the thermodynamic relation
sπ = dPπ/dT , one has

sπ = T
dnπ

dT
(nπZ)′ + nπZ = nπ (Z + ξπ − 1), (34)

where prime denotes the derivative with respect to the density
nπ and ξπ is defined in Eq. (11). In the second equality we use
the relation

T
dnπ

dT
= nπ (ξπ − 1)

1 + nπψ ′ = nπ (ξπ − 1)

(nπZ)′
, (35)

which follows from Eq. (33) after taking the derivative with
respect to T . According to Eqs. (34) and (18) the entropy
per pion sπ/nπ equals approximately Z + 3 at T � mπ . This
value exceeds the corresponding ratio for massless point-like
pions (Z = 1).

Equation (34) leads to the following formula for the energy
density επ = T sπ − Pπ :

επ = nπT (ξπ − 1). (36)

From this result one can see that, at a given temperature, the
energy per particle is the same as in the ideal pion gas. Using
Eqs. (35), (36), and (12) we get the equation for the heat

FIG. 6. (Color online) Sound velocity of pion gas as a function
of temperature for different values of parameter R. The dashed and
solid curves are calculated, respectively, in the EVM and CSA. The
dash-dotted line corresponds to point-like pions.

capacity per pion C̃π = n−1
π dεπ/dT :

C̃π = x2
π + 3ξπ + (ξπ − 1)2

[
1

(nπZ)′
− 1

]
, (37)

where xπ = mπ/T .
Finally we obtain the following formula for the sound

velocity squared:

c2
s = dPπ

dεπ

= sπ

nπ C̃π

= Z + ξπ − 1

C̃π

. (38)

In the ideal-gas limit Z → 1 one gets cs = (3 + x2
π/ξπ )−1/2 =

(3 + xπK2/K3)−1/2. By using Eq. (18) we arrive at the
approximate relation

c2
s � 1

3
(Z + nπZ′)

(
1 + nπZ′

Z + 3

)−1

(39)

in the ultrarelativistic case xπ � 1. Figure 6 shows the results
of cs calculations with the parameters R = 0.20 and 0.39 fm.
One can see that at T � 200 MeV the obtained sound
velocities noticeably exceed the asymptotic ideal-gas value
cs = 1/

√
3. The calculations show that these velocities be-

come superluminal only at unrealistically high temperatures
at which hadrons should melt [19,20].

III. HADRONIC MIXTURES

A. General remarks

Let us consider now a multicomponent hadronic matter
composed of particles of different kinds i = 1,2, . . .. Most
detailed information about the EoS of this matter can be
obtained if one knows its pressure P = P (T ,n1,n2, . . .) as
a function of temperature T and partial densities ni = Ni/V .
As before, we neglect the quantum effects and assume that
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particles interact via HSI. In this case one can write down [3]
the first two terms of the virial expansion of pressure in powers
of ni :

P

nT
= 1 +

∑
i,j

bij xixj + · · · . (40)

Here n = ∑
i ni is the total density, xi = ni/n, and coefficients

bij = 2πn
3 (Ri + Rj )3, where Ri is the radius of the ith species.

If particle radii are the same (Ri = R for all i) the second
term in the r.h.s. equals 4η where η = 4πR3n/3. In this limit
most of the results for one-and multicomponent systems will
be formally the same. In particular, one may use Eq. (1) and
the formulas for thermodynamic functions from Sec. II D by
identifying the variable n with the total density of all species.

It is possible to calculate the shift of the free-energy density,
�f , for any multicomponent system if one knows its pressure
as a function of temperature and partial densities. Below we use
the method suggested in Ref. [21]. Using the thermodynamic
relation dF = −PdV for the change of total free energy F
in the isothermal process, one can write down the equation
connecting the shifts of F and P :

�F =
∫ ∞

V

dV∗�P

(
T ,

N1

V∗
,
N2

V∗
, . . .

)
. (41)

The r.h.s. of this equation is equal to the work done by particle
interactions during the isothermal compression of matter from
an asymptotically large volume to V∗ = V . Introducing the
variable α = V/V∗ one obtains the expression for �f =
�F/V :

�f =
∫ 1

0

dα

α2
�P (T ,αn1,αn2, . . .). (42)

For a one-component matter with HSI, substituting �P =
nT (Z − 1), we return to the formulas obtained in Sec. II D.

It is easy to derive exact results for mixtures where one
of the components consists of point-like particles. Namely,
let us consider a two-component system where the ratio of
particle radii R2/R1 is small. In the limit R2 → 0 one can
regard the component i = 2 as an ideal gas but in the reduced
“free” volume Ṽ = V − N1v1 = V (1 − η1). Here v1 and η1

are, respectively, the proper volume and the packing fraction
of particles i = 1. The partial pressure of the first component
may be written analogously to Eq. (1). This leads to the
following equation for pressure of a two-component mixture
with R2/R1 � 1 [3]:

P (T ,n1,n2) = n1T Z(n1) + n2T

1 − η1
. (43)

The last term is the partial pressure of the second component
P2 = ñ2T . Here ñ2 = N2/Ṽ is the “local” density of particles
i = 2 which is larger than the “average” density n2 = N2/V .
Using Eq. (43) one can easily prove the validity of the virial
theorem (40) in the limit n1,n2 → 0. In fact, instead of particles
i = 1 we can consider an arbitrary multicomponent mixture
composed of hadrons with the same radii. In this case n1 equals
the total density of such a mixture.

B. N + � matter

In this section we consider the EoS of a chemically equili-
brated binary mixture of baryons: nucleons (N ) and the lightest
� resonances (m� = 1232 MeV, g� = 16). This system is
characterized by two canonical variables: temperature and the
baryon density nB = nN + n�. We assume that all baryons
have the same radii, i.e., RN = R� = R. In this case HSI does
not distinguish N and �, therefore, the hadronic pressure can
be written as P = nBT Z(nB). The same arguments as used in
deriving Eq. (22) lead to the equation for chemical potential
of the ith species (i = N,�):

μi = T

[
ln

ni

φi(T )
+ ψ(nB)

]
. (44)

Here φi is defined in Eq. (6) with the replacement m →
mi,g → gi .

From the condition of chemical equilibrium μN = μ� =
μB we get the expressions

μB = T

[
ln

nB

φN + φ�

+ ψ(nB)

]
, (45)

ni = nBwi(T ), w� = 1 − wN = φ�

φN + φ�

. (46)

The relative fractions of ith baryons, wi , depend on tempera-
ture only and coincide with corresponding values for the ideal
gas of N + � baryons [22].

Using Eq. (45) one obtains the formula for the free-energy
density,

f = μBnB − P = nBT

{
ln

nB

φN + φ�

− 1

+
∫ nB

0

dn1

n1
[Z(n1) − 1]

}
. (47)

This leads to the following equations for the energy density
and isochoric heat capacity of the N + � mixture:

ε = f − T

(
∂f

∂T

)
nB

= nBT 〈ξ − 1〉, (48)

CV =
(

∂ε

∂T

)
nB

= nB[〈x2 + 3ξ 〉 − 〈ξ − 1〉2] ≡ nBC̃(T ).

(49)

Angular brackets in Eqs. (48) and (49) denote averaging over
the concentrations of N and � particles. Namely, we define
〈A〉 = ∑

i=N,� Aiwi where wi is introduced in Eq. (46) and Ai

is any quantity characterizing the ith component. In particular,
〈ξ 〉 = ξNwN + ξ�w� where ξi is defined in Eq. (11). As
one can see from Eqs. (48) and (49), the energy and heat
capacity densities are the same as in the ideal gas of N + �
particles [22].

Figure 7(a) shows the temperature dependence of the total
energy per baryon E/B as well as the partial contributions
to this quantity, Ei/B = T (ξi − 1)wi (i = N,�). Note that
all quantities considered in Figs. 7(a) and 7(b) are functions
of temperature only and do not depend on the baryon
density (in the Boltzmann approximation). At fixed baryon
charge B = NN + N� the equilibrium number of �s increases
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FIG. 7. (Color online) (a) The average energy per baryon of N + � matter E/B and partial contributions of nucleons and �s as functions
of temperature (all energies are given in GeV). (b) The dashed, solid, and dash-dotted curves show, respectively, relative contributions of
resonances to energy, baryon charge, and heat capacity. The dotted line shows temperature dependence of the total heat capacity per baryon
minus 3/2.

with temperature. One can see that excitation of resonances
becomes important at T � 50 MeV. It is interesting to note
that the nucleon part of energy, EN , drops with temperature7

in the interval of T approximately between 50 and 350 MeV.
Introducing the partial components C̃i = B−1dEi/dT of the
total heat capacity C̃ we conclude that the nucleon contri-
bution, C̃N = C̃ − C̃�, is negative in the above-mentioned
interval of T . One can see from Fig. 7(b) that C̃� > C̃ in
this region.

Now we calculate the sound velocity of equilibrium
hadronic matter by using the general formula [23]

c2
s = 1

ε + P

[
nB

(
∂P

∂nB

)
T

+ T

CV

(
∂P

∂T

)2

nB

]
. (50)

Note that calculating cs from Eq. (50) does not require an
explicit form of the Poisson adiabat: one should know only P
and ε as well as their partial derivatives with respect to T and
nB . We would like to stress that Eq. (50) is applicable for any
form of short-range interaction, for any number of hadronic
species (including antibaryons and strange particles) and can
be used even in the case of quantum statistics.

For a given EoS, one can use Eq. (50) to check constraints
imposed by the causality condition cs ≤ 1. For example, for
the polytropic EoS P = αn

γ
B at zero temperature, Eq. (50)

predicts that

c2
s = P ′(nB)

[∫ nB

0

dn

n
P ′(n)

]−1

= γ − 1.

7This occurs because the growth of the nucleon single-particle
energy, EN/NN = T (ξN − 1), with raising T is compensated by a
stronger decrease of the number of nucleons NN (T ) = wN (T )B.

Therefore, in this case the parameter γ should satisfy the
condition8 1 ≤ γ ≤ 2.

One can calculate the sound velocity of the N + � mixture
using Eq. (50) and formulas for P,ε,CV derived in this section.
We arrive at the following result:

c2
s = (nBZ)′ + Z2C̃−1

〈ξ 〉 + Z − 1
, (51)

where prime denotes the derivative with respect to nB . Note
that this formula can also be obtained from Eq. (30) if one
replaces n,ξ by nB,〈ξ 〉 and uses, instead of Eq. (12), the
expression (49) for C̃.

Figure 8 shows the results of cs calculation in the EVM and
CSA. We choose the hadron hard-core radius R = 0.39 fm.
Again one can see that the CSA predicts smaller sound
velocities than the EVM. As compared to the EVM, the
sound velocity in the CSA increases with nB much slower,
but the temperature dependence is rather similar. In Fig. 9
we compare the sound velocities of the nucleonic and N + �
matter. Both calculations are made in the CSA. The ideal gas
results are obtained by taking the limit nB → 0. One can see
that inclusion of resonances leads to a noticeable reduction of
sound velocities at T � 50 MeV. For realistic temperatures
T � 200 MeV, superluminal values cs > 1 appear only at
baryon densities nB � 1 fm−3.

The N + � mixture considered so far cannot be regarded as
a realistic system at high temperatures. In this case mesons will
be copiously produced due to inelastic collisions of baryons
and decays of resonances. To take these processes into account,
in Secs. III C and III D we investigate the EoS of a three-
component π + N + � mixture. In this study we again assume

8The causal limit for the polytropic EoS was first considered in
Ref. [24].
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FIG. 8. (Color online) Sound velocity of N + � matter as a
function of temperature for several values of baryon density nB . Thick
and thin curves give the results of CSA and EVM, respectively.

that hadrons interact via HSI and neglect possible differences
in baryonic radii, i.e., we take RN = R� = R. To estimate the
sensitivity to the pion size, we consider two limiting cases.
First, we assume equal radii for all species, i.e., we choose
Rπ = R, and then we investigate the π + N + � mixture with
point-like pions (Rπ = 0).

C. π + N + � matter (same size of hadrons)

In this section we consider the π + N + � mixture assum-
ing equal sizes of all hadrons. In this case one can find shifts of

FIG. 9. (Color online) Sound velocities of baryon matter as func-
tions of temperature for different values of baryon density nB . Thin
and thick lines correspond, respectively, to the nucleon matter and to
the N + � mixture. All calculations are made in the CSA.

thermodynamic functions in the same way as in Sec. II C for
a one-component system. The only difference is that instead
of particle density n one should substitute the total density of
hadrons nπ + nB . As a result, we obtain the relations

P = nT Z(n), n = nπ + nB, (52)

μi = T

[
ln

ni

φi(T )
+ ψ(n)

]
, (53)

for pressure and chemical potentials of particle species i =
π,N,�. Using the conditions of chemical equilibrium μπ =
0, μN = μ� = μB , one gets the equations for equilibrium
pion density,

nπ = φπ (T )e−ψ(nπ +nB ), (54)

and for baryon chemical potential,

μB = T

[
ln

nB

φN + φ�

+ ψ(nπ + nB)

]
. (55)

Solving Eq. (54) with respect to nπ and substituting the result
into Eq. (52) gives the equilibrium pressure P = P (T ,nB)
of the considered mixture. Similarly to Sec. III B, one can
show that equilibrium fractions nN/nB and n�/nB are the
same as in the ideal N + � gas [see Eq. (46)]. According
to Eq. (54), interaction with baryons leads to suppression of
pion density as compared to pure pion gas (nB = 0). This
is demonstrated in Fig. 10 (see the solid and short-dashed
curves).

Calculating further the free-energy density f = μBnB −
P and using Eqs. (5), (54), and (55) lead to the following

FIG. 10. (Color online) Equilibrium pion density in π + N + �

mixture as a function of baryon density for T = 200 MeV. The
solid and short-dashed curves are calculated within CSA and EVM
assuming equal sizes of hadrons. The long-dashed line is obtained in
the limit of point-like pions. The dashed-dotted curve corresponds to
the ideal gas.
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equations for the energy density and heat capacity:

ε = T [nB〈ξ − 1〉 + nπ (ξπ − 1)], (56)

CV = nB[〈x2 + 3ξ 〉 − 〈ξ − 1〉2] + nπ

[
x2

π + 3ξπ

− (ξπ − 1)2(1 − χ )
]
, (57)

where

χ = 1 +
(

∂nπ

∂nB

)
T

= [1 + nπψ ′(n)]−1

(here and below prime denotes the derivative with respect
to n) . Note that Eq. (56) formally corresponds to the ideal
π + N + � gas, but with reduced pion density nπ < nid

π =
φπ (T ).

Using Eq. (50), one can calculate the sound velocity of the
considered matter. We use the following expressions for the
derivatives of pressure:(

∂P

∂nB

)
T

= T χ (nZ)′,
(58)(

∂P

∂T

)
nB

= nZ + χ (nZ)′nπ (ξπ − 1).

The results of cs calculation are shown by the solid lines in
Fig. 11 for two values of temperature. The local minima of cs

at nB ∼ 0.2 fm−3 appear due to a nonmonotonic behavior of
the total density nπ + nB as a function of nB . Again one can
see that compared to EVM, the region of superluminal sound
velocities in CSA is shifted to higher baryon densities.

D. π + N + � mixture with point-like pions

Finally, we consider the limiting case of point-like pions
(Rπ = 0). In accordance with Eq. (43), in this case one can

represent pressure of the π + N + � system as

P = P (T ,nπ ,nN,n�) = T

[
nπ

1 − η
+ nBZ(nB)

]
, (59)

where η = vnB (v is the proper volume of a baryon)
and nB = nN + n�. The compressibility factor Z describes
the contribution of baryon interactions. Below we use the
parametrizations of Z from Eqs. (3) and (4). Substituting
�P = P − (nπ + nB)T into Eq. (42), one can write the shift
of free-energy density as follows:

�f = f − T
∑

i=π,N,�

ni

[
ln

ni

φi(T )
− 1

]

= T

{
nπ ln (1 − η)−1 + nB

∫ nB

0

dn1

n1
[Z(n1) − 1]

}
. (60)

Using further the conditions of chemical equilibrium

μπ = ∂f

∂nπ

= 0, μB = ∂f

∂nN

= ∂f

∂n�

, (61)

we get the equations for equilibrium densities ni(i = π,N,�)
as functions of T and nB . In this way one obtains the same
formulas for nN and n� as for N + � matter [see Eq. (46)].
From Eq. (61) we get the relation

μB = T

[
ln

nB

φN + φ�

+ ψ(nB) + vφπ

]
. (62)

One can see from Eqs. (45) and (62) that inclusion of point-
like pions leads to the additional term of the baryon chemical
potential, δμB = T φπv, as compared to the N + � system.
This contribution has a clear physical meaning. Indeed, to add
one baryon to the system of point-like pions, one should create
a cavity of volume v. At fixed temperature this requires the
additional energy (work) δE = Pπv, where Pπ = T φπ is the
partial pressure of pions (see below). Therefore, the baryon

FIG. 11. (Color online) Sound velocity of π + N + � matter as a function of baryon density for (a) T = 150 MeV and (b) 200 MeV. Thick
and thin curves give, respectively, the results of CSA and EVM. The solid lines correspond to the case of equal sizes of baryons and pions. The
dashed lines show the results in the limit of point-like pions. The dash-dotted curves correspond to the ideal gas.
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FIG. 12. (Color online) Sound velocity of π + N + � matter as
a function of temperature for different values of baryon density
nB . Thick and thin lines are calculated within the CSA assuming,
respectively, the pion radii Rπ = 0.39 fm and Rπ = 0.

chemical potential should be shifted by the value δμB = Pπv.
Note that this shift may be significant even at small nB .

Equilibrium values of pion density and pressure can be
written as

nπ = φπ (T )(1 − η), P = T [φπ (T ) + nBZ(nB)]. (63)

The last factor in the first equality describes the reduction
of volume, available to pions. A linear decrease of nπ as a
function of nB is clearly seen in Fig. 10. One can also obtain
the explicit formulas for ε and CV . They are given by Eqs. (56)
and (57) after substituting χ = 1.

Using further Eq. (50) we get the equation for sound
velocity squared,

c2
s = nB(nBZ)′ + C−1

V (ξπφπ + nBZ)2

nB[〈ξ 〉 + Z − 1] + φπ [ξπ (1 − η) + η]
. (64)

At small T , when φπ � 1, one obtains Eq. (51) for the sound
velocity of the N + � mixture. In Figs. 11 and 12 we compare
the results of cs calculations for Rπ = 0.39 fm and Rπ = 0.
As expected, at fixed T and nB the sound velocity increases
with Rπ . A realistic value for Rπ is somewhere between the
two considered cases. Based on the results presented in Fig. 12
we conclude that the EoS for the π + N + � mixture remains
causal up to the baryonic densities where the deconfinement
phase transition is expected.

E. Extended set of hadrons: baryons, antibaryons, and mesons

In this section we consider a multicomponent hadronic sys-
tem, which includes baryons (i = N,�,�, . . .), antibaryons
(i = N,�,�, . . .), and mesons (i = π,K,K, . . .). We take into

account all observed hadrons with masses below 2 GeV.9 As
before, the isospin and Coulomb effects are neglected, and
hadronic resonances are treated in the zero-width approxima-
tion. Below we consider the simplest case when all hadrons
have the same hard-core radii (Ri = R).

At given temperature and fixed chemical potentials {μi} one
can find partial densities of different hadronic species {ni} by
generalizing the procedure described in Sec. III C. We obtain
the relations

ni = nid
i (T ,μi)e

−ψ(nT ), (65)

where the first factor is the partial density of the ideal gas of
ith hadrons:

nid
i (T ,μi) = φi(T )eμi/T . (66)

The quantity ψ(nT ) is defined by Eq. (21) with replacing n by
the total density of all hadronic species nT = ∑

i ni . By taking
sum over all i we get from Eq. (65) an implicit equation for
nT :

nT = e−ψ(nT )nid
T , (67)

where nid
T = ∑

i n
id
i . At given T and {μi} one can calculate nT

and the hadron abundances ni from Eqs. (65)–(67).
Generalizing Eqs. (52) and (56) for the case of a multi-

component hadronic gas leads to the following expressions
for pressure and energy density:

P = T nT Z(nT ), (68)

ε = T
∑

i

ni[ξi(T ) − 1]. (69)

The net-baryon and net-strangeness densities of hadronic
matter are defined as follows:

nB =
∑

i

Bini, nS =
∑

i

Sini, (70)

where Bi = 0, ± 1 and Si = 0, ± 1, ± 2, ± 3 are, respec-
tively, the baryon charge and the strangeness number of
hadrons. At given chemical potentials these densities are
reduced by the factor exp (−ψ) as compared to the ideal gas.

The condition of chemical equilibrium with respect to
strong interactions leads to the general expression for chemical
potentials of different species:

μi = BiμB + SiμS, (71)

where μB and μS are, respectively, the baryon and strange
chemical potentials. Below we assume that total strangeness
of the hadronic system is equal to zero.10 In this case one can
calculate μS from the condition of strangeness neutrality

nS(T ,μB,μS) = 0. (72)

By using Eqs. (65)–(72) one may find all thermodynamic
quantities of nonstrange hadronic matter as functions of T

9We include the same set of hadrons as in Ref. [7].
10Note that hadronic matter with nonzero net strangeness can be

formed in compact stars and at intermediate stages of heavy-ion
collisions [7].
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FIG. 13. (Color online) Total density of hadronic matter as well as its contributions from baryons, antibaryons, and mesons as functions
of the net baryon density nB for (a) T = 150 MeV and (b) 200 MeV. All calculations are made in the CSA assuming the hadronic radius
R = 0.39 fm.

and nB . Then Eq. (50) can be used to determine the sound
velocity cs .

In Figs. 13 and 14 we present the results of the CSA
calculation for R = 0.39 fm. According to Fig. 13, relative
abundances of antibaryons rapidly drop with raising nB . Even
at small nB they do not exceed 6% and 15% at temperatures
150 and 200 MeV, respectively. Our calculations show that at
nB → 0 the partial densities of different hadrons are reduced
as compared to the ideal gas by about 30% and 70% at
T = 150 and 200 MeV. One can see from Fig. 13 that, at fixed
temperature, baryons become more abundant than mesons at
large enough nB . Our calculations show that at T = 150 MeV

this occurs at nB > 0.13 fm−3 which corresponds to μB >
440 MeV. It is interesting that a similar conclusion has been
drawn [25] from the thermal fit of hadron ratios observed in
heavy-ion collisions at AGS and SPS bombarding energies. It
has been shown that the transition from a meson-dominated
to a baryon-dominated matter occurs at center-of-mass energy√

sNN � 8.2 GeV for which the freeze-out parameters are T �
140 MeV, μB � 410 MeV. As one can see from Fig. 13(a),
the abundance of antibaryons is negligible at these conditions.

Figure 14 represents the sound velocity as a function of
nB for the same values of temperature as in Fig. 13. One can
see that cs values are slightly reduced as compared with the

FIG. 14. (Color online) Sound velocity of hadronic matter as a function of net baryon density for (a) T = 150 MeV and (b) 200 MeV.
The solid and dashed lines correspond, respectively to the (anti)baryon-meson and N + � + π matter. The calculations are made in the CSA
assuming the radius R = 0.39 fm for all hadrons. The dash-dotted lines show the results in the limit of ideal gas.
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N + � + π matter and the acausal behavior appears even at
larger nB .

F. Role of quantum-statistical effects

Let us now discuss the applicability domain of the Boltz-
mann approximation (BA) which ignores possible effects of
quantum (Bose and Fermi) statistics. It is well known [15]
that, in the case of ideal gas, these effects become stronger
at low temperatures and large chemical potentials. To include
simultaneously the quantum-statistical and short-range repul-
sion effects, we apply below the procedure suggested in the
excluded-volume model [5]. Only the case of equal hard-core
radii for all hadrons (Ri = R) is considered.

The following equation for pressure is used in the EVM [7]:

P =
∑

i

P̃i(μ̃i ,T ), (73)

where P̃i(μ̃i ,T ) is the partial pressure of ideal gas of the ith
hadrons at temperature T and chemical potential μ̃i . The
relation connecting μ̃i with the real chemical potential μi

reads

μ̃i = μi − bP, (74)

where b = 4v is the excluded-volume parameter introduced
in Sec. II C. The expressions (73) and (74) give the implicit
equation for P at given temperature and chemical potentials
{μi}. By using the conditions of chemical equilibrium (71) and
strangeness neutrality (72), one can finally calculate pressure
as well as partial densities ni = ∂P/∂μi at different μB

and T .
Below we use the explicit relation [26]

P̃i(μ̃i ,T ) = gi

6π2

∫ ∞

mi

dE
(
E2 − m2

i

)3/2

×
[

exp

(
E − μ̃i

T

)
± 1

]−1

. (75)

The lower sign in Eq. (75) corresponds to mesons (Bi = 0),11

and the upper sign to baryons (Bi = 1) or antibaryons
(Bi = −1).

At sufficiently small μB one can represent the r.h.s. of
Eq. (75) as a series in the fugacity exp (μ̃i/T ) [7]:

P̃i =
∞∑
l=1

(∓1)l+1 T

l
φi

(
T

l

)
exp

(
μ̃i l

T

)
. (76)

Corresponding formulas in the BA are obtained if one retains
only the first (l = 1) term in Eq. (76) or, equivalently, neglects
the term (±1) in the denominator of Eq. (75). Then we arrive at
the approximate expression P̃i � T φi(T ) exp (μ̃i/T ) which is
the generalization of Eq. (24) for the case of multicomponent
systems.

For a qualitative analysis, let us consider the nonrelativistic
limit when T � mi for all hadronic species. In this case φi ∝

11It is assumed that the conditions for Bose condensation of mesons,
μ̃i � mi , are not satisfied (for details, see Ref. [7]).

T 3/2e−mi/T and one can see that the relative contribution of the
l = 2 term in Eq. (76) is of the order of e(μi−mi )/T multiplied
by the additional suppression factor e−bP/T due to the HSI.
These estimates show that deviations from Boltzmann limit
are relatively small if the conditions μi < mi are satisfied.
In particular, this means that the baryon chemical potential
should not exceed the nucleon mass mN .

Taking the parameter b = 1 fm3 we have numerically
solved Eqs. (73)–(75) in the temperature interval 0 < T <
250 MeV. We take the same set of hadrons as in Sec. III E. We
found that, indeed, relative magnitudes of quantum-statistical
corrections to pressure and hadronic densities do not exceed
several percent if μB < mN .

The situation is different for larger baryon chemical
potentials. Note that at μ̃i > mi the sum in Eq. (75) diverges
at l → ∞. In the considered region of μB the pressure of
nonstrange baryons (Bi = 1,Si = 0) does not vanish at zero
temperature:

P̃i(μ̃i ,0) = gi

6π2

∫ μ̃i

mi

dE
(
E2 − m2

i

)3/2
�(μ̃i − mi), (77)

where �(x) = 1
2 [1 + sgn(x)].

The results of our numerical calculations are presented in
Figs. 15 and 16. By thick lines we show the pressure and baryon
density as functions of temperature for several values of μB

exceeding the nucleon mass. For comparison thin lines show
the results in the Boltzmann approximation. One can see that,
in the range μB = 1 − 1.4 GeV, deviations from Boltzmann
statistics are large at T � 50 MeV. However, they become
relatively small at T � 100 MeV. On the basis of this analysis
we conclude that quantum-statistical corrections do not sig-
nificantly modify the results of preceding sections, where we
have mostly discussed temperatures above 100 MeV.

FIG. 15. (Color online) Pressure of hadronic gas as a function of
temperature for different values of baryon chemical potential μB .
The EVM calculations, assuming the radius R = 0.39 fm for all
hadrons, are shown by thick lines. Thin curves show the results in the
Boltzmann approximation.
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FIG. 16. (Color online) Same as Fig. 15 but for baryon density nB .

One can see that slopes of thin lines in Fig. 15 are negative
at small temperatures. Taking into account that (∂P/∂T )μB

equals the entropy density, we conclude that the third law
of thermodynamics is violated in the BA (this is a well-
known drawback of such approximation). Another unphysical
prediction of the EVM with neglect of quantum-statistical
effects is a universal value of the baryon density: nB → b−1 at
T → 0 for all μB > mN .12 According to Fig. 16, at μB �
1.4 GeV, baryon densities reach the values nB � 0.8 fm−3

which correspond to packing fractions η � 0.2. As shown in
Sec. II A, the EVM becomes unrealistic in this case.

In conclusion of this section we would like to note that our
assumption of classical HSI of hadrons becomes questionable
at low temperatures. Indeed, for this approach to be valid,
the characteristic wavelengths of hadrons’ relative motion
should be smaller than the sum of their radii. This condition
is certainly violated at T → 0. Therefore, a real quantum
description of hadronic interactions is required in this case.
Some steps in this direction have been made in Refs. [6,27].

12It is interesting that the pressure in this limit remains finite, P →
(μB − mN )/b.

IV. CONCLUSIONS AND OUTLOOK

In this paper we investigated the EoS and sound velocities
of one- and multicomponent hadronic systems with HSI. It
is shown that widely used excluded-volume models become
unrealistic at packing fractions exceeding about 0.2. We
demonstrated that the Carnahan-Starling EoS is much softer
and can be applied at much higher densities. Moreover, the
sound velocity calculated for this EoS shows the acausal
behavior only at very high baryon densities, presumably in
the region of the quark-gluon phase transition. Comparing
the sound velocities in hot and dense hadronic systems with
different compositions of particles, we studied the sensitivity
of the EoS of strongly interacting matter to the formation of
mesons, antibaryons, and hadronic resonances.

We also estimated corrections to the EoS due to the quantum
statistics. Our conclusion is that they are small unless the
baryon chemical potential exceeds the nucleon mass and
temperature is below 100 MeV. Therefore, these corrections
can be safely neglected under conditions expected in heavy-ion
collisions at laboratory energies exceeding approximately
1 GeV/nucleon.

In the future we are going to perform a more detailed
analysis of hadronic mixtures with unequal radii of different
particle species. Using the Carnahan–Starling EoS and the
approach suggested in Ref. [7] we plan to investigate the
sensitivity of the phase diagram of strongly interacting matter
to finite sizes of hadrons. In this way one can construct a
realistic EoS suitable for hydrodynamical modeling of heavy-
ion collisions. In particular, one may perform calculations
similar to those done in Refs. [28,29] to analyze possible
signatures of the deconfinement phase transition at FAIR and
NICA energies.
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