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An approach based on combined solutions of the Bethe-Salpeter (BS) and Dyson-Schwinger (DS) equations
within the ladder-rainbow approximation in the presence of singularities is proposed to describe the meson
spectrum as quark-antiquark bound states. We consistently implement in the BS equation the quark propagator
functions from the DS equation, with and without pole-like singularities, and show that, by knowing the precise
positions of the poles and their residues, one is able to develop reliable methods of obtaining finite interaction
BS kernels and to solve the BS equation numerically. We show that, for bound states with masses M < 1 GeV,
there are no singularities in the propagator functions when employing the infrared part of the Maris-Tandy kernel
in truncated BS-DS equations. For M > 1 GeV, however, the propagator functions reveal pole-like structures.
Consequently, for each type of meson (unflavored, strange, and charmed) we analyze the relevant intervals of M

where the pole-like singularities of the corresponding quark propagator influence the solution of the BS equation
and develop a framework within which they can be consistently accounted for. The BS equation is solved for
pseudoscalar and vector mesons. Results are in good agreement with experimental data. Our analysis is directly
related to the future physics program at FAIR with respect to open charm degrees of freedom.
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I. INTRODUCTION

The investigation of mesons as bound states of quarks
is of fundamental interest for understanding the low-energy
degrees of freedom of a strong interaction and its relation
to quantum chromodynamics (QCD). It is tightly connected
to nonperturbative methods in QCD and directly related to
the study of important phenomena such as dynamical chiral
symmetry breaking, confinement of quarks, and mass splitting
of meson multiplets. In principle, lattice QCD simulations
can provide “experimental” information on most nonper-
turbative effects of QCD. However, with respect to some
practical limitations in lattice calculations, it is extremely
important to elaborate in parallel reliable phenomenological
or semiphenomenological approaches to describe the main
features of nonperturbative QCD. Such approaches would
allow one to extend calculations to large distances, nowadays
inaccessible for exact calculations. From the other side, the
elaboration of consistent models for QCD bound states in
vacuum can serve as clues to understanding the in-medium
properties of hadrons at high densities and temperatures. For
instance, planned experiments at FAIR, GSI [1,2], and NICA
[3] offer next-generation investigations of charmed probes in
proton- and antiproton-induced reactions in nuclei as well as
heavy-ion collisions accessing the region of maximum baryon
density. In contrast, the running experiments at RHIC and
LHC address, among other important issues, the behavior of
charmed probes in hot matter in the deconfinement region.
An ultimate prerequisite of the interpretation of current and
future experiments including high-statistic charmed probes is
a firm theoretical understanding of the meson spectrum in this
mass range. Once this is accomplished, one approaches the
in-medium effect by appropriate methods.

In the present paper, mesonic bound states in vacuum are
described within the framework of the homogeneous Bethe-
Salpeter (BS) equation [4] with momentum-dependent quark
mass functions, determined by the Dyson-Schwinger (DS)
equation. For the sake of consistency, in both the BS and the DS
equations one uses identical interaction kernels. In principle,
if one were able to solve the complete set of DS equations for
quark and gluon propagators and vertex functions as well,
the approach would not depend on additional parameters.
However, due to known difficulties, in real calculations one
restricts oneself to the first one-loop term in the perturbative
series and, based on the obtained results, establishes a general
form of the phenomenological gluon propagators to be used
in the DS and BS equations. In elaborating such approaches
it is important that the suggested BS kernel, which implicitly
is also contained in the DS equation, and dressed quark-gluon
vertices, pertaining to both the BS and the DS equations,
are consistent with each other, i.e., to guarantee at least the
Ward-Takahshi identity [5]. One such approach is known as the
Maris-Tandy model [6] which is based on the rainbow-ladder
approximation of the DS equation (see also [7]). The merit
of the approach is that, once the effective parameters are fixed,
the spectrum of known mesons is supposed to be described on
the same footing, including also excited states. The model has
been applied to explain successfully many spectroscopic data,
such as meson masses [6,8–12], electromagnetic properties
of pseudoscalar mesons and their radial excitations [13], and
other observables [14–20].

The fact that the model encounters difficulties in describing
heavy mesons, M > 1 GeV, with at least one light (u, d, or
s) quark is not often mentioned. However, now this is not
a critical defect of the model since the source of difficulties
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seems to be firmly understood: it is pole-like singularities in
the propagator functions from the DS equation at large meson
masses [21]. An accurate treatment of the singularities relevant
to the kinematical region of the BS equation can essentially
facilitate computations of the BS kernel, in this way removing
the difficulties and allowing stable results to be obtained.

In the present paper we continue our investigation [21] of
the prerequisites to the interaction kernel of the combined
DS and BS formalisms to describe the meson mass spectrum
including heavier mesons and excited states. In a previous
paper [21] it was argued that the propagator functions from
the DS equation are not analytical functions in the Euclidean
complex plane, impeding numerical solutions of the BS
equation. Our goal herein is to analyze the analytical properties
of the quark propagators in the whole kinematical region
relevant to light and semiheavy meson masses, supply a
method to implement the singular propagators in solving
the BS equation numerically, and solve the BS equation
for mesons in the presence of singularities. To this end we
solve the DS equation in the rainbow-ladder approximation
by making use of the hyperspherical harmonics basis to
decompose the propagators and the corresponding potential
and solve numerically the resulting DS equations for the
coefficients of such a decomposition. Then further analysis
of quark singularities is based on a combined application of
Rouché’s theorem and a graphical representation of the inverse
propagators as vortex fields of the corresponding complex
functions (see Ref. [21] for details). In the present paper we
restrict ourselves to meson masses up to M = 3.5 GeV and,
correspondingly, investigate all the relevant poles of quarks
of different flavors (u, d, s, and c quarks) solely in this
kinematical region. Then we suggest a method of accounting
for singularities and solve the BS equation for light and heavier
mesons.

It should be noted that there exist other approaches based
on the same physical ideas of exploring effective quark
interactions. For instance, in Ref. [22] (and references quoted
therein) it was demonstrated that, within an approach with
instanton fluctuations of the QCD vacuum, it is possible to
describe the mechanism of formation of mesons as bound
states of quarks and to analyze their main physical properties,
including the relation between quark propagators and quark
condensates. Other approaches employ simpler interactions,
e.g., a separable interaction for the effective coupling [17].
Such models also describe fairly well the properties of light
mesons, nevertheless, the investigation of heavier mesons and
excited states, even consisting of light (u, d, and s) quarks,
requires implementations of more accurate numerical methods
to solve the corresponding equations.

Our paper is organized as follows. In Secs. II, II B, II C,
and III we briefly discuss the truncated BS and DS equations
within the rainbow approximation relevant to describe the
mesons as quark-antiquark bound states. The domain of the
complex plane of Euclidean momenta, where the solutions of
the BS equation are sought, and the corresponding propagator
functions are specified in Secs. III A and III B. Sections
III C–III F are dedicated to the solution of the truncated DS
equation for complex momenta and to a thorough analysis
of the singularities of the propagator functions in the domain

of the Euclidean space relevant to BS solutions for mesons
with masses up to 3.5 GeV. Convenient parametrizations for
the propagator functions of u, ad, s, and c quarks used to
determine the BS kernel in the domain of its analyticity are
presented in Sec. III D. The subsequent sections are aimed at
investigations of methods of solving the BS equation in the
presence of singularities. In Sec. IV A we present the results
of numerical calculations of the mass spectra of pseudoscalar
mesons. Alternative numerical approaches and nuances in
solving the BS equation for heavy mesons with quarks of equal
masses are briefly discussed in Secs. IV C–IV E. The summary
and conclusions are reported in Sec. V. In the Appendix some
useful relations used in solving the BS equation are presented.

II. BETHE-SALPETER EQUATION

A. Ladder-rainbow approximation

To determine the bound-state energy (mass) of a quark-
antiquark pair one needs to solve the BS equation, which, in
the ladder approximation [hereafter referred to as the truncated
Bethe-Salpeter (tBS) equation] and in Euclidean space, reads

�(P,p) = −4

3

∫
d4k

(2π )4
γμS(ηP+k)�(P,k)S((η−1)P+k)

× γν[g2Dμν(p − k)], (1)

where the interaction kernel g2Dμν(k2) ≡ D(k2)dμν(k2) is
chosen in the Landau gauge, dμν(k2) = [δμν − kμkν/k2],
�(P,p) is the tBS vertex function, and S(k1,2) = −iγ ·
k1,2σv(k2

1,2) + σs(k2
1,2) are the quark propagators with the prop-

agator functions σv,s(k2). The total P and relative momenta p
are defined as P = k1 + k2 and k = (1 − η)k1 − ηk2), where
k1,2 are the momenta of the constituent quarks and η ∈ (0,1) is
the momentum partitioning parameter. The two quarks interact
via gluon exchange encoded in [g2Dμν(p − k)]. The vertex
function �(P,k) is a 4 × 4 matrix and, therefore, may contain
16 different functions. Note that the solution of the BS equation
in the ladder approximation is independent of η (see, e.g.,
Ref. [38]); in the rainbow approximation it was numerically
confirmed in several papers (cf. [6,9,23]). In the following
we put η = 0.5, except in Sec. IV E, where an asymmetric
partitioning is considered.

The interaction kernel is chosen within the ladder-rainbow
approximation. It has been widely used to study the physics
of dynamical chiral symmetry breaking [6], decay constants
[8,10,11,13], and other observables [14] and has been found to
provide a good agreement with experimental data. Following
[6,8,18,20] the vertex-gluon kernel in the rainbow approxima-
tion can be written as DIR + DUV with

DIR(k2) = 4π2Dk2

ω2
e−k2/ω2

. (2)

The term DIR refers to the effective infrared (IR) part of the
interaction determined by soft nonpertubative effects, while
DUV ensures the correct ultraviolet (UV) asymptotic behavior
of the QCD running strength. A detailed investigation [11,24]
of the interplay of these two terms and a comparison of meson
masses obtained with [6] and without [18] the UV term has
shown that the IR part is dominant for light (u, d, and s)
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quarks, with a decreasing role for heavier (c and b) quarks (for
which the UV part may be important for M > 4 GeV as bound
states). In spite of its minor contribution to mesons with masses
M < 3.5 GeV, formally the UV term guarantees the correct
asymptotic behavior of the kernel, and in principle, it should
be included even in the case of light quarks forming mesons.
However, as known (see, e.g., [25]), the UV term DUV induces
additional singularities and branch cuts, which complicate
the simple structure of the quark propagators with isolated
poles only. In the present paper we focus on nonperturbative
characteristics of mesons, i.e., on meson spectra with masses
M < 3.5 GeV, for which the UV term is argued to be negligible
(see, also [18]).

Then the interaction kernelDIR depends on two parameters,
D and ω. Since within the ladder approximation the tBS
amplitude does not depend on the total momentum P , in what
follows we omit P as redundant notation in �(P,p) and in all
subsequent partial amplitudes.

The general structure of vertex functions describing bound
states of spinor particles has been investigated in detail, for
example, in [26–28]. To release from the matrix structure, the
vertex function � is expanded into functions which in turn
are determined by the angular momentum and parity of the
corresponding meson, known as the spin-angular harmonics
[14,27,29]:

�(p) =
∑

α

gα(p) Tα( p), gα(p) =
∫

d� pTr[�(p)T +
α ( p)].

(3)

The choice of the representation for the spin matrices Tα( p)
depends on the specifics of the considered physical problem.
Different representations are related by linear transformations,
and it is straightforward (but cumbersome) to transform results
from one representation to another. In our investigations of the
tBS equation we use the following set [14,27,29]:

(i) in the 1S0 pseudoscalar channel,

T1( p) = 1√
16π

γ5, T2( p) = 1√
16π

γ0γ5,

(4)

T3( p) = − 1√
16π

n̂pγ0γ5, T4( p) = − 1√
16π

n̂pγ5,

and (ii) for the 3S1–3D1 vector channel,

T1( p) =
√

1

16π
ξ̂M, T2( p) = −

√
1

16π
γ0 ξ̂M,

T3( p) = −
√

3

16π
(npξM),

T4( p) =
√

3

32π
γ0[−(npξM) + n̂pξ̂M],

T5( p) =
√

1

32π
[̂ξM + 3 (npξM)̂np],

T6( p) =
√

1

32π
γ0[̂ξM + 3 (npξM )̂np],

T7( p) = −
√

3

16π
γ0(npξM),

T8( p) =
√

3

32π
[−(npξM) + n̂pξ̂M], (5)

where all the above scalar products are written in Minkowski
space and the unit vector np is defined as np = (0,p/|p|).
The left-hand side of (5) depends implicitly on M,
which denotes the components of the polarization vec-
tor ξM ≡ (0,ξM) fixed by ξ+1 = −(1,i,0)/

√
2,ξ−1 = (1, −

i,0)/
√

2,ξ 0 = (0,0,1). The transition to Euclidean space with
(i) a non-negative metric for Euclidean 4-vectors a · b =
δμνaμbν = ∑4

i=1 aibi , (ii) Hermitian Dirac matrices {γμγν} =
2δμν , and (iii) γ5 = −γ1γ2γ3γ4, where our subsequent calcu-
lations have been performed, can be realized by, e.g., a0 →
−ia4,�a → �a,γ0 → γ4, and �γM → i �γE . Similar complete sets
of spin-angular harmonics were employed also in Refs. [18]
and [28].

With Eqs. (3)–(5) the integral matrix form of the BS
equation, (1), can be reduced to a system of two-dimensional
integral equations with respect to the partial vertices gα(p) (cf.
[27,29]).

B. Hyperspherical decomposition

To further reduce the dimension of the integral we decom-
pose, in Euclidean space, the partial vertices gα(p) and the
interaction kernel D(p − k) in (1) over the basis of spherical
harmonics Ylm(θ,φ) and normalized Gegenbauer polynomials
Xnl(χ ), i.e., we use the hyperharmonic basis

Znlm(χ ) = Xnl(χ )Ylm(θ,φ) ≡
√

22l+1

π

(n + 1)(n − l)!l!2

(n + l + 1)!

× sinl χGl+1
n−l(cos χ )Ylm(θ,φ), (6)

where Gl+1
n−l(cos χ ) are the Gegenbauer polynomials of the

hyperangle χ with cos χ = p4

p̃
and sin χ = |p|

p̃
and p̃ =√

p2
4 + p2 of a Euclidean 4-vector p. Then the partial de-

composition of the vertex functions gα(p4, p) (α = 1 . . . 4 and
α = 1 . . . 8 for pseudoscalar and vector mesons, respectively)
and interaction kernel reads

gα(p4, p) =
∑
nlα

ϕn
α,lα

(p̃) Xnlα (χp)Tα( p), (7)

D(p − k) = 2π2
∑
κλμ

1

κ + 1
Vκ (p̃,k̃)Xκλ(χp)Xκλ

× (χk)Yλμ(�p)Y ∗
λμ(�k). (8)

We label, here and in the following, the modulus of a

Euclidean vector p = (p4, p) with a tilde, i.e., p̃ ≡
√

p2
4 + p2.

Actually, in Eq. (7) the summation over lα is restricted by the
corresponding orbital momentum encoded in the spin-angular
matrices Tα( p). It can be seen from Eq. (4) that the spin-
angular harmonics T1,2( p) in the 1S0 channel (pseudoscalar
mesons) carry the momentum lα = 0, while for T3,4( p) one has
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lα = 1. Analogously for vector mesons [cf. Eq. (5)], lα = 0 in
T1,2( p),lα = 2 in T5,6( p), and lα = 1 otherwise.

Changing the integration variables to the hyperspace, d4k =
k̃3 sin2 χk sin θkdk̃dχkdθkdφk , inserting (8) and (1) into (1),
and performing the necessary angular integrations, we obtain
a system of integral equations for the expansion coefficients
ϕn

α,lα
:

ϕn
α,lα

(p̃) =
∑

β

∞∑
m=1

∫
dk̃k̃3Sαβ(p̃,k̃,m,n)ϕm

β,lβ
(k̃). (9)

The explicit expressions for the coefficients Sαβ(p̃,k̃,m)
result from the corresponding angular integrations over
d�p,d�k, sin2 χkdχk , and sin2 χpdχp, which can be written
in the form

Sαβ(p̃,k̃,m,n) =
∑

κ

∫
sin2 χkdχkXmlβ (χk)Xκλ(χk)

× σs,v

(
k2

1

)
σs,v

(
k2

2

)
Aαβ(p̃,k̃,κ,χk,n), (10)

where

k2
1,2 = (

1
2P ± k

)2 = − 1
4M2 + k̃2 ± iMk̃ cos χk, (11)

with k as the relative momentum of two quarks, and the
total momentum P = (iM,0). The quantity Aαβ resulting
from evaluations of traces and angular integration in the
3-momentum space has schematically the form

Aαβ(p̃,k̃,κ,χk)

	
∫

d� pd�k sin2 χpdχpVκ (p̃,k̃)dμν((p − k)2)

× Xnlα (χp)Xκλ(χp)Yλμ(θp,φp)Y∗
λμ(θk,φk)

× Tr[γμ · · · Tβ(k) · · · T +
α ( p)γμ]. (12)

The angular structure of the integrand in (12) is rather
simple: it contains a series of products of spherical harmonics,
Gegenbauer polynomials, and scalar products of ( pk) ∼
Y∗

1m(θp,φp)Y1m(θk,φk), i.e., all angular integrations over
d� pd�kdχp can be performed explicitly. These integrations
provide a smooth quantity Aαβ(p̃,k̃,κ,χk) that is free of any
singularities. This means that the analytical structure of the
kernel, (10), is entirely determined by the propagator functions
σs,v(k̃2).

Recall that in Eqs. (9)–(12) the indices (α,β) label the
tBS components in the spinor space (α,β = 1 . . . 4 for pseu-
doscalar mesons and α,β = 1 . . . 8 for vector mesons), (m,n)
denote the number of terms in the Gegenbauer decomposition,
(7), and lα,β are entirely determined by the corresponding
components Tα,β of the spin-angular basis.

C. Numerical solutions

Now we proceed to solve the BS equation, (9), for the
partial vertices ϕn

α,lα
(p̃). Equations (9)–(12) represent the

desired system of the BS one-dimensional integral equations
of the Fredholm type within the hyperspherical harmonics
formalism to be solved numerically. Before choosing a specific
computational algorithm one has to analyze at least the
existence and uniqueness of the solution. Obviously, this

issue is directly connected to the properties of the interaction
kernels. As is known, the main requirement for the existence
of solutions of Fredholm-type equations is the finiteness of
the integral kernel, i.e., of the quantity Sαβ(p̃,k̃,m,n) in our
case. As mentioned above, the function Aαβ(p̃,k̃,κ,χk), which
determines the kernel Sαβ(p̃,k̃,m,n), is finite by construction.
This means that the only source of troubles can appear from
the propagator functions σs,v(k̃2) in (10), which, in turn, are the
solution of the tDS equation with the same interaction kernel,
(2). Accordingly, prior to solving the tBS equation, we proceed
with an analysis of the propagator functions σs,v(k̃2) from the
DS equation in Euclidean space.

III. DYSON-SCHWINGER EQUATION

A. Relevant region for the truncated Dyson-Schwinger equation

We are interested in the analytical structure of the propa-
gator functions σs,v(k̃2) inside and in the neighborhood of the
complex momentum region in the Euclidean space dictated by
the tBS equation, (1). This momentum region is displayed as
the dependence of the imaginary part of the quark momentum
squared Imk̃2 on its real part Rek̃2 from the tBS equation
determining, in the Euclidean complex momentum plane, a
domain restricted by a parabola,

Imk̃2 = ±M

√
Rek̃2 + 1

4
M2, (13)

with the vertex at Imk̃2 = 0 at Rek̃2 = −M2/4 depending on
the meson mass M .

Note that, regardless of the form of the interaction kernel,
the investigation of the analytical structure of the quark
propagator is of great importance if the propagators exhibit sin-
gularities within the corresponding parabola, thus hampering
the numerical procedure of solving the tBS equation. On the
other hand, knowledge of the nature of singularities and their
exact location in the complex plane will allow one to develop
effective algorithms adequate for numerical calculations. For
instance, if one determines exactly the domain of analyticity
of the propagator functions, one can take advantage of the
fact that any analytical function can always be approximated
by rational complex functions [30]. Then one can parametrize
the integrand in the tBS equation by simple functions which
will allow us to carry out some integrations analytically.
Such parametrizations have been suggested in Ref. [23] for
meson masses M < 1 GeV, for which the propagator functions
have been found to be analytical. Unfortunately, as shown in
Ref. [21], for larger meson masses the propagator functions
exhibit singularities within the domain of tBS integration, and
as a consequence, parametrizations by rational functions are
not possible. Nevertheless, even in this case, if the propagator
functions have only isolated poles with known locations and
residues, then calculations can be significantly simplified by
splitting the singular functions into two terms, one being
analytical in the considered region and the other one having a
simple pole structure, as discussed below.
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In Euclidean space the quark propagator obeys the truncated
Dyson-Schwinger equation

S−1(p) = S−1
0 (p) + 4

3

∫
d4k

(2π )4
[g2Dμν(p − k)]γμS(k)γν ,

(14)

where S−1
0 = iγ · p + mq and mq is the bare current quark

mass. To emphasize the replacement of combined gluon
propagator and vertex we use, as in Eq. (1), the notation
[g2Dμν], where an additional power of g from the second
undressed vertex is included. For a consistent treatment of
dressed quarks and their bound states, the dressed gluon
propagator [g2Dμν(p − k)] must be the same in the tBS, (1),
and the tDS equations, (14).

B. Propagator functions

The tDS equation, (14), is a four-dimensional integral
equation in matrix form. Simplifications can be achieved in
exactly the same manner as for the BS equation using the same
spin matrices and the hyperspherical harmonics basis. Recall
that the calculation of the renormalized Feynman diagrams
leads to a fermion propagator depending on two functions,
e.g., the renormalization constant Z2 and the self-energy �(p).
Instead of Z2 and �(p) one can introduce two other quantities,
A(p) and B(p), or, alternatively, σs(p) and σv(p). In terms of
these functions the dressed quark propagator S(p) reads [8,31]

S−1(p) = iγ · pA(p) + B(p),

S(p) = −iγ · pσv(p) + σs(p) , (15)

with

σv(p) = A(p)

p2A(p)2 + B(p)2
, σs(p) = B(p)

p2A(p)2 + B(p)2
.

(16)

The resulting system of equations to be solved is a system
of one-dimensional integral equations with respect to A(p)
and B(p) (for details, see [14] and [21]), which we solve
numerically. Independent parameters are ω,D, and mq . We
find that the iteration procedure converges rather rapidly and
practically does not depend on the choice of the trial start
functions for A(p) and B(p).

In our subsequent analysis we employ the effective pa-
rameters from Refs. [18] and [20], ω = 0.5 GeV and D =
16 GeV−2.

C. Solution in the right hemisphere, Re p̃2 > 0

Evidently, the functions A(p) and B(p) are real at real
values of p̃2. However, since in the tBS equation the domain
of definition of the propagator functions is complex, one
needs an analytical continuation of the solution from the
real positive axis Rep̃2 > 0 to the whole complex domain
inside the corresponding parabola. In our calculations we
conveniently divide into two parts the parabolic integration
domain for solving the tBS equation: (i) one (infinite) region
where Rep̃2 > 0 and (ii) a second one where Rep̃2 < 0, which

is restricted by the meson mass M , i.e., with the minimum
(negative) value Rep̃2 = −M2/4.

From the tDS equation, (14), it is explicitly seen that, in the
right hemisphere, the integrals converge in the tDS equation.
This means that an analysis of the behavior of the solution for
Rep̃2 > 0 for large |p̃2| can be accomplished directly by means
of the real solutions A(p) and B(p) obtained along the real
axis in the tDS equation and by subsequently utilizing the tDS
equation with complex external momenta to compute A(p) and
B(p) in the desired domain. It should be noted, however, that
such an analytical continuation can be safely employed for the
interaction kernel chosen as an entire function(s) vanishing at
the origin. In a more general case, where the interaction is no
longer an entire function and can even be singular at the origin,
the procedure of the analytical continuation requires more
elaborate investigations. So, if one considers, in addition to the
IR term, (2), DUV, which models the asymptotic freedom, the
propagator functions can receive branch cuts related to pinch
singularities (see, e.g., [25]), and the analysis of singularities
of the propagator functions becomes much more involved.

Another method of finding A(p̃2),B(p̃2),σs(p̃2), and σv(p̃2)
in the complex plane is to solve the tDS equation once along
a closed contour and then use the Cauchy theorem

A(z) = 1

2πi

∮
A(ξ )

ξ − z
dξ (17)

to calculate the required quantities at any point inside the
contour (see also see Ref. [19]). Then, by the same method,
one can compute the Cauchy integrals of A(p̃2),B(p̃2),σs(p̃2),
and σv(p̃2) to check them for analyticity. We performed such
an analysis and found that in the right hemisphere the Cauchy
integrals for the solutions A(p̃2),B(p̃2),σs(p̃2), and σv(p̃2)
for each type of quark (u, d, s, and c) is 0, i.e., they are
analytical functions of p̃2. Consequently, the integral kernel
Sαβ(p̃,k̃,m,n) in Eq. (10) is finite in this case. According to
the theory of Fredholm-type equations, one can infer that this
kernel possesses a discrete spectrum of eigenvalues.

D. Parametrization of propagator functions at Re p̃2 > 0

The interaction kernel and its eigenvalues can be found
numerically by solving the tDS equation for σs,v and by
implementing this solution into the numerical procedure for
the tBS equation. In principle, one can avoid such cumbersome
calculations of Sαβ (p̃,k̃,m,n) by taking advantage of the
analyticity of σs,v in the right hemisphere. It is known [30]
that for any analytical function one can find convenient
parametrizations in terms of rational functions, which in turn
can be chosen in such a form as to be able to calculate the
hyperangular integrals explicitly.

A convenient choice for the parametrization to calculate the
integrals over Euclidean momentum k in Eq. (10) could be of
the form [32]

σs,v(k̃2) =
∑

i

αi(s,v)

k̃2 + β2
i (s,v)

+
∑

i

α∗
i (s,v)

k̃2 + β∗2
i (s,v)

, (18)

where the complex parameters αi and βi can be easily obtained
by fitting the corresponding solution along the real axis of k̃2.
We use the Levenberg-Marquardt algorithm for fitting. With
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TABLE I. The parameters αi(v) and αi(s) for the effective parametrizations, Eq. (18), for three values of the bare quark mass.

mq (MeV) αi 1 2 3

5 αv (0.1915, 0.943 11) (0.153 60, −0.186 21) (0.153 60, −0.186 21)
αs(GeV) (0.030 18, 0.486 57) (−0.042 732, −0.776 54) (0.015 015, 0.024 99)

115 αv (0.185 03, 0.183 89) (0.211 66, −0.745 13) (0.102 44, 0.228 28)
αs(GeV) (−0.206 26, 0.591 57) (0.318 50, 0.0253 63) (−0.055 932, 0.085 008)

1000 αv (−0.172 06, −0.779 62) (0.195 91, −1.0314) (0.481 76, 0.518 18)
αs(GeV) (1.3803, 0.947 14) (−0.944 19, −0.272 85) (0.064 465, 0.071 692)

this monopole form of the parametrization the corresponding
integral in (10) can be reduced to a sum of integrals of the
form

Iλ
mn(z) =

∫ 1

−1
dξ (1 − ξ 2)λ−1/2 Gλ

n(ξ )Gλ
m(ξ )

ξ − iz
,

with z ∼ Rek̃2
1,2 + β2

Mk
, (19)

which can be calculated explicitly [see Appendix; Eq. (A3)].
We find that for each function in Eq. (18) the first three

terms, which involve 12 parameters, are quite sufficient to
obtain a good approximation of the solution. In Tables I and
II we present the sets of parameters αi(s,v) and βi(s,v) for
u/d, s, and c quarks, obtained for σs and σv , respectively,
from a fit in the interval −0.15 (GeV/c)2 < k̃2 < 10 (GeV/c)2.
In spite of the quality of the excellent fit it should be noted
that, since the parametrized functions are of a rather simple
shape, the obtained sets of parameters {αi} and {βi} are far
from being unique, i.e., one can achieve a similar quality of
the fit with many other choices of {αi} and {βi}. The only
restriction is that the “mass” parameters {βi} must not provide
singularities, neither along the real axis nor in the complex
plane inside the parabola (see also Ref. [33]). The obtained
sets of parameters (Tables I and II) have been used in our
calculations of the propagator functions at Rek̃2 > 0, where
they are always analytical.

E. Solution of the tDS equation at Rek̃2 < 0

At Rek̃2 < 0 we use either the Cauchy theorem in the
domain where the propagator functions are still analytical or
the prescription explained below, if there are singularities.
In Ref. [21] it was found that at large values of the meson
masses M > 1 GeV and at Rek̃2 < 0 the propagator functions
σs,v(k̃2) are no longer analytical functions, having an infinite

number of pole-like singularities in this region, which, in
principle, give rise to numerical problems in solving the
tBS equation. Nevertheless, as has also been shown, such
singularities turn out to be integrable in the tBS equation,
provided their exact locations and corresponding residues are
known. For an analysis of the analytical properties of σs,v(k̃2)
we suggested the following procedure [21]:

(i) Choose a relatively large domain within the parabola,
(13), enclose it with a contour, and compute the
Cauchy integrals of A(k̃2),B(k̃2) and the inverse
part of the propagator functions �(k̃2) ≡ (k̃A(k̃2))2 +
B2(k̃2). Vanishing integrals will imply that these
functions are analytical within the chosen contour.

(ii) Compute Rouché’s integral1 of the function �(k̃2).
Since in the previous item �(k̃2) has been found
to be analytical, this integral, according to Rouché’s
theorem, gives exactly the number of its 0’s inside the
contour.

(iii) Compute the Cauchy integral of the propagator func-
tions σs,v(k̃2), which, if Rouché’s integral of �(k̃2)
is found to be an integer positive number, clearly
must be different from 0. Moreover, it would imply
that σs,v(k̃2) have poles inside the contour and their
Cauchy integrals provide the corresponding residues,
necessary in further applications (see below).

(iv) Shrink the area of the contour until Rouché’s integral
becomes equal to 1 and continue to squeeze the
contour, by keeping the value of Rouché’s integral
unchanged, until the location of the pole is found with
the desired accuracy.

1Rouché’s integral of an analytical complex function f (z) on a
closed contour γ is defined as 1

2πi

∮
γ

f ′(z)
f (z) dz.

TABLE II. The parameters βi(v) and βi(s) for the effective parametrizations, Eq. (18), for three values of the bare quark mass.

mq (MeV) βi (GeV) 1 2 3

5 βv (0.5483, 0.190 10) (1.1385, 0.263 94) (1.1385, 0.263 94)
βs (0.534 54, 0.176 11) (1.4018, 0.046 165) (−1.1163, 1.2918)

115 βv (0.621 43, 0.233 96) (1.1353, 0.195 34) (0.694 44, 0.470 76)
βs (0.786 97, 0.384 76) (1.5621, 0.701 48) (1.0018, 0.866 75)

1000 βv (1.8920, −0.715 40) (2.120, 0.626 09) (1.9272, 0.645 45)
βs (1.8724, 0.593 70) (1.8750, 0.902 15) (1.9035, 0.977 26)

055201-6



ACCOUNTING FOR THE ANALYTICAL PROPERTIES OF . . . PHYSICAL REVIEW C 91, 055201 (2015)

The integrals to be calculated are∮
γ

[ξ 2A2(ξ )) + B2(ξ )]dξ 2 = 0, (20)

1

2πi

∮
γ

[ξ 2A2(ξ )) + B2(ξ )]′
ξ 2

ξ 2A2(ξ ) + B2(ξ )
dξ 2 = Nz, (21)

1

2πi

∮
γ

σs(v)(ξ
2)dξ 2 =

∑
i

res
[
σs(v)

(
ξ 2
i

)]
.

(22)

We find that at M < 1 GeV all the integrals, (20)–(22)
are 0, implying that the tDS solution A(k̃2) and B(k̃2) and
the propagator functions σs,v(k̃2) are analytical within the
parabola, (13). At M > 1 GeV the Cauchy integrals for
A(k̃2),B(k̃2), and �(k̃2) are still 0, i.e., the inverse propagator
�(k̃2) is still analytical, while for σs,v(k̃2) the Cauchy integrals
no longer vanish. Moreover, Rouché’s integrals of �(k̃2) are
found to be integer positive numbers, which clearly indicates
that σs,v(k̃2) have poles in this region. The number of poles in
the initial contour is given by the value of Rouché’s integral,
(21).

For numerical calculations it is extremely important to
find, with a good accuracy, the position of the poles and the
corresponding residues for σs(k̃2) and σv(k̃2). In this case, if
the complex-valued functions σs,v(k̃2) have only isolated poles
k̃2

0i within a certain domain and are analytical along its closing
contour γ , they can be represented as

σs,v(k̃2) = σ̃s,v(k̃2) +
∑

i

res
[
σs,v

(
k2

0i

)]
k̃2 − k2

0i

, (23)

where σ̃s,v(k̃2) are analytical functions within the considered
domain, which can be computed as

σ̃s,v(k̃2) = 1

2πi

∮
γ

σ̃s,v(ξ )

ξ − k̃2
dξ = 1

2πi

∮
γ

σs,v(ξ )

ξ − k̃2
dξ. (24)

Such a representation, (23), of the propagator functions in the
presence of pole-like singularities allow us to avoid numerical
problems in calculations of the kernel, (10). The product of two
propagator functions in (10) in the presence of singularities
receives the form

σ1
(
k̃2

1

)
σ2

(
k̃2

2

) = σ̃1
(
k̃2

1

)
σ̃2

(
k̃2

2

) + σ̃1
(
k̃2

1

)∑
j

res
[
σ2

(
k2

0j

)]
k̃2

2 − k2
0j

+ σ̃2
(
k̃2

2

) ∑
i

res
[
σ1

(
k2

0i

)]
k̃2

1 − k2
0i

+
∑
i,j

res
[
σ1

(
k2

0i

)]
res

[
σ2

(
k2

0j

)](
k̃2

2 − k2
0j

)(
k̃2

1 − k2
0i

) , (25)

where k2
0i and k2

0j are the positions of the poles of the
propagator functions σ1,2(k̃2

1,2) of the first and second quarks
with the corresponding residues res[σ1(k2

0i)] and res[σ2(k2
0j )]

in the integration domain of the tBS equation.
The first term in (25) is analytical everywhere within the

integration domain of tBS and can be computed numerically

FIG. 1. (Color online) Positions of the few first poles (filled
symbols) in the upper left hemisphere of the complex k̃2 plane for
various current quark masses (given in MeV). Relevant sections of
the parabola, (13), corresponding to the meson bound-state mass M

are presented by solid curves for M = 1.1, 1.5, 2.0, 2.5, 3.0, and
3.5 GeV, from right to left. The pole positions for a 5 -MeV quark are
represented by open symbols.

by Eq. (24), while the last term in Eq. (25) already has
an integrable form, which, together with the Gegenbauer
polynomials from (10), can be easily reduced to a sum of
integrals like Eq. (19) (see the Appendix). The second and third
terms in (25) are still complex functions with singularities.
However, the positions of these singularities are exactly the
same as found before, so that they can again be presented in
the form of (23), as the sum of an analytical function and a
pole-like structure, and reduced to integrals of the type (19).
Equation (25) represents the main ingredient of our approach,
allowing us to handle singularities in the tBS kernel (10).

F. Location of singularities

We calculated the integrals, (20)–(22), for different current
quark masses in the tDS equation, (14), from 5 MeV, the
mass corresponding to the light u and d quarks, up to 1 GeV,
which corresponds to the c quark. Results are presented in
Fig. 1, where the location of the first relevant poles is depicted
for quarks with different current masses mq , the values of
which label the corresponding symbols in the figure. Also,
the portions of the Euclidean space relevant to solve the tBS
equation for bound states M = 1.1, 1.5, 2.0, 2.5, 3.0, and 3.5
GeV from left to right are presented as domains enclosed by
correspondingly labeled parabolas (13).

Figure 1 allows, even prior to solving the tBS, for a rather
general analysis of analytical properties of the meson bound
states. For instance, the following is observed.

(i) For meson masses M < 1 GeV there are no singular-
ities in the tBS kernel.

(ii) The first two self-conjugated poles appear at M ∼ 1
GeV and belong to light u and d quarks (open
diamonds in Fig. 1).
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TABLE III. Positions and residues of the first few poles of the propagator functions for u and d
quarks.

i Positions res[σs] res[σv]

1 (−0.2585, 0.1958) (−1.6130 × 10−2, −0.5109) (0.2589, −0.8596)
2 (−0.2409, 2.5947) (4.0336 × 10−2, 0.1003) (2.3384 × 10−2, 6.2750 × 10−2)
3 (−0.7382, 0.0) (6.8860 × 10−2, 0.0) (−8.0147 × 10−2, 0.0)
4 (−1.0415, 2.8535) (−0.05, 0.076) (0.0014, −0.052)

(iii) The pole structure of s-quark propagators (mq ∼ 115
MeV) starts at M > 1 GeV, and up to M ∼ 2.5 GeV
there are only two, self-conjugated poles. The third
and fourth poles for strange quarks are enclosed in
parabolas 2.5 GeV < M < 3.0 GeV and 3.0 GeV <
M < 3.5 GeV, respectively,

(iv) For charmed quarks the singularities are located near
M ∼ 3.5 GeV.

From this quick analysis one infers that calculations of
mesons with masses M � 1.1 GeV (such as π,ρ,K , and φ
mesons) do not encounter difficulties related to singularities.
For mesons with at least one light quark and M � 1.1 GeV
(such as D mesons, excited states of pions and kaons, etc.),
the tBS kernel contains propagator functions with singularities,
which ought to be treated accurately, as explained above.

For completeness, in Table III we present the location
of poles and their residue for the u and d quarks, relevant
to most calculations of mesons at 1 < M < 3.5 GeV. Also,
it is worth pointing out that the propagator functions for
the s quark (mq = 115 MeV) possess only a self-conjugated
pole in the vicinity of the considered parabolas, located at
k2

01 = (−0.436 ± 0.5131i)(GeV/c)2 with residues res[σs] =
(9.05 × 10−3 ∓ 0.491i) GeV and res[σv] = 0.261 ∓ 0.538i
for σs and σv , respectively. The second pole, located at k2

02 =
(−0.507 ± 3.35i)(GeV/c)2 (with the respective residues
res[σs] = (5.5 × 10−2 ± 0.10i) GeV and res[σv] = 1.34 ×
10−2 ∓ 6.12 × 10−2i), is already located too far from the
corresponding parabola for strange mesons and, consequently,
is irrelevant in numerical calculations.

IV. NUMERICAL METHODS

The performed analysis of quark propagators allows one
to calculate the kernel of the tBS equation in the whole
region of the complex Euclidean space relevant for the tBS
equation. In numerical calculations we form the skeletons
of approximate solutions and kernels by using the Gaussian
method of computing integrals and by restricting the infinite
sum over n in Eqs. (7)–(9) by a finite value Mmax. The Gaussian
quadrature formula assures a rather good convergence of
the numerical procedure and provides the sought solution
in the Gaussian nodes, which are spread rather uniformly in
the interval 0 � p̃ < ∞. In order to have the solution in detail
at moderate values of p̃, which is the interval of the actual
physical interests, one usually redistributes the Gaussian mesh,
making the nodes more dense at low values of p̃. To this end,
one applies an appropriate mapping of the Gaussian mesh by
changing the variables as, e.g., in Ref. [27]. The resulting

system of linear equations then reads as

X = SX, (26)

where the vector

XT = ([{
ϕn

1 (k̃i)
}NG

i=1

]Mmax

n=1 ,
[{

ϕn
2 (k̃i)

}NG

i=1

]Mmax

n=1 ,

. . . ,
[{

ϕm
α (k̃i)

}NG

i=1

]Mmax

n=1

)
(27)

represents the sought solution in the form of a group of sets of
partial-wave components ϕn

α , specified on the integration mesh
of order NG. The matrix S is determined by the corresponding
partial kernels, (10), the Gaussian weights, and the Jacobian
of the mapping and is of the N × N dimension, where
N = αmax × Mmax × NG. Since the system of equations (26) is
homogeneous, the eigenvalues of the bound state with mass M
is obtained from the condition det(S − 1) = 0. Then the partial
components ϕn

α are found by solving system (26) numerically
at this bound-state mass M .

We use a combined method of finding the solution X. First,
the Gauss-Jordan elimination and pivoting method involving
the choice of the leading element is applied. Then the obtained
solution is used as a trial input into an iteration procedure to
find (after 5–10 iterations) more refined results.

A. Pseudoscalar meson ground-state results

As an example of our numerical study we exhibit in Fig. 2
the energy of the lowest bound states of a hypothetical meson
qqx consisting of one given quark q with the mass known
from the tDS equation, bound with a second quark qx for
which the input bare mass mx is allowed to vary arbitrarily.
The corresponding effective parameters have been chosen as
mentioned above and the bare masses for q correspond to u,
d, s, and c quarks, q = u (with mu = 0.005 GeV; solid line),
q = s (with ms = 0.115 GeV; dashed line), and q = c (with
mc = 1.0 GeV; dot-dashed line). This figure illustrates the
whole mass spectrum of pseudoscalar mesons with masses
up to 3 GeV. In obtaining stable results for masses above 1
GeV, the pole structure of the propagators of the corresponding
q and qx quarks have been treated as explained above [cf.
Eq. (25) and Fig. 1].

As mentioned, Fig. 2 encodes results of ground-state masses
for known pseudoscalar mesons below 3 GeV. So, if the qx

quark corresponds to a c quark, then at the intersection of
the vertical line mx = mc (≈1 GeV/c2) with the “ux” curve
one obtains the D meson (with the quark contents uc), with
the “sx” curve the Ds meson and with the “cx” curve the
ηc meson, respectively. It is worth noting that the ux curve
crosses the mu = 0.115 GeV line roughly at the same value
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FIG. 2. (Color online) Bound-state masses (ground states) of a
system qqx as a function of the bare mass mx , for mq = 0.005 GeV
(curve labeled “ux”) or mq = 0.115 GeV (curve labeled “sx”) or
mq = 1.0 GeV (curve labeled “cx”). The effective parameters of the
vertex-gluon kernel, (2), are ω = 0.5 GeV and D = 16 GeV−2. The
masses of the pseudoscalar π,K,D,Ds , and ηc mesons according to
[35] are indicated at the right. Dashed vertical lines represent the
selected bare quark masses for u, s, and c.

of M that the sx curve crosses the mu = 0.005 GeV line, thus
providing a check of the consistency of the approach and, at
the same time, describing correctly the lowest pseudoscalar
us state corresponding to the K meson. It can be seen that
even without a fine-tuning of ms,c the meson mass spectrum
is reproduced fairly well: 135 MeV (π0 meson), 497 MeV (K
meson), 1870 MeV (D± meson), 1970 MeV (D±

s meson), and
2980 MeV (ηc meson).

B. Vector meson states

As mentioned above, the minor difference in calculations
of pseudoscalar and vector meson masses consists in the

fact that the basis of the spin angular harmonics, (5), in
the latter case has eight components instead of four in the
former case. The general structures of the tBS kernel Sαβ

(α,β = 1 . . . 8), Eq. (10), and of Aαβ , Eq. (12), remain the
same. The propagator functions σs,v , being the solutions of
the tDS equation, do not depend on the meson spin and are
as before. This means that the present approach allows us to
perform, in the same manner, calculations of mass spectra
of mesons of any spin (scalar, pseudoscalar, vector, etc.) (cf.
[28]). Here it is worth emphasizsing that, as one can infer
from Fig. 1, the propagator functions σs,v do not contain
singularities for vector mesons with ground-state masses up
to 3.5 GeV (such as ρ,φ, and J/� mesons). Consequently,
all numerical calculations can be safely performed as in the
previous approaches (cf. [11,14,28]), without accounting for
singularities. Likewise, in the case of pseudoscalar mesons,
the performed analysis of the vector meson spectra shows that
the results of numerical calculations are in amazingly good
agreement with experimental data (cf. [11]).

C. Excited meson states

Within the present approach a description of radial excita-
tions of mesons is straightforward. It suffices to find the next
0’s of the determinant det(S − 1) of the system, (26). It is worth
noting that, in analogy with the tBS equation for constituent
quarks with constant masses, one would, at first glance, expect
that the next 0 of the determinant is to be searched for in a
region of M which dos not exceed the maximum value of
the masses of two dressed quarks. The tDS solution provides a
corresponding maximum around 400 MeV for the light u and d
quarks, 600 MeV for s quarks, and 1550 Mev for c quarks [see
Fig. 3(a)]. Correspondingly, one would expect that uū excited
states cannot have a mass larger than 800 MeV. Analogous
restrictions can be “deduced” for bound states with s and c
quarks.

FIG. 3. (Color online) Dynamically dressed quark mass mq (k̃2) = B(k̃2)/A(k̃2) from solutions of the Dyson-Schwinger equation along the
real axis, i.e., for Imk̃2 = 0. (a) The dependence on Rek2 > 0, i.e., the behavior of the solution of the tDS equation in real Euclidean space.
(b) Quark masses mq are calculated at the parabola vertex, Rek2 = −M2/4, and displayed as a function of M . A comparison of (a) and (b)
illustrates the dynamical mass increase in the complex Euclidean plane. Solid curves represent the light u and d quarks; dashed curves, s quarks;
and dot-dashed curves, c quarks.
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However, in the non-Euclidean domain, which corresponds
to k̃2

1,2 	 −M2/4, the dynamical quark masses mq(k̃2) =
B(k̃2)/A(k̃2) contributing to the tBS equation can strongly
increase in dependence on M . This situation is illustrated in
Fig. 3(b), where the dressed quark masses are depicted at
the parabola vertex Rek̃2 = −M2/4 as a function of M . The
corresponding masses mq(k̃2) are larger in comparison with
the net solution of the tDS equation [Fig. 3(a)]. Hence, the DS
equation allows us to understand the formation mechanism of
excited states, which, from the point of view of the constituent
quark model, cannot even be predicted a priori. It should be
emphasized that the quark masses mq in the complex Euclidean
space also have singularities related to A(k̃2) = 0. If, in solving
the tBS equation, instead of propagator functions σs,v one deals
with the quark mass as an independent variable, an analysis of
the singularities must be performed in detail prior to solving the
tBS and to find an adequate implementation in the numerical
algorithm. It turns out that this analysis becomes more involved
than the one performed for the propagator functions presented
above.

Returning to calculations of the radially excited states,
we mention that the determinant det(S − 1) revealed its first
excited uū state at M ≈ 1080 MeV, i.e., significantly above
the maximum mass delivered by the DS equation alone at
Rek̃2 > 0. The third 0 of the determinant for uū states has
been found around 1300 MeV (see also [36]), corresponding
to π (1300) [35]. Analogously, for the cū system, the first
excited state is found to be around 2530 MeV, which is in
good agreement with the data (cf. [35]). Similar results have
been obtained also by other groups (see, e.g., Refs. [34,37]).

D. Exhausting method

The above method of finding 0’s of the determinant of
the integral kernel is rather universal, provided the analytical
properties of the kernel itself are known. However, the method
becomes quite cumbersome if one tries to increase the accuracy
of calculations by increasing the number NG of the Gaussian
mesh and the number Mmax of terms in the Gegenbauer
decomposition. In this case, the dimension of the determinants
drastically increases and the method of solving it for 0’s
becomes a challenging procedure. Another approach is to use
an iteration method for solving the corresponding equations.
As mentioned above, a finite kernel of a Fredholm-type
equation has a discrete and real spectrum with a nondecreasing
sequence of eigenvalues λ. Moreover, it can be proven that,
if such an equation is solved by iterations, it converges to the
lowest value of the spectrum, i.e., to the ground state of the
equation. This means that one can solve the BS equation as an
eigenvalue problem,

X = λ(M)SX, (28)

for the eigenvalue λ(M) as a function of the bound-state mass.
Then the sought solution Mg.s. can be found at λ(Mg.s.) = 1.
Then the kernel can be modified for the use of a iteration
scheme for exited states. To this end, once the first eigenvalue
is found, one constructs from this solution and from the old
kernel a new one by subtracting from the previous kernel the
contribution of its ground state. It is possible to do it in such

a way that the new kernel will have the same spectrum of
eigenvalues as the previous one except the eigenvalue already
found. Obviously, for the new kernel the iteration method
provides its ground state, which actually is the first excited
state of the previous kernel. By continuing this procedure for
the next eigenvalues one can find all the desired excited states.
This method is known as the exhausting (depletion) method
and was reported in some detail in Ref. [29]. It seems that a
similar method was recently employed in Ref. [28].

This method holds only if the integral kernel is finite. In
the case where the kernel S contains singularities through
the propagator functions, one has to handle them accurately
so as to obtain the desired finite S. It should be noted
that often in numerical calculations of the kernel, (10), the
singularities are “overlooked” by not too large integration
meshes used to evaluate the two-dimensional integrals in (10).
This means that in replacing the continuum Euclidean domain
of integration (enclosed by the corresponding parabolas)
with discrete meshes, one can “jump” over singularities
and perform calculations without any troubles. However,
increasing the density of mesh points one can closely approach
the singularities, and consequently, the stability of the solution
can be lost.

In Fig. 4 we illustrate such a case. If one uses, e.g.,
Gaussian meshes (j,λ) to integrate over k̃ and χk , then in the
tBS the corresponding values of momenta of quarks will be
k̃2

1,2(j,λ) = −M2/4 + k2
j ± iMk̃j cos χk,λ. In Fig. 4 these nodes

are depicted as Rek̃2
1,2(j ) = −M2/4 + k2

j by filled triangles,
and at each Rek̃2

1,2(j ) the angular integration is depicted by
dotted vertical lines. In the figure we adopt M = 1.5 GeV.
Figure 4(a) corresponds to a 32-node Gaussian mesh for
Rek̃2

1,2, while Fig. 4(b) corresponds to a 96-node Gaussian
mesh. As mentioned above, in our calculations we use a
mapping procedure, kj = k0

1+xj

1−xj
, with k0 = 0.1, where xj are

the Gaussian nodes defined from −1 to +1. For illustration, the
pole position of a 5 -MeV quark is depicted by filled stars. It
can be inferred from the picture that in a numerical procedure
all troubles can occur when the corresponding vertical line
(angular integration) crosses the poles. At low values of
Gaussian mesh the poles remain untouched [Fig. 4(a)] and
the results could be finite without any additional treatment of
the kernel, (10). With an increase in the Gaussian mesh the
probability to meet the poles increases [Fig. 4(b)]. In this case
the tBS equation cannot be reliably solved numerically.

In principle, to avoid these problems one can also use the so-
called “extrapolation” method, by calculating the dependence
λ(M) for masses M < 1 GeV, for which the kernel is an
analytical function, then to extrapolate λ(M) in the region with
poles (see Ref. [28]). This method, if used not too far beyond
the region of analyticity of the corresponding propagators, pro-
vides also rather good agreements with the experimental data.

E. Equal quark masses, normalization condition

A particular situation occurs in the case of mesons with
M > 1 GeV formed by quarks of equal masses, e.g., in
calculating the excited states of pions above 1 GeV or in
calculating the normalization of the tBS partial amplitudes
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FIG. 4. (Color online) Interaction domain of the tBS equation over the complex k̃2
1,2 plane, which is the surface of the parabola Imk̃2

1,2 =
±M

√
M2/4 + Rek̃2

1,2 for M = 1.5 GeV. The two self-conjugated poles for u and d quarks are represented by stars. Filled triangles represent

the Gaussian mesh for Rek̃2
1,2 with 32 nodes (a) and 96 nodes (b) for the dk̃ integration, which actually extends to +∞. For each value of the

node Rek̃2
i the angular integration d cos χk goes along the dashed vertical lines (only a few are exhibited) corresponding to −1 � cos χk � +1.

with at least one quark with poles; i.e., in calculations
one meets the products of two identical propagators with
singularities. In such a case one has k2

1 = k∗2
2 , and due to the

self-conjugated nature of the propagator functions in Eq. (25),
one also has σ2(k2

2) = σ ∗
1 (k2

1). Moreover, the poles coincide
for both propagators, and in the sums over poles in (25) one
also encounters the situation with k2

0i = k∗2
0j . In this case, i.e.,

Rek̃2
1,2 exactly coincides with the Rek2

0i in the integrand [see
Fig. 4(b)], the angular integration reduces to [see Appendix,
Eq. (A2)]

Iλ
mn(y) ∼

∫ 1

−1
dξ (1 − ξ 2)λ−1/2 Gm(ξ )Gn(ξ )

(ξ − y)2
, (29)

where y is purely real and depends on the position of the pole,
y = Imk2

0i/Mk̃. Since the pole is supposed to be inside the
parabola one always has |y| < 1. For such values of y, the
integral, (29), is not accessible in quadratures. Obviously, this
situation is accidental and occurs only because of our specific
choice of the Jacobi coordinates k1 and k2 when both quarks
carry equal portions of the total momentum P of the bound
state. The problem can be solved by redistributing the total
momentum P between quarks as

k1 = ηP + k, k2 = (1 − η)P − k, (30)

with η �= 0.5. In this case, the momenta of quarks are no
longer mutually complex conjugated, and the corresponding
expression becomes, again, integrable. In our calculations
of excited states of the pion we slightly changed η away
from η = 0.5, by ∼10%, which allows us to perform the
necessary calculations safely. In principle, the solution of the
BS equation in the ladder approximation must be independent
of η (see, e.g., Ref. [38]), which, in the rainbow approximation,
was numerically confirmed in several papers (cf. [6,9,23]). It
should be noted, however, that in concrete calculations where
the Gegenbauer expansion is truncated at some value Mmax

the numerical solution may depend on the choice of η. In
our calculations we investigated the sensitivity of numerical
solutions on Mmax and found that for η = 0.5 the solution of
the tBS equation is already stable at Mmax = 4–5. It remains
stable also if we change η by ∼(5–10)%. Larger deviations of
η will require a reanalysis of the dependence on Mmax.

A few comments about the normalization of the tBS
amplitude are in order here. Since the BS equation is a
homogeneous equation, the solution for the amplitude must
be additionally normalized. The normalization condition in
the general case has been derived in Ref. [4]. For our case it
reads [16,18]

3

2

∂

∂Pμ

Tr

[∫
d4k

(2π )4
�̄(−P,k)S(k1)�(P,k)S(−k2)

]
= 2Pμ.

(31)

In the ladder approximation, due to translation invariance the
tBS amplitude �(P,k) does not depend on the total momentum
P and often the derivative ∂/∂Pμ is moved inside the integral
acting only on S(k1,2). Such an operation is mathematically
correct only if the integral is absolutely convergent. If so,
then the derivative ∂/∂Pμ = η ∂/∂k1μ acting, e.g., on the first
propagator S(k1), leads to an expression of the form

∂S(k1)/∂k1μ = −S(k1)[iγμA(k1) + A′(k1) + B ′(k1)]S(k1);

(32)

i.e., after calculations of the corresponding traces, the remain-
ing integral will contain two identical propagators. Calcula-
tions of such integrals are cumbersome but straightforward.

In the case of singularities, if one still interchanges the
derivative with integration, the remaining integral after traces
leads again to divergences of the type of (29). In this case,
since the two propagators refer to the same quark, even the use
of η �= 0.5 does not solve the problem. It merely implies that
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one cannot exchange derivatives and integrations if the integral
is not absolutely convergent. To normalize correctly the tBS
amplitude in the presence of poles in propagators, one must
first calculate the corresponding traces in (31) as a function of
Pμ and then evaluate the derivatives numerically.

V. SUMMARY

We analyze the truncated tDS and tBS equations in the
Euclidean complex momentum domain, which is determined
by the mass M of mesons as quark-antiquark bound states.
Within the ladder-rainbow truncation, only the IR term in
the combined effective vertex-gluon kernel is retained. This
can be justified by comparing results of calculations of mass
spectra of light mesons with versus without the UV term. The
interaction kernel with the IR term alone leads to a relatively
simple analytical structure of the quark propagators with
solely isolated pole-like singularities which can be handled
numerically in solving the tBS equation. The locations of
singularities of the propagator functions and their residues
are determined then with a high accuracy in the whole region
relevant to the description of mesons with energies (masses)
up to M � 3.5 GeV. We propose a method of separating the
analytical part and the pole structure in the propagators to
be further implemented easily in numerical algorithms. It is
demonstrated that the part with singularities can be integrated
explicitly, in this way avoiding difficulties in handling singular
quantities numerically. The proposed method has been applied
to calculate the mass spectra of pseudoscalar mesons with M �
3.5 GeV with and without singularities in the propagator func-
tions. We obtain a good agreement with the experimental data.

The performed analysis is aimed at elaborating adequate
numerical algorithms to solve the BS equation in the presence
of singularities and to investigate the properties of mesons,
such as the open charm D mesons, related directly to physical
programs envisaged, e.g., at FAIR. Then, as our ultimate goal,
the performed analysis is to be used as a baseline for investi-
gations of mesons at finite temperatures and baryon densities.
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APPENDIX: USEFUL RELATIONS

For the product of two propagator functions in (10) the pole
part, (25), can be rewritten as[

1

k̃2
1 − k2

0i

] [
1

k̃2
2 − k2

0j

]

=
[

1

Rek̃2
1 + iMk̃ξ − k2

0i

][
1

Rek̃2
2 − iMk̃ξ − k2

0j

]

= 1

(Mk̃)2

[
1

ξ − i
(
R̃ek2

1 − k2
0i

) /
Mk̃

]

·
[

1

ξ − i
( − Rek̃2

2 + k2
0j

)/
Mk̃

]

= 1

�zijMk̃

[
1

ξ − iz
(1)
i

− 1

ξ − iz
(2)
j

]
, (A1)

where

Rek̃2
1 = Rek̃2

2 = −M2/4 − k̃2,

z
(1,2)
i,j = ±Rek̃2

1,2 ∓ k2
0i,j

Mk̃
, and �zij = z

(1)
i − z

(2)
j . (A2)

Then the main integral in the tBS kernel, (10), with pole-like
singularities is

Iλ
mn(z) =

∫ 1

−1
dξ (1 − ξ 2)λ− 1

2 Gλ
m(ξ )Gλ

n(ξ )
1

ξ − iz

= −2
√

π

�(λ)

(
1

2

)λ− 1
2

e( 1
2 −λ)iπ (−z2 − 1)

2λ−1
4 Gλ

min(iz)

×Q
λ− 1

2

max+λ− 1
2
(iz), (A3)

where Gλ
m(x) are the Gegenbauer polynomials obeying the

recurrent relations

2λ(1 − ξ 2)Gλ+1
n−1(ξ ) = (2λ + n − 1)Gλ

n−1 − nξGλ
n(ξ ), (A4)

(n + 1)Gλ
n+1(ξ ) = 2(n + λ)ξGλ

n − (n + 2λ − 1)Gλ
n−1(ξ ),

(A5)

where Qλ
m(x) are the Legendre functions of the second kind

and min = min(m,n),max = max(m,n).
Some useful relations with Legendre functions related to

computations of our integral are

Q
1/2
n+1/2(iz)(−z2 − 1)1/4 = −in

√
π

2
Zn+1,

Q
3/2
n+1/2(iz)(−z2 − 1)3/4 = −in+1

√
π

2
(nzZn+1 + (n + 1)Zn),

Q
3/2
n−1/2(iz)(−z2 − 1)3/4 = −in

√
π

2
((n − 1)zZn + nZn−1),

Q
5/2
n+1/2(iz)(−z2 − 1)5/4 = in

√
π

2
(n(n − 1)z2Zn+1 + (n − 1)

× (2n + 3)zZn + n(n + 2)Zn−1),

Z = (z −
√

z2 + 1) = −1

z + √
z2 + 1

. (A6)
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Few-Body Syst. 49, 247 (2011).
[15] S.-X. Qin, L. Chang, Y.-X. Liu, C. D. Roberts, and D. J. Wilson,

Phys. Rev. C 84, 042202 (2011); ,85, 035202 (2012).
[16] P. Tandy, Prog. Part. Nucl. Phys. 39, 117 (1997).
[17] D. Horvatic, D. Blaschke, D. Klabucar, and A. E. Radzabov,

Phys. Part. Nucl. 39, 1033 (2008).
[18] R. Alkofer, P. Watson, and H. Weigel, Phys. Rev. D 65, 094026

(2002).
[19] C. S. Fischer, P. Watson, and W. Cassing, Phys. Rev. D 72,

094025 (2005).
[20] C. D. Roberts, V. S. Bhagwat, S. V. Wright, and A. Holl, Eur.

Phys. J. ST 140, 53 (2007).

[21] S. M. Dorkin, L. P. Kaptari, T. Hilger, and B. Kampfer, Phys.
Rev. C 89, 034005 (2014).

[22] A. E. Dorokhov and S. V. Esaibegian, Phys. Lett. B 712, 381
(2012).

[23] N. Souchlas, J. Phys. G 37, 115001 (2010).
[24] N. Souchlas, arXiv:1006.0942 [nucl-th].
[25] S. J. Stainsby and R. T. Cahill, Int. J. Mod. Phys. A 7, 7541

(1992).
[26] L. P. Kaptari, A. Y. Umnikov, S. G. Bondarenko, K. Y.

Kazakov, F. C. Khanna, and B. Kämpfer, Phys. Rev. C 54, 986
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[36] A. Höll, A. Krassnigg, P. Maris, C. D. Roberts, and S. V. Wright,

Phys. Rev. C 71, 065204 (2005).
[37] M. S. Bhagwat and P. Maris, Phys. Rev. C 77, 025203 (2008).
[38] C. Itzykson and J.-B. Zuber, Quantum Field Theory (McGraw–

Hill, New York, 1980).

055201-13

http://www.gsi.de/fair/experiments/CBM/index_e.html
http://www-panda.gsi.de/auto/phy/_home.htm
http://nica.jinr.ru/
http://dx.doi.org/10.1143/PTPS.43.1
http://dx.doi.org/10.1143/PTPS.43.1
http://dx.doi.org/10.1143/PTPS.43.1
http://dx.doi.org/10.1143/PTPS.43.1
http://dx.doi.org/10.1016/S0370-2693(97)01535-9
http://dx.doi.org/10.1016/S0370-2693(97)01535-9
http://dx.doi.org/10.1016/S0370-2693(97)01535-9
http://dx.doi.org/10.1016/S0370-2693(97)01535-9
http://dx.doi.org/10.1103/PhysRevC.60.055214
http://dx.doi.org/10.1103/PhysRevC.60.055214
http://dx.doi.org/10.1103/PhysRevC.60.055214
http://dx.doi.org/10.1103/PhysRevC.60.055214
http://dx.doi.org/10.1016/S0370-1573(01)00010-2
http://dx.doi.org/10.1016/S0370-1573(01)00010-2
http://dx.doi.org/10.1016/S0370-1573(01)00010-2
http://dx.doi.org/10.1016/S0370-1573(01)00010-2
http://dx.doi.org/10.1142/S0218301303001326
http://dx.doi.org/10.1142/S0218301303001326
http://dx.doi.org/10.1142/S0218301303001326
http://dx.doi.org/10.1142/S0218301303001326
http://dx.doi.org/10.1103/PhysRevC.56.3369
http://dx.doi.org/10.1103/PhysRevC.56.3369
http://dx.doi.org/10.1103/PhysRevC.56.3369
http://dx.doi.org/10.1103/PhysRevC.56.3369
http://dx.doi.org/10.1103/PhysRevC.70.042203
http://dx.doi.org/10.1103/PhysRevC.70.042203
http://dx.doi.org/10.1103/PhysRevC.70.042203
http://dx.doi.org/10.1103/PhysRevC.70.042203
http://dx.doi.org/10.1103/PhysRevD.84.096014
http://dx.doi.org/10.1103/PhysRevD.84.096014
http://dx.doi.org/10.1103/PhysRevD.84.096014
http://dx.doi.org/10.1103/PhysRevD.84.096014
http://dx.doi.org/10.1103/PhysRevD.83.034020
http://dx.doi.org/10.1103/PhysRevD.83.034020
http://dx.doi.org/10.1103/PhysRevD.83.034020
http://dx.doi.org/10.1103/PhysRevD.83.034020
http://dx.doi.org/10.1103/PhysRevD.91.034013
http://dx.doi.org/10.1103/PhysRevD.91.034013
http://dx.doi.org/10.1103/PhysRevD.91.034013
http://dx.doi.org/10.1103/PhysRevD.91.034013
http://dx.doi.org/10.1088/1742-6596/9/1/029
http://dx.doi.org/10.1088/1742-6596/9/1/029
http://dx.doi.org/10.1088/1742-6596/9/1/029
http://dx.doi.org/10.1088/1742-6596/9/1/029
http://dx.doi.org/10.1007/s00601-010-0108-6
http://dx.doi.org/10.1007/s00601-010-0108-6
http://dx.doi.org/10.1007/s00601-010-0108-6
http://dx.doi.org/10.1007/s00601-010-0108-6
http://dx.doi.org/10.1103/PhysRevC.84.042202
http://dx.doi.org/10.1103/PhysRevC.84.042202
http://dx.doi.org/10.1103/PhysRevC.84.042202
http://dx.doi.org/10.1103/PhysRevC.84.042202
http://dx.doi.org/10.1103/PhysRevC.85.035202
http://dx.doi.org/10.1103/PhysRevC.85.035202
http://dx.doi.org/10.1103/PhysRevC.85.035202
http://dx.doi.org/10.1016/S0146-6410(97)00043-4
http://dx.doi.org/10.1016/S0146-6410(97)00043-4
http://dx.doi.org/10.1016/S0146-6410(97)00043-4
http://dx.doi.org/10.1016/S0146-6410(97)00043-4
http://dx.doi.org/10.1134/S1063779608070095
http://dx.doi.org/10.1134/S1063779608070095
http://dx.doi.org/10.1134/S1063779608070095
http://dx.doi.org/10.1134/S1063779608070095
http://dx.doi.org/10.1103/PhysRevD.65.094026
http://dx.doi.org/10.1103/PhysRevD.65.094026
http://dx.doi.org/10.1103/PhysRevD.65.094026
http://dx.doi.org/10.1103/PhysRevD.65.094026
http://dx.doi.org/10.1103/PhysRevD.72.094025
http://dx.doi.org/10.1103/PhysRevD.72.094025
http://dx.doi.org/10.1103/PhysRevD.72.094025
http://dx.doi.org/10.1103/PhysRevD.72.094025
http://dx.doi.org/10.1140/epjst/e2007-00003-5
http://dx.doi.org/10.1140/epjst/e2007-00003-5
http://dx.doi.org/10.1140/epjst/e2007-00003-5
http://dx.doi.org/10.1140/epjst/e2007-00003-5
http://dx.doi.org/10.1103/PhysRevC.89.034005
http://dx.doi.org/10.1103/PhysRevC.89.034005
http://dx.doi.org/10.1103/PhysRevC.89.034005
http://dx.doi.org/10.1103/PhysRevC.89.034005
http://dx.doi.org/10.1016/j.physletb.2012.04.068
http://dx.doi.org/10.1016/j.physletb.2012.04.068
http://dx.doi.org/10.1016/j.physletb.2012.04.068
http://dx.doi.org/10.1016/j.physletb.2012.04.068
http://dx.doi.org/10.1088/0954-3899/37/11/115001
http://dx.doi.org/10.1088/0954-3899/37/11/115001
http://dx.doi.org/10.1088/0954-3899/37/11/115001
http://dx.doi.org/10.1088/0954-3899/37/11/115001
http://arxiv.org/abs/arXiv:1006.0942
http://dx.doi.org/10.1142/S0217751X92003410
http://dx.doi.org/10.1142/S0217751X92003410
http://dx.doi.org/10.1142/S0217751X92003410
http://dx.doi.org/10.1142/S0217751X92003410
http://dx.doi.org/10.1103/PhysRevC.54.986
http://dx.doi.org/10.1103/PhysRevC.54.986
http://dx.doi.org/10.1103/PhysRevC.54.986
http://dx.doi.org/10.1103/PhysRevC.54.986
http://dx.doi.org/10.1007/s00601-008-0196-8
http://dx.doi.org/10.1007/s00601-008-0196-8
http://dx.doi.org/10.1007/s00601-008-0196-8
http://dx.doi.org/10.1007/s00601-008-0196-8
http://dx.doi.org/10.1140/epja/i2014-14126-6
http://dx.doi.org/10.1140/epja/i2014-14126-6
http://dx.doi.org/10.1140/epja/i2014-14126-6
http://dx.doi.org/10.1140/epja/i2014-14126-6
http://dx.doi.org/10.1007/s00601-010-0101-0
http://dx.doi.org/10.1007/s00601-010-0101-0
http://dx.doi.org/10.1007/s00601-010-0101-0
http://dx.doi.org/10.1007/s00601-010-0101-0
http://dx.doi.org/10.1016/j.ppnp.2007.12.034
http://dx.doi.org/10.1016/j.ppnp.2007.12.034
http://dx.doi.org/10.1016/j.ppnp.2007.12.034
http://dx.doi.org/10.1016/j.ppnp.2007.12.034
http://dx.doi.org/10.1103/PhysRevD.81.114019
http://dx.doi.org/10.1103/PhysRevD.81.114019
http://dx.doi.org/10.1103/PhysRevD.81.114019
http://dx.doi.org/10.1103/PhysRevD.81.114019
http://dx.doi.org/10.1103/PhysRevD.67.054019
http://dx.doi.org/10.1103/PhysRevD.67.054019
http://dx.doi.org/10.1103/PhysRevD.67.054019
http://dx.doi.org/10.1103/PhysRevD.67.054019
http://dx.doi.org/10.1103/PhysRevD.80.114010
http://dx.doi.org/10.1103/PhysRevD.80.114010
http://dx.doi.org/10.1103/PhysRevD.80.114010
http://dx.doi.org/10.1103/PhysRevD.80.114010
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1103/PhysRevC.71.065204
http://dx.doi.org/10.1103/PhysRevC.71.065204
http://dx.doi.org/10.1103/PhysRevC.71.065204
http://dx.doi.org/10.1103/PhysRevC.71.065204
http://dx.doi.org/10.1103/PhysRevC.77.025203
http://dx.doi.org/10.1103/PhysRevC.77.025203
http://dx.doi.org/10.1103/PhysRevC.77.025203
http://dx.doi.org/10.1103/PhysRevC.77.025203



