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Femtoscopic signature of strong radial flow in high-multiplicity pp collisions
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Hydrodynamic simulations are used to calculate the identical pion Hanbury-Brown–Twiss (HBT) radii, as a
function of the pair momentum kT. This dependence is sensitive to the magnitude of the collective radial flow
in the transverse plane, and thus comparison to ALICE data enables us to derive its magnitude. By using hydro
solutions with variable initial parameters we conclude that in this case fireball explosions start with a very small
initial size, well below 1 fm.
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I. INTRODUCTION

The so-called Hanbury-Brown–Twiss (HBT) interferom-
etry method originally came from radio astronomy [1] as
intensity interferometry. The influence of Bose symmetrization
of the wave function of the observed mesons in particle physics
was first emphasized by Goldhaber et al. [2] and applied to
proton-antiproton annihilation. Its use for the determination of
the size and duration of the particle production processes had
been proposed by Kopylov and Podgoretsky [3] and one of us
[4]. Heavy-ion collisions, with their large multiplicities, turned
the “femtoscopy” technique into a large industry. Early appli-
cations for Relativistic Heavy-Ion Collider (RHIC) heavy-ion
collisions were in certain tension with the hydrodynamical
models, but this issue was later resolved; see, e.g., [5]. The
development of the HBT method had made it possible to detect
the magnitude and even deformations of the flow.

Makhlin and Sinyukov [6] made the important observation
that HBT radii are sensitive to collective flows of matter.
The radii decrease with the increase of the total transverse
momentum kT = ( p1T + p2T)/2 of the pair. A sketch shown
in Fig. 1 provides a qualitative explanation of this effect:
the larger is kT, the brighter becomes a small (shaded) part
of the fireball, the radial flow of which is maximal and its
direction coincides with the direction of kT. This follows from
maximization of the Doppler-blueshifted thermal spectrum
∼ exp(−pμuμ/Tf ). In this paper we will rely on this effect, as
well as on ALICE HBT data, to deduce the magnitude of the
flow in high multiplicity pp collisions.

Although we will not use those, let us also mention that the
HBT method can also be used not only for determination of the
radial flow, but for elliptic flow as well; see, e.g., early STAR
measurements [7]. Another development in the HBT field was
a shift from two-particle to three-particle correlations [8], [9]
available due to very high multiplicity of events as well as
high luminosities of the RHIC and the Large Hadron Collider
(LHC).

With the advent of the LHC it became possible to trigger
on high-multiplicity events, both in pp and pPb collisions: the
resulting sample revealed angular anisotropies v2,v3 similar
to anisotropic flows in heavy-ion (AA) collisions. At the

*yuji.hirono@stonybrook.edu

moment the issue of whether those can or cannot be described
hydrodynamically is under debate. So far the discussion of the
strength of the radial flow has been based on the spectra of
identified particles; see [10,11]. In this paper we look at the
radial flow from a different angle, using the measured HBT
radii [12].

The HBT radii for pp collisions at the LHC have been
measured by the ALICE Collaboration [12], as a function
of multiplicity. Their magnitude has been compared to those
coming from hydro modeling in Refs. [13,14]. Our analysis
of the HBT radii focus on the strength of the radial flow. We
illustrate how the radii, and especially the ratio Ro/Rs , are
indicative of the flow magnitude.

While at minimally biased collisions and small multiplic-
ities the observed HBT radii are basically independent of
the pair transverse momentum kT, for high multiplicity the
observed radii decrease with kT. So, the effect we are after ap-
pears only at the highest multiplicities—the same ones which
display hydro-like angular correlations and modifications of
the particle spectra. The strongest decrease, as expected, is
seen for the so-called Ro radius, for which this reduction
in the interval kT = 0.1–0.7 GeV reaches about factor 4 in
magnitude.

The kT dependence of the HBT radii tells us about the
strength of the flow. The reason these data are quite important
is the following: the HBT radii at small kT tell us the final size
of the fireball, at the freezeout. The radii at large kT, combined
with hydro calculations to be described below, can shed light
on the initial size of the fireball, which we consider to be the
main result of this work.

We do not speculate below on how such initial conditions
can be created: this should be determined by models of the
initial state. Our goal is only to derive phenomenologically its
parameters. Their importance stems from the fact that high-
multiplicity pp collisions create the most extreme conditions
of matter density reached so far.

II. METHOD OF ANALYSIS

A. Hydrodynamic evolution

For heavy-ion collisions one has good command of the
matter distribution in nuclei, and thus can model the shape of
the initial state rather accurately. However in the case of high-
multiplicity pp collisions—which are certain fluctuations
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FIG. 1. (Color online) Sketch of how the radial flow (arrows
directed radially from the fireball center) influences the HBT radii.
At small kT the whole fireball (the circle) is visible, but at larger kT

one sees only the part comoving in the same direction, shown by the
shaded ellipse.

with small probability—there is still no quantitative theory,
and thus the shape remains unknown.

A certain shape is preferable, not on physical but technical
grounds. An analytic solution known as Gubser flow [15] is
restricted to a shape appearing in a stereographic projection
from a sphere to the transverse plane. Using the same shape
had allowed us to compare our numerical solution to the
corresponding analytic expression, providing control of the
code numerical accuracy.

In the Gubser solutions, the energy density and velocity
take the form

ε(τ,r) = ε0(2q)8/3

τ 4/3[1 + 2q2(τ 2 + r2) + q4(τ 2 − r2)2]4/3
, (1)

v⊥(τ,r) = 2q2τr

1 + q2τ 2 + q2r2
. (2)

The space-time characteristics of the system are parametrized
by two variables,

(q [fm−1], ε0). (3)

(The parameter q is widely used below, not to be confused with
the momentum transfer.) The dimensionless energy density
parameter ε0 is related with the entropy per unit rapidity
as

ε0 = f −1/3
∗

(
3

16π

dS

dη

)4/3

, (4)

where f∗ = 11 is the number of effective degrees of freedom
in QGP [15]. The entropy per unit rapidity is inferred from the
measured charged particle multiplicity,

dS

dη
� 7.5

dNch

dη
. (5)

Thus, the values of ε0 can be fixed by charged particle
multiplicity.

On the other hand, the parameter q quantifies the size of the
system. Figure 2 shows the temperature profiles at τ = 0.6 fm
as a function of r for q = 1.7 fm−1 and q = 0.7 fm−1, the
“smallest” and “largest” fireballs in this study. One can see
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FIG. 2. (Color online) The temperature profiles of the Gubser
solutions for different values of the parameter q, at τ = 0.6 fm as
a function of r .

that the former fireball—with larger q—is hotter and smaller
in size.

While we use Gubser solution for early evolution of the
system, unfortunately it cannot be used all the way to freezeout.
This solution was obtained by a conformal transformation and
thus can only be used for conformal plasma with the conformal
equation of state (EOS) ε = 3p. While it is believed to be a
good approximation for the early QGP phase of the collision,
this is certainly not the case near the QCD phase transition,
where pressure p remains roughly constant while the energy
density ε changes by about an order of magnitude. Therefore,
the initial Gubser-like stage is supplemented by a numerical
hydro solution, based on the realistic lattice-based EOS. We
therefore start from the Gubser solution, but then, at certain
time τ0 = 0.6 fm, we switch to numerical evolution with the
realistic EOS, derived from recent lattice QCD calculations
[16].

We recall the ideal relativistic hydrodynamic equations,

∂μT μν = 0, (6)

where T μν is the energy-momentum tensor. For a perfect fluid,
T μν can be expressed as

T μν = (ε + p)uμuν − pημν, (7)

where ε is the energy density, p is the pressure, uμ is the fluid
four-velocity, and ημν ≡ diag{1,−1,−1,−1} is the Minkowski
metric.

B. Freezeout

In order to obtain the single-particle distribution from the
hydrodynamic solutions, we use the standard Cooper-Frye
formula [17],

p0 d3N

dη dp2
T

= 1

(2π )3

∫
pμdσμ(x)

exp [p · u/T ] ∓BF 1
. (8)

This formula is applied on a isothermal hypersurface character-
ized by the freezeout temperature Tf . We perform Monte Carlo
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sampling of pions according to the distribution (8), following
the steps below:

(i) Take a piece of surface elements dσμ. We first
calculated the average number of pions produced from
this surface by

dN = 1

(2π )3

∫
d3p

E

pμdσμ(x)

exp [p · u/T ] ∓BF 1
. (9)

(ii) Since dN is typically a small number (∼10−3), we
can regard this number as a probability to produce a
pion. According to this probability, we throw a dice
and determine whether to make a pion or not.1 If we
are to produce a pion, we sample the momentum of
the pion from the distribution

f1(x, p) = 1

(2π )3

pμdσμ(x)

exp [p · u/T ] ∓BF 1
. (10)

(iii) We repeat the steps 1 and 2 for all the freezeout surface
elements.

We refer the reader to Ref. [18] for the details of the sampling
procedures.

C. Calculations of correlations

We have obtained the momenta and emission coordinates of
produced pions from the sampling based on the Cooper-Frye
formula. The effect of interference of identical particles is not
included at this stage, since the Cooper-Frye formula gives us
only a single-particle distribution function. The two-particle
correlations come from Bose symmetrization,

C(kT,q) =
∑

〈i,j〉∈[kT][1 + cos(qμ	xμ)]∑
〈i,j〉∈[kT] 1

, (11)

where kT ≡ ( p1T + p2T)/2 is the pair transverse momentum,
〈i,j 〉 ∈ [kT] indicates a pair of pions in a particular kT

bin, qμ = p
μ
1 − p

μ
2 is four-momentum difference of a pion

pair, and 	xμ ≡ x
μ
1 − x

μ
2 is space-time distance of the pair.

The correlation functions is evaluated in the “longitudinally
comoving frame,” where kz = 0 for each pair. We impose a
pseudorapidity cut |η| < 1.0, by which the particles in the
mid-rapidity region are selected.

We characterize the 3D correlation function in the “out-
side-long” parametrization [19,20],

C(kT,q) = 1 + λ exp
[−R2

oq
2
o − R2

s q
2
s − R2

�q
2
�

]
, (12)

where Ro,s,� = Ro,s,�(kT) are the HBT radii of interest in this
study, qo is the component of momentum parallel to the pair
transverse momentum, q� is the one parallel to the beam, and
qs is the one perpendicular to the out and long direction. For

1Although this treatment is justified for small dN , in general one
should sample from the Poisson distribution with mean dN . This
method is applicable for larger surface elements from which more
than one pion can be produced.

each kT bin, we determined the values of HBT radii by χ2

fitting.

III. RESULTS

A. Time evolution of fireballs

The main qualitative feature of the solution is that the
explosion is stronger for smaller (hotter) initial size—or
larger values of Gubser parameter q. Quantitatively the time
evolution of the temperature and radial flow velocity for
q = 0.7 fm−1 (left column) and q = 1.7 fm−1 (right column)
is shown in Fig. 3. The peak of the temperature in the central
region r ≈ 0 collapses, and the maximum moves to the rim
of the fireball. While the pressure gradient pushes out the
matter, the flow is increasing. One can see that the flow
velocity reaches larger values for q = 1.7 fm−1, compared to
the case with q = 0.7 fm−1. Freezeout surfaces are located at
the intersections of the dashed lines (the fluid temperature)
and the dotted line (the assumed value of the freezeout
temperature), where fluid elements are turned into particles.
At these intersections, the final flow is determined.

We again emphasize that while the absolute freezeout times
in both cases displayed is similar (∼ 4 fm), the flow magnitude
is quite different. As expected, it is significanly larger for
smaller fireballs, or larger q.

B. Flow and the distribution P(�xμ)

Hydrodynamics gives us an intuitive explanation of the
kT dependence, as mentioned in the Introduction. If one
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FIG. 3. (Color online) Time evolutions of temperature and ve-
locity for q = 0.7 fm−1 (left column) and q = 1.7 fm−1 (right
column). Temperature (dashed line) and velocity (solid line) profiles
at τ = 0.6,1.8,3.0,4.2 fm are plotted as a function of the radial
coordinate r . The dotted lines in the plots indicate the freezeout
temperature Tf = 0.12 GeV.
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FIG. 4. (Color online) Distribution of displacements in the out (Xo) and side (Xs) directions for q = 0.5 fm−1. Three figures are for different
kT bins.

selects a larger value of kT, the relevant region where particles
originate becomes smaller and more elliptic (see Fig. 1). This
intuitive picture can be quantitatively checked by looking
at the distribution, P (	xμ), of the pair-displacement vector
	xμ = x

μ
1 − x

μ
2 and its kT dependence.

In Figs. 4 and 5, we show the probability distribution of
the displacement in “out” and “side” directions, P (Xo,Xs),
for three kT bins for two value of q (0.5 and 1.5 fm−1). It
is determined after the particle pairs are selected, from the
Cooper-Frye integral over the freezeout surface. Here, Xo is the
projection of the displacement vector 	xμ to the direction of
kT, and Xs is the projection of xμ in the direction perpendicular
to kT and the beam axis. At low kT [Figs. 4(a) and 5(a)], the
distribution is broad and circular in out and side directions.

The wide circular component comes from the times when
flow is still small, while a narrow strip comes from the
region where it is substantial. For higher kT, the distribution is
squeezed, and is narrower in the out direction compared to the
side direction. These plots illustrate effect of the radial flow
schematically shown in Fig. 1.

C. HBT radii

Now let us turn to the results of HBT radii. In Fig. 6, we
show the HBT “volume” (RoRsR�) as a function of kT for
different values of q, together with the experimental data from
ALICE. The parameter ε0 is chosen to match the observed

multiplicity in ALICE. The radii from q = 1.5 to 1.7 fm−1

reproduce the volume in the ALICE data well.
In Fig. 7, we show the ratio Ro/Rs as a function of kT.

Basically, Ro/Rs is a decreasing function of kT. At small values
of q, the slope of Ro/Rs is gentle. As q becomes larger, the
slope becomes steeper and Ro/Rs is suppressed at large kT.
The ALICE data shows further suppression compared to the
result from the largest value of q. Judging from the data, we
can infer that Ro/Rs is indicative of the strength of the flow.
However, the reason why Ro/Rs is suppressed at large kT is
not so trivial, which we explain in Sec. III D.

D. Why is the ratio Ro/Rs most sensitive
to the strength of radial flow?

Here we discuss the reason why Ro/Rs is suppressed at
large kT in the presence of a strong radial flow. Depending on
the kT cut, the area where particles originate changes. As kT

becomes higher, the region shrinks, especially in the outward
direction. If the system is composed of a gas with a large mean
free path, such a behavior would not be present. This trend
indicates that the system is strongly interacting. Furthermore,
we claim that the ratio Ro/Rs is sensitive to the strength of
the flow. What is difficult to understand is that, if one looks at
the distribution itself, P (	xμ), the ratio of the widths of out

-10 -8 -6 -4 -2  0  2  4  6  8  10
Xo (fm)

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

X
s 

(f
m

)

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

(a) 0.05 GeV < kT < 0.15 GeV

-10 -8 -6 -4 -2  0  2  4  6  8  10
Xo (fm)

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

X
s 

(f
m

)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

(b) 0.35 GeV < kT < 0.45 GeV

-10 -8 -6 -4 -2  0  2  4  6  8  10
Xo (fm)

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

X
s 

(f
m

)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

(c) 0.65 GeV < kT < 0.75 GeV

FIG. 5. (Color online) Distribution of displacements in out (Xo) and side (Xs) directions for q = 1.5 fm−1.
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FIG. 6. (Color online) HBT volume as a function of the pair
transverse momentum kT for various values of the parameter q.
dNch/dη = 27, Tf = 120 MeV.

and side directions, Lo/Ls , does not appear to be different for
different values q (compare Figs. 4 and 5).

This might seem to be inconsistent with the behavior of
Ro/Rs at large kT calculated from the fitted radii: the ratio is
almost unity at weak flow case (q = 0.7 fm−1), and it decreases
as q gets larger. Below we explain the reason for the apparent
discrepancy. We will find that the suppression of the ratio
Ro/Rs at large kT for the strong flow case is mainly driven
by correlation of emission time difference and distance of the
emitted points in the out direction. This was first pointed out
in Ref. [21] and is consistent with results in Ref. [22], in which
the HBT radii for pp collisions are studied using a blast-wave
model.

We consider the quantities

∂2C(kT,q)

∂qi∂qj

∣∣∣∣
q=0

, (13)
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FIG. 7. (Color online) The ratio Ro/Rs as a function of kT for
various values of q. The initial size is more compressed for a larger
q, which results in stronger radial flow at freezeout.
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FIG. 8. (Color online) Ro/Rs calculated from the moments.

where i,j ∈ {t,o,s,�}. When P (	xμ) is approximated by a
Gaussian form,

P (	xμ) = 1

16π2V
exp

[
− X2

t

4L2
t

− X2
o

4L2
o

− X2
s

4L2
s

− X2
�

4L2
�

]
,

(14)

where Lt,o,s,l are the widths in time, out, side, and long direc-
tions, and V ≡ LtLoLsL�, the HBT radii can be expressed by
the moments as

R2
i = ∂2C(kT,q)

∂q2
i

∣∣∣∣
q=0

, (15)

with i ∈ {o,s,�}.
Below we express the measured HBT radii in terms

of the moments the distribution P (	xμ). The two-particle
correlation function reads

C(kT,q) − 1 =
∫

dXtdXodXsdX� P (	xμ) cos(qμ	xμ)

= Re

[∫
dXtdXodXsdX� P (	xμ)eiqμ	xμ

]
.

(16)
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The exponent in the integral can be written as

qμ	xμ = q0Xt − q · 	x

= β · q Xt − qT · 	xT

= (βTqo + βLq�)Xt − qoXo − qsXs − q�X�, (17)

where β = k/k0 and we used βs = 0 (β is parallel to k), and
q0 = β · q (↔ kμqμ = 0), and βT and βL are the projections
of β in transverse and longitudinal directions. In the current
case, where the correlations function is evaluated in the frame
with kz = 0, βT = β, and βL = 0. Thus, the HBT radii and the
moments are related by

R2
o = 〈(Xo − βXt )

2〉
= 〈

X2
o

〉 + 〈
β2X2

t

〉 − 2 〈βXtXo〉 , (18)

R2
s = 〈

X2
s

〉
, (19)

R2
� = 〈

X2
�

〉
. (20)

Indeed, one can see that the radii calculated from the moments,
using Eqs. (18), (19), and (20), shows consistent behavior with
the ones obtained by fitting procedure, compare Figs. 8 and 7.

Now let us discuss the reason why Ro/Rs is suppressed at
large kT in the presence of strong flow. In terms of the ratio of
moments, Ro/Rs is composed of three terms,

R2
o

R2
s

=
〈
X2

o

〉
〈
X2

s

〉 +
〈
β2X2

t

〉
〈
X2

s

〉 − 2
〈βXtXo〉〈

X2
s

〉 , (21)

In order to see which term plays the dominant role in the
suppression of Rs/Ro for strong flow, we plotted the values of
each term for different values of the Gubser parameter q, as a
function of kT (Figs. 9, 10, and 11). The behavior of the first
term 〈X2

o〉/〈X2
s 〉 is shown in Fig. 9. For all the values of q, the

ratio is around 1 at lowest kT, and is less than unity at higher kT.
Note the fact that, at highest kT, the ratio is more suppressed
for weaker flows. This indicates that the suppression of
Ro/Rs at large kT for a strong flow is not caused by the
term 〈X2

o〉/〈X2
s 〉.
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FIG. 11. (Color online) 〈βXtXo〉/〈X2
s 〉 as a function of kT.

The suppression of Ro/Rs is driven by 〈βXtXo〉/〈X2
s 〉,

which is shown in Fig. 11. This term is a measure of correlation
between emission time difference and the displacement in the
out direction. For a weak flow (small q), it is close to zero and
the correlation is weak for the entire region of kT. As we go to
stronger flow (larger q), the lines rises and the correlation at
high kT becomes stronger. Since this term contributes to Ro/Rs

with a negative sign, it leads to the suppression of Ro/Rs at
large kT.

IV. SUMMARY

ALICE HBT data [12] provided a striking indication that
the highest multiplicity bin of pp collisions at the LHC is
rather different from others: it shows evidence of strong radial
flow. We performed simulations of the system, using ideal
relativistic hydrodynamics. The early evolution is described by
a Gubser conformal solution, complemented by a numerical
one, with a realistic EOS at later stages. We show how strength
of the radial flow depends on the initial size and temperature
of the fireball.

Comparison of the resulting HBT radii with high multi-
plicity data shows the best agreement only for the smallest
fireball we study, with Gubser parameter q = 1.5–1.7 fm−1.
It confirms that one in fact observes the presence of collective
hydrodynamical flow in an unprecedented small system,
smaller than 1 fm initially.
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