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Coarse-grained output from transport calculations is used to determine thermal dilepton emission rates by
applying medium-modified spectral functions from thermal quantum field theoretical models. By averaging over
an ensemble of events generated with the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport
model, we extract the local thermodynamic properties at each time step of the calculation. With an equation
of state the temperature T and chemical potential μB can be determined. The approach goes beyond simplified
fireball models of the bulk-medium evolution by treating the full (3+1)-dimensional expansion of the system
with realistic time and density profiles. For the calculation of thermal dilepton rates we use the in-medium
spectral function of the ρ meson developed by Rapp and Wambach and consider thermal quark-gluon plasma
(QGP) and multipion contributions as well. The approach is applied to the evaluation of dimuon production
in In+In collisions at top CERN Super Proton Synchrotron (SPS) energy. Comparison to the experimental
results of the NA60 experiment shows good agreement of this ansatz. We find that the experimentally observed
low-mass dilepton excess in the mass region from 0.2 to 0.6 GeV can be explained by a broadening of the ρ

spectral function with a small mass shift. In contrast, the intermediate-mass region (M > 1.5 GeV) is dominated
by a contribution from the quark-gluon plasma. These findings agree with previous calculations with fireball
parametrizations. This agreement, in spite of differences in the reaction dynamics between both approaches,
indicates that the time-integrated dilepton spectra are not very sensitive to details of the space-time evolution
of the collision.

DOI: 10.1103/PhysRevC.91.054911 PACS number(s): 24.10.Lx, 25.75.−q

I. INTRODUCTION

The in-medium properties of hadrons have been a field of
intense studies in theory and experiment in recent years [1–6].
The aim is to learn more about the phase diagram of QCD
and especially to find hints for a possible restoration of chiral
symmetry. For such studies of hot and dense nuclear matter,
dileptons are a unique tool. As they do not interact strongly,
they suffer only negligible final-state interactions with the
medium and thus provide insight into the spectral properties
of their source; i.e., dileptons provide a direct view of the in-
medium electromagnetic current-current correlation function
of QCD matter during the entire history of the collision,
from first nucleon-nucleon reactions to final freeze-out [2,7,8].
However, this advantage also comes with a drawback. As we
only get time-integrated spectra over the whole space-time
evolution of a nuclear reaction, it is difficult to disentangle
the various contributing processes which requires a realistic
description of all collision stages.

Considering the different experimental efforts to investigate
dilepton production in heavy-ion collisions, the NA60 experi-
ment plays a prominent role. It measured dimuons in heavy-ion
collisions at top CERN Super Proton Synchrotron (SPS)
energies with an unprecedented precision. The high accuracy
of the measurement enabled the subtraction of the background
contributions (long-lived mesons such as η, η′, ω, φ) from
the dilepton spectra. Consequently, the NA60 results deliver
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direct insight into the in-medium effects on the ρ spectral
function in the low-mass region up to 1 GeV [9–11] and the
thermal dimuon emission in the intermediate-mass region [12].
A main finding was a large excess of lepton pairs in the mass
region 0.2–0.4 GeV, which confirmed the previous results by
the CERES Collaboration [13]. Theoretical studies showed
that this excess can be explained by a strong broadening of the
ρ spectral function with small mass shifts [14–17].

In general there exist two different types of approaches
to describe heavy-ion collisions, microscopic and macro-
scopic ones. The microscopic models, e.g., transport mod-
els such as Ultrarelativistic Quantum Molecular Dynamics
(UrQMD) [18,19], Hadron String Dynamics (HSD) [20], or the
Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) model [21],
focus on the description of all the subsequent hadron-hadron
collisions (or interactions of partons, respectively), according
to the Boltzmann equation. The difficulty here is to implement
in-medium effects in such a microscopic nonequilibrium
approach which is highly nontrivial, but nevertheless some
investigations on that issue have been conducted success-
fully [22–31]. On the other hand, in macroscopic models such
as thermal fireball models [32] or hydrodynamics [16,33–37],
the application of in-medium hadronic spectral functions from
thermal quantum-field theory is straightforward. However,
due to their plainness the fireball parametrizations might
oversimplify the real dynamics of a nuclear reaction, and
hydrodynamical simulations may not be applicable to the less
hot and dense medium created at lower collision energies.
Furthermore, the creation of an equilibrium state of hot and
dense matter after quite short formation times is usually
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assumed in these models whereas the results from microscopic
investigations indicate the importance of nonequilibrium
effects during the evolution of a heavy-ion collision [38].

Combining a realistic (3+1)-dimensional expansion of the
system with full in-medium spectral functions for the thermal
emission of dileptons is still an important challenge for theory.
One approach that has proven successful in explaining the
NA60 results is the investigation of dilepton production with
a hybrid model [39]. It combines a cascade calculation of the
reaction dynamics with thermal emission from an intermediate
hydrodynamic stage. However, as all hydro approaches it is
only working properly for sufficiently large collision energies.
Furthermore, the hybrid-approach falls into three different
stages: a pre-hydro phase, the hydrodynamic stage and the
transport phase after particlization. An application of in-
medium spectral functions is hereby only possible for the
rather short hydro stage.

For the study presented in this paper we follow an approach
which uses a microscopic description for the whole evolution
of the collision and enables the use of in-medium spectral
functions from thermal quantum-field theoretical models at all
stages. Taking a large number of events generated with the
UrQMD model, we place the output on a space-time grid and
extract the local temperature and baryon chemical potential by
averaging energy and baryon density over the events (i.e., we
“coarse-grain” the microscopic results) which allows for the
calculation of local thermal dilepton emission. This ansatz was
previously proposed and used to calculate hadron, dilepton,
and photon spectra [40]. For the present work we modify the
approach to include also the very initial stage of the reaction
(which was separately treated in the cited work) and account
for nonequilibrium effects with respect to the pion dynamics.
Additionally we include nonthermal contributions to really
cover the whole evolution of the nucleus-nucleus reaction.

This paper is structured as follows. In Sec. II the coarse-
graining approach is described in detail and the different con-
tributions to the dilepton emission included in the model are
introduced. Subsequently we present the results for the space-
time evolution of the nuclear reaction in Sec. III A followed by
the dilepton invariant-mass and transverse-momentum spectra,
which we compare to the experimental results in Sec. III B.
Finally, in Sec. IV a summary and an outlook on further studies
are given.

II. THE MODEL

A. The coarse-graining approach

The underlying input for our calculations stems from
the Ultrarelativistic Quantum Molecular Dynamics (UrQMD)
approach [18,19,41,42]. It is a nonequilibrium transport
approach that includes all hadronic resonance states up to
a mass of 2.2 GeV and constitutes an effective solution of
the relativistic Boltzmann equation. A heavy-ion collision is
simulated such that all hadrons are propagated on classical
trajectories in combination with elastic and inelastic binary
scatterings and resonance decays. At higher energies, string
excitation is possible as well. The model has been checked
to describe hadronic observables up to Relativistic Heavy

Ion Collider (RHIC) energies with good accuracy [41]. For
the further investigations we use the UrQMD output in time
steps. This provides positions, momenta, and energies of all
particles and resonances at that specific moment in time. The
size of each time step for the present calculations is chosen as
�t = 0.2 fm/c.

In the UrQMD model, the particle distribution function of
all hadrons is given by an ensemble of point particles, which
at time t are defined by their positions �xh and momenta �ph.
Each particle’s contribution to the phase-space density is then
defined as

δ(3)(�x − �xh(t))δ(3)( �p − �ph(t)). (1)

With a sufficiently large number of events the distribution
function f (�x, �p,t) takes a smooth form

f (�x, �p,t) =
〈∑

h

δ(3)(�x − �xh(t))δ(3)( �p − �ph(t))

〉
. (2)

Hereby, the ensemble average 〈·〉 is taken over simulated
events. As the UrQMD model constitutes a nonequilibrium
approach, the equilibrium quantities have to be extracted
locally at each space-time point. In consequence we set up
a grid of small space-time cells with a spatial extension �x of
0.8 fm and average the UrQMD output for each cell on that
grid. One can then determine the energy-momentum tensor
T μν and the baryon four-flow according to the following
expressions:

T μν =
∫

d3p
pμpν

p0
f (�x, �p,t)

= 1

�V

〈
Nh∈�V∑

i=1

pi
μpi

ν

pi
0

〉
, (3)

jB
μ =

∫
d3p

pμ

p0
f B(�x, �p,t)

= 1

�V

〈NB/B̄∈�V∑
i=1

±pi
μ

pi
0

〉
. (4)

For the net-baryon flow in (3) only the distribution function of
baryons and antibaryons f B(�x, �p,t) is considered, excluding
all mesons. Each antibaryon hereby gives a negative contribu-
tion to jB

μ . In contrast, the distribution function for all hadrons
in the cell enters in T μν .

According to Eckart’s definition [43] the local rest-frame
(LRF) is tied to conserved charges, in our case the net-
baryon number. Consequently one has to perform a Lorentz
transformation into the frame, where �j B = 0. The unit vector
in the direction of the baryon flow takes the form

uμ = jμ

(jνjν)1/2
= (γ,γ �v), (5)

where uμuμ = 1. With this, the rest-frame values for the
baryon and energy density are obtained by

ρB = jμuμ = j 0
LRF, (6)

ε = uμT μνuν = T 00
LRF. (7)
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B. Equilibration and thermal properties of the cells

For the case of a fully equilibrated ideal fluid the energy-
momentum tensor would be completely diagonal in the
local rest frame. An important question is to which extent
equilibrium is obtained in the present approach and how one
can deal with deviations from it.

In macroscopic descriptions of nuclear reaction dynamics
local equilibrium is usually introduced as an ad hoc assump-
tion. (In fireball models, one even assumes a globally equili-
brated system). The equilibration of the system is generally
assumed to be very fast (on the scale of 1–2 fm/c), after an
initial phase. In contrast, no such hypothesis is made within
transport approaches, where only the microscopic interactions
between the constituent particles of the medium are described.
Furthermore, these approaches implicitly include effects such
as viscosities or heat conduction and do not fully account
for detailed balance. Consequently, nonequilibrium is the
normal case at any stage of the collision. On the other
hand, to calculate thermal emission rates for dileptons from
many-body quantum-field theoretical models, it is necessary
to know the temperature and baryochemical potential which
are by definition equilibrium properties. But when extracting
thermodynamic properties from a transport model one has
to deal with the problem that many cells are not found in
equilibrium. As the coarse-graining approach aims to treat the
entire space-time evolution of the collision, this case has to be
handled with special care.

Ideally, if complete local equilibrium is achieved, then in
each cell the momentum spectrum and the particle abundances
should follow a Maxwell-Jüttner-distribution

feq(p,mi) = 1

exp
(√

p2 + m2
i − μ

)/
T

, (8)

with μ being the chemical potentials for the conserved
quantities and T being the temperature. Unfortunately, this
ideal case is most of the time not realized during the
evolution in the present classical transport simulation. For the
present investigation, however, the following criteria are more
relevant, because they allow us to include the deviations from
equilibrium.

Using the momentum space anisotropy to characterize
the local kinetic equilibrium, one observes from Fig. 2 that
kinetic equilibrium may only be reached after 10 fm/c
(see also Sec. III A). The question arises whether the larger
anisotropies of the momentum distribution before 10 fm/c
impact the extracted energy densities that are of relevance
for our studies. We overcome this problem by employing
an anisotropic energy-momentum tensor for the extraction
of the energy density, as detailed below. The approach to
local chemical equilibrium is more difficult to quantify.
Approximate chemical equilibrium may also only be reached
towards the end of the reaction. Here we take the chemical
off-equilibrium situation into account by extracting a pion
chemical potential and employing corresponding fugacity
factors.

The findings of the present work are in line with previous
detailed studies comparing the particle yields and spectra of

the UrQMD transport approach at different times with those
of the statistical model [44–46] which showed that it takes
roughly 10 fm/c until local kinetic and chemical equilibrium
is approximately reached for nucleus-nucleus collisions at SPS
energies [38,47,48].

In summary, to account for the nonequilibrium effects in
the present study, which obviously dominate large parts of the
evolution, we will use the following scheme: One (i) considers
the pressure (or momentum) anisotropies in each cell and
applies an approach developed for anisotropic hydrodynamics
to extract the effective energy density which is used for
all further considerations, (ii) introduces an EoS assuming
thermal and chemical equilibrium, and (iii) finally extracts
a pion chemical potential μπ which is the nonequilibrium
effect with the largest impact on the thermal dilepton rates.
These aspects will be considered in detail in the following.
However, note that step (i) only accounts for deviations
from the condition of isotropic momentum distributions and
(iii) accounts for the chemical off-equilibrium of the pions
only. Besides, when applying the EoS, kinetic and chemical
equilibrium in the end remain an assumption here as in any
macroscopic approach.

1. Kinetic anisotropies

When considering the kinetic properties of the system, one
finds that the underlying transport approach in parts depicts
large deviations from pressure isotropy. This is especially
important for the early stages of the reaction due to the large
initial longitudinal momenta carried by the nucleons of the two
nuclei traversing each other. In consequence, the longitudinal
pressure is much higher than the transverse pressure. To handle
this kinetic off-equilibrium situation, a description developed
for anisotropic hydrodynamics is employed [49] which allows
for differing longitudinal and transverse pressures. In this case
the energy-momentum tensor takes the form

T μν = (ε + P⊥) uμuν − P⊥ gμν − (P⊥ − P‖)vμvν. (9)

Here ε is the energy density, P⊥ and P‖ are the pressures
perpendicular and in direction of the beam, respectively; uμ

is the fluid four-velocity and vμ the four-vector of the beam
direction. To define realistic values for energy density ε and
pressure P in the energy-momentum tensor we introduce an
anisotropy parameter

x = (P‖/P⊥)3/4 (10)

and apply a generalized equation of state [50] according to the
following relations:

εreal = ε/r(x), (11)

Preal = P⊥/[r(x) + 3xr ′(x)], (12)

Preal = P‖/[r(x) − 6xr ′(x)]. (13)

The relaxation function r(x), with its derivative r ′(x),
characterizes the properties of a system which exhibits a
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Boltzmann-like pressure anisotropy. It is given by

r(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x−1/3

2

(
1 + x artanh

√
1 − x√

1 − x

)
for x � 1,

x−1/3

2

(
1 + x arctan

√
x − 1√

x − 1

)
for x � 1.

(14)

With this procedure one can translate the anisotropic momen-
tum distribution into a local-equilibrium description that gives
a realistic value of ε for our further calculations. This effective
model to account for the anisotropic pressure of the cell
properties allows to treat the early stage of the reaction in the
same way as at later times, when a local kinetic equilibration
of the system has set in. However, large differences between
the “regular” energy density ε = T 00 and the effective density
εreal only show up for the first few fm/c of the evolution of the
nuclear reaction. After that time we find that the longitudinal
and perpendicular pressures are of at least the same order of
magnitude and εreal ≈ ε; i.e., there are no significant deviations
from the assumption of isotropic momentum distributions
(for details see Sec. III A and [38]). For all further studies
we assume that εreal represents the energy density of the cell.

2. Equation of state

Having determined the rest-frame energy and baryon
density, an equation of state (EoS) is needed as additional input
to calculate the temperature T and baryo-chemical potential
μB for each cell. As the actual EoS for QCD matter is
still not completely determined, this is an uncertainty within
the calculation. For the present study we use a hadron-gas
EoS with vacuum masses and without mean-field potentials
(HG-EoS) [51,52] following from hadronic chiral model
calculations [53,54]. The included hadrons agree with the
degrees of freedom in UrQMD. However, this approach does
not account for a phase transition to a deconfined phase as
it is neither implemented in UrQMD nor in the HG-EoS.
For heavy-ion collisions at SPS energies, where we find
initial temperatures significantly above the expected critical
temperature Tc, it will be also important to consider dilepton
emission from cells with such high temperatures during the
evolution of the medium. Therefore, we supplement the
hadron-gas EoS with a partonic equation of state [55] which
is obtained from a fit to lattice-QCD data of the form

ε/T 4 = c(1 + e−a/b)

1 + e(Tc/T −a)/b
eλTc/T , (15)

with fit parameters a = 0.9979, b = 0.1163, c = 16.04157,
and λ = 0.1773 and critical temperature Tc = 170 MeV. To
ensure a smooth transition between the two EoS without
any jumps in temperature (i.e., to avoid discontinuities in the
evolution), the values of T from the lattice EoS are matched
with the HG-EoS in the temperature range from 150–170 MeV
and exclusively used above Tc.

In Fig. 1 a comparison of the relation between temperature
and energy density is shown for the two equations of state used
in the model. The hadron-gas EoS is represented by the black
line and the lattice EoS by the blue dashed line. While for the
lattice EoS μB = 0 is valid intrinsically, the baryon density
and in consequence the chemical potential are set to zero in
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FIG. 1. (Color online) Comparison of the two equations of state
used in our model: the hadron gas EoS [51] with UrQMD-like
degrees of freedom (black line) and the lattice EoS [55] to model the
deconfined phase (blue line). We show the temperature dependence
on the energy density (in units of normal nuclear-matter density, ε0).
While for the lattice EoS μB = 0 intrinsically, we set the chemical
potential to zero as well for the hadron gas EoS for reasons of
comparison.

this plot for the hadron gas EoS for reasons of comparison.
However, the rather moderate baryon chemical potential found
at top SPS energy does not have a large impact on the relation
between energy density and temperature and gives rise to a
deviation from the curve for ρB = μB = 0 of at maximum
a few MeV. As observed from Fig. 1, both equations of state
agree very well up to an energy density of roughly 15ε0, which
corresponds to a temperature of 200 MeV. This implies that
both EoS are dual in the region around the phase transition,
guaranteeing a smooth crossover transition when changing
from the lattice EoS, accounting for the quark-gluon plasma,
to the pure hadron-gas EoS across the phase transition.

The parametrization of the Rapp-Wambach spectral func-
tion [56], which will be used in this study for convenient and
reliable application, is constructed such that the presence of
baryonic matter enters via a dependence on an effective baryon
density:

ρeff = ρN + ρN̄ + 0.5 (ρB∗ + ρB̄∗ ) . (16)

It includes nucleons and excited baryons as well as their
antiparticles. The reason not to take μB is that the inter-
action between the ρ and a baryon is the same as with an
antibaryon; i.e., it is not the net-baryon number that affects the
electromagnetic current-current correlation function but the
sum of baryons and antibaryons. In our approach, we calculate
the value of ρeff not via the EoS but directly from the cell’s
rest-frame.

3. Pion chemical potential

In full chemical equilibrium all meson chemical potentials
are zero since the meson number is not a conserved quantity.
When applying the EoS as described above, the explicit
assumption is that in each cell we find a thermally and chem-
ically equilibrated system. However, it has been shown that
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in transport models during the initial nonequilibrium stage—
which is dominated by high energy densities—an over-dense
pionic system is created and remains for significant timescales
due to the long relaxation time of pions [57,58]. This is mainly
caused by initial string fragmentation and resonances decaying
into more than two final particles (e.g., ω → 3π ) for which the
back-reaction channel is not implemented. Also macroscopic
approaches find nonzero μπ after the number of pions is fixed
at the chemical freeze-out but the system further cools down
and expands [59]. The appearance of a finite μπ has a large
effect on the creation of ρ mesons and therefore on the thermal
dilepton emission (see Sec. II C). Therefore, though in general
assuming chemical equilibrium, we exclude the pions from this
assumption and extract a pion chemical potential in each cell
via a Boltzmann approximation. The corresponding relation
for a relativistic gas is given by [60]

μπ = T ln

(
2π2nπ

gπT m2K2
(

m
T

)
)

, (17)

with the pion density nπ in the cell, the pion degeneracy
gπ = 3, and the Bessel function of the second kind, K2. Other
meson chemical potentials, e.g., a kaon chemical potential, are
not considered in the present study, as the dependence of the
ρ spectral function with regard to μK is negligible.

C. Dilepton emission rates

By assuming that the cells in our (3+1)-dimensional
space-time grid are in local equilibrium (except for the finite
μπ ) we can calculate the thermal emission from these cells.
The dilepton emission is related to the imaginary part of the
electromagnetic current-current correlation function [61,62],
Im�(ret)

em . The full expression for the dilepton emission rate
per four-volume and four-momentum from a heat bath at
temperature T and chemical potential μB takes the form [32]

dNll

d4xd4q
= −α2

emL(M)

π3M2
f B(qU ; T )

× Im�(ret)
em (M,�q; μB,T ), (18)

where f B denotes the Bose-distribution function and L the
lepton phase-space factor,

L(M) =
√

1 − 4m2
μ

M2

(
1 + 2m2

μ

M2

)
, (19)

which reaches 1 rapidly above the threshold, given by twice
the lepton mass.

To calculate invariant-mass spectra from Eq. (18) we
integrate over four-volume and three-momentum:

dNll

dM
=

∫
d4x

Md3 �p
p0

dNll

d4x d4p
(20)

In our case the integration over the four-volume simply reduces
to a multiplication of the cell’s four-volume.

1. Thermal ρ emission

There exist several approaches to calculate the in-medium
spectral functions, e.g., by using empirical scattering ampli-

tudes [63]. Here the ρ spectral function from hadronic many-
body calculations by Rapp and Wambach [64] is used, which
has proven a good agreement with experimental results at
CERN-SPS and RHIC energies in previous studies [14,15,32].
In this approach, the hadronic part of the electromagnetic
current-current correlator is saturated by light vector mesons
according to the Vector Dominance Model (VDM). The
correlator is hereby related to the ρ spectral function, i.e.,
the imaginary part of its retarded propagator, as

Im�(ret)
em =

(
m(0)

ρ

)4

g2
ρ

ImD(ret)
ρ . (21)

To determine the propagator, several contributions to the self-
energy have to be considered, i.e., in this case the meson
gas (�ρM ) and nuclear matter effects (�ρB) as well as the
in-medium ρππ width (�ρππ ). This results in

Dρ = 1

M2 − (
m

(0)
ρ

)2 − �ρππ − �ρM − �ρB

. (22)

For the present study we use a parametrization of the Rapp-
Wambach spectral function [56] that has been checked against
the full spectral function and proven to agree well, with a
maximal deviation of up to 15% in the mass region around
0.4 GeV.

To arrive at the final yield Nρ→ll we have to generalize (18)
for a chemical off-equilibrium state with finite pion chemical
potential. It is necessary to include an additional (squared)
fugacity factor, which is in Boltzmann approximation

z2
π = exp

(
2μπ

T

)
. (23)

The reason for this is that the above expression for the dilepton
emission rate (18) is independent of the hadronic initial and
final states as only chemical potentials of conserved charges
are considered (for which Qi = Qf ). However, since the pion
number Nπ is not a conserved quantity this assumption is no
longer correct for μπ 
= 0 which means that generally Nπ,i −
Nπ,f 
= 0.

2. Multipion emission

While the ρ meson is expected to dominate the dilepton
emission in the low invariant mass range up to M = 1 GeV, a
continuum starts to develop above, and multipion interactions
will contribute at higher masses.

As detailed in [65], the vector correlator at finite tempera-
ture takes the form

�V
μν(p,T ) = (1 − ε)�V

μν(p,0) + ε�A
μν(p,0) (24)

with the mixing parameter ε = T 2/(6F 2
π ) (Fπ : pion-decay

constant). In this paper, we follow the same approach as
presented in [14,15], using

�V (p) = (1 − ε)z4
π�vac

V,4π + ε

2
z3
π�vac

A,3π

+ ε

2

(
z4
π + z5

π

)
�vac

A,5π (25)

according to vector/axialvector correlators from tau-decay data
provided by the ALEPH Collaboration [66]. The pion chemical
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potentials are implemented via the fugacity factor zπ . The
two-pion piece, as well as the three-pion piece corresponding
to the a1 decay, a1 → π + ρ, have been excluded as they are
already included via the ρ spectral function.

3. Quark-gluon plasma emission

The dilepton emission from the quark-gluon plasma has
been considered to be one of the most promising probes for
the formation of a deconfined phase. In such a QGP phase, a
quark can annihilate with an antiquark into a dilepton pair (via
a virtual photon).

Here we use a corresponding spectral function extrapolated
from lattice QCD correlators for three-momentum �q = 0 [67]
and with a light-like limit, consistent with the leading order αs

photon production rate [32]. The emission rate per four-volume
and four-momentum takes the form

dNll

d4x d4p
= α2

em

6π3

∑
q

e2
q

ρV(p0, �p,T )(
p2

0 − �p2
)
(ep0/T − 1)

, (26)

where ρV denotes the vector spectral function. The current
calculation assumes that the chemical potential is zero in
the deconfined phase, i.e., that the quark and antiquark
distributions are equal.

For comparison also the pure perturbative quark-gluon
plasma contribution is calculated. The rate has been evaluated
for lowest order qq̄ annihilation [68] as

dNll

d4x d4p
= α2

em

4π4

T

p
f B(p0; T )

∑
q

e2
q

× ln
(x− + y)(x+ + exp[−μq/T ])

(x+ + y)(x− + exp[−μq/T ])
(27)

with the expressions x± = exp[−(p0 ± p)/2T ] and y =
exp[−(p0 + μq)/T ]. Again, the quark chemical potential μq

is zero for our considerations.

4. Nonthermal ρ emission

In addition to the thermal contribution, we also have to
handle those cells where (i) the temperature is lower than
50 MeV (late stage), i.e., where it is not reasonable to assume
a thermal emission, and (ii) with no baryon but only meson
content (in these cells the density is usually also quite low)
which inhibits a determination of a local rest frame ac-
cording to the Eckart description and in consequence one
cannot determine T and μB in this way. In these cases we
directly take the ρ0 mesons from the UrQMD calculations.
Within the transport approach they are mainly produced either
via decay of heavy resonances (e.g., N∗

1520 → ρN ) or the
reaction ππ → ρ. Production via strings is possible as well.
For these ρ0 mesons we apply a shining procedure that is
conventionally used to calculate dilepton emission from a
transport approach [69].

The mass-dependent width for the direct decay of a ρ0

meson to a dilepton pair is expressed according to [70]

�ρ→ll(M) = �ρ→ll(mρ)

mρ

m4
ρ

M3
· L(M), (28)

with the partial decay width at the ρ-pole mass �ρ→ll(mρ);
L(M) denotes the lepton phase-space factor (19).

The according dilepton yield is then obtained by summing
over all ρ0 mesons from the low temperature cells,

dNll

dM
= �Nll

�M
=

N�M∑
i=1

Nρ∑
j=1

�t

γρ

�ρ→ll(M)

�M
. (29)

Here �ρ→ll(M) is the electromagnetic decay width of the ρ
meson defined in (28) and �t is the length of a time step within
our calculation. The factor γ −1

ρ is introduced to account for the
fact that the ρ meson lives longer in the center-of-mass system
of the UrQMD calculation than in its rest frame in which the
shining is applied (relativistic time dilation).

Note that we use the shining procedure only for cells
for which we do not calculate the thermal emission; in
consequence we avoid any form of double counting.

III. RESULTS

The following calculations were performed with the coarse-
graining approach as described above. To compare our results
with the data recorded by the NA60 Collaboration, an input
of 1000 UrQMD events with a random impact-parameter
distribution restricted to b < 8.5 fm has been used, which
corresponds to a value of 〈dNch/dη〉 ≈ 119 in one unit of
rapidity around mid-rapidity in the center-of-mass frame. This
is very close to the value of 〈dNch/dη〉exp = 120 which NA60
measured within their acceptance.

Note that several coarse-graining runs with different
UrQMD events as input had to be performed to obtain enough
statistics, especially for the nonthermal ρ contribution.

A. Space-time evolution

As dileptons are radiated over the whole space-time
evolution of the nuclear reaction, it is important to model
the dynamics as realistically as possible. When studying the
electromagnetic radiation from the hot and dense phase of
heavy-ion collisions, the thermodynamic properties of the
fireball are the main input for the calculations.

We first investigate the anisotropic situation at the beginning
of the collision. Figure 2 shows—for the central cell at the
origin of our grid—the time evolution of the longitudinal and
transverse pressures, P‖ and P⊥, together with the anisotropy
parameter, x, and the relaxation function, r(x), as defined
in Eqs. (10) and (14). As one expects, the first time steps
are characterized by high values of P‖ while P⊥ is rather
negligible first but increases significantly later. Both quantities
initially differ by three orders of magnitude. In the course
of the evolution the values are approaching each other and
become equal around t = 2 fm/c. But they do not remain
equal at later times: the perpendicular pressure then exceeds
the longitudinal one by a factor 3–5 in the further development
until they finally equalize around t = 10 fm/c. This finding
agrees with previous studies of the kinetic equilibration within
the UrQMD model [38]. When considering the influence of the
pressure anisotropy on the local thermodynamic properties one
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FIG. 2. (Color online) Longitudinal and transverse pressure for
the central cell, as well as the anisotropy parameter x = (P‖/P⊥)3/4

and the relaxation function r(x) as defined in Eq. (14).

has to bear in mind that according to (11) the realistic energy
density in the cell is determined by the relaxation function
r(x). Its value drops rapidly from an initial value of 10 (i.e.,
the realistic isotropized energy density is here only 10% of
the actual energy density in the cell) to 1 at t = 2 fm/c and
remains on that level. In consequence, the anisotropy does not
significantly influence the thermodynamic properties in the
cell after 2 fm/c.

The transverse and the longitudinal profiles of the energy
density ε and the baryon density ρB are presented in Fig. 3. The
left plot (a) shows the distribution of ρ and ε in dependence
on the position along the x axis whereas y = z = 0 and the
right plot (b) shows the dependence on the z position (i.e.,
along the beam axis) with x = y = 0. The results are plotted
for three different time steps: at 1, 3, and 5 fm/c after the
beginning of the collision. (Note that the results for t = 3 fm/c
and 5 fm/c are scaled up for better comparability.) The shape
of the transverse profile looks almost identical at all times
with a clear peak at x = 0, which is falling off smoothly
on both sides at the more peripheral and less dense regions

where consequently also less energy is deposited. However,
both energy and baryon density decrease clearly in the course
of time due to the expansion of the system. This expansion
can directly be seen in the longitudinal profile on the right
side. On the one hand, we see one clear peak structure at
t = 1 fm/c when the two nuclei still mostly overlap. However,
at t = 3 fm/c and 5 fm/c we observe a double-peak structure
with maxima that sheer off from each other. A region of high
ε and ρB is created in between when the two nuclei have
traversed each other. Stopping effects have produced this hot
and dense zone, whereas some remnants of the nuclei still fly
apart with high velocity.

As we can see from these profiles, the highest initial baryon
and energy densities should be expected at the origin of our
grid in the center of the collision. Indeed the time evolution
of ε and ρ in Fig. 4(a) shows a rapid rise up to baryon and
energy densities of respectively 20 times and 100 times the
ground state densities. The maxima are reached at a time of
about 1.2 fm/c after the beginning of the collision and then
the densities decrease again—first rapidly, then more slowly.
After application of the equation of state we observe a similar
behavior for the time dependence of the temperature, with
values of up to 300 MeV. It is important to bear in mind that
we apply two different EoS here: a lattice EoS for temperatures
above 170 MeV to mimic a quark-gluon-plasma phase and a
hadron-gas EoS for lower temperatures. As we see, a smooth
transition in temperature between the two EoS is obtained
around t = 5 fm/c, which one would have already expected
from the fact that the EoS agree quite well for T < 200 MeV.
The baryo-chemical potential from the hadron-gas EoS slowly
rises from a value of 200 MeV at the transition time up to a
maximum of 400 MeV in the course of the evolution. This
increase is similar to the findings of [40] and is caused by the
stronger relative decline of the energy density compared to
the baryon density. A different behavior can be observed for
the pion chemical potential μπ , which is around 100 MeV first
and then drops to values around 0. This is unlike the findings
of fireball approaches, where particle numbers are fixed at a
freeze-out and the subsequent cooling of the system leads to
a buildup of a finite pion chemical potential. The picture in
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FIG. 3. (Color online) Transverse (a) and longitudinal (b) profiles of the energy density ε and the baryon density ρB. The left plot shows
the dependence of ε and ρB on the position along the x axis, with y and z coordinates fixed to 0. The right plot shows the dependence along
the z axis (i.e., along the beam axis) with x = y = 0. The results are presented in units of the normal nuclear-matter densities, ε0 and ρ0.

054911-7



ENDRES, VAN HEES, WEIL, AND BLEICHER PHYSICAL REVIEW C 91, 054911 (2015)

Time t [fm]
0 2 4 6 8 10 12 14

0ρ/
Bρ

 a
n

d
 

0ε/ε

-210

-110

1

10

210
In+In @ 158 AGeV

>=120η/dch<dN
Central cell (x=y=z=0)

0ε/εEnergy density 

0
ρ/ρBaryon density 

(a)

Time t [fm]
0 2 4 6 8 10 12 14

 [
M

eV
]

Bμ
T

 a
n

d
 

0

100

200

300

400

500
Lattice EoS Hadron Gas EoS

In + In @ 158 AGeV
>=120η/dch<dN

Central cell (x=y=z=0)

T

B
μ

πμ

(b)

FIG. 4. (Color online) Left panel (a): Time evolution of the baryon density ρB (short dashed) and energy density ε (long dashed) for the
cell at the center of the coarse-graining grid (x = y = z = 0). The results are given in units of the ground-state densities ε0 and ρ0. Right panel
(b): Time evolution of the temperature T (red dash-dotted), baryon chemical potential μB (green short dashed) and the pion chemical potential
μπ (blue dotted) in the central cell. The thin grey line indicates the transition from the kattice EoS to the hadron gas EoS at the transition
temperature of T = 170 MeV.

our transport approach is completely different, as pions can
be produced and absorbed over the whole evolution in the
system.

As we see from the time evolution of the central cell, the
temperature reaches values of 100 MeV even after a time of
15 fm/c. However, this is a special case and for most cells the
temperature has already dropped beyond significance before.
But in contrast to many approaches with a fixed lifetime of the
fireball, here an underlying microscopic transport description
is applied which takes into account that some singular cells
still reach quite high temperatures and densities even after
the usually assumed fireball lifetimes. The contribution to
the dilepton yield from these few cells is, however, quite
negligible.

B. Dilepton spectra

The next step is to investigate how the space-time evolution
obtained by coarse-graining the transport simulations is
reflected within the resulting dilepton spectra. It is hereby
of particular interest whether and how the differences in the
reaction dynamics as compared to the fireball parametrizations
will be reflected in the μ+μ−-distributions as measurable
in experiment (and, by this, whether one can discriminate
between different scenarios of the reaction evolution).

In Fig. 5 the resulting dimuon invariant-mass spectra from
the coarse-graining calculations are compared to data from
the NA60 Collaboration. There the dimuon excess yield in
In+In collisions at a beam energy of Elab = 158 AGeV with
〈dNch/dη〉 = 120 is shown, for the low-mass region up to
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FIG. 5. (Color online) Invariant mass spectra of the dimuon excess yield in In+In collisions at a beam energy of 158 AGeV, for the low-mass
region up 1.5 GeV (a) and the intermediate-mass regime up to 2.8 GeV (b). We show the contributions of the in-medium ρ emission according
to the Rapp-Wambach spectral function [56] (blue short dashed), the contribution from the quark-gluon plasma, i.e., qq̄ annihilation, according
to lattice rates [32,67] (green dashed) and the emission from multipion reactions, taking vector–axial-vector mixing into account [15] (orange
dash-dotted). Additionally a nonthermal transport contribution for the ρ is included in the yield (dark blue dash-dotted). Only left plot: For
comparison the thermal ρ without any baryonic effects, i.e., for ρeff = 0, is shown (violet dash-double-dotted) together with the yield from pure
perturbative qq̄-annihilation rates (green dotted). The results are compared to the experimental data from the NA60 Collaboration [11,12,71].
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FIG. 6. (Color online) Transverse-mass (mt − M) spectra in four different mass bins of the dimuon-excess yield in In+In collisions at
a beam energy of 158 AGeV. We have the mass ranges 0.2 < M < 0.4 GeV (a), 0.4 < M < 0.6 GeV (b), 0.6 < M < 0.9 GeV (c), and
the highest mass bin with 1.0 < M < 1.4 GeV (d). The different contributions are the same as in Fig. 5. The results are compared to the
experimental data from the NA60 Collaboration [72].

M = 1.5 GeV (a) and the intermediate-mass regime up to
2.8 GeV (b). We show the contributions of the in-medium ρ
emission, from the quark-gluon plasma, i.e., qq̄ annihilation,
and the emission from multipion reactions, taking vector-axial-
vector mixing into account. The dilepton emission due to
decays of ρ mesons from the low-temperature cells is included
as well, but in the full pt integrated spectrum it is rather neg-
ligible compared to the other contributions. Comparison with
the experimental data from the NA60 Collaboration [11,71]
shows a very good agreement of our theoretical result with
their measurement. Only a slight tendency to underestimate
the data in the invariant mass region from 0.2 to 0.4 GeV and
a minor excess above the data in the pole region are observed.
As the low-mass enhancement and the melting of the peak at
the pole mass are mainly caused by the baryonic effects on the
ρ meson spectral function and very sensitive to the presence
of baryons and antibaryons, this might be due to the fact that
the baryon densities (or the baryon-chemical potential) are still
slightly too low in our approach. An additional modification of
the spectral shape not considered here may also be caused by
the ω-t–channel exchange. It has been found, however, to give
only a small contribution to the total yield and is significant
only for high transverse momenta [15]. Furthermore, one
has to bear in mind as well that there is an uncertainty of

up to 15% around M ≈ 0.4 GeV between the parametrized
spectral function and its full evaluation from thermal field
theory which has been found in a full comparison between
both approaches [56], as mentioned above. Taking this and
the systematic uncertainties of the experimental data and of
the model calculations into account, we conclude that the
approach is fully able to describe the total NA60 invariant
mass spectrum with excellent accuracy.

To get an impression of the dominant role of baryon-
induced medium modifications, the thermal ρ contribution
assuming the absence of all baryons and antibaryons (i.e., for
ρeff = 0) is also shown in Fig. 5. In this case only meson-gas
effects have an influence on the spectral function. Compared to
the full in-medium ρ, it exhibits slightly more strength at the ρ
meson’s pole mass but is significantly below the experimental
yield for M < 0.6 GeV by a factor of 2–5. Clearly, only the
inclusion of interactions with baryonic matter can explain the
low-mass dilepton excess, as has been noticed in previous
studies [15].

Comparing the dilepton emission rates obtained from the
lattice and from perturbative qq̄ annihilation, both rates
are identical for masses larger than 0.8 MeV, while the
nonperturbative effects included in the lattice calculations give
rise to a strong increase (up to a factor 3) of the yield at
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FIG. 7. (Color online) The invariant mass spectra of the dimuon excess yield in In+In collisions at a beam energy of 158 AGeV, for the
low-mass region as in the left plot of Fig. 5, but for 6 different pt bins ranging from pt = 0 to 1.2 GeV. The different contributions are the
same as in Figs. 5 and 6. The results are compared to the experimental data from the NA60 Collaboration [11].

lower invariant masses. It is notable that the shape of the
slope in the region M > 1.5 GeV is described with very good
accuracy. This is important, as the hadronic contribution which
dominates at lower masses becomes negligible here, and the
yield is dominated by emission from the QGP phase. The
intermediate-mass region is therefore a good benchmark for a
correct description of the qq̄ emission and allows for a reliable
determination of the space-time averaged temperature without
distortion from blueshift effects due to flow (as is the case
for effective slopes of pt spectra) [73]. Note, however, that in

contrast to the results from a fireball approach we here get a
slightly larger contribution from the hadronic domain (ρ and
multi-π ), whereas in the fireball approach a more dominant
QGP contribution is found, especially at low masses [15,73].
This finding strengthens the hypothesis of duality between
the hadronic and partonic dilepton emission in the transition
temperature region between both phases [2].

In Fig. 6 we present the transverse-mass (mt − M) spectra
in four different mass bins of the dimuon-excess yield in
In+In collisions. The results are shown for mass bins of
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FIG. 8. (Color online) Same as in Fig. 7, but for higher pt bins ranging from pt = 1.2 to 2.4 GeV. The different contributions are the same
as in Figs. 5 and 6. The results are compared to the experimental data from the NA60 Collaboration [11].

0.2 < M < 0.4 GeV (a), 0.4 < M < 0.6 GeV (b), 0.6 < M <
0.9 GeV (c), and 1.0 < M < 1.4 GeV (d). The different
contributions are the same as in Fig. 5. Comparison to
the NA60 results [72] shows again a very good agreement.
The calculations are in almost all cases within the error
bars of the experimental data. Note the dominance of the
different contributions in certain transverse-mass ranges.
While the in-medium ρ dominates the spectra at low mt

for all but the highest mass bin, the QGP and the nonther-
mal ρ do not significantly contribute at low mt but their

relative strength increases when going to higher transverse
mass.

Besides the invariant-mass and the transverse-mass spectra,
we also studied the former as resolved in different pt slices.
This analysis is of special interest as theoretical studies show
that the medium modifications of the ρ spectral function
depend strongly on the momentum. While a significant change
of the spectral shape is predicted based on constraints from
vacuum scattering and decay data at low momenta, this effect
should become less and less significant for higher momenta [6].
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The resulting invariant mass spectra are shown in Figs. 7
and 8, with 12 different plots representing the different pt

bins with a width of �pt = 200 MeV, ranging from the
lowest values 0.0 � pt � 0.2 GeV up to the highest transverse
momentum bin with 2.2 � pt � 2.4 GeV. Our calculations
once again agree with the data and especially show the clear
momentum dependence of the ρ contribution in the region
below the meson’s pole mass. While for the lowest pt bin the
yield in the mass range from 0.2 to 0.4 GeV exceeds even
the yield at the pole mass, this excess becomes increasingly
smaller when we go to higher transverse momenta. For the
highest pt bin the shape of the ρ in the invariant mass
spectrum looks almost as in the vacuum. Besides, the relative
contribution from the nonthermal transport ρ is increasing
when going to higher transverse momentum. It is in addition
noteworthy that also the nonthermal ρ, for which no explicit
in-medium modifications are implemented in UrQMD, shows
dynamically some pt dependence of the spectral shape.
However, this is not surprising since the transport model
includes effects like resonance excitation, rescattering, or
reabsorption that can cause such a momentum dependent mass
distribution; i.e., the spectral properties of the transport ρ
include some medium effects and thus differ from those in the
vacuum. The very same microscopic mechanisms, of course,
also cause the medium modifications of the spectral functions
within the thermal quantum-field theoretical models.

Yet, for pt greater than 1.2 GeV the yield in the pole mass
region of the ρ meson, i.e., at M ≈ 770 MeV, is still not
described fully. The experimental data show a more prominent
and sharper peak structure than we find within our approach.
Some of the “freeze-out” or “vacuum” ρ contribution might
be missing in spite of including the nonthermal transport ρ.

In general it is interesting to see how the correct description
of all the three different thermal contributions is necessary to
achieve agreement with the data over the whole transverse
momentum range. For example, at the lowest masses (below
0.4 GeV) the broadened ρ delivers the significant contribution
for low pt , while at higher pt the emission from the deconfined
phase dominates at these masses. This is another good
benchmark that shows that we obviously describe the thermal
emission quite realistically. Nevertheless, one also has to
stress that the results for the total dilepton spectra obtained
in the present study agree with the studies performed with
fireball parametrizations, though the space-time evolution
shows significant differences between the two models. This
indicates that the time-integral nature of dilepton spectra to a
large extent disguises the details of the reaction dynamics by
averaging over volume and lifetime.

IV. CONCLUSIONS AND OUTLOOK

In this paper we have presented a coarse-graining approach
to the calculation of dilepton production in heavy-ion col-
lisions. Using an ensemble of several events from transport
calculations with the UrQMD model, we put the output on
a space-time grid of small cells. By averaging the particle
distribution in each cell over a large number of events and going
into the local rest frame we can calculate the energy and baryon
density and consequently temperature and chemical potential

by introducing an equation of state. When the thermodynamic
properties of the cell are known the corresponding thermal
dilepton emission rates can be determined. With this procedure
it is aimed to achieve a more realistic description of dilepton
production in heavy-ion collisions. Since a complete nonequi-
librium treatment of medium modifications is an extremely
difficult task, the coarse-graining approach is intended as a
compromise to apply in-medium spectral functions in combi-
nation with a microscopic description of the bulk evolution of
a heavy-ion collision.

The agreement between our results for thermal dilepton
invariant- and transverse-mass spectra and the experimental
findings of the NA60 Collaboration is very good. The coarse-
graining study also confirms previous calculations with the
same spectral function within a fireball approach [14,15,73].
However, it is remarkable that in spite of differences in the
dynamics of the reaction, the final results are so similar in
both approaches. The main distinctions are, in summary:

(i) There is a rise of a large pion chemical potential in the
earlier stages of the reaction within the coarse-graining
approach, while in the fireball model a finite μπ shows
up after the freeze-out.

(ii) A larger fraction of QGP dilepton contribution is
found in the fireball model while we get less QGP
and more hadronic emission when coarse-graining the
microscopic dynamics.

(iii) The lifetime of the hot and dense system is about
7 fm/c in the fireball parametrization while we still
find thermal emission even after much longer time of
15 fm/c in the present study. Note hereby that for
the latter case T , μB (or ρeff) and μπ are determined
locally whereas the fireball model assumes global
thermal equilibrium.

The obvious explanation for the agreement is that the dilepton
spectra are only time-integrated results and are therefore less
sensitive to the details of the reaction evolution but more to
the global scale of the dynamics, i.e., the average thermal
properties of the system. The high-mass tail of the invariant
mass spectrum, which is clearly dominated by the QGP
emission (i.e., for M > 1.5 GeV) is a good example of this.
It reflects the true average temperature of the source (without
blue shifts as in the photon case) and was found to be roughly
205 MeV in fireball models. Looking at the details, one finds
however that the QGP yield for very high masses over 2.5
MeV is larger in the coarse-graining, but the overall slope of
the partonic emission is flatter so that the differences between
the two approaches show up especially at lower masses.
This can be explained by the fact that we have some very
hot cells with temperatures above 300 MeV populating the
yield at very high masses, while the initial temperature in the
fireball is only 245 MeV. In contrast, the overall QGP emitting
volume is larger in the fireball model due to the assumption
of global equilibrium, while only a limited number of cells
reach above Tc in the coarse-graining approach. For lower
masses, less QGP yield is counterbalanced by a larger hadronic
contribution. This is not surprising, because the lower number
of high-temperature cells corresponds to a larger fraction
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of low-temperature emission. A more detailed comparison
beyond this will be addressed in a future work. However, it
becomes already clear that there are several aspects which
only show up in their combined effect in the dilepton spectra,
so, e.g,. a smaller volume can be compensated by a longer
lifetime of the fireball.

Nevertheless, in spite of the insensitivity with regard to
the detailed reaction dynamics, we can also draw some
conclusions by the agreement of the results from the fireball
and coarse-graining model:

(1) The large influence of baryons on the spectral shape of
the ρ which is clearly responsible for the enhancement
of the dilepton yield in the mass range 0.2 < Mμμ <
0.6 GeV. The most significant modifications of the
spectral function of the ρ are found at low momenta,
in line with previous experimental and theoretical
investigations.

(2) There is thermal emission from the QGP, at least in
parts for temperatures significantly above the critical
temperature Tc. Without this both models fail to fully
explain the invariant mass spectrum at higher invariant
masses.

(3) Especially for the mass region above the ρ meson,
i.e, for 1 < Mμμ < 2 GeV the results also strengthen
the hypothesis of quark-hadron duality, i.e., that the
thermal emission rates are dual in the temperature range
around the transition temperture between the partonic
and the hadronic phases.

For the future the latter two points deserve further investiga-
tion, especially with regard to the transition from the hadronic
to the partonic phase. The present results show that it will
be hard to definitely determine details of the evolution of the
reaction by means of dilepton spectra. But the question whether

electromagnetic probes can give hints for the creation of a QGP
phase or whether duality prohibits us from discriminating be-
tween hadronic and partonic emission in the transition region
might be clarified in theoretical studies at lower collision en-
ergies, e.g., those covered by the Beam-Energy Scan program
at the Relativistic Heavy Ion Collider (RHIC) and the future
Facility for Antiproton and Ion Research (FAIR) with Elab =
8–35 AGeV. But also a full understanding of the medium
modifications of hadron properties and the possible restoration
of chiral symmetry has not yet been obtained, and further
theoretical and experimental studies are desirable, especially
exploring the high-μB region of the QCD phase diagram.

Considering the aspects mentioned above, the fundamental
applicability of the coarse-graining approach for all kinds of
collision energies opens the possibility for a broad variety
of future investigations. For low-energy heavy-ion collisions
as investigated by the HADES Collaboration at the GSI
Schwerionen-Synchrotron (SIS) it offers a unique option,
since an application of conventional hydrodynamic or fireball
models seems not reasonable here and microscopic transport
models failed to give an unambiguous explanation of the
observed dilepton spectra at low bombarding energies. The
expected high baryon densities in these cases make a detailed
study of the thermodynamic properties interesting.
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H. Stöcker, and W. Greiner, Phys. Rev. C 59, 411 (1999).

[54] D. Zschiesche, G. Zeeb, and S. Schramm, J. Phys. G 34, 1665
(2007).

[55] M. He, R. J. Fries, and R. Rapp, Phys. Rev. C 85, 044911 (2012).
[56] R. Rapp (private communication).
[57] M. Kataja and P. Ruuskanen, Phys. Lett. B 243, 181 (1990).
[58] H. Bebie, P. Gerber, J. Goity, and H. Leutwyler, Nucl. Phys. B

378, 95 (1992).
[59] P. F. Kolb and R. Rapp, Phys. Rev. C 67, 044903 (2003).
[60] J. Sollfrank, P. Koch, and U. W. Heinz, Z. Phys. C 52, 593

(1991).
[61] E. L. Feinberg, Nuovo Cim. A 34, 391 (1976).
[62] L. D. McLerran and T. Toimela, Phys. Rev. D 31, 545 (1985).
[63] V. L. Eletsky, M. Belkacem, P. J. Ellis, and J. I. Kapusta,

Phys. Rev. C 64, 035202 (2001).
[64] R. Rapp and J. Wambach, Eur. Phys. J. A 6, 415 (1999).
[65] M. Dey, V. Eletsky, and B. L. Ioffe, Phys. Lett. B 252, 620

(1990).
[66] R. Barate et al. (ALEPH Collaboration), Eur. Phys. J. C 4, 409

(1998).
[67] H.-T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E. Laermann,

and W. Soeldner, Phys. Rev. D 83, 034504 (2011).
[68] J. Cleymans, J. Fingberg, and K. Redlich, Phys. Rev. D 35, 2153

(1987).
[69] K. Schmidt, E. Santini, S. Vogel, C. Sturm, M. Bleicher, and

H. Stocker, Phys. Rev. C 79, 064908 (2009).
[70] G.-Q. Li, C. M. Ko, G. E. Brown, and H. Sorge, Nucl. Phys. A

611, 539 (1996).
[71] H. J. Specht (NA60 Collaboration), in International Workshop

on Chiral Symmetry in Hadrons and Nuclei, June 2010, Valen-
cia, edited by J. M. Nieves, E. Oset, and M. J. Vicente-Vacas,
AIP Conf. Proc. No. 1322 (AIP, New York, 2010), p. 1.

[72] S. Damjanovic et al. (NA60 Collaboration), Nucl. Phys. A 783,
327 (2007).

[73] R. Rapp and H. van Hees, arXiv:1411.4612 [hep-ph].

054911-14

http://dx.doi.org/10.1016/j.nuclphysa.2006.11.059
http://dx.doi.org/10.1016/j.nuclphysa.2006.11.059
http://dx.doi.org/10.1016/j.nuclphysa.2006.11.059
http://dx.doi.org/10.1016/j.nuclphysa.2006.11.059
http://dx.doi.org/10.1016/j.physletb.2008.11.034
http://dx.doi.org/10.1016/j.physletb.2008.11.034
http://dx.doi.org/10.1016/j.physletb.2008.11.034
http://dx.doi.org/10.1016/j.physletb.2008.11.034
http://dx.doi.org/10.1016/j.nuclphysa.2009.09.007
http://dx.doi.org/10.1016/j.nuclphysa.2009.09.007
http://dx.doi.org/10.1016/j.nuclphysa.2009.09.007
http://dx.doi.org/10.1016/j.nuclphysa.2009.09.007
http://dx.doi.org/10.1103/PhysRevC.84.054917
http://dx.doi.org/10.1103/PhysRevC.84.054917
http://dx.doi.org/10.1103/PhysRevC.84.054917
http://dx.doi.org/10.1103/PhysRevC.84.054917
http://dx.doi.org/10.1140/epja/i2012-12111-9
http://dx.doi.org/10.1140/epja/i2012-12111-9
http://dx.doi.org/10.1140/epja/i2012-12111-9
http://dx.doi.org/10.1140/epja/i2012-12111-9
http://dx.doi.org/10.1016/j.physletb.2013.04.064
http://dx.doi.org/10.1016/j.physletb.2013.04.064
http://dx.doi.org/10.1016/j.physletb.2013.04.064
http://dx.doi.org/10.1016/j.physletb.2013.04.064
http://dx.doi.org/10.1155/2013/148253
http://dx.doi.org/10.1155/2013/148253
http://dx.doi.org/10.1155/2013/148253
http://dx.doi.org/10.1155/2013/148253
http://arxiv.org/abs/arXiv:nucl-th/0110037
http://dx.doi.org/10.1103/PhysRevC.66.054905
http://dx.doi.org/10.1103/PhysRevC.66.054905
http://dx.doi.org/10.1103/PhysRevC.66.054905
http://dx.doi.org/10.1103/PhysRevC.66.054905
http://dx.doi.org/10.1103/PhysRevC.75.014902
http://dx.doi.org/10.1103/PhysRevC.75.014902
http://dx.doi.org/10.1103/PhysRevC.75.014902
http://dx.doi.org/10.1103/PhysRevC.75.014902
http://dx.doi.org/10.1103/PhysRevC.89.034904
http://dx.doi.org/10.1103/PhysRevC.89.034904
http://dx.doi.org/10.1103/PhysRevC.89.034904
http://dx.doi.org/10.1103/PhysRevC.89.034904
http://dx.doi.org/10.1103/PhysRevC.60.024904
http://dx.doi.org/10.1103/PhysRevC.60.024904
http://dx.doi.org/10.1103/PhysRevC.60.024904
http://dx.doi.org/10.1103/PhysRevC.60.024904
http://dx.doi.org/10.1103/PhysRevC.84.014901
http://dx.doi.org/10.1103/PhysRevC.84.014901
http://dx.doi.org/10.1103/PhysRevC.84.014901
http://dx.doi.org/10.1103/PhysRevC.84.014901
http://dx.doi.org/10.1103/PhysRevC.66.014903
http://dx.doi.org/10.1103/PhysRevC.66.014903
http://dx.doi.org/10.1103/PhysRevC.66.014903
http://dx.doi.org/10.1103/PhysRevC.66.014903
http://arxiv.org/abs/arXiv:0805.0567
http://www.urqmd.org
http://dx.doi.org/10.1103/PhysRev.58.919
http://dx.doi.org/10.1103/PhysRev.58.919
http://dx.doi.org/10.1103/PhysRev.58.919
http://dx.doi.org/10.1103/PhysRev.58.919
http://dx.doi.org/10.1016/0370-2693(95)01258-3
http://dx.doi.org/10.1016/0370-2693(95)01258-3
http://dx.doi.org/10.1016/0370-2693(95)01258-3
http://dx.doi.org/10.1016/0370-2693(95)01258-3
http://dx.doi.org/10.1007/s002880050393
http://dx.doi.org/10.1007/s002880050393
http://dx.doi.org/10.1007/s002880050393
http://dx.doi.org/10.1007/s002880050393
http://dx.doi.org/10.1016/j.nuclphysa.2006.03.012
http://dx.doi.org/10.1016/j.nuclphysa.2006.03.012
http://dx.doi.org/10.1016/j.nuclphysa.2006.03.012
http://dx.doi.org/10.1016/j.nuclphysa.2006.03.012
http://dx.doi.org/10.1016/S0370-2693(98)00624-8
http://dx.doi.org/10.1016/S0370-2693(98)00624-8
http://dx.doi.org/10.1016/S0370-2693(98)00624-8
http://dx.doi.org/10.1016/S0370-2693(98)00624-8
http://dx.doi.org/10.1088/0954-3899/25/2/024
http://dx.doi.org/10.1088/0954-3899/25/2/024
http://dx.doi.org/10.1088/0954-3899/25/2/024
http://dx.doi.org/10.1088/0954-3899/25/2/024
http://dx.doi.org/10.1103/PhysRevC.83.034907
http://dx.doi.org/10.1103/PhysRevC.83.034907
http://dx.doi.org/10.1103/PhysRevC.83.034907
http://dx.doi.org/10.1103/PhysRevC.83.034907
http://dx.doi.org/10.1016/j.nuclphysa.2013.02.138
http://dx.doi.org/10.1016/j.nuclphysa.2013.02.138
http://dx.doi.org/10.1016/j.nuclphysa.2013.02.138
http://dx.doi.org/10.1016/j.nuclphysa.2013.02.138
http://dx.doi.org/10.1016/S0370-2693(02)02736-3
http://dx.doi.org/10.1016/S0370-2693(02)02736-3
http://dx.doi.org/10.1016/S0370-2693(02)02736-3
http://dx.doi.org/10.1016/S0370-2693(02)02736-3
http://dx.doi.org/10.1103/PhysRevC.78.044901
http://dx.doi.org/10.1103/PhysRevC.78.044901
http://dx.doi.org/10.1103/PhysRevC.78.044901
http://dx.doi.org/10.1103/PhysRevC.78.044901
http://dx.doi.org/10.1103/PhysRevC.59.411
http://dx.doi.org/10.1103/PhysRevC.59.411
http://dx.doi.org/10.1103/PhysRevC.59.411
http://dx.doi.org/10.1103/PhysRevC.59.411
http://dx.doi.org/10.1088/0954-3899/34/7/007
http://dx.doi.org/10.1088/0954-3899/34/7/007
http://dx.doi.org/10.1088/0954-3899/34/7/007
http://dx.doi.org/10.1088/0954-3899/34/7/007
http://dx.doi.org/10.1103/PhysRevC.85.044911
http://dx.doi.org/10.1103/PhysRevC.85.044911
http://dx.doi.org/10.1103/PhysRevC.85.044911
http://dx.doi.org/10.1103/PhysRevC.85.044911
http://dx.doi.org/10.1016/0370-2693(90)90836-U
http://dx.doi.org/10.1016/0370-2693(90)90836-U
http://dx.doi.org/10.1016/0370-2693(90)90836-U
http://dx.doi.org/10.1016/0370-2693(90)90836-U
http://dx.doi.org/10.1016/0550-3213(92)90005-V
http://dx.doi.org/10.1016/0550-3213(92)90005-V
http://dx.doi.org/10.1016/0550-3213(92)90005-V
http://dx.doi.org/10.1016/0550-3213(92)90005-V
http://dx.doi.org/10.1103/PhysRevC.67.044903
http://dx.doi.org/10.1103/PhysRevC.67.044903
http://dx.doi.org/10.1103/PhysRevC.67.044903
http://dx.doi.org/10.1103/PhysRevC.67.044903
http://dx.doi.org/10.1007/BF01562334
http://dx.doi.org/10.1007/BF01562334
http://dx.doi.org/10.1007/BF01562334
http://dx.doi.org/10.1007/BF01562334
http://dx.doi.org/10.1007/BF02728616
http://dx.doi.org/10.1007/BF02728616
http://dx.doi.org/10.1007/BF02728616
http://dx.doi.org/10.1007/BF02728616
http://dx.doi.org/10.1103/PhysRevD.31.545
http://dx.doi.org/10.1103/PhysRevD.31.545
http://dx.doi.org/10.1103/PhysRevD.31.545
http://dx.doi.org/10.1103/PhysRevD.31.545
http://dx.doi.org/10.1103/PhysRevC.64.035202
http://dx.doi.org/10.1103/PhysRevC.64.035202
http://dx.doi.org/10.1103/PhysRevC.64.035202
http://dx.doi.org/10.1103/PhysRevC.64.035202
http://dx.doi.org/10.1007/s100500050364
http://dx.doi.org/10.1007/s100500050364
http://dx.doi.org/10.1007/s100500050364
http://dx.doi.org/10.1007/s100500050364
http://dx.doi.org/10.1016/0370-2693(90)90495-R
http://dx.doi.org/10.1016/0370-2693(90)90495-R
http://dx.doi.org/10.1016/0370-2693(90)90495-R
http://dx.doi.org/10.1016/0370-2693(90)90495-R
http://dx.doi.org/10.1007/s100520050217
http://dx.doi.org/10.1007/s100520050217
http://dx.doi.org/10.1007/s100520050217
http://dx.doi.org/10.1007/s100520050217
http://dx.doi.org/10.1103/PhysRevD.83.034504
http://dx.doi.org/10.1103/PhysRevD.83.034504
http://dx.doi.org/10.1103/PhysRevD.83.034504
http://dx.doi.org/10.1103/PhysRevD.83.034504
http://dx.doi.org/10.1103/PhysRevD.35.2153
http://dx.doi.org/10.1103/PhysRevD.35.2153
http://dx.doi.org/10.1103/PhysRevD.35.2153
http://dx.doi.org/10.1103/PhysRevD.35.2153
http://dx.doi.org/10.1103/PhysRevC.79.064908
http://dx.doi.org/10.1103/PhysRevC.79.064908
http://dx.doi.org/10.1103/PhysRevC.79.064908
http://dx.doi.org/10.1103/PhysRevC.79.064908
http://dx.doi.org/10.1016/S0375-9474(96)00318-1
http://dx.doi.org/10.1016/S0375-9474(96)00318-1
http://dx.doi.org/10.1016/S0375-9474(96)00318-1
http://dx.doi.org/10.1016/S0375-9474(96)00318-1
http://dx.doi.org/10.1016/j.nuclphysa.2006.11.015
http://dx.doi.org/10.1016/j.nuclphysa.2006.11.015
http://dx.doi.org/10.1016/j.nuclphysa.2006.11.015
http://dx.doi.org/10.1016/j.nuclphysa.2006.11.015
http://arxiv.org/abs/arXiv:1411.4612



