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I. INTRODUCTION

Relativistic heavy-ion collisions produce a hot, dense phase
of strongly interacting matter commonly known as the quark-
gluon plasma (QGP), which rapidly expands and freezes into
hadrons [1–7]. Since the QGP is not directly observable—
only final-state hadrons are detected—present research seeks
to quantify the fundamental properties of the QGP, such as its
transport coefficients and the nature of the initial state, through
comparisons of experimental measurements to computational
model calculations.

Computational models must take a set of input parameters
including the physical properties of interest, simulate the full
time-evolution of heavy-ion collisions, and produce outputs
analogous to experimental measurements. The true values of
the physical properties are extracted by calibrating the input
parameters so that the model output optimally reproduces
experimental data. This generic recipe is called “model-to-data
comparison”.

Notably, the QGP shear viscosity to entropy density
ratio η/s has been constrained by comparing anisotropic
flow coefficients vn between model and experiment. Explicit
calculation of η/s directly from QCD is not yet feasible, and
while there is a conjectured lower bound η/s � 1/4π � 0.08
from AdS/CFT holography [8], model-to-data comparison is
the most attractive option for determining the optimal input
parameter value and corresponding uncertainty. To this end,
previous studies used viscous relativistic fluid dynamics and
hybrid transport models to compute vn at several values of η/s,
then chose the value which most closely matched experimental
vn. A variety of complementary calculations have constrained
η/s to an approximate range of 0.08–0.20 [9–12].

However, η/s is not the only model input parameter:
many other parameters remain poorly determined, e.g., the
hydrodynamic thermalization time τ0 and initial conditions;
and models often have nonphysical nuisance parameters that
nonetheless should be tuned to optimal values. The flow
coefficients vn are only a small subset of all QGP observables:
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models must also describe basic quantities such as the charged-
particle multiplicity and transverse-momentum distributions.

Recent work [13] moved toward a more global analysis of
multiple model parameters and observables, but encountered
practical limitations attempting to simultaneously tune these
free parameters. In general, input parameters correlate among
each other and contribute to multiple observables, so they
cannot be constrained independently.

Algorithms such as Markov chain Monte Carlo (MCMC)
can rigorously explore this type of complex high-dimensional
parameter space, but require a very large number of model
evaluations—often thousands or millions, depending on the
problem at hand. Heavy-ion collision models may run for
several hours, so a direct MCMC approach is intractable.
The situation is exacerbated when studying event-by-event
fluctuations as opposed to average quantities: while event-
averaged models save computation time by using a smooth
initial condition and single hydrodynamic calculation, event-
by-event models have realistic, fluctuated initial conditions,
each of which requires its own hydrodynamic treatment. Many
thousands of complete events are necessary at each point in
parameter space to capture event-by-event fluctuations.

These limitations may be overcome through a modern
Bayesian method for analyzing computationally expensive
models [14–16]. A set of salient model parameters is chosen
for calibration—the set should include any fundamental
physical properties of interest—and the model is evaluated at a
relatively smallO(102) number of points. Those points are then
interpolated with a Gaussian process emulator [17] to provide
a continuous picture of the parameter space. The emulator
acts as a fast surrogate to the full model: it predicts model
output at arbitrary points in parameter space with negligible
computational cost. This effectively removes most practical
barriers and enables parameter calibration through standard
techniques such as MCMC.

Emulators have been successfully used to study a wide
range of physical systems, including galaxy formation [18]
and heavy-ion collisions [19–21]. Reference [19] calibrated
a hydrodynamic model to identified particle spectra from
the BNL Relativistic Heavy Ion Collider (RHIC) and
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extracted constraints on η/s and several initial state param-
eters. However, this study used an event-averaged initial
condition model, limiting its ability to investigate event-by-
event fluctuations.

In this work, we apply Bayesian methodology to a full
event-by-event heavy-ion collision model. We calibrate to
multiplicity and flow data from the CERN Large Hadron
Collider (LHC) and constrain the shear viscosity η/s along
with other hydrodynamic and initial condition parameters. The
analysis framework handles arbitrary numbers of inputs and
outputs, systematically calculates quantitative constraints on
all inputs simultaneously, and quickly evaluates the efficacy of
physical models.

II. MODEL

State-of-the-art heavy-ion collision models simulate QGP
space-time evolution in several stages [10,11,22–27]:

(i) an initial condition model describes the initial state
and nonequilibrium dynamics until QGP formation,

(ii) viscous relativistic hydrodynamics calculates the dy-
namical expansion of the hot and dense QGP medium
including the phase transition to a hadron gas,

(iii) then a particlization model converts the system into a
microscopic ensemble of hadrons,

(iv) and finally a Boltzmann transport model calculates
hadronic rescattering and decays.

In this work, we opt for a mature, well-tested set of
event-by-event models [27] with an established track record
of describing diverse RHIC and LHC data [10,28,29]. This
choice will permit direct comparison between existing results
and the outcome of the following systematic model-to-data
comparison. We emphasize, however, that the methodology
in this paper can easily be applied to any set of models and
corresponding data.

A. Initial conditions

Initial condition models provide the outcome of the
collision’s pre-equilibrium evolution at the hydrodynamic
thermalization time, approximately 0.5 fm/c. Some models
explicitly calculate pre-equilibrium dynamics [30] starting
from the initial state of the collision; others skip this time frame
and generate initial conditions directly at the thermalization
time [31–33].

We select two of the most widely used models in the
latter category: the Monte Carlo Glauber [32] and Monte
Carlo KLN [31] models. Although more sophisticated models
were recently introduced [30,33], both Glauber and KLN
provide reasonable event-by-event initial conditions with well-
understood behavior and a broad basis of published results.

B. Hydrodynamics

The initial condition furnishes the hydrodynamic stress-
energy tensor T μν at the thermalization time τ0. Viscous
hydrodynamics then solves the conservation equations

∂μT μν = 0, (1)

where

T μν = (ε + P )uμuν − Pgμν + πμν ; (2)

ε, P , and uμ are the energy density, pressure, and flow velocity
of the fluid; gμν is the metric tensor; and πμν is the shear stress
tensor. An equation of state

P = P (ε) (3)

closes the system of hydrodynamic equations and is usually
provided by a parametrization of lattice QCD calculations.

We employ an improved version of VISH2+1 [34], a
stable, extensively tested implementation of boost-invariant
viscous hydrodynamics that was recently updated to handle
fluctuating event-by-event initial conditions [27]. VISH2+1

uses the prevalent s95 partial chemical equilibrium equation
of state [35].

C. Particlization

As the hydrodynamic medium expands and cools, it under-
goes a transition from a deconfined QGP to a hot and dense
hadronic system. At this point it’s advantageous to switch
to a microscopic transport model, for such models naturally
account for the system’s increasing viscosity, nonequilibrium
break-up, and eventual freeze-out. Thus, a particlization model
converts the fluid into a microscopic ensemble of hadrons once
the fluid cools to a prespecified switching temperature, typi-
cally just below the QCD transition temperature Tc ∼ 165 MeV.
The model generates particles by sampling the Cooper-Frye
formula [36]

E
dNi

d3p
=

∫
σ

fi(x,p) pμ d3σμ, (4)

where fi is the distribution function for particle species i,
pμ is the four-momentum, and the integral is taken over the
isothermal space-time hypersurface σ defined by the switching
temperature.

We use a recent hypersurface sampler designed to couple
with VISH2+1 [27,37].

D. Hadronic phase

After particlization, the medium continues to expand as
an interacting hadron gas (e.g., scatterings and decays). A
hadronic “afterburner” calculates these interactions through
the Boltzmann equation

dfi(x,p)

dt
= Ci(x,p), (5)

where fi is the distribution function and Ci is the collision
kernel which contains all possible hadronic interactions for
particle species i. Particles emerging from the afterburner are
analogous to particles streaming into an experimental detector.

We adopt ultrarelativistic quantum molecular dynamics
(UrQMD) [38,39] as an afterburner.

E. Postprocessing

The full event-by-event model is executed O(104) times for
each set of input parameters, yielding O(107) events in total.
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Events are binned into centrality intervals and the raw event
data are postprocessed into physical observables for direct
comparison with experiment. In this analysis we calculate
the centrality dependence of several standard observables: the
average charged-particle multiplicity 〈Nch〉 and multiparticle
flow cumulants vn{2k}. Note that the method trivially extends
to arbitrary numbers and types of observables—all that’s re-
quired is a model calculation and a corresponding experimental
measurement.

Flow cumulants vn{2k} are defined as the 2k-particle
correlation function of the nth-order azimuthal anisotropy. For
example, the two-particle cumulant is

vn{2}2 ≡ 〈ein(φi−φj )〉, (6)

where φi is the azimuthal angle of the transverse momentum of
particle i and the average is over all distinct pairs of particles
i,j . The two-particle cumulant is also approximately equal to
the root-mean-square of the full vn distribution [40]:

vn{2} �
√〈

v2
n

〉
. (7)

We compute two-particle cumulants for elliptic and triangular
flow v2{2}, v3{2} using the direct Q-cumulant method [41].
Higher-order cumulants are currently out of reach due to
insufficient quantities of events.

Postprocessed observables are compared to corresponding
experimental results recently measured by the ALICE experi-
ment at the LHC for Pb-Pb collisions at

√
sNN = 2.76 TeV [42].

All observables are subjected to the same kinematic cuts as the
ALICE detector, namely charged particles with |η| < 1 and
0.2 < pT < 3.0 GeV.

III. EMULATOR

This section constructs a Gaussian process (GP) emulator
to act as a surrogate for the full event-by-event model. The
strategy is to evaluate the model on a carefully chosen set
of input parameter points, then use a GP to interpolate the
parameter space. Unlike alternative interpolation schemes such
as splines or polynomial interpolation, a GP emulator provides
a probability distribution at each point in parameter space,
hence, it not only predicts the output of the model at arbitrary
points in parameter space, but also quantifies the uncertainty of
its predictions. Further, GPs are nonparametric interpolators,
i.e., they do not require an assumed functional form for the
underlying model. These features are essential for emulation
of computer codes.

A. Gaussian processes

This subsection summarizes the theory of Gaussian process
emulators as detailed in Chap. 2 of [17].

A Gaussian process (GP) is defined as a collection of
random variables, any finite number of which have a joint
Gaussian distribution. A GP may be thought of as a stochastic
function f (x) which maps n-dimensional input vectors x to
normally distributed outputs y. It is fully specified by a mean
function μ(x) which gives the mean of f at input point x and
a covariance function σ (x,x′) which provides the covariance
of f between a pair of points x, x′.

As a concrete example, let x1 be an input point and
y1 = f (x1) be the output of the GP at x1; then y1 has a normal
distribution with mean μ(x1) and variance σ (x1,x1):

y1 ∼ N (μ(x1),σ (x1,x1)). (8)

Now if x2 is another input and y2 = f (x2) is the corresponding
output, y1 and y2 have a bivariate normal distribution(

y1

y2

)
∼ N

[(
μ(x1)
μ(x2)

)
,

(
σ (x1,x1) σ (x1,x2)
σ (x2,x1) σ (x2,x2)

)]
. (9)

In general, the set of m random output variables
y = {y1, . . . ,ym} = f (X) corresponding to input points
X = {x1, . . . ,xm} have a multivariate normal distribution

y ∼ N (μ,
), (10)

where

μ = μ(X) = {μ(x1),μ(x2), . . . ,μ(xm)} (11)

is the m-dimensional mean vector from applying the mean
function to each input, and


 = σ (X,X) =

⎛
⎜⎝

σ (x1,x1) · · · σ (x1,xm)
...

. . .
...

σ (xm,x1) · · · σ (xm,xm)

⎞
⎟⎠ (12)
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FIG. 1. (Color online) Top: Random functions drawn from a
Gaussian process using a squared-exponential covariance function
with length scale � = 1. Bottom: Functions drawn from a GP
conditioned on the training points indicated by dots. In both plots,
the dashed line represents the GP mean and the grey band is twice
the GP standard deviation (roughly 95% confidence interval).
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is the m × m covariance matrix from applying the covariance
function to each pair of inputs.

In practice, the mean function is often set to zero, since
the mean of a distribution can always be subtracted off. The
covariance function must be carefully chosen, for it controls
the degree of similarity between pairs of points. A standard
choice is the squared-exponential function

σ (x,x′) = exp

(
−|x − x′|2

2�2

)
, (13)

where � is a characteristic length scale. Notice that nearby
points are strongly correlated (σ ≈ 1) while distant points
approach independence (σ → 0). This implies that the GP
is smooth, i.e., nearby input points produce similar outputs.

Just as we can sample random numbers from a distribution,
we can draw random functions from a GP. We choose a set of
test points X∗ (the reason for the subscript ∗ will become clear
in a moment), calculate the covariance matrix 
 = σ (X∗,X∗),
and generate multivariate normal samples from N (0,
). We
can then plot the input-output points as smooth curves, as in
the top panel of Fig. 1.

Of course, simply generating random functions is not
particularly useful—we want to use a GP to interpolate a
computer model. Suppose we have a model which takes
a vector of input parameters x and produces an output y
according to some unknown GP f (x); for example, f could
be a hydrodynamic model with input parameters x = (τ0,η/s)
and the output could be elliptic flow v2. We choose a set of
training points X, run the model at each point, and observe a
set of outputs y. Now, instead of completely random functions,
we desire functions which pass through (interpolate) all the
training points (X,y). This is achieved by conditioning the GP
on the training data to yield a predictive distribution for y at
any input point x. Recalling the test points X∗, the predictive
distribution for the corresponding outputs y∗ is the multivariate
normal distribution

y∗ ∼ N (μ,
),

μ = σ (X∗,X)σ (X,X)−1y, (14)


 = σ (X∗,X∗) − σ (X∗,X)σ (X,X)−1σ (X,X∗).

See the bottom panel of Fig. 1 for an example of conditioning
a GP on one-dimensional training data.

We emphasize that the prediction y∗ is not constant, but
a probability distribution for the model outputs at X∗. As
demonstrated in Fig. 1, the predictive distribution is narrow
when near the training points and wide when far away, hence,
it reflects the true state of knowledge of the interpolation. This
is accomplished without assuming a parametric form for the
model—we must only assume that the model is a GP with a
specified covariance function.

B. Computer experiment design

The full event-by-event model is to be evaluated on a set
of m training points X = {x1, . . . ,xm}, where each xi is an
n-dimensional vector of input parameters, so X may be viewed
as an m × n design matrix. This subsection details the choice
of input parameters and their distribution in parameter space.

TABLE I. Input parameter ranges for the Glauber (Glb) and KLN
initial condition models and for the hydrodynamic model.

Parameter Description Range

Glb Norm Overall normalization 20–60
Glb α Wounded nucleon / binary coll. 0.05–0.30
KLN Norm Overall normalization 5–15
KLN λ Saturation scale exponent 0.1–0.3
τ0 Thermalization time 0.2–1.0 fm
η/s Specific shear viscosity 0–0.3
kπ Shear relaxation time coeff. 0.2–1.1

For the present study, we choose a set of n = 5 input
parameters

x = (Norm,I.C. param,τ0,η/s,τπ ), (15)

where

(i) Norm is the overall normalization factor, a multiplica-
tive constant that determines how much entropy is
deposited in the initial condition.

(ii) I.C. param is a parameter specific to each initial
condition model. For the Glauber model the parameter
is α, which controls how entropy is distributed to
wounded nucleons and binary collisions; for the
KLN model it is λ, a dimensionless exponent in the
saturation scale parametrization. Both are related to
the centrality dependence of multiplicity.

(iii) τ0 is the QGP thermalization time and the starting time
for hydrodynamic evolution.

FIG. 2. (Color online) The Latin hypercube experiment design
projected into the (η/s,τ0) dimensions. All other parameters also
vary across the design, so the points that appear very close in the
projection are not necessarily close in the full-dimensional space. The
edge histograms show the distributions flattened into one dimension;
note that they are space-filling and approximately uniform.
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FIG. 3. (Color online) Model calculations from Glauber (top, blue) and KLN (bottom, green) initial conditions. Each plot has 254 lines
corresponding to the 254 Latin hypercube design points. From left to right: average charged-particle multiplicity 〈Nch〉, elliptic flow two-particle
cumulant v2{2}, and triangular flow two-particle cumulant v3{2}. Data points are experimental measurements from ALICE [42].

(iv) η/s is the shear viscosity to entropy density ratio
of the QGP, assumed to be fixed throughout the
hydrodynamic evolution stage.

(v) τπ is the shear stress relaxation time, which dictates
how quickly the hydromedium relaxes to the Navier-
Stokes limit. Since the relaxation time is a function of
the shear viscosity and temperature and thus cannot
be tuned explicitly, we use the coefficient kπ in the
relation τπ = 6kπη/(sT ) as a tunable parameter.

We set intentionally large ranges for each parameter,
summarized in Table I. In this work, we fix several auxiliary
parameters to reasonable defaults: nucleons are assumed
to be disks with size determined by the inelastic nucleon-
nucleon cross section σNN , and the hydro- to microswitching
temperature is set to 165 MeV, just below the equation of
state transition temperature. However, the method can handle
arbitrary numbers of parameters provided the sample size is
sufficiently large.

The training points X = {x1, . . . ,xm} must be chosen to
simultaneously optimize emulator accuracy and computation
time. Perhaps the most obvious design strategy is a uniform
grid (factorial design), e.g., k evenly spaced points in each
dimension. Unfortunately, this leads to a total sample size
m = kn which even for a modest k = 10 and n = 5 is
intractably large.

A popular algorithm for generating efficient design points
is maximin Latin hypercube sampling [43]. This method
produces space-filling randomized designs with several de-
sirable properties:

(i) The minimum distance between points is maximized,
thus avoiding large gaps and tight clusters.

(ii) Projections of the design into lower dimensions are
uniformly distributed.

Figure 2 illustrates these traits. A Latin hypercube design
with a relatively small sample size provides an efficient
scaffolding of parameter space for interpolation by a GP
emulator. As a general rule of thumb, a sample size m ∼ 10n
yields acceptable interpolation accuracy [44] and is a common
choice for an initial experiment with limited computation time,
however there is no harm in a larger sample.

We use a 256 point Latin hypercube design across the n = 5
input parameters; Fig. 2 shows a two-dimensional projection.
At each design point, we have executed the event-by-event
model O(103) times in each of six centrality bins 0–5%, 10–
15%, . . . , 50–55%, for both the Glauber and KLN models,
yielding O(107) events in total. Two design points that were
very near to the edge of the design space gave nonphysical
results and have been discarded, so the operational design has
m = 254 points.

Figure 3 shows the postprocessed observables 〈Nch〉, v2{2},
v3{2} as a function of centrality for each point in the design.
The results have a broad distribution which is a direct result of
the wide ranges of input parameters. There is some statistical
error present in v3{2} due to insufficient quantities of events.

Note that these results constitute the training data for the
GP emulator, not any kind of best-fit.

C. Multivariate output

Gaussian processes are fundamentally scalar functions,
but computer models often produce multivariate output. In
general, the model takes the m × n design matrix X and
computes an m × p output matrix Y . The present event-by-
event model has p = 18 outputs (three observables each in six
centrality bins).

An obvious work around is to use independent GP
emulators for each of the p outputs, however, this would
neglect correlations and quickly become unwieldy for
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FIG. 4. (Color online) Principal component decomposition of
the observables

√〈Nch〉, v2{2} for the Glauber model in 20–25%
centrality. Each data point represents a model calculation and the
edge histograms show the approximate normal distribution of each
observable. Arrows represent the PC vectors with lengths proportional
to the explained variance.

higher-dimensional output. Instead, we decompose the outputs
into orthogonal linear combinations called principal compo-
nents (PCs) and emulate each transformed PC. The PCs are
uncorrelated by construction and can also be used to reduce the
dimensionality of the output space. Figure 4 shows an example
PC decomposition.

To calculate the PCs, we first subtract the mean of the output
data Y so that each column has mean zero, then compute the
eigendecomposition of the sample covariance matrix Y ᵀY :

Y ᵀY = U�Uᵀ, (16)

where U is an orthogonal p × p matrix containing the eigen-
vectors of Y ᵀY and � is diagonal containing the eigenvalues
λ1, . . . ,λp in nonincreasing order. U now defines a linear
transformation which “rotates” the output data Y into PC
space:

Z = √
m YU, (17)

where Z is an m × p matrix (same shape as Y ) of the
transformed PCs. The eigenvalues λi represent the variance
explained by principal component i; since they are sorted in
nonincreasing order, the fraction of the variance explained by
the first q � p PCs is

V (q) =
∑q

i=1 λi∑p
i=1 λi

. (18)

Often, the first few PCs describe most of the variance, as
demonstrated for the present data in Fig. 5. Hence we can
construct a reduced-dimension transformation with minimal

FIG. 5. (Color online) Fraction of the variance V (q) explained
by the first q principal components for Glauber (blue circles) and
KLN (green triangles). q = 5 explains approximately 99% of the total
variance, a significant reduction from the original 18 dimensions.

loss of precision by choosing q < p so that V (q) satisfies
some threshold [e.g., V (q) � 0.99] and taking only the first q
columns of U :

Zq = √
m YUq, (19)

where Zq is now an m × q matrix.
We may now use q independent GP emulators for each

of the columns of Zq . GPs are conditioned on the design X
according to Eq. (14) and predict the PCs Z∗ at arbitrary test
points X∗ which are then transformed back to physical space
as

Y∗ = 1√
m

Z∗Uᵀ. (20)

There is an important caveat for principal components: the
original data Y must have a multivariate normal distribution
for the transformed PCs Z to be uncorrelated. There is
no guarantee that a particular model will produce normally
distributed outputs so this must be verified on a case-by-case
basis. For the present event-by-event model we perform the
following steps:

(i) Assess the normality of each observable 〈Nch〉, v2{2},
v3{2}. While the flow cumulants are approximately
normal without modification, we take the square root
of multiplicity

√〈Nch〉 to obtain a normal distribution,
as shown in Fig. 4.

(ii) Divide each observable by its corresponding ex-
perimental value from ALICE [42]. This converts
everything to unitless quantities of order one.

(iii) Multiply each observable by a manually specified
weight factor, ratios 1.2 : 1.0 : 0.6 for observables
〈Nch〉 : v2{2} : v3{2}. These subjective weights encour-
age the model to fit more strongly to more fundamental
observables, e.g., we prefer a model that describes Nch

and v2 at the expense of v3 rather than fitting v3 with
incorrect Nch. The weights will be discussed further
in the Results, Sec. IV B.

(iv) Concatenate the unitless, weighted data into a
254 × 18 matrix Y , where each row corresponds to
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FIG. 6. (Color online) Visualization of the principal component
transformation matrices Uq for Glauber (left) and KLN (right). The
numerical values of each matrix element are annotated and color-
coded, where darker red indicates more positive values, darker blue
indicates more negative, and grey indicates zero.

a design point and each column to an observable and
centrality bin.

(v) Subtract the mean of each column and transform Y into
principal components Zq with q = 5 PCs, retaining
over 99% of the variance as shown in Fig. 5. The PC
transformation matrices Uq , shown in Fig. 6, reflect the
natural correlations among observables, for example
all observables are correlated in the first PC (∼75% of
total variance), while Nch is anti-correlated with the
vn in the second PC (∼20% of total variance).

We invert these steps to transform PCs back to physical
space.

In practice, the covariance method for computing principal
components is prone to numerical error, so a more robust
algorithm using the singular value decomposition (SVD) is
preferred. The SVD of the data Y is

Y = V DWᵀ, (21)

where V , W are orthogonal matrices containing the so-called
left- and right-singular vectors of Y and D is diagonal
containing the singular values. Inserting Eq. (21) into Eq. (16)
yields

Y ᵀY = WD2Wᵀ = U�Uᵀ, (22)

hence the singular values D are the square root of the
eigenvalues � and the right singular vectors W are the
eigenvectors U .

D. Constructing and validating the emulator

We emulate the model by conditioning independent Gaus-
sian processes on each of the principal components Zq and the
input design X according to Eq. (14). Model outputs inevitably
include statistical noise, i.e., we cannot compute y = f (x)
exactly, only y = f (x) + ε where ε is Gaussian noise. This is
accounted for by adding a noise term to the diagonal of the
covariance matrix:

σ (x,x′) → σ (x,x′) + σ 2
n δxx′ ,

where σ 2
n is the variance of the noise and δxx′ is a Kronecker

delta. Effectively, the noise term relaxes the requirement that
the GP must pass exactly through each training point.

We use a squared-exponential covariance function with a
noise term:

σ (x,x′) = σ 2
GP exp

[
−

n∑
k=1

(xk − x ′
k)2

2�2
k

]
+ σ 2

n δxx′ , (23)

where σ 2
GP is the overall variance of the GP and �k is the

characteristic length scale for dimension k. These hyperpa-
rameters (σGP, σn, �k) are not known a priori and must be
estimated from the training data, however, in the present case
predictions appear to be relatively insensitive to the precise
choice of hyperparameters, as will be demonstrated promptly.
For details about the selection of hyperparameters see the
Appendix.

As with any interpolation scheme, the GP emulator must
be validated to ensure it faithfully predicts model output. In
other words, given an arbitrary test point x∗, the GP prediction
at x∗ should agree (within its uncertainty) with an explicit
computation at x∗. To this end, we have generated a separate
64-point Latin hypercube validation design X∗, evaluated the
full event-by-event model at each validation point just as for
the training design X, and predicted the model outputs at X∗
using the GP emulator.

Figure 7 validates that the emulator does indeed faithfully
predict the model. Recall that the emulator provides probability
distributions of finite width, so it need not predict every
validation point exactly—in fact, in the ideal case the residuals
would have a normal distribution with mean zero. Most of the
uncertainty visible in Fig. 7 is actually due to the statistical
noise in the flow cumulants, especially v3{2}. The emulator
accurately accounts for the noise present in the underlying
data.

IV. CALIBRATION

With the validated Gaussian process emulator in hand, it
may be used as a fast surrogate to the full event-by-event
model for calibration. Calibration means tuning the model
input parameters so that the output optimally agrees with
experimental data and in the process extracting probability
distributions for each parameter. Recall the input parameters
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FIG. 7. (Color online) Validation of the Gaussian process emulator for the Glauber model. Each plot shows emulator predictions against
explicit calculations for the 64 validation design points in centrality bins 0–5% (green circles), 20–25% (orange triangles), and 40–45% (purple
squares). The x value of each data point is the emulator prediction with 2σ (95%) horizontal error bars, the y value is the explicit calculation
with 2σ (95%) vertical error bars, and the diagonal grey line represents y = x.

are

x = (Norm,I.C. param,τ0,η/s,kπ ).

Presumably there exists a true set of parameters x�; the task
now is to find the probability distribution of x� given the
training data (X,Y ) and experimental measurements yexp. This
distribution may be framed in terms of Bayes’ theorem as

P (x�|X,Y,yexp) ∝ P (X,Y,yexp|x�)P (x�), (24)

where

(i) P (x�) is the prior probability which embodies initial
knowledge of x�;

(ii) P (X,Y,yexp|x�) is the likelihood: the probability of
observing (X,Y,yexp) given a proposed value of x�;
and

(iii) P (x�|X,Y,yexp) is the posterior probability for x�

given the observations (X,Y,yexp). This is the prob-
ability distribution we wish to construct.

In general Bayes’ theorem has a normalization constant
which has been omitted since we are only concerned with
relative probabilities.

The remainder of this section applies the methodology
from [14–16] to calibrate the model and determine the
posterior probability for x�.

A. MCMC

The workhorse of any Bayesian calibration is Markov chain
Monte Carlo (MCMC), a powerful and flexible method for
directly sampling the posterior probability. Perhaps the most
common version is the Metropolis-Hastings algorithm, which
generates a random walk through parameter space by accepting
or rejecting steps based on the posterior probability. For a large
number of steps the samples of the random walk equilibrate to
the posterior distribution. We use the affine-invariant ensemble
sampler for MCMC [45,46], an alternative algorithm that
uses a large ensemble of interdependent walkers. Ensemble

sampling notably has a much shorter autocorrelation time
than Metropolis-Hastings sampling and hence converges more
quickly to the equilibrium distribution.

The MCMC algorithm samples proposal points x� and
calculates the posterior probability at each point via Bayes’
theorem. We place a noninformative flat prior on x�, that
is, the prior probability is constant within the design range
(Table I) and zero outside. We evaluate the likelihood in
principal component space:

P (zexp|x�) ∝ exp
{− 1

2 (z� − zexp)ᵀ
−1
z (z� − zexp)

}
, (25)

where zexp is the PC transform of the experimental data, z�

is the emulator prediction of the PCs at x�, and 
z is the
covariance (uncertainty) matrix on the PCs assuming normally
distributed errors. Given the flat prior, the posterior P (x�|zexp)
is equal to the likelihood within the design range and zero
outside.

There are a number of sources of uncertainty including
experimental statistical and systematic error, model statistical
and systematic error, and emulator uncertainty. In the present
study, we do not attempt to precisely account for each contri-
bution, for this would inevitably require dubious assumptions
about systematic error correlations and the unknown error of
the model. We assume a simple fractional error on the principal
components, i.e., the covariance matrix is


z = diag
(
σ 2

z zexp
)
, (26)

where σ 2
z is a manually set constant, σz = 0.06 for the

present study, to account for the typical experimental error
of 3–5% [42] plus some additional uncertainty. While this
is itself a rough assumption, it is perhaps no worse than the
alternative, since experimental systematic errors are typically
estimated percentages themselves and the principal component
transformation automatically includes natural correlations
among observables. The primary goal of this study is to
develop and test a model-to-data comparison framework;
details such as the precise treatment of uncertainties can be
improved later.
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FIG. 8. (Color online) Posterior marginal and joint distributions of the calibration parameters for the Glauber model. On the diagonal are
histograms of MCMC samples for the respective parameters, on the lower triangle are two-dimensional scatter histograms of MCMC samples
showing the correlation between pairs of parameters, and on the upper triangle are approximate contours for 68%, 95%, and 99% confidence
regions along with a dot indicating the median.

We run O(106) MCMC steps to allow the chain to
equilibrate, discard these “burn-in” samples, then run O(107)
steps to generate the posterior distribution.

B. Results

The primary MCMC calibration results are presented in
Figs. 8 and 9 for the Glauber and KLN models, respec-

tively. These are visualizations of the posterior probability
distributions of the true parameters x�, including the dis-
tribution of each individual parameter and all correlations.
The diagonal histograms show the marginal distributions for
each parameter (all other parameters integrated out); the
lower-triangle plots are two-dimensional scatter histograms of
joint distributions between pairs of parameters, where darker
color denotes higher probability density; and the upper triangle

054910-9



JONAH E. BERNHARD et al. PHYSICAL REVIEW C 91, 054910 (2015)

FIG. 9. (Color online) Same as Fig. 8 for the KLN model.

has contour plots of the same joint distributions, where the
contour lines enclose the 68%, 95%, and 99% confidence
regions.

A wealth of information may be gained from these pos-
terior visualizations; the following highlights some important
features.

Focusing on the Glauber results in Fig. 8, we see the
shear viscosity η/s (fourth diagonal plot) has a narrow
approximately normal distribution located near the commonly
quoted value 0.08. As expected, η/s is tightly constrained

by experimental flow data. Going across the fourth row, we
observe nontrivial correlations among η/s and other param-
eters, for example, η/s and the hydrodynamic thermalization
time τ0 are negatively correlated (fourth row, third column).
As τ0 increases, the medium expands as a fluid for less
time, so less flow develops, and viscosity must decrease to
compensate.

Both τ0 and normalization (third and first diagonals)
have broad distributions without strong peaks, and they are
strongly correlated (third row, first column). This is because
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FIG. 10. (Color online) Random realizations of the calibrated posterior for Glauber (top, blue) and KLN (bottom, green) initial conditions.
Similar to Fig. 3 except the lines are posterior emulator predictions instead of explicit prior calculations.

the hydrodynamic model is boost-invariant and lacks any
pre-equilibrium dynamics, so τ0 is effectively an inverse
normalization factor. The joint distribution shows a narrow
acceptable band whose shape is governed by the inverse
relationship.

The wounded nucleon/binary collision parameter α (second
diagonal) has a roughly normal distribution located near
the typical value 0.12. It is mainly related to the slope
of multiplicity vs. centrality and hence has a nontrivial
correlation with normalization and τ0, e.g., we can decrease
the normalization to the lower end of its distribution provided
we also increase α to compensate.

Meanwhile, the shear stress relaxation time coefficient kπ

(fifth diagonal) has an almost flat distribution and its joint
distributions show no correlations. Evidently, this parameter
does not influence flow coefficients or multiplicity.

The KLN results in Fig. 9 generally exhibit wider, less
normal distributions than Glauber. This suggests that KLN is
somewhat less flexible than Glauber, so its overall behavior is
relatively insensitive to the specific values of input parameters.

The shear viscosity η/s has a narrow, irregular distribution
covering the common value 0.20. As with Glauber, η/s
has a negative correlation with τ0, there is a strong inverse
relationship between normalization and τ0, and kπ has no
effect. The KLN parameter λ has a flat marginal distribution,
but there are strongly excluded regions in the joint distributions
with normalization and τ0. This appears to be the same effect
as observed with Glauber α, except the dependence on λ is
significantly weaker.

The posteriors may be validated by drawing samples from
the calibrated distributions and visualizing the corresponding
emulator predictions: if the model is correct and properly
calibrated, the posterior samples will be close to experimental
measurements. Figure 10 confirms—for the most part—that
the posteriors are indeed tightly clustered around the data

points. Visualizations such as this will always have some
uncertainty since samples are drawn from the full posterior,
however, Fig. 10 has markedly narrower clusters than Fig. 3,
in which the input parameters varied across their full ranges
and were not tuned to match experiment.

As shown in the top row of Fig. 10, the Glauber model
nearly fits the centrality dependence of all the present observ-
ables (〈Nch〉, v2{2}, v3{2}). The v3 samples have a somewhat
larger variance than the others, in part due to the underlying
noise in the model calculations and also because v3 is explicitly
given a lower weight (recall that 〈Nch〉 : v2{2} : v2{3} are
weighted 1.2 : 1.0 : 0.6).

The KLN results in the bottom row tell a somewhat different
story, as they cannot fit all observables simultaneously. While
the fit to 〈Nch〉 is excellent, the ratio of v2 to v3 is simply too

FIG. 11. (Color online) Comparison of posterior distributions of
η/s for Glauber (blue) and KLN (green). These are the same
histograms as in Figs. 8 and 9, expanded and placed on the same
axis. The vertical grey lines indicate the common values 0.08 for
Glauber and 0.20 for KLN [28,47].
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TABLE II. Quantitative summary of posterior distributions. For each parameter, the previous estimate [28,47,48], mean, median, and
confidence intervals are given.

Parameter Prev. est. Mean Median 68% C.I. 95% C.I. 99% C.I.

Norm. 57 48.9 49.0 41.6–56.4 36.5–59.4 33.9–59.9
α 0.12 0.148 0.146 0.119–0.176 0.0954–0.212 0.0808–0.242
τ0 0.6 0.776 0.778 0.638–0.922 0.527–0.987 0.461–0.997

G
la

ub
er

η/s 0.08 0.0604 0.0595 0.0407–0.0801 0.0244–0.101 0.0149–0.116
kπ 0.5 0.682 0.698 0.373–0.978 0.228–1.08 0.206–1.09

Norm. 9.9 10.8 10.9 8.15–13.6 6.40–14.8 5.82–15.0
λ 0.14 0.199 0.198 0.132–0.267 0.105–0.295 0.101–0.299
τ0 0.6 0.620 0.602 0.415–0.846 0.302–0.975 0.265–0.995

K
L

N

η/s 0.20 0.163 0.162 0.135–0.190 0.121–0.208 0.116–0.215
kπ 0.5 0.651 0.653 0.347–0.955 0.223–1.07 0.205–1.09

large and the model has no choice but to compromise between
the two, similar to previous KLN results [49]. The posterior
biases more towards v2 than v3 due to the explicit higher
weight on v2.

Figure 11 shows an expanded view of the η/s marginal
distributions for Glauber and KLN. The Glauber distribu-
tion is approximately normal with mean ∼0.06 and 95%
confidence interval ∼0.02–0.10, consistent with but mostly
below 0.08. This is unsurprising and easily within the
uncertainty of existing results. KLN has a wider plateau-like
distribution with mean ∼0.16 and 95% confidence interval
∼0.12–0.21. While the common estimate 0.20 was derived
primarily from comparisons to v2, the additional constraint
from v3 shifts the distribution to somewhat smaller values
and causes the plateau shape: rather than a strong peak,
there is a range of values which all fit the data roughly
equally.

Table II quantitatively summarizes the posterior distribu-
tions for each parameter including basic statistics, confidence
intervals, and comparisons to previous estimates from earlier
work with the same models [28,47,48]. All previous estimates
fall within 95% confidence intervals, and most within 68%.

V. CONCLUSION

We have applied modern Bayesian methodology to system-
atically compare an event-by-event heavy-ion collision model
to experimental data. We chose a set of salient model parame-
ters including the shear viscosity η/s, evaluated the model over
wide ranges of each parameter, and interpolated the results
with a Gaussian process emulator. Then, we used the emulator
to calibrate the model to optimally reproduce experimental
data and thereby extracted probability distributions for the
true values of all model parameters simultaneously, including
all correlations.

When properly calibrated, the Monte Carlo Glauber model
provides a good simultaneous fit to experimental multiplicity
and flow data, while the Monte Carlo KLN model fails
to simultaneously fit elliptic and triangular flow. The η/s
distributions for the Glauber and KLN models are consistent
with the commonly quoted values 0.08 and 0.20, respectively,
and in general the calibrated distributions reinforce and expand
upon existing knowledge of these models.

This study represents a significant step forward in state-of-
the-art model-to-data comparison and establishes a framework
for future analysis. Since the method does not reduce each
parameter to a “best-fit” value but instead furnishes full
probability distributions, it may be used to rigorously quantify
uncertainties, examine correlations among parameters, and
evaluate the efficacy of physical models, among other possibil-
ities. It is easily extensible to arbitrary numbers of parameters
and physical observables and to different models.

Indeed, we plan to apply the methodology to a variety
of other models, including the new initial condition model
TRENTo—a flexible effective model which is ideal for this
type of analysis [33]—and a 3+1D viscous hydrodynamics
model with finite baryon chemical potential combined with
recent data from the RHIC beam energy scan. By considering
data from multiple beam energies, we can probe the tempera-
ture dependence of η/s.

We will include additional physical properties such as
the size and shape of nucleons in the initial state, the
hydrodynamic equation of state, and the switching temperature
from hydrodynamics to microscopic transport; and compare
to more observables, e.g., identified particle spectra and
differential flow.

Finally, we anticipate upgrades to the methodology itself,
notably more rigorous treatment of uncertainties and quantifi-
cation of input-output correlations (analysis of variance).
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APPENDIX: TRAINING THE EMULATOR

Gaussian process emulators are nonparametric models
(they do not assume a functional form) but they do require
an assumed covariance function. One typically chooses a pa-
rameterized functional form based on physical considerations,
for example the squared-exponential function

σ (x,x′) = exp

(
−|x − x′|2

2�2

)
generates smoothly varying processes and is therefore compat-
ible with many models. If the model is known to oscillate, one
would choose a periodic covariance function. Most models
have statistical noise which one accounts for by adding a
diagonal noise term to the covariance function:

σ (x,x′) → σ (x,x′) + σ 2
n δxx′ ,

where σ 2
n is the variance of the noise and δxx′ is a Kronecker

delta.
Covariance functions often have free parameters known

as hyperparameters, e.g., the squared-exponential correlation
length �, which are not known a priori and must be estimated
from model data. The selection of hyperparameters is known
as training and may be accomplished by maximizing the
likelihood function [17]

log P (y|X,θ ) = −1

2
yᵀ
−1

y y − 1

2
log |
y | − m

2
log 2π, (A1)

where y is the vector of training outputs, X is the matrix
of training input points, θ is the vector of hyperparameters,
and 
y is the covariance matrix from applying the covariance
function to the training data. Hence, the likelihood is the
probability of observing the data given the model. The first
term in the likelihood is the fit to data, the second term is
a complexity penalty, and the third term is a normalization
constant.

This is best demonstrated by an example. The one-
dimensional training data in Fig. 12 were generated from a
Gaussian process with covariance function

σ (x,x ′) = exp

(
−|x − x ′|2

2�2

)
+ σ 2

n δxx ′ (A2)

and hyperparameters θ = (�,σn) = (0.5,0.2); now let us pre-
tend we don’t know the true values of θ and attempt to train
a Gaussian process on the data. In the top panel of the figure,
we use a short length scale � with small noise σn, so the GP
interpolates each point exactly; however it rapidly wiggles and
is almost certainly “overfit”. This choice of hyperparameters
has a large complexity penalty and therefore a low likelihood.
In the other extreme, we use a long length scale with large noise
(middle panel), leading to a nearly linear GP that attributes
most of the variance to noise. Here the likelihood is also low
due to the poor fit to data. The most likely scenario is the

FIG. 12. (Color online) Effect of varying the hyperparameters.
Each panel shows a Gaussian process conditioned on fabricated
training data using the covariance function Eq. (A2), where the line
is the mean and the band is a 2σ confidence interval. The covariance
function hyperparameters are different in each plot as indicated by
the annotations. The data points are identical in each plot and were
generated from a Gaussian process with hyperparameters annotated
at the bottom.

compromise in the bottom panel, in which we estimate the
hyperparameters by numerically maximizing the likelihood.
Now, the trained GP smoothly interpolates the curvature of the
training data while leaving some of the variance as noise, true
to the actual GP.

For the present study we use the covariance function given
in Eq. (23) and restated here:

σ (x,x′) = σ 2
GP exp

[
−

n∑
k=1

(xk − x ′
k)2

2�2
k

]
+ σ 2

n δxx′ .

The hyperparameter σ 2
GP is the overall variance of the Gaussian

process and the �k are the independent length scales for
each design parameter. We estimate the hyperparameters by
numerically maximizing the likelihood (A1) using a nonlin-
ear conjugate gradient algorithm. Since the likelihood may
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TABLE III. Maximum-likelihood estimates of the covariance
function hyperparameters.

Principal component

1 2 3 4 5

σGP 4.29 2.20 2.67 0.923 0.558
� Norm 1.89 1.62 1.95 0.622 0.300
� α 3.26 1.61 1.49 0.579 10.0
� τ0 1.20 1.05 1.65 1.34 0.300

G
la

ub
er

� η/s 1.69 1.01 1.17 2.09 10.0
� kπ 10.0 4.77 4.46 10.0 1.48
σn 0.0349 0.106 0.558 0.800 0.933

σGP 5.11 3.36 1.48 1.28 0.996
� Norm 1.82 1.39 1.16 0.907 0.713
� λ 8.47 4.54 0.985 1.10 0.300
� τ0 0.927 0.678 0.808 0.534 0.359

K
L

N

� η/s 1.63 0.851 0.500 0.434 0.369
� kπ 10.0 8.33 2.04 1.43 0.389
σn 0.0192 0.0568 0.807 0.803 0.606

have nonoptimal local extrema, we repeat the optimization
algorithm many times (minimum 100) from different random
starting points.

Table III lists the maximum-likelihood estimates of the
hyperparameters for each principal component in standardized
units—input parameters scaled to [0,1] and principal compo-
nents scaled to unit variance. We constrain the length scales to
[0.3,10] for numerical robustness.

In this work we fix the hyperparameters to the maximum-
likelihood estimates during calibration. This neglects uncer-
tainty in the hyperparameters themselves, although the present
event-by-event model is well behaved and the sample size
is large, so varying the hyperparameters weakly affects the
actual emulator predictions. But ideally, one would consider
all predictions consistent with the data—not only the most
likely—by MCMC-sampling the hyperparameter posteriors.
This significantly increases computational cost, since the GPs
must be reconditioned for every set of hyperparameters, and
conditioning requires computation of the inverse covariance
matrix, an O(n3) operation. We forgo this refinement until a
future study.
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