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Probing quark charge correlations by identified hadrons in ultrarelativistic AA collisions
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We propose a new kind of two-particle correlation of identified hadrons in longitudinal rapidity space which
can reflect directly the conserved charge correlations of a hot quark system produced in AA collisions at Large
Hadron Collider (LHC) energies. It is derived from the basic scenario of quark combination mechanism of hadron
production. Like the elliptic flow of identified hadrons at intermediate transverse momentum, this correlation is
independent of the absolute hadronic yields but depends only on the flavor compositions of hadrons and thus
exhibits interesting properties for different kinds of hadrons. We suggest the measurement of this correlation
function in AA collisions at the LHC to gain more insight into the charge-correlation properties of the produced
hot quark matter.
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I. INTRODUCTION

Correlations between different identified hadrons in mo-
mentum space were sensitive probes of prompt hadron pro-
duction dynamics in different high-energy reactions already
in 1980s and 1990s [1–7]. The experimental data of baryon-
baryon and baryon-antibaryon correlations in rapidity space in
e+e− annihilations [4–6] provided important tests of existing
phenomenological models of nonperturbative hadronization
process. In ultrarelativistic heavy-ion collisions, correlation
measurements and studies continue to serve as an indis-
pensable means for exploring the properties of the strong-
interacting quark gluon plasma (QGP) produced in collisions
[8–17]. In particular, recent studies of the charge balance
functions in low-pT domain provided deep understanding
of the properties of conserved charge correlations of QGP
produced in collisions [13–27]. We note that these studies
are mainly of charged particles while those of two-particle
correlations of identified hadrons are relatively less concerned.
Definitely, the correlations of conserved charges generated in
the QGP stage, after hadronization, should not only impose the
bulk constraints on the production of all hadrons from QGP but
also visualize themselves in the correlation between different
identified hadrons, e.g., p-p̄, p-�̄, and p-K correlations,
etc. The latter relates to the physics of how the charge
correlation properties of QGP, after hadronization, present
themselves in the identified two-hadron correlations, or, in
the converse philosophy, the physics of what QGP charge
correlation properties can be extracted from the correlations
between specific hadrons. The purpose of this paper is to
find a direct and clear connection between the identified
two-hadron correlations and the conserved charge correlations
of deconfined quark systems in the framework of the quark
combination mechanism of hadron production. Conserved
charges specifically refer to three conserved quantum numbers,
i.e., baryon number, strangeness and electric charge. To this
end, a new properly designed two-hadron correlation function
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in longitudinal rapidity space is proposed. ALICE experiments
at the Large Hadron Collider (LHC) have the ability of
high-precision measurement of identified hadrons and the
ability of correcting the weak decays of strange hyperons and
thus can provide a good experimental platform for studying
the identified two-hadron correlations in momentum space.

The paper is organized as follows: We present in Sec. II the
new hadronic correlation function Gαβ(�y) and illustrate its
interesting properties. Then we study in Sec. III the observation
of conserved charge correlations of quark system by measuring
hadronic Gαβ . Influences of resonance decay on Gαβ(�y) are
studied in Sec. IV. A summary and discussion are given in
Sec. V.

II. A NEW HADRONIC CORRELATION FUNCTION
Gαβ (�y)

We propose the following two-hadron correlation function
in the longitudinal rapidity space as a new observable in AA
collisions at LHC energies:

Gαβ(y1,y2) = 〈[nα(y1) − nᾱ(y1)][nβ(y2) − nβ̄(y2)]〉
〈nα(y1)〉〈nβ(y2)〉 , (1)

which measures directly the correlation between two hadronic
species by a symmetrical combination of αβ, ᾱβ̄, αβ̄, and
ᾱβ correlations but can reflect in a quite clear manner the
properties of conserved charge correlations of the quark system
produced in collisions. Here, angle brackets denote event
average and nα(y1) denote the number of hadrons α at y1.
We confine ourselves to the situation of zero baryon number
density, e.g., the central plateau region of collisions as a
good approximation, otherwise one would subtract the term
〈nα(y1) − nᾱ(y1)〉〈nβ(y2) − nβ̄(y2)〉 in the numerator. In the
denominator, we put the product of two-hadron yields rather
than either one, which is the major difference from the previous
balance functions [3,13,27]. At first sight, this correlation is
hadronic-yield dependent since it seems to be of the magnitude
of 1/nα or 1/nβ . In fact, however, this is not the case; rather, it
presents a clean quark-level insight as we interpret Eq. (1) in
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the framework of the quark combination mechanism (QCM)
of hadron production.

The QCM describes the production of hadrons as the quark
system hadronizes by the combination of neighboring quarks
and antiquarks in phase space. Two highlights in the early
years of the BNL Relativistic Heavy Ion Collider (RHIC)
experiments, i.e., high-p/π ratio and quark number scaling
of hadronic elliptic flow at intermediate transverse momentum
(pT ), are the foremost suggestion of QCM as an important
hadronization candidate for the hot quark system produced
in relativistic heavy-ion collisions [28–33]. Applying QCM
to the low-pT region of higher quark number density is
natural and the related issues, such as entropy conservation or
pion production, have been properly addressed [31,32,34–37].
Various phenomenological models based on QCM [38,39]
have successfully explained lots of low-pT data from CERN
Super Proton Synchrotron (SPS), RHIC, and recent LHC
experiments; in particular those of yields and longitudinal
rapidity spectra of identified hadrons [34,40–43]. There are
also many successful applications of QCM on correlation
studies, e.g., multihadron yield correlations [43–45], baryon-
meson correlated emission [46,47], as well as the charge
balance function [15,20].

Applying QCM to one-dimensional longitudinal rapidity
space and considering that the averaged rapidity interval
between neighboring quarks at LHC energies is of the order of
10−3, i.e., a thousand quarks per unit rapidity, the combination
of neighboring quarks into a hadron can be treated as an ideal
equal-y combination to make the study illustrative and in-
sightful and meanwhile keep a good numerical approximation.
Then, we have the single-hadron rapidity distribution, e.g., for
the produced meson Mi(q1q̄2),

FMi
(y) = Pq1q̄2,Mi

(y) fq1q̄2 (y) , (2)

and similarly for baryonic FBi
(y). Here, fq1q̄2 (y) is the

density of q1q̄2 pairs at rapidity y in the system just before
hadronization. Pq1q̄2,Mi

denotes the probability of a q1q̄2 pair
combining into a meson. We also consider the two-hadron
joint distributions Fαβ(y1,y2), since Gαβ essentially measures
(Fαβ + Fᾱβ̄ − Fᾱβ − Fαβ̄)/FαFβ , and have

FMiMj
(y1,y2) = P(q1q̄2)(q3q̄4),MiMj

(y1,y2) f(q1q̄2)(q3q̄4) (y1,y2) ,

(3)

and similarly for FMiBj
and FBiBj

. f(q1q̄2)(q3q̄4)(y1,y2) is the
joint distribution of a q1q̄2 pair at y1 and a q3q̄4 pair at y2.
P(q1q̄2)(q3q̄4),MiMj

(y1,y2) is the joint production probability of a
MiMj pair given a q1q̄2 pair at y1 and a q3q̄4 pair at y2, which
has the factorization form Pq1q̄2,Mi

(y1)Pq3q̄4,Mj
(y2) because of

the locality of hadronization. In the system without net charges
we expect Pq1q̄2,Mi

= Pq̄1q2,M̄i
and Pq1q2q3,Bj

= Pq̄1q̄2q̄3,B̄j
in

charge conjugation symmetry.
The kernel P involves the complex nonperturbative

hadronization dynamics and is far from being solved strictly
from first principles. Fortunately, by adopting Eq. (1) we
do not need to know the precise form of P . By using
Eqs. (2) and (3) we obtain that Gαβ actually measures
the (f (q)

αβ + f
(q)
ᾱβ̄

− f
(q)
ᾱβ − f

(q)
αβ̄

)/f (q)
α f

(q)
β , where f

(q)
α and f

(q)
αβ

denote the corresponding multiquark distributions in single α

and joint αβ productions in Eqs. (2) and (3), respectively. Then
we immediately get

Gαβ(y1,y2) =
〈[
n

(q)
α (y1) − n

(q)
ᾱ (y1)

][
n

(q)
β (y2) − n

(q)
β̄

(y2)
]〉

〈
n

(q)
α (y1)

〉〈
n

(q)
β (y2)

〉 ,

(4)

where n
(q)
α (y) is the number of multiquark clusters in an

event for α production. In the meson α(q1q̄2) case, n
(q)
α (y) =

nq1q̄2 (y) = nq1 (y)nq̄2 (y) is the number of q1q̄2 pairs at rapidity
y. In the baryon α(q1q2q3) case, n

(q)
α (y) = nq1q2q3 (y) is the

number of q1q2q3 combinations which satisfies nq1q2q3 (y) ≈
nq1 (y)nq2 (y)nq3 (y) in the large-quark-number limit. nq(y) is
the number of q-flavor quarks at y. To second order in the
fluctuations of quark numbers, we have

Gαβ (y1,y2) =
∑
f1,f2

Af1f2

Cf1f2 (y1,y2)

〈nf1 (y1)〉〈nf2 (y2)〉 , (5)

where the detailed procedure of its derivation from Eq. (4)
is in the appendix. Here, indices f1 and f2 run over all
flavors of quarks and antiquarks. The coefficient Af1f2 =
(nα,f1 − nᾱ,f1 )(nβ,f2 − nβ̄,f2

). nα,f1 is the number of quark
f1 contained in hadron α. Cf1f2 (y1,y2) = 〈nf1 (y1)nf2 (y2)〉 −
〈nf1 (y1)〉〈nf2 (y2)〉 is the ordinary two-point correlation func-
tion. Clearly, Gαβ(y1,y2) depends only on the quark-level
correlations as well as the flavor compositions of hadrons α
and β, independent of the absolute yields of two hadrons.
We emphasize that this result is independent of the precise
form of the kernel P , which does not mean the absence
of hadronization dynamics in our formula. We incorporated
the most basic dynamics of QCM in our formula, i.e., the
combination of neighboring quarks and antiquarks in phase
space into hadrons. This independence of kernel P just
means that the result does not depend on the sophisticated
hadronization details. Therefore, Eq. (5) is a general result
of QCM. We also verify that the analytical result of Eq. (5)
derived from the equal-y-combination approximation totally
agrees with the numerical results of the combination model
developed by the Shandong group (SDQCM) [39], which
applies more practical quark combinations in longitudinal
hadron production.

As applying the approximation of zero baryon number
density to the central-plateau region of AA collisions at
LHC energies, we further assume a Bjorken longitudinally
boost invariance [48] for the system, and then the two-point
correlation functions depend only on �y = y2 − y1 rather than
on y1 and y2 individually. Since the rapidity density of particles
is uniform in this case, we use nα and nf to denote the rapidity
densities of hadron α and quark f , respectively.

One of the advantages of Gαβ is that it can conveniently
relate to the correlation of conserved charges in the quark
system. Here we consider the system made up mainly of
the three quark flavors, i.e., up (u), down (d), and strange
(s) quarks. There are three conserved charges in the system,
i.e., baryon number (B), electric charge (C), and strangeness
(S). Alternatively, we use the net number of up (nu − nū),
down (nd − nd̄ ), and strange quarks (ns − ns̄) instead of B,
C, and S charges because quark numbers are more convenient
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TABLE I. Gαβ (�y) of directly produced hadrons after hadronization in terms of Gab(�y) of the quark system before hadronization.

Gαβ π+ p K+ � �0 �−

π− −2Guu + 2Gud

p̄ −Guu + Gud −5Guu − 4Gud Transpose symmetric
K− −Guu + Gud −2Guu − Gud + 3Gus −Guu + 2Gus − Gss

�̄ 0 −3Guu − 3Gud − 3Gus −Guu − Gud + Gus + Gss −2Guu − 2Gud − 4Gus − Gss

�̄0 −Guu + Gud −2Guu − Gud − 6Gus −Guu − Gus + 2Gss −Guu − Gud − 5Gus − 2Gss −Guu − 4Gus − 4Gss

�̄+ 0 −9Gus −3Gus + 3Gss −6Gus − 3Gss −3Gus − 6Gss −9Gss

in hadronic correlations. Furthermore, charge correlations of
quark system Gab(�y) can be also described by Eq. (1).
Under the isospin symmetry and electric charge conjugation
symmetry, we have four kinds of quark number correlation
functions, i.e.,

Guu (�y) = 2 [Cuu (�y) − Cuū (�y)] /〈nu〉2,

Gss (�y) = 2 [Css (�y) − Css̄ (�y)] /〈ns〉2, (6)

Gud (�y) = 2[Cud (�y) − Cud̄ (�y)]/〈nu〉2,

Gus (�y) = 2 [Cus (�y) − Cus̄ (�y)] /(〈nu〉〈ns〉),
for the quark system just before hadronization.

Substituting Eq. (6) into Eq. (5), we finally get

Gαβ (�y) =
∑

f1,f2=u,d,s

Qα,f1Qβ,f2Gf1f2 (�y) , (7)

where Qα,f1 = nα,f1 − nα,f̄1
denotes the net number of f1 in

hadron α. The equation shows a direct and simple connection
between the hadronic correlation and the charge correlation of
the quark system before hadronization. There is no such conci-
sion if one adopts Cαβ(�y) and existing balance functions. In
Table I, we show Gαβ(�y) of various identified hadrons in
terms of the charge correlations Gab(�y) of the quark system.

There are several interesting results in Table I. First, we
see that signs before Gab in GMM and GMB have both the
positive and negative parts while in GBB̄ their signs are the
same. It arises from the flavor composition nature of M(qq̄)
and B(qqq). Second, we find Gπ+�̄(�y) = Gπ+�̄+(�y) = 0
which means their productions are independent of each other.
This is because π+ is composed of u and d̄ and their corre-
lations with quarks in � and �− are canceled out under the
isospin symmetry. Third, we see Gπ+p̄(�y) = Gπ+K−(�y) =
Gπ+�̄0 (�y) = −Guu(�y) + Gud (�y) in which strangeness
correlations disappear. This is also because the correlation
between u in π+ and strange quarks in K−, �̄0 cancel that
part of d̄ in the pion and thus only light-flavor correlations are
left. These results are independent of quark’s Gab and thus
can be regarded as the characteristic properties of QCM. For
Gαβ(�y) of other hadrons, they are also correlated with each
other by four-quark correlation functions in Eq. (6), e.g.,

Gp�̄+ (�y) − 3GK+�̄+ (�y)

= 2G�0�̄+ (�y) − G��̄+ (�y) = G�−�̄+ (�y) ,

GK+K− (�y) − G�−�̄+ (�y) + G�0�̄0 (�y)

= 2GK+�̄0 (�y) . (8)

The applicability of the QCM can be tested by these intrinsic
relationships between different Gαβ(�y).

Besides, the quark combination also predicts that K+ is
associated in production with �, �0, and �− rather than their
antiparticles for the regular quark Gab such as those discussed
later. This is because the +Gss item always overwhelms
numerically other parts in their correlation decompositions;
see Table I. It is a natural result since K+ production
consumes a s̄ while the remaining s enters into a hyperon,
thereby passing the ss̄ quark correlation to these strange
hadrons.

The fact of Gαβ being the linear combination of a few
Gab, as shown in Table I, also suggests that not only the
correlation width measured in the past but also the correlation
magnitude should be regarded as significant observations at
LHC experiments. On the other hand, these simple relations
provide the possibility of extracting the charge correlation
properties of quark system from the measurable correlations of
identified hadrons. By the measurement of Gαβ(�y) in Table
I, we can extract directly Guu(�y), Gud (�y), Gus(�y), and
Gss(�y). Their combinations give the correlations among the
usual B, C, and S charges. Relating net quark numbers to B,
C, and S charges, i.e.,

B = 1
3 (nu − nū) + 1

3 (nd − nd̄ ) + 1
3 (ns − ns̄) ,

C = 2
3 (nu − nū) − 1

3 (nd − nd̄ ) − 1
3 (ns − ns̄) , (9)

S = ns̄ − ns,

we have, for example,

CBB (�y) = 1
9

{
2〈nu〉2 [Guu (�y) + Gud (�y)]

+〈ns〉2Gss (�y) + 4〈nu〉〈ns〉Gus (�y)
}
,

CBS (�y) = − 1
3

[〈ns〉2Gss (�y) + 2〈nu〉〈ns〉Gus (�y)
]
.

(10)

Quark number densities 〈nu〉 and 〈ns〉 can be obtained by
fitting the experimental data of yields of identified hadrons in
a quark combination model (see, e.g., SDQCM [39]).

III. EXTRACTION OF QUARK CHARGE CORRELATIONS
BY Gαβ MEASUREMENTS

The results in Table I enable us to systematically extract the
properties of charge correlations of quark system produced in
collisions from the identified two-hadron correlations. In this
section, we demonstrate an application of the above results.
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By the measurement of only a few Gαβ(�y) shown in Table I,
e.g., Gp�̄(�y), Gp�̄0 (�y), and Gp�̄+ (�y), we can probe some
basic or qualitative properties of quark systems produced in
collisions. We also discuss two different methods of measuring
Gαβ(�y) in experiments.

First, we study the qualitative properties of charge correla-
tions for quark system. By the definition in Eq. (6), Gab(�y)
for quark systems has a two-component feature, which is
given by the competition between Cab(�y) and Cab̄(�y).
Here, Cab(�y) describes the distribution of the correlated ab
quark pairs while Cab̄(�y) describes that of the correlated ab̄
pairs. Note that the a and/or b appeared in the subscript of G
variable denote the charge a and/or b (i.e., net-u, net-d, and
net-s numbers) while those in C variables denote the specific
flavors. In this paper, we focus on the properties of short-range
correlation (SRC) between charge a and charge b, generated
by interactions of thermal partons during the late stage of
QGP evolution, which is our most interesting part relating
to QGP properties. One of important sources of such SRC
correlations comes from gluons near hadronization. In QCM,
a gluon hadronizes by splitting first into a quark-antiquark
pair which then combines with other quarks and antiquarks
into hadrons. This contributes a tight diagonal correlation in
small-rapidity distance on the quark system at hadronization
via a narrow-distributed Cuū(�y), Cdd̄ (�y), and Css̄(�y). On
the other hand, Gab(�y) variable suffers also the constraint
of global charge conservation (GCC) imposed on charges
a and b, respectively. In the case of zero charges for the
system, one should have

∫
Gab(�y)d�y = 0. GCC has a long-

range characteristic since it is mainly induced by the charge
separation during the first fm/c of the collisions. Definitely,
GCC will contaminate the intrinsic correlation between charge
a and charge b. In a naive way, as the short-range correlation
is dominated by the ab̄ pair correlations [by item Cab̄(�y)],
GCC would manifest itself by the long-range feature of ab
correlation [by item Cab(�y)], and vice versa.

Based on the above discussions of two necessary ingredi-
ents of quark correlations, we can build a naive parametrization
for the Gab(�y) of quark system. We take a Gaussian
approximation for the shapes of GCC and SRC correlations in
rapidity, respectively, in light of the observed shape of the
charge balance function in relativistic heavy-ion collisions
[23]. Their distributions are denoted by N (0,σg) and N (0,σs),
respectively. As the ab pair correlation dominates the SRC,
we have

Gab(�y) = 2n
(c)
ab

〈na〉〈nb〉 [N (0,σs) − N (0,σg)], (11)

where n
(c)
ab denotes the number of correlated ab quark pairs.

The coefficient 2 comes from the definition of Eq. (6)
which incorporates the conjugation contribution of the āb̄
pair correlation. On the contrary, as the ab̄ pair correlation
dominates the SRC, we have

Gab (�y) = − 2n
(c)
ab̄

〈na〉〈nb〉 [N (0,σs) − N (0,σg)], (12)

where n
(c)
ab̄

denotes the number of correlated ab̄ quark pairs.
The minus sign comes directly from the definition of Eq. (6).

Summarizing the two above cases of the coefficient into a
universal charge correlation matrix

χab =
{

2n
(c)
ab when ab flavor correlation dominates

−2n
(c)
ab̄

when ab̄ flavor correlation dominates,

(13)

we have

Gab (�y) = χab

〈na〉〈nb〉 [N (0,σs) − N (0,σg)]. (14)

Here, we consider three different charge correlation scenar-
ios that are possible for the quark system at hadronization: (1)
The system consists of only quasifree individual constituent
quarks and antiquarks. The only correlation comes from
the pair production of uū, dd̄ , and ss̄ in collisions. The
χab matrix is diagonal, i.e., χuu = −2n

(c)
uū = −2〈nu〉, χss =

−2n
(c)
ss̄ = −2〈ns〉, and χud = χus = 0. (2) Among quarks and

antiquarks in the system there exists some tight correlations
between quarks and antiquarks with different flavors in rapidity
space. χab has negative off-diagonal matrix elements which
will generally decrease GMM and GBM but increase GBB̄

in magnitude. As an illustration, we consider an extreme
case of strong quark-antiquark correlations with different
flavors [27]. Every s̄ quark is also correlated with a u or d
quark, besides its intrinsic pair correlation with a s quark and
we have χus = −2n

(c)
us̄ ≈ −〈ns〉. Similarly, every u quark is

also associated with a d̄ or s̄ antiquark and we have χud =
−2n

(c)
ud̄

≈ −2(〈nu〉 − n
(c)
us̄ ) ≈ −2(〈nu〉 − 1

2 〈ns〉). (3) Different
from the former, there exist a tight correlation between two
(anti-)quarks. χab has positive off-diagonal matrix elements
which generally decrease GBB̄ but increase GMM and GBM .
As an example of this scenario, we take a thermal ansatz
under the Boltzmann distribution. The number of correlated
two quarks in rapidity is assumed to be thermal distributed.
The mass of two correlated quarks is the sum of individual
quark masses. Fixing the hadronization temperature T = 165
MeV and the mass of individual quarks mu = 330 MeV
and ms = 500 MeV, we estimate the magnitude of off-
diagonal elements to be χud ≈ 0.34〈nu〉 and χus ≈ 0.52〈ns〉,
respectively.

Three different charge correlation scenarios can be iden-
tified by the measurement of few hadronic Gαβ . In Fig. 1,
we show calculations of Gp�̄(�y), Gp�̄0 (�y), and Gp�̄+ (�y)
at three scenarios as their effective discrimination. In calcu-
lations, the quark rapidity densities are taken to be 〈nu〉 =
〈nd〉 = 710 and 〈ns〉 = 290, respectively, by using SDQCM
to fit the experimental data of rapidity density of pions and
kaons in central Pb + Pb collisions at

√
sNN = 2.76 TeV [49].

For widths σg and σs we temporarily assume a flavor-blind
value for the purpose of qualitative analysis only. The GCC
distribution width σg is taken to be 3.8, fixed roughly by the
data of pseudorapidity distribution of charged particles [50].
The SRC width σs is fixed to be 0.45 by the data of charge
balance function [26] in the collisions.

It can be seen from Fig. 1 that, in the diagonal case of
χab, the production between p and �̄, �̄0 is associated. This
is quite natural due to the local neutrality of net-u charge
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FIG. 1. (Color online) Gp�̄(�y), Gp�̄0 (�y), and Gp�̄+ (�y) as a function of �y, as χab matrix is diagonal (filled circles), has positive
off-diagonal elements (open squares) and has negative off-diagonal elements (open circles).

in the system or, in other words, the light-quark and light-
antiquark production association. The production of p and
of �− are independent of each other in this case because of
the vanishing Gus component. The negative off-diagonal χab

elements increase their production association magnitudes, in
particular for p and �̄+. On the contrary, the large positive
values of the off-diagonal χab elements may change the sign
of the Gp�̄, Gp�̄0 , and even Gp�̄+ , which means the production
between p and these antihyperons is no longer concomitant
but repulsive. We can see that Gp�̄(�y) and Gp�̄0 (�y) can
effectively discriminate the scenario (3) from others while
Gp�̄+ (�y) is all powerful in three cases.

There are two available methods measuring the hadron
Gαβ(�y) in experiments. The first is that adopted in e+e− and
pp̄ reactions in the early years, i.e., choosing hadrons α and ᾱ
at a specific rapidity, e.g., at y = 0, as the test particles and then
recording rapidity distances between every hadron β (β̄) and
test particles event by event. The second is that used recently in
balance function measurements in AA collisions. Considering
that the detectors have a finite acceptance rapidity window yw,
statistics of all hadrons α, ᾱ, β, and β̄ in this window generates
the partial correlation function Gαβ (�y|yw), and then divide
it by the scale factor 1 − �y/yw proposed in Ref. [14] to

remove the finite-window effects and restore the theoretical
definition.

IV. RESONANCE DECAY EFFECTS

A significant contribution to the correlation function of final
hadrons measured experimentally comes from the decay of
short-life hadrons. Let us consider first the decay contribution
to the single-hadron rapidity distribution:

n
(f )
i (y) = ni (y) +

∑
j

∫
dy0nj (y0)D (j,y0 → i,y) , (15)

where superscript (f ) denotes the final-state hadrons including
resonance decays. The decay function D(j,y0 → i,y) denotes
the probability of finding an i-type hadron of rapidity y from
the decay products of a j -type hadron of rapidity y0. It is
determined by the branch ratio of the decay channel Br(j → i)
and the corresponding decay kinematics and by the transverse
motion of the mother particle. In order to focus on longitudinal
dynamics, we use an event-averaged transverse momentum
(pT ) distribution for mother particles in decay.

Using Eq. (15) we obtain the correlation function of final hadrons:

G
(f )
αβ (y1,y2) = 〈nα (y1)〉〈nβ (y2)〉〈

n
(f )
α (y1)

〉〈
n

(f )
β (y2)

〉Gαβ (y1,y2) +
∑

k

∫
dy0D (k,y0 → β,y2)

〈nα (y1)〉〈nk (y0)〉〈
n

(f )
α (y1)

〉〈
n

(f )
β (y2)

〉Gαk (y1,y0)

+
∑

k

∫
dy0D (k,y0 → α,y1)

〈nk (y0)〉〈nβ (y2)〉〈
n

(f )
α (y1)

〉〈
n

(f )
β (y2)

〉Gkβ (y0,y2)

+
∑
j,k

∫∫
dy0dy ′

0D (j,y0 → α,y1)D (
k,y ′

0 → β,y2
) × 〈nj (y0)〉〈nk

(
y ′

0

)〉〈
n

(f )
α (y1)

〉〈
n

(f )
β (y2)

〉Gjk

(
y0,y

′
0

)
. (16)

Here we have utilized the symmetry of the summation index, e.g.,
∑

k D(k,y0 → β,y2)Cαk(y1,y0) = ∑
k D(k̄,y0 →

β,y2)Cαk̄(y1,y0), and charge conjugation symmetry D(k,y0 → β,y2) = D(k̄,y0 → β̄,y2) for the decay function.
Applying the broken longitudinal boost invariance [48] to heavy-ion collisions at LHC energies, we expect a rapidity-

independent yield density 〈nα(y)〉 = 〈nα〉 in the central rapidity region. The double hadron ratio in Eq. (16) can be abbreviated
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as
〈nα′ (y1)〉〈nβ ′ (y2)〉〈
n

(f )
α (y1)

〉〈
n

(f )
β (y2)

〉 = 〈nα′ 〉〈nβ ′ 〉〈
n

(f )
α

〉〈
n

(f )
β

〉 ≡ R
α′β ′
αβ .

The correlation function Gαβ(�y) depends only on the relative rapidity interval �y = y2 − y1. After abbreviating the decay
function D(k,y0 → β,y2) = Dkβ(y2 − y0), we get finally

G
(f )
αβ (�y) = R

αβ
αβGαβ (�y) +

∑
k

Rαk
αβ

∫
d�Dkβ (�) Gαk (�y − �) +

∑
k

R
kβ
αβ

∫
d�Dkα (�) Gkβ (�y + �)

+
∑
j,k

R
jk
αβ

∫∫
d�1d�2Djα (�1)Dkβ (�2) Gjk (�y + �1 − �2) . (17)

We see that G
(f )
αβ (�y) receives three parts of decay contri-

butions. The first and second are single-decay contributions
from αk and kβ correlations, respectively. Here k denotes the
resonance that can decay into α and/or β. The third is the
double decay contribution from jk correlations where j and k
are resonances that can decay into α and β, respectively. Note
that neutral particles such as φ and ω do not contribute to final
state G

(f )
αβ (�y) because Gφh(�y) = Gωh(�y) = 0.

Considering that ALICE experiments at LHC have the
ability of correcting the weak decays of strange hyperons,
we present only the effects of the strong and electromagnetic
(S&EM) decays on the correlation function. In calculations,
only JP = 0− and 1− mesons and JP = (1/2)+ and (3/2)+
baryons in the flavor SU(3) ground state are included. The
decay function D(j,y0 → i,y) in Eqs. (15) and (17) is
evaluated using the SDQCM, in which the decay branch
ratios are taken from the Particle Data Group [51] and the
influence of transverse motion of the mother particle in decay
is also included based on our recent work of pT distribution
of identified hadrons at LHC [45]. Double hadron ratios R

α′β ′
αβ

are calculated according to previous results in Refs. [43,45].
Figure 2 shows Gαβ(�y) of initial hadrons produced at

hadronization (open circles) and those G
(f )
αβ (�y) including

S&EM decays (open squares), as the quark system that existed
previously has the vanishing off-diagonal correlation matrix
elements. We find that the effects of S&EM decays are varied
with hadron species. Calculations of resonance decay effects
in other two scenarios of quark system discussed in Sec. III
are found to be similar.

Correlations involving pion G
(f )
πh (�y) are mostly decay

influenced because final-state pions contain lots of resonance
decay contributions. For example, the number of decay con-
tribution channels (including single and double decay contri-
butions) in G

(f )
π+π− (�y) exceeds 170, and those in G

(f )
π+K+ (�y)

and others are also up to dozens. This leads to the complex
resonance decay effects. We see that G(f )

π+π− (�y), G(f )
π+K− (�y),

G
(f )
π+p̄(�y), and G

(f )
π−�̄0 (�y) are significantly suppressed by

S&EM decays while G
(f )
π+�̄

(�y) and G
(f )
π+�̄+ (�y) are almost

unchanged. In addition, the rapidity shift � = yπ − yR in
resonance decay R → π is large, usually on average � � 0.5.
This causes a nontrivial smearing effect to the correlation
function by a wide distribution of decay function in Eq. (17).

We find that final state G
(f )
K+K− (�y) and G

(f )
pK− (�y) are

decreased by about 20% in magnitude, compared with the

initial ones. This is mainly because the channel K∗0 →
K+ + π− contributes to the final K+, which introduces
contribution terms GK∗0h(�y) in G

(f )
K+h(�y). In addition, the

averaged rapidity shift � = yK − yK∗ � 0.3 is also relatively
large, causing the certain smearing effect on the final-state
correlation function. Due to similar but small-in-magnitude
reasons, G

(f )
K+�(�y) and G

(f )
K+�− (�y) are slightly decreased.

G
(f )
pp̄ (�y) and G

(f )
p�̄+ (�y) are also slightly changed due to

similar reasons in resonance decaying into proton process.
We see that G

(f )
p�̄

(�y), G
(f )
K+�0 (�y) as well as two-hyperon

correlations G
(f )
��̄

(�y), G
(f )
��̄0 (�y), G

(f )
��̄+ (�y), G

(f )
�0�̄0 (�y),

and G
(f )
�0�̄+(�y) are almost unchanged by S&EM decays. This

is mainly because of the quite narrow rapidity shift (� ∼ 0.1)
and better flavor inheritance in B∗ → B decays. These slightly
changed and almost unchanged correlation functions are good
probes in heavy-ion collisions at LHC energies.

V. SUMMARY AND DISCUSSION

In summary, the study of two-hadron production corre-
lations is one of the important means to understand the
charge correlation properties of hot quark system produced
in ultrarelativistic heavy-ion collisions. By introducing a new
correlation function Gαβ(�y), we presented a direct connec-
tion between identified two-hadron correlations and charge
correlations of the quark system that existed previously in
the framework of QCM of hadron production. The correlation
between hadron species α and β via the function Gαβ(�y)
is just expressed as the linear combination of several charge
correlations of quarks before hadronization. This conciseness
is very beneficial for the extraction of charge correlation of
quark system in experiments by hadronic observation. As
an instance, we discussed three possible charge correlation
scenarios of the quark system, i.e., the system dominated by
quasifree quarks and antiquarks, by correlated quark-antiquark
pairs with different flavors, and by two correlated (anti-)quarks
with different flavors, and we clarified their hadronic signals
by the correlations Gp�̄(�y), Gp�̄0 (�y), and Gp�̄+ (�y).
This new kind of the correlation function is an important
supplement to available experimental measurements mainly
by balance functions and is useful to gain more insights into
the charge correlation properties of the produced hot quark
matter in heavy-ion collisions at LHC.
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FIG. 2. (Color online) Gαβ (�y) of initial hadrons produced at hadronization (open circles) and those including strong and electromagnetic
decays (open squares), as the quark system existed previously has vanishing off-diagonal correlation-matrix elements.

One point needed to address at last is the hadronization
effects on the charge correlation properties of the system.
One may puzzle that Eqs. (5) and (7) seem to just only
translate quark charge correlations into hadrons. In fact,
hadronization implicitly plays its role in two-hadron cor-
relations which is manifested by calculating the absolute
correlations 〈nα〉〈nβ〉Gαβ (�y). Also, if we directly calculate
the correlations among B, C, and S, we can find the
explicitly nontrivial effects of the hadronization. For example,
the baryon-strangeness correlation (〈BS〉 − 〈B〉〈S〉)/〈S2〉 will
decrease obviously after hadronization. Here, we emphasize
that the direct and clear connection between quark charge
correlations and identified hadron correlations in Eqs. (5) and
(7) result from the adoption of the proper charge transmitters
(i.e., net quark numbers) as well as the proper correlation
function we proposed. In addition, in the QCM description of
QGP hadronization, the gluon in the system at hadronization
is usually replaced by a quark-antiquark pair and then these
quark-antiquark pairs together with those original quarks
and antiquarks in QGP combine into various hadrons. These
newly produced quarks and antiquarks by gluon splitting
contribute extra charge correlations in small-�y region on
the system via uū, dd̄ , ss̄ production association, which is
also a significant effect of the hadronization. In the above
formulas we do not distinguish these different origins of quarks
and antiquarks since we directly start from the system of

quarks and antiquarks. Separating gluon effects from Gαβ

measurements is not an easy task, which needs a careful
nonperturbative phenomenological analysis. However, even
though the quantitative calculation is difficult, some qualitative
properties are easily obtained. For example, the production of
quark antiquark pairs at hadronization will increase χuu and χss

of the system and therefore strengthen mostly the correlations
between particle pairs with opposite quantum numbers. This
conclusion is in agreement with the expectation of Ref. [13]
but is different from Ref. [27] in which the hadronization
might weaken the production association between proton and
antiproton. Finally, we argue that through the measurements
of Gαβ(�y) we can observe the correlation properties between
different flavors of quarks just before hadronization. This point
is similar to the case of hadronic elliptic flow studies in which,
as the constituent quark number scaling is observed, we say
that we observe the flow of quarks.
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APPENDIX: DERIVATION OF EQ. (5)

Regarding the n
(q)
α (y1) and n

(q)
α (y1)n(q)

β (y2) as functions of quark numbers at y1 and/or y2, we expand the [n(q)
α (y1) −

n
(q)
ᾱ (y1)][n(q)

β (y2) − n
(q)
β̄

(y2)] around the event-averaged values of quark numbers:

[
n(q)

α (y1) − n
(q)
ᾱ (y1)

][
n

(q)
β (y2) − n

(q)
β̄

(y2)
]

= [
n(q)

α (y1) − n
(q)
ᾱ (y1)

][
n

(q)
β (y2) − n

(q)
β̄

(y2)
]∣∣∣ 〈nq (y1)〉

〈nq (y2)〉

+
∑
f1

∂
[
n

(q)
α (y1) − n

(q)
ᾱ (y1)

][
n

(q)
β (y2) − n

(q)
β̄

(y2)
]

∂nf1 (y1)

∣∣∣∣∣ 〈nq (y1)〉
〈nq (y2)〉

δnf1 (y1)

+
∑
f2

∂
[
n

(q)
α (y1) − n

(q)
ᾱ (y1)

][
n

(q)
β (y2) − n

(q)
β̄

(y2)
]

∂nf2 (y2)

∣∣∣∣∣ 〈nq (y1)〉
〈nq (y2)〉

δnf2 (y2)

+1

2

∑
f1,f2

∂2
[
n

(q)
α (y1) − n

(q)
ᾱ (y1)

][
n

(q)
β (y2) − n

(q)
β̄

(y2)
]

∂nf1 (y1) ∂nf2 (y1)

∣∣∣∣∣ 〈nq (y1)〉
〈nq (y2)〉

δnf1 (y1) δnf2 (y1)

+1

2

∑
f1,f2

∂2
[
n

(q)
α (y1) − n

(q)
ᾱ (y1)

][
n

(q)
β (y2) − n

(q)
β̄

(y2)
]

∂nf1 (y2) ∂nf2 (y2)

∣∣∣∣∣ 〈nq (y1)〉
〈nq (y2)〉

δnf1 (y2) δnf2 (y2)

+
∑
f1,f2

∂2
[
n

(q)
α (y1) − n

(q)
ᾱ (y1)

][
n

(q)
β (y2) − n

(q)
β̄

(y2)
]

∂nf1 (y1) ∂nf2 (y2)

∣∣∣∣∣ 〈nq (y1)〉
〈nq (y2)〉

δnf1 (y1) δnf2 (y2)

+O(δ3), (A1)

where δnf1 (y1) = nf1 (y1) − 〈nf1 (y1)〉. Here, f1 and f2 run over all kinds of the flavors of quarks and antiquarks contained in
system. Note that subscript 〈nq(y1)〉 and 〈nq(y2)〉 denote the evaluations of these items at event averaged numbers of all quark
flavors at y1 and y2. In the case of zero baryon number density, the first five items on the right-hand side of equation are zero and
only the last item has the nontrivial contributions, up to second order in the fluctuations of quark numbers. After event average,
we have

〈[
n(q)

α (y1) − n
(q)
ᾱ (y1)

][
n

(q)
β (y2) − n

(q)
β̄

(y2)
]〉

=
∑
f1,f2

∂2
[
n

(q)
α (y1) − n

(q)
ᾱ (y1)

][
n

(q)
β (y2) − n

(q)
β̄

(y2)
]

∂nf1 (y1) ∂nf2 (y2)

∣∣∣∣∣ 〈nq (y1)〉
〈nq (y2)〉

〈δnf1 (y1) δnf2 (y2)〉 + O(〈δ3〉). (A2)

For 〈n(q)
α (y)〉, we have similarly

〈
n(q)

α (y)
〉 = n(q)

α (y)
∣∣
〈nq (y)〉 +

∑
f1,f2

∂2n
(q)
α (y)

∂nf1 (y) ∂nf2 (y)

∣∣∣∣∣
〈nq (y)〉

〈δnf1 (y) δnf2 (y)〉 + O(〈δ3〉). (A3)

Substituting them into Eq. (4), we have

Gαβ (y1,y2) =
∑
f1,f2

{
1

n
(q)
α (y1) n

(q)
β (y2)

∂2
[
n

(q)
α (y1) − n

(q)
ᾱ (y1)

][
n

(q)
β (y2) − n

(q)
β̄

(y2)
]

∂nf1 (y1) ∂nf2 (y2)

}∣∣∣∣∣ 〈nq (y1)〉
〈nq (y2)〉

× 〈δnf1 (y1) δnf2 (y2)〉 + O(〈δ3〉)

=
∑
f1,f2

Af1f2

〈nf1 (y1)〉〈nf2 (y2)〉 〈δnf1 (y1) δnf2 (y2)〉 + O(〈δ3〉). (A4)
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Since higher-order fluctuations are usually suppressed by the factor of 1/
√

nq , we neglect them and get, to second order in
fluctuations of quark numbers,

Gαβ (y1,y2) =
∑
f1,f2

Af1f2

〈nf1 (y1)〉〈nf2 (y2)〉 〈δnf1 (y1) δnf2 (y2)〉 =
∑
f1,f2

Af1f2

Cf1f2 (y1,y2)

〈nf1 (y1)〉〈nf2 (y2)〉 , (A5)

where Af1f2 = (nα,f1 − nᾱ,f1 )(nβ,f2 − nβ̄,f2
). nα,f1 is the number of quarks f1 contained in hadron α. f1 and f2 run over all

types of quark and antiquark flavors contained in system. Cf1f2 (y1,y2) = 〈δnf1 (y1)δnf2 (y2)〉 is the ordinary two-point correlation
function.
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[28] V. Greco, C. M. Ko, and P. Lévai, Phys. Rev. Lett. 90, 202302
(2003).

[29] R. J. Fries, B. Müller, C. Nonaka, and S. A. Bass, Phys. Rev.
Lett. 90, 202303 (2003).

[30] R. J. Fries, B. Müller, C. Nonaka, and S. A. Bass, Phys. Rev. C
68, 044902 (2003).

[31] V. Greco, C. M. Ko, and P. Levai, Phys. Rev. C 68, 034904
(2003).

[32] R. C. Hwa and C. B. Yang, Phys. Rev. C 70, 024905 (2004).
[33] V. Minissale, F. Scardina, and V. Greco, arXiv:1502.06213.
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