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The heavy quark collisional scattering on partons of the quark gluon plasma (QGP) is studied in a quantum
chromodynamics medium at finite temperature and chemical potential. We evaluate the effects of finite parton
masses and widths, finite temperature T , and quark chemical potential μq on the different elastic cross sections
for dynamical quasiparticles (on- and off-shell particles in the QGP medium as described by the dynamical
quasiparticle model “DQPM”) using the leading order Born diagrams. Our results show clearly the decrease
of the qQ and gQ total elastic cross sections when the temperature and the quark chemical potential increase.
These effects are amplified for finite μq at temperatures lower than the corresponding critical temperature Tc(μq ).
Using these cross sections we, furthermore, estimate the energy loss and longitudinal and transverse momentum
transfers of a heavy quark propagating in a finite temperature and chemical potential medium. Accordingly, we
have shown that the transport properties of heavy quarks are sensitive to the temperature and chemical potential
variations. Our results provide some basic ingredients for the study of charm physics in heavy-ion collisions at
Beam Energy Scan at RHIC and CBM experiment at FAIR.
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I. INTRODUCTION

The exploration of the phase diagram of strongly interacting
matter is a major field of modern high-energy physics. The
transition from hadronic to partonic degrees of freedom at
high temperatures or high baryon densities is one of the most
interesting challenges of relativistic heavy-ion physics. The
discovery of this phase transition is expected to elucidate
some of the fundamental aspects of quantum chromodynamics
(QCD), i.e., confinement and chiral symmetry breaking.
Moreover, the different phases of the QCD phase diagram
play an important role in the evolution of the early universe
and the structure of the core of neutron stars [1].

The transition from a hadronic to a partonic medium at
small net-baryon densities is known to be a crossover. On the
other hand, at high baryon densities one expects new phases
of strongly interacting matter [2]. In particular, a first-order
deconfinement phase transition with a critical endpoint or a
chiral symmetry restoration without deconfinement—leading
to a quarkyonic phase—may occur at larger baryon densities.
Recent results from a statistical analysis of particle ratios
measured in Pb+Pb and Au+Au collisions at SchwerIonen-
Synchrotron (SIS), Alternating Gradient Synchrotron (AGS),
Super Proton Synchrotron (SPS), and Relativistic Heavy-Ion
Collider (RHIC) energies point in this direction [3–7]. The
phase boundary between quark-gluon and hadronic matter and
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the location of the (possible) critical endpoint is suggested by
lattice QCD calculations [8,9] to occur for values of μB larger
than about 400 MeV; for μB ≈ 3μq smaller than 400 MeV one
expects a smooth crossover from the hadronic to the partonic
phase. In addition to this hypothetical first-order transition
a rich phase structure might occur at high baryon chemical
potential μB or quark chemical potential μq .

Previous studies have shown that the high-density regime
of QCD is accessible with heavy-ion collisions at moderate
collisions energies [10]. This is supported by the study of the
freeze-out points from hadron-gas models as a function of the
temperature and chemical potential [11] or hadronic transport
models like the hadron-string-dynamics (HSD) approach from
[12,13], where the highest baryon densities are predicted for
moderate collision energies.

Recent progress in the exciting field of QCD at high
baryon densities is driven by new experimental data from
the Beam Energy Scan (BES) program at RHIC (

√
sNN =

7–200 GeV) and NA61 at the SPS (
√

sNN = 6.4–17.4 GeV).
In future experiments of the Compressed Baryonic Matter
(CBM) collaboration at FAIR (

√
sNN = 2.7–8.3 GeV) and

the Multi-Purpose Detector (MPD) at NICA (
√

sNN = 4–
11 GeV) will provide additional information. The aim of
all these experiments is to explore the QCD phase diagram
at high net-baryon densities and moderate temperatures in
nucleus-nucleus collisions. This approach is complementary to
the studies of matter at high temperatures and low net-baryon
densities performed at RHIC and the Large Hadron Collider
(LHC) which are designed to study the properties of the
deconfined medium at the highest available energy densities
(and temperatures). Because lattice QCD (lQCD) does not
provide robust results in this regime one has to rely on effective
QCD models that match lQCD for μq = 0. Furthermore, one
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has to look at the characteristics of the medium systematically
in terms of collision energy and system size, by studying the
strangeness, charm, collective flow, and fluctuations possibly
on an event-by-event basis.

Charm physics is one of the promising signals that can be
studied at upper FAIR energies. Indeed, both hidden and open
charm are expected to contribute to the total charm production
also in this energy range. The total charm cross section
experimentally is not well known close to threshold and the
predictions for A+A rely on parametrizations of experimental
data and imply large uncertainties towards threshold. Note
that also perturbative QCD (pQCD) calculations show large
uncertainties [14]. Therefore, close to the kinematic produc-
tion thresholds, an unknown territory has to be systematically
explored [15,16]. Furthermore, experimental data close to
threshold for the elementary charm cross sections have to be
taken before more robust conclusions can be expected for p+A
and A+A collisions at FAIR/NICA energies. Note that there
are presently no p+N data below 20 GeV and no A+A data
below top SPS energies for charmonia.

The anomalous suppression of charmonium from screening
effects in the quark-gluon plasma (QGP) was predicted to be an
experimental signal of the QGP formation by Matsui and Satz
[17] because particles containing heavy quarks like charm are
produced predominantly in the early stage of the collision due
to high kinematical thresholds. Heavy-flavor physics at FAIR
thus aims to explore how charm is produced at beam energies
close to the kinematical thresholds and how charm propagates
in hot and cold nuclear matter as well as in the partonic
phase. In addition, the production mechanisms of D and J/ψ
mesons will be sensitive to the conditions inside the early
fireball.

The scenarios for charm production in A+A collisions
based on either hadronic [13,18] or partonic [statistical
hadronization model (SHM)] [19] models have given different
predictions. Especially the ratio of hidden to open charm
(J/ψ/D) from the hadronic HSD model [15,16] differs
substantially from the one in the partonic SHM model [19]
since the J/ψ/D ratio depends on the energy in the c.m.s.
(
√

s) in the first model and is
√

s independent in the second
one. In addition, the J/ψ/D ratio is about one order of
magnitude higher in the hadronic than in partonic production
scenarios which is due to the much lower threshold for J/ψ
production in N+N collisions than for D + D̄ pairs. Therefore,
the charm production is sensitive to the phases of matter and
the ratio of hidden to open charm appears as a very promising
probe for the production of charm and its propagation in the
medium. In addition the collective flow of charm is expected
to provide valuable information on the interaction strength of
charm with its medium being of hadronic or partonic nature.
Furthermore, it is generally questioned that charm degrees of
freedom might achieve a chemical equilibrium in the fireball
such that microscopic transport approaches are mandatory to
shed some light on the nonlinear charm dynamics.

With the future aim to implement the charm dynamics
nonperturbatively into the Parton-Hadron-String Dynamics
(PHSD) approach we have to specify the interaction cross
sections of the charm degrees of freedom (Q) with the
light partonic degrees of freedom incorporated in PHSD, i.e.,

dressed quarks, antiquarks (q,q̄), and gluons (g). Accordingly,
in this study we will compute the off-shell cross sections for the
reactions qQ → qQ and gQ → gQ taking into account the
quasiparticle nature of the quarks and gluons at finite T and μq

in PHSD which are adopted from the dynamical quasiparticle
model (DQPM) [20–22]. These cross sections are then used to
evaluate the energy and momentum losses of a heavy quark as
a function of heavy quark momentum, temperature, and quark
chemical potential. Our results finally will provide the basic
ingredients for the microscopic study of charm physics for the
Beam Energy Scan (BES) program at RHIC and the future
CBM experiment at FAIR. For a first step in this direction
we refer the reader to Ref. [23] where some of the quantities
have already been evaluated at μq = 0 at finite temperatures
relevant at RHIC or LHC energies.

The paper is organized as follows: We first present in Sec. II
the basic ingredients needed for the heavy quark scattering in a
finite temperature T and quark chemical potential μq medium.
Therefore, we fix the coupling constant, the parton masses and
spectral functions, and the gluon and fermion propagators as
given by the DQPM at finite T and μq . The analysis of the
on- and off-shell kinematics and the calculations of the on-
and off-shell elastic cross sections of the scattering of a heavy
quark (Q) and light quark (q) and gluon (g) in a partonic
medium at finite T and μq are specified in Sec. III. In Sec. IV,
we calculate the interaction rate of the heavy quark in such a
medium. Furthermore, we will perform a quantitative analysis
of the heavy quark energy loss (Sec. V) and momentum loss
(Sec. VI). Throughout Secs. IV–VI we will point out the effects
of finite masses and width, finite temperature, and chemical
potential on the heavy quark transport properties. In Sec. VII
we summarize the main results and point out their future
applications.

II. DYNAMICAL QUASIPARTICLES AT FINITE
TEMPERATURE AND CHEMICAL POTENTIAL

The scattering of heavy quarks in vacuum and in a QGP
medium in lowest-order QCD perturbation theory (pQCD)
was extensively studied in the literature [24,25]. Recent
developments reconsidered the concept of perturbatively
interacting massless quarks and gluons as constituents of
the QGP, which scatter according to the leading (Born)
diagrams. The treatment of nonperturbative effects in heavy
quark scattering was first carried out by Braaten et al. [26–28]
in thermal perturbation theory, denoted as the hard thermal
loop (HTL) approach and later by Peshier et al. [29–31]
and Gossiaux et al. [32–38]. In Ref. [39] we considered
all the effects of the nonperturbative nature of the strongly
interacting quark-gluon plasma (sQGP) constituents, i.e.,
the large coupling, the multiple scattering, etc., where we
refrain from a fixed-order thermal loop calculation relying
on perturbative self-energies (calculated in the limit of infinite
temperature) to fix the in-medium masses of the quarks and
gluons and pursue instead a more phenomenological approach.
The multiple strong interactions of quarks and gluons in the
sQGP are encoded in their effective propagators with broad
spectral functions. The effective propagators, which can be
interpreted as resummed propagators in a hot and dense QCD
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environment, have been extracted from lattice data in the scope
of the DQPM [22,40,41].

In this work we extend our study of the scattering processes
qQ → qQ and gQ → gQ in Refs. [23,39] for a partonic
medium at finite temperature T and in particular at finite
chemical potential μq . The gluons (g) and light (q) and heavy
(Q) quark masses as well as the fundamental ingredients
(infrared regulator “IR” and running coupling “αs”) involved
in the scattering amplitudes are determined in the framework
of the DQPM. The dependencies of these quantities on T and
μq will be discussed below.

A. Dynamical quasiparticles at finite temperature
and quark chemical potential μq

The DQPM describes QCD properties in terms of single-
particle Green’s functions [in the sense of a two-particle
irreducible (2PI) approach] and leads to the notion of the
constituents of the sQGP being strongly interacting massive
effective quasiparticles with broad spectral functions (because
of the high interaction rates). The strategy for the determination
of parton masses and widths within the DQPM approach is to
fit the analytical expression of the dynamical quasiparticle
entropy density sDQP to the lQCD entropy density “slQCD”
which allows one to fix the few parameters present in sDQP by
lattice data in equilibrium [20–22,41]. The DQPM describes
the general features of QCD at finite temperature (and
chemical potential) above Tc(μq). Because it is fitted to lQCD
thermodynamics at μq = 0, it matches all the QCD symmetries
implicitly. Furthermore, it also “roughly” reproduces QCD
correlation functions such as transport coefficients (shear and
bulk viscosity, electric conductivity, etc.). It is also worth
mentioning that no Lagrangian is associated with the DQPM
which would allow one to perform calculations for condensates
and hadronic amplitudes, etc. Thus, one also should not expect
any explicit description of nuclear matter symmetries and
properties within the DQPM. Recent NNLO HTL calculations
[42] based on the Lagrangian approach can also give a
good description of lQCD thermodynamics at finite T and
μ assuming the central values of the renormalization scales,
with noticeable uncertainties related to the variation of these
scales around the central values.

The variation of parton masses as a function of the medium
properties is described by the spectral functions which are
(except for a factor) identical to the imaginary part of the
retarded propagator. These are no longer δ functions in the
invariant mass squared (as in the case for bare masses) [40]. For
the current analysis, we use the approximation of momentum-
independent real and imaginary parts of the retarded self-
energy, which are—for a given temperature T —proportional
to the parton mass and width, respectively [22]. A partonic
propagator � is expressed in the Lehmann representation
in terms of the spectral function �(p) = ∫

dω
2π

A(ω, p)
p0−ω

. An
often used ansatz to model a nonzero width is obtained by
replacing the free spectral function A0(p) = 2π [δ(ω − p)2 −
δ(ω + p)2] by a Lorentzian form [22,39] which also emerges
from Kadanoff-Baym theory in first-order gradient expansion.

The extension of the DQPM to finite quark chemical
potential μq is more delicate because a guidance by lQCD is

presently very limited. In the simple quasiparticle model one
may use the stationarity of the thermodynamic potential with
respect to self-energies and (by employing Maxwell relations)
derive a partial differential equation for the coupling g2(T ,μq)
which may be solved with a suitable boundary condition
for g2(T ,μq = 0) [43–46]. Once g2(T ,μq) is known one can
evaluate the changes in the quasiparticle masses with respect
to T and μq , i.e., ∂M2

x /∂μq and ∂M2
x /∂T (for x = g,q,q̄) and

calculate the change in the “bag pressure” (cf. Refs. [43–47]
for details). However, such a strategy cannot be taken over
directly in the DQPM because additionally the quasiparticle
widths γx(T ,μq) have to be known in the (T ,μq) plane in this
case.

In hard-thermal-loop (HTL) approaches [48,49] the damp-
ing of a light quark (or gluon) depends weakly on the
quark chemical potential explicitly [50]. This, however, has to
be considered with care because HTL approaches primarily
address Landau damping and assume small couplings g2.
Accordingly, these concepts should be applied at sufficiently
high temperature, only. Present lQCD calculations suggest that
the ratio of pressure to energy density, P/ε, is approximately
independent of μq as a function of the energy density ε
[51]. The functional dependence of the quasiparticle width
γ on T and μq thus has to be modeled in line with “lattice
phenomenology.” We proceed in this paper to some scaling
hypothesis to extend the definition of DQPM masses and
widths to a finite chemical potential [22]. Assuming three light
flavors (q = u,d,s) and all chemical potentials to be equal
(μu = μd = μs = μq) the gluon and light quark masses are
taken for T and μq as

M2
g (T ,μq) = g2(T/Tc)

6

((
Nc + 1

2
Nf

)
T 2 + 3

2

∑
q

μ2
q

π2

)
,

M2
q (T ,μq) = N2

c − 1

8Nc

g2(T/Tc)

(
T 2 + μ2

q

π2

)
. (2.1)

This functional form is inspired by HTL masses but slightly
differs from those to incorporate an explicit scaling with the
effective temperature for Nf = Nc = 3,

T ∗2 = T 2 + μ2
q

π2
, (2.2)

which implies no additional parameter in the DQPM. Thus
M2

g (T ,μq) and M2
q (T ,μq) are given by

M2
g (T �,μq) = g2(T �/Tc(μq))

6

(
Nc + 1

2
Nf

)
T �2

,

M2
q (T �,μq) = N2

c − 1

8Nc

g2(T �/Tc(μq)) T �2
, (2.3)

with the coupling constant g2(T �/Tc(μq)) in (2.3) is consid-
ered here as depending on the medium temperature and for
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T � > Ts is given by

g2(T �,μq) = 48π2

(11Nc − 2Nf ) ln
(
λ2( T �

Tc(μq ) − Ts

Tc(μq ) )
2
) .

(2.4)

The form of the running coupling specified in (2.4) is given
for T > Tc(μq). Nevertheless, it seems that this form allows
one to describe QCD thermodynamics down to 0.9 Tc(μq)
as studied in [52]. It is worth mentioning that the scattering
and quenching of heavy quarks on light quarks and gluons is
carried out in our study only above Tc(μq).

The DQPM masses (2.3) are proportional to ∝g(T �,μq)T �

with a certain pre-factor. The coupling g(T ,μq = 0) is deter-
mined by fitting the DQPM entropy density to the one given
by lQCD data and implicitly contains all higher orders in
the corresponding HTL masses. This is especially seen in the
effective coupling which is strongly enhanced in the infrared.
This approach thus does not rely on a perturbative scheme at
fixed order but should be interpreted as an approximation to a
fully resummed theory (like lattice QCD).

Because the coupling (squared) in the DQPM is a function
of T/Tc a straightforward extension of the DQPM to finite μq

is to consider the coupling as a function of T ∗/Tc(μq) with a
μq-dependent critical temperature,

Tc(μq)

Tc(μq = 0)
=

√
1 − α μ2

q ≈ 1 − α/2 μ2
q + · · · , (2.5)

with α ≈ 8.79 GeV−2. The expression of Tc(μq) in (2.5) is
obtained by requiring a constant energy density ε for the
system at T = Tc(μq) where ε at Tc(μq = 0) ≈ 0.158 GeV is
fixed by lattice QCD calculation at μq = 0. The coefficient
in front of the μ2

q-dependent part at first sight appears
arbitrary but can be compared to recent lQCD calculations
(for imaginary quark chemical potentials) at finite (but small)
μB which gives [53]

Tc(μB)

Tc

= 1 − κ

(
μB

Tc

)2

+ · · · , (2.6)

with κ = 0.013(2). Rewriting (2.5) in the form (2.6) and using
μB ≈ 3μq we get κDQPM ≈ 0.0122 which compares very well
with the lQCD result. Consequently one has to expect an
approximate scaling of the DQPM results if the partonic width
is assumed to have the form,

γg(T ,μq) = 1

3
Nc

g2(T ∗/Tc(μq))

8π
T ln

(
2c

g2(T ∗/Tc(μq))
+1

)
,

γq(T ,μq) = 1

3

N2
c − 1

2Nc

g2(T ∗/Tc(μq))

8π
T

× ln

(
2c

g2(T ∗/Tc(μq))
+ 1

)
. (2.7)

This choice leads to an approximate independence of the
potential energies per degree of freedom as a function of
μq . Nevertheless, the conjecture (2.7) should be explicitly
controlled by future lQCD studies for Nf = 3 at finite quark
chemical potential. Unfortunately, this task is presently out of

reach and one has to live with the uncertainty in (2.7) which is
assumed in the following investigations.

We recall that within the scaling hypothesis (2.2)–(2.7) the
results for the masses and widths at finite T stay about the same
as a function of T ∗/Tc(μq) when dividing by the temperature
T [22].

For a finite quark chemical potential μq the energy density
ε in the DQPM is seen to scale well with (T/Tc(μq = 0))4

as a function of temperature for T ∗/Tc(μq) > 3, however,
increases slightly with μq close to the phase boundary
where the scaling is violated on the level of 20%. This
violation in the scaling is essentially from an increase of
the pressure P [22]. Note that a quark chemical potential
of 0.21 GeV corresponds to a baryon chemical potential
of μB ≈ 3μq = 0.63 GeV which is already substantial and
the validity of (2.5) becomes questionable. Because the
pressure P is obtained from an integration of the entropy
density s over temperature T the increase in P with μq can
directly be traced back to a corresponding increase in entropy
density.

Next we discuss the influence of a finite chemical potential
μq on the running coupling αs , the DQPM masses, widths, and
parton spectral functions. The running coupling αs = g2/(4π )
is presented in Fig. 1(a) as a function of the temperature T
for μq = 0 and in Fig. 1(b) for finite T and μq . One sees that
αs is larger than 1 near Tc(μq) and nonperturbative effects are
most pronounced at these temperatures, with Tc(μq = 0) =
0.158 GeV and Tc(μq = 0.2 GeV) ≈ 0.127 GeV. Note that
close to Tc(μq = 0) the full coupling calculated on the lattice
increases with decreasing temperature much faster than in the
pQCD regime (at high T ). A finite μq leads to a smaller
value of the coupling constant as compared to the μq = 0,
except close to the corresponding critical temperature Tc(μq).
Indeed, the value of αs(Tc(μq = 0)) = 2.84 while αs(Tc(μq =
0.2 GeV)) = 4.7. For temperatures larger than Tc(μq = 0) one
finds systematically αs(T ,μq = 0) > αs(T ,μq), as shown in
Fig. 1(b).

The DQPM masses and widths for the gluon (g) and
light quarks (q), given by (2.1) and (2.7), are presented in
Figs. 2(a) and 2(b), respectively. Because the width is found to
be much smaller as the pole mass, the excitations can well be
considered as dynamical (off-shell) quasiparticles. For larger
T , after a shallow minimum at T ≈ 1.2Tc(μq), the width γ
increases slowly with T and even for large T is to a good
accuracy proportional to the temperature (and also to the
mass).

In Figs. 2(a) and 2(b), the masses and widths are plotted
as a function of the temperature. It is seen that the gluon
and light quark masses and widths decrease at fixed T with
increasing quark chemical potential μq . The finite μq has
a larger effect on the masses as compared to the widths.
For completeness we note Tc(μq = 0) = 0.158 GeV, Tc(μq =
0.2GeV) = 0.127 GeV, and Tc(μq = 0.3GeV) = 0.072 GeV.

Using the pole masses and widths (2.1) and (2.7) and the
DQPM running coupling (cf. Fig. 1), the Breit-Wigner spectral
functions for the different QGP species are completely deter-
mined, i.e., the imaginary parts of the retarded propagators.
Accordingly, also the full retarded propagators for the effective
partonic degrees of freedom are known in first-order gradient

054902-4



HEAVY QUARK SCATTERING AND QUENCHING IN A QCD . . . PHYSICAL REVIEW C 91, 054902 (2015)

FIG. 1. (Color online) (left) The DQPM running coupling αs(T ,μq ) = g2(T �/Tc(μq ))/(4π ) as a function of T in the lQCD for Nf = 0
(red spheres) [54] and in the DQPM at zero chemical potential for Nf = 0 (black line) and Nf = 3 (dashed brown line). The result for the
DQPM at finite quark chemical potential (μq = 0.2 GeV) for Nf = 3 is given by the orange thin line, (right) 3D plot of αs(T ,μq ).

expansion and we can proceed with the calculation of some
amplitudes keeping in mind the uncertainties at high μq .

III. q Q AND g Q ELASTIC SCATTERING
AT FINITE T AND μq

The matrix elements for the qQ → qQ and gQ → gQ
channels have been calculated for the case of massless partons
in the vacuum in Refs. [24,25]. In this section we study the
qQ and gQ elastic scattering in the QGP medium at finite
temperature T and chemical potential μq considering the case
of on- and off-shell gluons and light and heavy quarks. The
partons are dressed by effective masses in the on-shell case

and are dressed by the DQPM spectral functions with a finite
width in the off-shell case. We refer to the on-shell study as the
DpQCD approach (Dressed pQCD) and to the off-shell case
as the IEHTL approach (Infrared Enhanced Hard Thermal
Loop). For the DpQCD approach the qQ and gQ elastic cross
section at finite T and μq is determined by using (i) the running
coupling αs(T ,μq) (Fig. 1), and (ii) the DQPM pole masses
for the incoming and outgoing quarks and gluons. The DQPM
gluon pole mass serves also as an infrared regulator in the
gluon propagator.

Considering in- and out- dynamical quasiparticles (DQP),
the corresponding quasielastic IEHTL cross section σ IEHTL for
the process (1)m

(1) + (2)m
(2) → (3)m

(3) + (4)m
(4)

is deduced by
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FIG. 2. (Color online) The DQPM pole masses and widths for the gluons (Mg , γg) (left) and light quarks (Mq , γq ) (right) given by (2.1)
and (2.7) as a function of temperature for different values of the quark chemical potential μq .
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FIG. 3. (Color online) Feynman diagrams for the qQ → qQ and gQ → gQ scattering process. Latin (Greek) subscripts denote color
(spin) indices. ki , respectively, pi (kf , respectively, pf ) denote the initial (final) 4-momentum of the light quark or the gluon, respectively, the
heavy quark. The invariant energy squared is given by s = (pi + ki)2, t = (pi − pf )2, u = (pi − kf )2.

the convolution of the modified pQCD cross section σ , where
complex propagators are considered in the transition matrix
elements, with the spectral functions, i.e.,

σ IEHTL(s) =
∫

dm(1) dm(2) dm(3) dm(4)

× σ (s,m(1),m(2),m(3),m(4))ρBW
(1) (m(1)) ρBW

(2) (m(2))

× ρBW
(3) (m(3)) ρBW

(4) (m(4)), (3.1)

where ρBW
(i) (m(i)) is the Breit-Wigner spectral function of the

particle i, normalized as
∫ ∞

0 dm(i)ρBW
(i) (m(i)) = 1. The on-

and off-shell cross sections for qQ, gQ scattering in the
sQGP at finite T and μq are obtained using the DQPM
parametrizations for the quark (gluon) self-energies, spectral
functions, and interaction strength at finite T and μq . Here, in
principle, a two-particle correlator should appear, but because
we work in a 2PI motivated scheme the partons in the sQGP
can be characterized by (dressed) single-particle propagators
(cf. Ref. [23]).

In the context of the hot and dense QGP, the elementary
Feynman diagrams for the qQ and gQ elastic scattering at
order O(αs) are illustrated in Fig. 3.

A. On- and off-shell q Q elastic scattering

The process qQ → qQ is calculated here to lowest order
in the perturbation expansion using the extended Feynman
rules for massless quarks in Politzer’s review [55] for the case
of finite masses and widths. The color sums are evaluated
using the techniques discussed in Ref. [55]; the spin sums
will be discussed below. Contrary to the case of massless
gluons where the “transverse gauge” is used, the “Lorentz
covariance” is used for the case of massive gluons here
because a finite mass in the gluon propagator allows one to fix
the 0th components of the gluon fields A0

a (a = 1, . . . ,8) by the
spatial degrees of freedom Ak

a(k = 1,2,3). Furthermore, the
divergence encountered in the t channel (Ref. [24,25,56])—
when calculating the total cross sections σqQ and σgQ—is
cured self-consistently in the DpQCD and IEHTL models
because the infrared regulator is given by the finite DQPM
gluon mass (and width) in the DpQCD (IEHTL) model. For
on-shell qQ elastic scattering, the t-channel invariant squared
amplitude—averaged over the initial spin and color degrees of
freedom and summed over the final state spin and color—Mt

is given by

∑
|Mt |2 = 4g4

9
(
t − m2

g

)2

[(
s − M2

Q − m2
q

)2

+ (
u − M2

Q − m2
q

)2 + 2
(
M2

Q + m2
q

)
t
]
, (3.2)

where mq (MQ) is the light quark (heavy quark) mass and mg

is the DQPM exchanged gluon mass.
In the off-shell picture we take into account not only the

finite masses of the partons, but also their spectral functions,
i.e., their finite widths. Because the light quark and heavy quark
masses change before and after the scattering (“quasielastic”
process) we introduce the mass mi

q for the initial q and m
f
q for

the final q, and allow for different masses of the heavy quark,
Mi

Q for the initial Q and M
f
Q for the final Q. The squared

amplitude—averaged over the initial spin and color degrees of
freedom and summed over the final state spin and color—gives

∑
|M|2 = 2g4

9
[(

t − m2
g

)2 + 4γ 2
g q2

0

]
×

[
4

(
p

μ
f pν

i + p
μ
i pν

f + gμν t

2

)]

×
[

4

(
kf,μki,ν + ki,μkf,ν + gμν

t

2

)]
, (3.3)

where we have incorporated the DQPM propagators (i.e., t∗± =
t − m2

g ± 2iγgq0, with mg , γg is, respectively, the effective
gluon mass and total width at temperature T and quark
chemical potential μq and q0 = p0

f − p0
i = k0

f − k0
i is the

gluon energy in the t channel). Thus the divergence in the
gluon propagator in the t channel is regularized.

The relative contribution of the off-shell partons to the
pQCD cross section is expected to change because of different
kinematical thresholds and to the changes in the matrix
element, corresponding to the diagram in Fig. 3. The off-shell
kinematical limits for the momentum transfer squared t and
the expressions of the Mandelstam variables in the case of
off-shell heavy quark scattering are given in Ref. [39].

B. On- and off-shell g Q elastic scattering

The invariant amplitudes for the three graphs (shown in
Fig. 3) for the case of massive heavy quarks and massless
gluons is given according to Combridge [25] and revisited in
[39]. In Ref. [39] we have already studied the scattering of
massive on- and off-shell heavy quarks on massive on- and
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FIG. 4. (Color online) Differential (a) and total (b) elastic cross section for uc → uc elastic scattering for off-shell (black lines) and on-shell
partons (orange lines) at three different values of the quark chemical potential μq (see legend) at T = 0.2 GeV. We consider the DQPM pole
masses for the on-shell partons and the DQPM spectral functions for the off-shell degrees of freedom.

off-shell gluon in a finite temperature medium at μq = 0.
In this paper we extend this study to a medium at finite
temperature and chemical potential. Therefore, the lowest-
order amplitude for the process gQ → gQ, obtained from
the Feynman rules of the gauge theory by the sum of the
amplitudes of the three graphs (cf. Appendix A.4 of [39]),
where to obtain the correct result for the squared matrix
element,

〈|M|2〉 = 1

4

∑
spins

TαβT �
α′β ′ε

α
i ε�α′

i ε
β
f ε

�β ′
f , (3.4)

we have to use appropriate projection operators for the
transverse polarization states,

∑
pol,i

εi,αεi,α′ = gαα′ − ki,α ki,α′(
mi

g

)2 ,

∑
pol,f

εf,βεf,β ′ = gββ ′ − kf,β kf,β ′(
m

f
g

)2 . (3.5)

We recall that for vector fields with nonzero Lagrangian
mass there is no gauge freedom anymore. The massive vector
field Aμ only has to fulfill the condition ∂μAμ = 0. Therefore,
the sum over the initial and final gluon polarizations is fixed
by the expressions in (3.5).

For the case of finite masses and widths of the scattering
quarks and gluons, the gQ elastic scattering amplitude was
given in Ref. [39], where we have to take into account the
spectral functions for the heavy quark and gluon masses at
finite temperature and chemical potential, the coupling (cf.
Fig. 1) at finite T and μq and the quark and gluon propagators
for the case of massive vector gluons with finite lifetime
G

μν
F (q,mg) and for the case of massive fermions with finite

lifetime SF (p,mq):

G
t,μν
F (q) = −i

gμν − qμqν/m2
g

t − m2
g + i2γg

(
pi

0 − p
f
0

) ,

Su
F (p) = /p + MQ

u − M2
Q + i2γQ

(
pi

0 − k
f
0

) ,

Ss
F (p) = /p + MQ

s − M2
Q + i2γQ

(
pi

0 + p
f
0

) , (3.6)

where mg , γg (MQ, γQ) are the mass and width of the
gluon or the heavy quark at finite temperature and chemical
potential (cf. Sec. II). We note that the heat bath breaks
the Lorentz covariance. Accordingly the energies pi

0 and p
f
0

denote quantities in the rest frame of the heat bath.

C. Results for elastic scatterings

We consider first the scattering of a (high momentum) heavy
quark with a light quark or a gluon in a QGP at temperature T =
0.2 GeV with invariant energy

√
s = 4 GeV for different quark

chemical potential μq = 0,0.2,0.3 GeV. Figure 4(a) presents
the off-shell differential cross section dσ/d cos θ (black lines)
in comparison to the on-shell cross section (orange lines) of the
uc elastic scattering. The importance of finite width corrections
in the uc scattering processes is illustrated by comparing the
two differential cross sections. For the energy of

√
s = 4 GeV

one observes a deviation of the off-shell results compared to
the on-shell ones only for large scattering angles. However,
according to the small differences between the differential on-
and off-shell cross sections one can conclude that the total
on-shell cross sections do not change on a relevant scale when
introducing off-shell masses. This is particularly important
because the width of the heavy quark was taken as an upper
limit (cf. Sec. II). Figure 4(a) shows also the influence of a finite
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FIG. 5. (Color online) Elastic cross section of uc → uc (a) and gc → gc (b) scattering as a function of the temperature T and the invariant
energy above threshold

√
s − √

s0, where
√

s0 is the threshold energy, for on-shell partons as described by the DpQCD approach at μq = 0.

chemical potential on the heavy quark scattering. The increase
of μq leads to a decrease of dσ/d cos θ and consequently to a
decrease of the total cross section as illustrated in Fig. 4(b).
Despite the lower value of the IR regulator at higher values of
μq (decrease of the gluon mass at finite μq) the smaller values
of the running coupling at finite μq explain the decrease of
dσ/d cos θ at finite and large values of μq .

The total elastic cross section of a c quark, which traverses
a plasma at temperatures T = 0.2 GeV, as calculated in
the DpQCD and IEHTL approaches, is shown in Fig. 4(b)
as a function of

√
s for different values of μq . Apart for

energies close to the threshold the cross sections show a
somewhat smooth dependence on the invariant energy

√
s,

however, differ substantially in magnitude with temperature
and chemical potential. Figure 4(b) demonstrates also that,
independently on μq , the off-shell mass distributions only have
a sizable impact at the threshold given by the pole masses
for uc scattering. This is because of the moderate parton
widths considered in the DQPM model. At energies below the
on-shell threshold the off-shell cross section increases with

√
s

because more and more masses can contribute. Whereas the
on-shell cross section diverges at the threshold the off-shell
cross section shows a maximum at the on-shell threshold and
decreases then due to the decrease of the on-shell cross section.

The conclusions drawn before for the study of uc elastic
scattering are valid also for gc scattering, however, with cross
sections for gQ elastic scattering that are larger than the cross
sections for uc scattering by roughly a factor of 9/4 which is
a ratio of the different color Casimir operators (squared). This
is also related to the fact that the scattering of heavy quarks
with gluons proceeds via t , s, and u channels, whereas one has
only the t channel for uc elastic scattering.

Figures 5(a) and 5(b) show explicitly the temperature and√
s dependencies of the uc and gc elastic cross sections at

μq = 0, as described in the DpQCD approach. We deduce that
an increasing medium temperature T leads to an increase of the
thermal gluon mass (infrared regulator) and hence to a decrease
of the DpQCD uc and gc elastic cross sections. The effective
gluon mass is roughly proportional to T for temperatures above
0.2 GeV. The large enhancement of the total cross section for

temperatures close to Tc(μq) can be traced back to the infrared
enhanced coupling in the DpQCD/IEHTL models.

To quantify the effect of a finite μq on the heavy quark
scattering, we show in Figs. 6(a) and 6(b) the uc and gc thermal
transition rate ω [defined by Eq. (3.8) in Ref. [23]] as a function
of T and μq . We provide the results only for DpQCD because
there is just a small difference between the on-shell DpQCD
and the off-shell IEHTL approaches (cf. Fig. 4).

There are two different profiles in the (T ,μq) dependencies
of the thermal transition rate ω. For temperatures larger than
Tc(μq = 0) = 0.158 GeV, a small effect of a finite μq , leading
to a decrease of ω, is noticed. For temperatures smaller than
Tc(μq = 0), an increase of ω appears when μq increases.
The last effect is due to the increase of the coupling αs at
these temperatures. More precisely, one has αs(T < Tc(μq =
0),μq) > αs(T = Tc(μq = 0),μq). In addition to the transition
amplitudes, one should also consider the effect of the statistical
weights f FD

uc (Fermi-Dirac distribution function) at finite
(T ,μq) in the evaluation of ω; f FD

uc increases for large values
of μq leading to an extra contribution to the increase of the
thermal transition rate ω for T < Tc(μq = 0), but is not enough
to counterbalance the decrease of the total cross section for
T > Tc(μq = 0).

The thermal transition rate can be parametrized by a
power law in T for each value of μq , i.e., ∼T −β for T >
Tc(μq = 0). In fact, one can find that βTc(μq=0)<T <1.2Tc(μq ) ∼
4,βT >1.2Tc(μq ) ∼ 2. These different power laws in T will have
a sizable effect on the transport coefficients to be evaluated
in the following sections. On the other hand, having almost
the same power laws at finite μq as compared to μq = 0 [for
temperatures larger than Tc(μq = 0)] leads to some scaling
effects in the transport coefficients at these temperatures.

Additionally, it is worth evaluating the uc and gc elastic
scattering cross section as a function of the energy density ε
available in the heavy-ion collisions because out-off equilib-
rium a temperature is ill defined while ε can be well calculated
in the local rest frame (e.g., in PHSD). Here the energy density
ε for a given temperature T and quark chemical potential μq is
obtained by using the inverted DQPM equation of state which
gives the temperature as a function of the energy density ε
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FIG. 6. (Color online) Thermal transition rate ω of uc → uc (a) and gc → gc (b) as a function of the temperature T and quark chemical
potential μq for on-shell partons as described by the DpQCD approach.

for a given quark chemical potential. The temperature as a
function of ε for μq = 0,0.1,0.2 GeV is shown in Fig. 7(a).
Note that the DQPM model describes the QCD energy density
at temperatures even as low as T ∼ Tc(μq).

Transport theoretical simulations have shown that the local
energy densities achieved in the course of heavy-ion collisions
at FAIR energies reach at most 3 GeV fm−3, at SPS and RHIC
energies up to 30 GeV fm−3, and up to 300 GeV fm−3 at
LHC. Therefore one observes that the uc elastic cross section,
displayed in Fig. 7(b) at the energy densities of interest is
∈ [0.08–8] mb from LHC to FAIR energies, following the
DpQCD/IEHTL approaches, with typical values of 5 mb at
the phase transition line.

Finally, we note that we did not consider yet the radiative
energy loss in our study because we expect that, from the
large gluon mass in the DQPM, the radiative processes are
subdominant as compared to the collisional ones, especially for
low heavy quark momenta (pT ) which can only be generated
in heavy-ion collisions at FAIR/NICA energies. We mention
that in a more recent transport study—incorporating the cross
sections calculated here—by Song et al. [57] it was shown
that up to transverse momenta of about 6 GeV/c at the
top RHIC energy the charm RAA (pT ) is compatible with
experimental observation including only the collisional energy
loss. Accordingly, the radiative energy loss of charm quarks
might be neglected especially at much lower bombarding
energies. On the other hand we expect the radiative energy
loss to dominate at very high pT as accessible at the LHC,
however, we do not address such systems at μq = 0 here.

IV. HEAVY QUARK INTERACTION RATES
IN A MEDIUM AT FINITE T AND μq

Using the elastic cross section for q(q̄)Q and gQ collisions,
for on- and off-shell partons—as calculated in Sec. III—
we evaluate the interaction rate of a heavy quark with
momentum p and energy E propagating through a QGP
in thermal and chemical equilibrium at a given temperature
T and quark chemical potential μq . The quarks/antiquarks

of the plasma are described by a Fermi-Dirac distribution
fq,q̄(q) = 1

e(Eq ∓μq )/T +1
whereas the gluons follow a Bose-

Einstein distribution fg(q) = 1
eEg/T −1

.
For on-shell particles (DpQCD model) and in the reference

system in which the heavy quark has the velocity β = p/E

the (on-shell) interaction rate Ron( p) = dN2→2
coll
dt

for 2 → 2
collisions is given by [23]

Ron( p,T ,μq ) =
∑
q,q̄,g

MQ

16(2π )4E

∫
q3mon

0 (s)fr (q)

s Eq

dq,

(4.1)

where
∑

q,q̄,g denotes the sum over the light quarks or
antiquarks and gluons of the medium. In Eq. (4.1) fr (q) is
the invariant distribution of the plasma constituents in the rest
frame of the heavy quark, given for the quark/antiquark by∫

d� fr (q) = 2π

∫
dcosθr

1

e(u0Eq−u q cos θr∓μq )/T + 1
, (4.2)

with u ≡ (u0,u) = 1
MQ

(E,− p) being the fluid 4-velocity
measured in the heavy quark rest frame, while θr is the angle
between q and u. mon

0 (s) in (4.1) is related to the transition
amplitude |M2,2|2 of the collision q(q̄,g)Q → q(q̄,g)Q by

mon
0 (s) = 1

2p2
cm(s)

∫ 0

−4p2
cm

1

gQgp

×
∑
i,j

∑
k,l

|M2,2(s,t ; i,j |k,l)|2 dt, (4.3)

with pcm = (q MQ)/
√

s denoting the momentum of the scat-
tering partners in the c.m. frame and gQ (gp) the degeneracy
factor of the heavy quark (parton).

For off-shell partons (IEHTL model) the elastic interaction
rate is obtained by replacing∫

d3p

(2π )3

1

2E
→

∫
d4p

(2π )4
ρ(p)�(p0), (4.4)
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FIG. 7. (Color online) (a) Temperature T as a function of the energy density ε from the DQPM for different values of the quark chemical
potential μq . (b) Thermal transition rate for uc → uc scattering for off-shell (IEHTL) and on-shell (DpQCD) partons as a function of the
energy density ε.

with ρ(p) denoting the spectral function which can be specific
for each particle species. For the Breit-Wigner-m form of the
spectral function, the explicit extension of Eq. (4.1) for the
off-shell case is given by

Roff( p,T ,μq) =
∑
q,q̄,g

�i∈p,q,p′,q ′

∫
midmiρ

BW
i (mi)

mp

16(2π )4E

×
∫

q3moff
0 (s)fr (q)

s Eq

dq, (4.5)

where

moff
0 (s) = 1

2pipf

∫ tmax

tmin

1

gpgQ

∑
i,j

∑
k,l

∣∣Moff
2,2(s,t ; i,j |k,l)

∣∣2
dt,

(4.6)

with
∑ |Moff

2,2(p,q; i,j |p′,q ′; k,l)|2(s,t) being the off-shell
transition amplitude defined in the IEHTL approach (cf.
Ref. [39]); pi (pf ) is the initial (final) heavy quark momentum
and the integration boundaries tmin and tmax are given by

tmax
min = − s

2
(1 − (β1 + β2 + β3 + β4) + (β1 − β2)(β3 − β4) ±

√
(1 − β1 − β2)2 − 4β1β2

√
(1 − β3 − β4)2 − 4β3β4),

with: β1 = (
mi

q

)2
/s, β2 = (

Mi
Q

)2
/s, β3 = (

mf
q

)2
/s, β4 = (

M
f
Q

)2
/s. (4.7)

The total interaction rate (4.5) of the off-shell approach
(IEHTL) in the plasma rest system is compared to that of the
on-shell calculations (DpQCD) (4.1) in Fig. 8(a) as a function
of the momentum of the heavy quark p for different values of
the quark chemical potential μq at T = 0.2 GeV. We assume
here a Breit-Wigner spectral function and a Boltzmann-Jütner
distribution for both the light quarks/antiquarks and the gluons.
Our results are somewhat independent of the choice of
the spectral function or by replacing the Boltzmann-Jütner
distribution by a Fermi/Bose distribution. In Fig. 8(a) the
black lines refer to IEHTL results and the orange lines to
DpQCD results. We see from Fig. 8(a) that the finite width
of the spectral function (with the DQPM width) decreases
the interaction rate of heavy quarks with the medium on the
order of 20%. This modification is somewhat independent of
the heavy quark momentum, temperature, and quark chemical
potential of the plasma. The difference between the DpQCD
and IEHTL rates is related on one side to the propagator, which

contains an additional imaginary part proportional to the gluon
width in the IEHTL model, and on the other side to the energy
asymmetric contribution of the Breit-Wigner spectral function
in IEHTL.

For fixed temperature T = 0.3 GeV the variation of the
quark chemical potential μq from μq = 0 leads to a decrease
of the rate [cf. Fig. 8(a)]. However, e.g., for the temperature
T = 0.2 GeV an increasing μq leads to either an increase
of the rate (for μq = 0.2 GeV) or to the decrease of R (for
μq = 0.3 GeV). Therefore, the dependence of R on both
the medium temperature and quark chemical potential is not
trivial. The dependence of the rates on the medium temperature
T and quark chemical potential μq for a heavy quark with a
momentum p = 5 GeV is illustrated in Fig. 8(b) in DpQCD. As
expected, the rate increases for higher temperatures at μq = 0
because the number of plasma particles becomes larger (∼T 3).
Therefore, the increase of the interaction rate with temperature
keeping μq small is seen. For a fixed temperature, the variation
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FIG. 8. (Color online) The total elastic interaction rate R of c quarks in the plasma rest frame in the IEHTL and DpQCD models as a
function of the heavy quark momentum p for three different values of the quark chemical potential μq = 0,0.2,0.3 GeV at T = 0.3 GeV (a).
(b) 3D plot of the total elastic interaction rate R within DpQCD as a function of T and μq .

of μq leads to different profiles in the rates. A decrease of
the total rate for high temperatures when μq increases and
an opposite trend for small temperatures [T < Tc(μq = 0)] is
observed. The highest values of the rates are reached for small
μq and large temperatures T

Because of the different abundances of particle species
in a medium at finite chemical potential, it is interesting
to study the variation of the heavy quark interaction rates
with the quarks or antiquarks and gluons independently.
Figures 9(a)–9(c) illustrate the dependence of the heavy quark
collisional rates with quarks, antiquarks, and gluons of a
medium at finite temperature T and quark chemical potential
μq for an intermediate heavy quark momentum (p = 5 GeV).

For the case of gluons and antiquarks, the interaction rates
are increasing with higher temperature for all μq . The charm
quark interaction rate with light quarks (Ruc) depends on
(T ,μq) in a similar fashion as described in Fig. 8(b) for
large μq and small temperatures [T < Tc(μq = 0)]. Indeed,
for larger values of μq and small temperatures, Ruc is much
larger than Rūc and Rgc, so that the total interaction rates
are dominated by Ruc. On the other hand the R profile is
dominated by Rgc for small μq and large temperatures. This is
easy to interpret: At large μq the number of light quarks is large
compared to the number of antiquarks, i.e., the Fermi-Dirac
distribution contributes unequally to R for u and ū. On the
other hand the gluon number decreases with larger μq because
it is correlated with the subdominant light antiquarks, via the
T and μq dependencies of the masses.

V. HEAVY QUARK ENERGY LOSS
IN A MEDIUM AT FINITE TEMPERATURE T

AND CHEMICAL POTENTIAL μq

The collisional energy loss dE/dt has been formulated by
Bjorken and been explicitly calculated in Ref. [23] for μq = 0.
We recall here the expression of dE/dt for on- and off-shell

partons. In the framework of the DpQCD model, dE/dt is
given in the plasma rest frame by

dEon

dt
(p,T ,μq ) = MQ

4(2π )3

∫ ∞

0

q4mon
1 (s)

s2Eq

×
[
−qf0(q) + p

E
(MQ + Eq)f1(q)

]
dq.

(5.1)

Equation (5.1) is easily extended to the off-shell case with
Breit-Wigner spectral functions using (4.4). One finds [23]

dEoff

dt
(p,T ,μq)

= 4

(2π )7
�i∈p,q,p′,q ′

∫
mpmidmi ρBW

i (mi)
∫ ∞

0

q4moff
1 (s)

s2Eq

×
[
−qf0(q) + p

E
(MQ + Eq)f1(q)

]
dq, (5.2)

where mon
1 (s), moff

1 (s), and f1(q) in (5.1) and (5.2) are given
by

mon
1 (s) := 1

8p4
cm

∫ 0

−4p2
cm

1

gpgQ

∑
i,j

∑
k,l

|M|2(s,t ; i,j |k,l)

× (−t)dt.

moff
1 (s) := 1

4pipf

∫ tmax

tmin

1

gpgQ

∑
i,j

∑
k,l

∣∣Moff
2,2(s,t ; i,j |k,l)

∣∣2

×
[

1 − t − (
Mi

Q

)2 + (
M

f
Q

)2 − 2EiEf

2pipf

]
dt,

fn(q) = 1

2

∫
d cos θr f

(
u0Eq −uq cos θr ∓μq

T

)
cosn θr .

(5.3)
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FIG. 9. (Color online) The total elastic interaction rate R of c quarks in the plasma rest frame as a function of the temperature T and quark
chemical potential μq from the scattering with light quarks (a), light antiquarks (b), and gluons (c). The on-shell heavy quark momentum in all
cases is p = 5 GeV.

Furthermore, pi (Mi
Q) is the initial heavy momentum

(mass) and pf (Mf
Q) is the final heavy momentum (mass). The

heavy quark energy loss [Eqs. (5.1) and (5.2)] is illustrated
in Fig. 10 as a function of the heavy quark momentum for
the DpQCD and IEHTL models at T = 0.2 GeV for different
quark chemical potentials up to μq = 0.3 GeV. As for the
rates, the off-shell spectral function decreases the energy
loss as compared to the on-shell case as described by the
DpQCD model. The difference is uniform as a function of
the heavy-quark momentum p and the increase of the quark
chemical potential. For low heavy-quark momenta and higher
medium temperatures, the heavy quark loses less energy by
elastic collisions. At low momentum heavy quarks start to
gain energy to approach thermal equilibrium and to arrive
at the average energy in the heat bath (dE/dx is negative).
For a medium at the temperature T = 0.2 GeV, the increase

FIG. 10. (Color online) The c-quark energy loss, dE/dx, in the
plasma rest frame from the DpQCD and IEHTL models as a function
of the heavy quark momentum p at T = 0.2 GeV for different values
of the quark chemical potential μq .

of μq leads to a decrease of the heavy quark energy loss.
Nevertheless, varying both the medium temperature and μq

influences the heavy quark energy loss in different ways.
The temperature and quark chemical potential dependen-

cies of the collisional energy loss for low (p = 1 GeV/c)
and intermediate heavy quark momentum (p = 5 GeV/c) is
displayed in Figs. 11(a) and 11(b) for the on-shell DpQCD
model, respectively. Figures 11(a) and 11(b) show that the
energy loss is increasing as a function of p. For intermediate
momenta p the conclusions drawn for the rate are valid
also for the collisional energy loss; especially Fig. 11(b)
shows that with increasing temperature for small values of
μq—which corresponds to the increase of the parton masses
in the DpQCD—the energy loss becomes larger. This is more
pronounced for large heavy quark momenta. On the contrary,
for p = 1 GeV [cf. Fig 11(a)], where we observe an energy
gain (a negative energy loss), the energy gain increases with the
distance of the energy of the heavy quark from its equilibrium
value. Nevertheless, as expected for a crossover transition
(at finite but small values of μq) we observe a very smooth
dependence of the energy loss on both variables, T and μq . The
dependencies of dE/dx on T and μq are studied in [50] using
an extension of finite temperature HTL calculation to include
finite μq in the distribution functions of the quark/antiquarks.
The effect of finite μq on dE/dx seen in [50] is much smaller
than in our DpQCD and IEHTL models, shown in Fig. 10.
We note that the finite μq effects in both the parton masses,
coupling constant, and distribution function are included in our
model, which give to our calculations more inclusive effects
than those of [50].

The energy loss of a heavy quark due to its scattering
with the QGP partons varies with the abundance of the
particle species. Whereas the scattering of heavy quarks on
the gluons is slightly μq dependent, the scattering on light
quarks/antiquarks induces an energy loss which is highly (T ,
μq) dependent. Figures 12(a)–12(c) illustrate this dependence
of the heavy quark collisional energy loss with quarks,
antiquarks, and gluons of a finite temperature T and quark
chemical potential μq medium for an intermediate heavy quark
momentum (p = 5 GeV). As seen for the interaction rate, the
profiles observed for the q(q̄)-Q collisional energy loss evolve
oppositely because of the Fermi-Dirac distribution. As pointed
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FIG. 11. (Color online) The c-quark energy loss, dE/dx, in the plasma rest frame from the DpQCD approach as a function of the
temperature T and quark chemical potential μq for the heavy quark momentum p = 1 GeV (a) and p = 5 GeV (b).

out before, the quark (antiquark) density changes substantially
with μq .

VI. HEAVY QUARK MOMENTUM LOSS IN A MEDIUM AT
FINITE TEMPERATURE AND CHEMICAL POTENTIAL

We continue our study with the momentum loss of heavy
quarks in a partonic medium at finite temperature and chemical
potential. The drag (A) and diffusion (B) coefficients are
evaluated according to [32,58,59] by a Kramers-Moyal power
expansion of the collision integral kernel of the Boltzmann
equation. Note that the diffusion tensor B admits a transverse-
longitudinal decomposition (perpendicular and along the
direction of the heavy quark in the fluid rest frame) and
contains two independent coefficient B‖ and B⊥.

A. Longitudinal momentum loss

The drag coefficient A describes the time evolution of
the average of the longitudinal component of the momentum
transfer (p − p′)l of the heavy quark. For on-shell partons it
was defined in the plasma rest frame by Svetitsky [58,59] and

evaluated in [23] by

Aon(p,T ,μq) = d〈p〉
dt

= MQ

4(2π )3

∫ ∞

0

q4mon
1 (s)

s2Eq

×
[

(MQ + Eq)f1(q) − p

E
qf0(q)

]
dq.

(6.1)

Equation (6.1) is easily extended for the off-shell case. One
finds [23]

Aoff(p,T ,μq) = d〈p〉
dt

= 4

(2π )7
�i∈p,q,p′,q ′

×
∫

mpmidmi ρBW
i (mi)

∫ ∞

0

q4moff
1 (s)

s2Eq

×
[

(MQ + Eq)f1(q) − p

E
qf0(q)

]
dq,

(6.2)

where mon
1 (s), moff

1 (s), and f0,1(q) are given in (5.3).

FIG. 12. (Color online) The energy loss dE/dx of c quarks in the plasma rest frame as a function of the temperature T and the quark
chemical potential μq from the scattering with light quarks (a), light antiquarks (b), and gluons (c). The on-shell heavy quark momentum in
this case is p = 5 GeV.

054902-13



H. BERREHRAH et al. PHYSICAL REVIEW C 91, 054902 (2015)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

p (GeV/c)

DpQCD

IEHTL
on vs off− shell

T = 0.2 GeV μ = 0.3 GeV
μ = 0.2 GeV
μ = 0

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

p (GeV/c)

A
[G
eV

/f
m

]

DpQCD

IEHTL
on vs off− shell

T = 0.2 GeV μ = 0.3 GeV
μ = 0.2 GeV
μ = 0

FIG. 13. (Color online) c-quark drag coefficient (6.1) and (6.2) (a), and q̂ (6.4) and (6.6) (b) in the plasma rest frame as a function of the
heavy quark momentum p for T = 2 GeV.

B. Transverse momentum loss

During its propagation through the plasma a heavy quark
receives random kicks (momentum transfers) from the con-
stituents of the medium. The average value of the transverse
momentum remains zero but the variance 〈p2

⊥〉 increases
with the number of collisions. The increase of the variance
〈p2

T 〉 per unit length is called the transport coefficient q̂ and
defined as

q̂ = d〈p2
⊥〉

dx
= 〈p2

⊥〉single coll

�
. (6.3)

Using the relation between the transverse second moment BT

and q̂ given by q̂ = 4E
p

BT , we can evaluate q̂ for massive
on-shell partons (as in [23]) by the expression,

q̂on(p,T ,μq)

= M3
Q

2(2π )3p

∫ +∞

0

q5

s2Eq

[
mon

1 (s) − mon
2 (s)

2

× (f0 + f2) + (Eq + MQ)2

s
mon

2 (s) (f0 − f2)

]
dq,

(6.4)

where mon
1 (s) and f0,1,2(q) are given in (5.3) and mon

2 (s) by

mon
2 (s) =

∫ 1

−1
d cos θ

(
1 − cos θ

2

)2 1

gggQ

×
∑
ij

∑
kl

|Mon|2(s,t ; ij |l,k)

= 1

32p6
cm

∫ 0

−4p2
cm

1

gggQ

∑
ij

∑
kl

|Mon|2(s,t ; ij |l,k)t2dt.

(6.5)

The off-shell transport coefficient q̂off is deduced by using
Breit-Wigner spectral functions for the off-shell partons and
extending the on-shell q̂on as

q̂off(p,T ,μq) = 1

2(2π )3
�i∈p,q,p′,q ′

∫
m2

p

p
midmiρ

BW
p (mi)

×
∫

q5mp

s2Eq

[
moff

1 (s) − moff
2 (s)

2
(f0 + f2)

+ (Eq + mp)2

s
moff

2 (s) (f0 − f2)

]
dq, (6.6)

with

moff
2 (s) = 1

8pipf

∫ tmax

tmin

1

gggQ

∑
ij

∑
kl

|Moff|2(s,t ; i,j |l,k)

×
[

1 − t − (
Mi

Q

)2 + (
M

f
Q

)2 − 2EiEf

2pipf

]2

dt.

(6.7)

C. Numerical results

We discuss now the drag coefficient and the transport
coefficient q̂ for the models DpQCD and IEHTL from Ref. [39]
at finite T and μq . In the DpQCD approach, the light and
heavy quark and gluon masses are given by the DQPM pole
masses. Figure 13(a) shows the drag coefficient (6.1) and (6.2)
of heavy quarks as a function of the heavy quark momentum p.
The temperature of the heath bath is chosen as T = 0.2 GeV.
Figure 13(b) illustrates the influence of a finite parton width on
the heavy quark transport coefficient q̂, where q̂ is displayed
for on-shell partons (DpQCD) and off-shell partons (IEHTL)
as a function of the heavy quark momentum and for a
temperature of T = 0.2 GeV and different values of μq . For
both A and q̂ the off-shell parton case is slightly lower by
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FIG. 14. (Color online) c-quark drag (a) and q̂ (b) in the plasma rest frame from the DpQCD approach as a function of the temperature T

and quark chemical potential μq for the heavy quark momentum p = 5 GeV.

about 20% independent of momentum, temperature or quark
chemical potential than for the corresponding on-shell case.

The temperature and quark chemical potential dependen-
cies of the drag coefficient and q̂ for intermediate heavy
quark momentum (p = 5 GeV/c) are displayed in Figs. 14(a)
and 14(b) for the on-shell DpQCD model, respectively.
Figures 14(a) and 14(b) show that both the longitudinal and
transverse momentum is increasing for high temperatures and
low μq . On the contrary, for low temperatures and large μq

the longitudinal momentum loss is still considerable whereas
the transverse momentum transfer is low. We conclude that
longitudinal momentum transfers are important not only in
a hot medium but also in a dense medium whereas the dense
medium leads to less transverse fluctuations in the heavy quark
propagation. The relatively large drag at low temperatures in
DpQCD/IEHTL is due to the strong increase of the running
coupling αs(T ,μq) (infrared enhancement) for temperatures
close to Tc(μq).

Regarding the variations in T and μq of the longitudinal
and transverse momentum losses, one may roughly presage
the tendency of the nuclear modification factor RAA and the
elliptic flow of charm particles in a hot and dense medium.
We expect that the RAA of charmed mesons will still be small
in a hot and dense medium as in case of finite temperature
and zero chemical potential. On the contrary, the elliptic
flow v2 is expected to be much smaller in a hot and dense
medium compared to our knowledge from RHIC and LHC
measurements for μq ≈ 0, because the dense medium damps
the transverse momentum fluctuations. Moreover, one could
notice that these finite μq calculations might have interesting
consequences on the c-quark angular correlations at FAIR,
which should be more peaked than those seen at RHIC or
LHC. However, such predictions have to be confirmed by
explicit transport simulations of the finite temperature and
chemical potential QGP, because the macroscopic observables
(RAA and v2) depend not only on the microscopic processes
and transport coefficients, as studied in this work, but also on
the time evolution of the QGP. Such studies will be carried out

in the near future using the Parton-Hardon-String-Dynamics
(PHSD) transport approach [40,60] for heavy-ion collisions
from

√
sNN = 5–10 GeV [61].

VII. SUMMARY

We have presented in this work on- and off-shell approaches
to describe the microscopic interactions between a heavy quark
and the QGP degrees of freedom in a partonic medium at
finite temperature T and quark chemical potential μq . In
our formalism both the perturbative and nonperturbative parts
of QCD are involved (DpQCD approach) and an off-shell
description of heavy quark interactions in the QGP (IEHTL)
at finite T and μq . For each of these models, we have
calculated the differential cross sections and confronted their
implications on the usual mesoscopic observables (energy loss,
drag and diffusion coefficients, longitudinal and transverse Q
momentum fluctuations, etc.) at finite T and μq .

The fundamental parameters describing the heavy quark
collisional scattering have been fixed within the DQPM at
finite temperature and chemical potential. The formulation of
the DQPM at finite μq is based on the hypothesis that the phase
boundary is close to the line of constant energy density in the
(T ,μq) plane which leads to the approximation (2.5). On the
other hand this approximation is in very good agreement with
recent lQCD results [53] on the expansion coefficient with
respect to μ2

q . Accordingly we infer that the equation of state
of QCD from Tc(μq) to higher temperatures is roughly under
control at least for small/moderate quark chemical potentials.

Our study demonstrates that even if the influence of the
finite width of the quasiparticles on heavy quark scattering is
small on the off-shell Q scattering cross sections, a noticeable
effect is seen in the off-shell transport coefficients (IEHTL
model) as compared to the on-shell ones (DpQCD model).
This is due to reduced kinematical thresholds in the off-shell
cross sections and is independent of the variables (T , μq).

A medium in which the chemical potential is finite leads
to a reduction of the qQ and gQ elastic cross section
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and consequently to a reduction of heavy quark energy
and momentum losses as compared to a zero μq medium.
Nevertheless, we have concluded that longitudinal momentum
transfers are important not only in a hot medium but also
in a dense medium whereas the dense medium leads to less
transverse fluctuations in the heavy quark propagation. The
relative large drag at low temperatures in DpQCD/IEHTL
is due to the strong increase of the running coupling
αs(T ,μq) (infrared enhancement) for temperatures close
to Tc(μq).

We have observed a smooth dependence of the energy loss
on both variables T and μq at finite but not too large values of
μq . Such a profile is expected for a crossover transition from
the partonic to the hadronic medium. For μq = 0 the gluon
mass depends on the temperature and therefore the increase
of the energy loss is from a change of the coupling. For μq =
0.2 GeV, the energy loss is also increasing with temperature
but less than for μq = 0 because here both the coupling and the
effective gluon mass decrease and the increase of the infrared
regulator is counterbalanced by the decrease of the coupling.
Because the variations of all transport coefficients with T and
μq are rather smooth (within the present DQPM propagators)
the transition from hadronic degrees of freedom to partonic

ones remains a crossover up to μq = 0.2 GeV. Present studies
within the DQPM indicate a change to a first-order transition
only for μq > 0.3 GeV but this is still model dependent and
not robust.

From the variations of the longitudinal and transverse
momentum losses with T and μq we expect a large suppression
of RAA of charmed mesons in a hot and dense medium, but
a much smaller value of the elliptic flow v2 in a hot and
dense medium as compared to our knowledge from RHIC and
LHC for finite temperature and approximately zero chemical
potential. However, such expectations have to be confirmed
by microscopic transport simulations (e.g., within PHSD) for
heavy-ion collisions from AGS to SPS energies. This is also
the energy regime of the future FAIR and NICA facilities and
the BES program at RHIC that all address the properties of
QCD at high baryon densities or high μq , respectively.
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