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Theoretical study of the almost sequential mechanism of true ternary fission
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We consider the collinear ternary fission which is a sequential ternary decay with a very short time between
the ruptures of two necks connecting the middle cluster of the ternary nuclear system and outer fragments. In
particular, we consider the case where the Coulomb field of the first massive fragment separated during the first
step of the fission produces a lower pre-scission barrier in the second step of the residual part of the ternary
system. In this case, we obtain a probability of about 10−3 per binary fission for the yield of massive clusters such
as 70Ni, 80−82Ge, 86Se, and 94Kr in the ternary fission of 252Cf. These products appear together with the clusters
having mass numbers of A = 132–140. The results show that the yield of a heavy cluster such as 68−70Ni would
be followed by a product of A = 138–148 with a large probability as observed in the experimental data obtained
with the FOBOS spectrometer at the Joint Institute for Nuclear Research. The third product is not observed.
The landscape of the potential-energy surface shows that the configuration of the Ni + Ca + Sn decay channel
is lower by about 12 MeV than that of the Ca + Ni + Sn channel. This leads to the fact that the yield of Ni and
Sn is large. The analysis on the dependence of the velocity of the middle fragment on mass numbers of the outer
products leads to the conclusion that, in the collinear tripartition channel of 252Cf, the middle cluster has a very
small velocity, which does not allow it to be found in experiments.
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I. INTRODUCTION

True ternary fission of heavy nuclei, which has been
discovered in the experiments recently, occurs with much
smaller probability (∼10−3) per binary fission [1–4]. These
experimental studies of the decays in 235U(nth,fff) [1] and
252Cf(sf,fff) [4] reactions with two fission fragment coinci-
dences with two FOBOS detectors [1,4] placed at 180◦, using
the missing-mass approach, have established the phenomenon
of collinear cluster tripartition (CCT). The third product is
not observed. Only recently its dynamical properties could
be investigated and it has been concluded that it proceeds
collinearly. More details can be found, for example, in
Refs. [5–7], and it is expected that the investigation of true
ternary fission will allow us to extend our knowledge about
fusion-fission processes. In the present work, we consider one
of the dominant modes of the CCT.

Because of the small probability, there are only a few
experimental measurements of CCT, as given in Refs. [1–4].
Moreover, theoretical studies about ternary fission are very
limited and some early works on this topic can be found, for ex-
ample, in Refs. [5,6,8,9]. In these early works it was found that
the ternary fission process in heavy nuclei occurs preferably
in a collinear geometry, which was confirmed by the recent
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theoretical studies in Refs. [7,10,11]. In Ref. [7], the authors
studied the difference between equatorial configurations and
collinear configurations in ternary fission by calculating the
potential energies for geometries of three fragments touching
each other, i.e., a trinuclear system (TNS), where only the
mass number of the central nucleus changes. On the other
hand, the kinetic energies of the CCT products were evaluated
in Ref. [10] to find that, in most cases, the velocity of the
central fragment can be very small. This may be responsible
for missing the third product in the experiments of Refs. [1–4].
In Ref. [11] the CCT process has been considered as two
sequential binary fissions. Namely, in the first stage, the
excited compound nucleus decays into two fragments in an
asymmetric channel, then the heavier fragment decays further
into two fragments. As a result, three fragments are obtained
with comparable masses. In Ref. [11] only the yield of ternary
fission fragments with comparable masses has been considered
because it is similar to the case observed in the experiments
performed by the FOBOS group [2]. The theoretical results
of the yield of 80Ge and 84Se isotopes as the first step for
the CCT products and the products 70Ni, 74,76Zn, and 82Ge
in the second step in a sequential fission process are in good
agreement with some of the corresponding experimental data
on the mass distributions of the 252Cf decay. This observation
leads to the conclusion that these events can be associated
with the sequential two step mechanism of CCT. However, the
yields of 70Ni, 82Ge, and 84Se in coincidence with ternary
fission masses A = 130–150 observed in Ref. [4] with a large
probability were not fully explained in Ref. [11].
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FIG. 1. (Color online) The CCT fission mechanism of a heavy
nucleus in a sequential decay [11]. A1, A2, and A3 are mass numbers
of the fragments formed in the trinuclear system.

Therefore, in the present paper we consider the mechanism
of a sequential ternary fission with a very short time between
the ruptures of the two necks connecting the middle cluster of
the collinear TNS with its outer fragments. This mechanism
is the almost simultaneous ternary fission, as illustrated in
Fig. 1. The main goal of the present work is to pursue the
theoretical analysis of the ternary fission channels leading to
the formation of the products of mass number A = 132–140.

The collinear configuration of the TNS undergoing fission
is defined as follows: First, the three fragments are situated
on one line and the border nuclei are numbered “1” and
“2,” while the middle nucleus is labeled as “3,” as shown in
Fig. 2. Consequently, there is no nuclear interaction between
the outer fragments 1 and 2. However, the Coulomb interaction
between them is taken into account because of its long-range
property. In fact, it was found to have a nontrivial role in the
decay of TNSs. The pre-scission barrier between fragments 1
and 3 decreases due to the Coulomb field of the fragment 2.
For example, in the case of the sequential ternary fission of
236U, when 132Sn forms as fragment 2, the pre-scission barrier
between fragments 2 and 3 is smaller than the one between
the fragments 1 and 3 [11]. Certainly the massive fragment
2 is separated at the first step, then occurs the rupture of the
second neck between fragments 1 and 3. We will discuss the
probability of the rupture at the second neck between 1 and 3,
which decreases with increasing the distance R32 that induces
the decrease of the Coulomb field of the massive fragment 2.

FIG. 2. The variables of the trinuclear system used in the analysis
of the interaction energy between its fragments. Here, Zi is the charge
number of fragment i (i = 1,2,3) and Rij is the distance between the
mass centers of fragments i and j .

The definitions of the variables of TNS used in this analysis
can be found in Fig. 2.

II. THEORETICAL APPROACH: FROM A DINUCLEAR
SYSTEM TO A TRINUCLEAR SYSTEM

In order to explore the mechanisms of the CCT process, we
apply the theoretical framework of the dinuclear system (DNS)
model [12–15]. In the present work, we estimate the total
energy of the interacting system by calculating the sum of the
binding energies of its constituents and the interaction potential
energy between them. The minima of the potential-energy
surfaces (PESs) are found by the variation of the charge and
mass numbers of two fragments out of the three fragments and
the distances between them. The PES is the two-dimensional
driving potential which depends on the charge numbers of
two fragments of the collinear TNS. The distances R13 and
R32 between centers of mass of fragments are found from the
minimum value of the nucleus-nucleus interaction.

The fission process is considered as a formation of the
elongated mononucleus (for example, a superdeformed shape)
which breaks down into two fragments as in the case of
binary fission. The formation of the third cluster in the neck
region and the splitting of this system into three fragments are
related to the shape of the system such as hyperdeformation.
Furthermore, the assumption of the formation of a heavier
nucleus as the third fragment between the two main fission
products is also introduced.

A. Total potential energy of a trinuclear system

The study on the landscape of the PES is carried out to
find minima and valleys since, at local minima, one can expect
increased yields of the mass and charge distributions in the
TNS undergoing the fission process. It should be noted that
the stage of transition from compound nucleus to the TNS
configuration is not analyzed. Instead, we assume that the
TNS is formed during fission of the compound nucleus into a
binary system. This process can occur in the sense of energy
conservation. We refer to Ref. [16] for the hyperdeformed 236U
nucleus.

054612-2



THEORETICAL STUDY OF THE ALMOST SEQUENTIAL . . . PHYSICAL REVIEW C 91, 054612 (2015)

The PES is calculated as

U (Z1,A1,β
(1),Z2,A2,β

(2),Z3,A3,β
(3),R13,R32)

= Vint(Z1,A1,β
(1),Z2,A2,β

(2),Z3,A3,β
(3),R13,R32)

+Qggg(Z1,A1,Z3,A3), (1)

where Zi and Ai are the charge number and mass number
of the ith fragment of the TNS (i = 1,2,3), respectively, and
Rij is the distance between the mass centers of the ith and
j th fragments. Here, β(i) = {β(i)

2 ,β
(i)
3 } is a set of deformation

parameters of fragment i, where β
(i)
2 and β

(i)
3 represent the

quadrupole and octupole parts, respectively. The interaction
potential Vint between the fragments of TNS can be written as

Vint(Z1,A1,β
(1),β(2),Z3,A3,β

(3),R13,R32)

=
3∑

i<j

Vij (Zi,Ai,β
(i),Zj ,Aj ,β

(j ); Rij ), (2)

where Vij is the two-body interaction potential between the
nuclei “i” and “j .” It contains two parts; namely, the nuclear
part V

ij
nuc and the Coulomb part V

ij
C , so that

Vij (Zi,Ai,β
(i),Zj ,Aj ,β

(j ); Rij )

= V ij
nuc(Zi,Ai,β

(i),Zj ,Aj ,β
(j ); Rij )

+V
ij
C (Zi,Ai,β

(i),Zj ,Aj ,β
(j ); Rij ). (3)

It is clear that V 12
nuc = 0 since the fragments 1 and 2 are

separated by the fragment 3 and, therefore, there is no
overlap of their nucleon densities. The nuclear part of the
nucleus-nucleus interaction V

ij
nuc is calculated by using the

double folding procedure [11], and the Coulomb part V
ij
C is

estimated by the Wong expression [17].
In Eq. (1), Qggg is the reaction balance energy in ternary

fission, which is written as

Qggg(Z1,Z3,A1,A3)

= B1(Z1,A1) + B2(Z2,A2) + B3(Z3,A3)

−BCN (ZCN,ACN ). (4)

The values of binding energies, Bi , for ground states are taken
from Refs. [18,19].

In order to calculate the mass and charge distributions of
the TNS in the pre-scission state, the minima and valleys of
the PES are determined by computing the interaction potential
Vint as a function of (Z1,A1,Z3,A3,R13,R32) since (Z2,A2)
can be defined through (Z1,A1,Z3,A3) and R12 = R13 + R32.
This is done by taking Vint as a function of R13 and R32 for
each configuration of {Z1,A1; Z3,A3; Z2,A2} (see Fig. 2 for
the geometry).

In order to find the dominant cluster states of the PES,
the charge (and mass) numbers of the two fragments are
varied in the range of 2 < Z1 < ZCN/2 and 2 < Z3 < ZCN/2
[A1,min < A1(Z1) < A1,max and A3,min < A3(Z3) < A3,max].
The charge and mass numbers of the third fragment can be
found from the corresponding conservation laws for them.
The distances R13 and R32 between interacting nuclei are then
varied to find R

(min)
13 and R

(min)
32 that correspond to the minimum

values of the potential wells V13 and V32, respectively. It should

be noted again that the potentials are affected by the Coulomb
interaction V C

12 of the border fragments.
This process allows us to find the mass number Ai that

corresponds to the minimum value of the PES for a given
value of Zi . For example, the value of A1 can be found by
minimizing the PES for each value of A3 at fixed values of
Z1 and Z3. From the set of the results calculated for the PES
as a function of (Z1,A1,Z3,A3,R13,R32) we can establish the
driving potential demonstrating the configurations of the TNS
with the well-pronounced cluster states having closed shells.
The three-dimensional driving potential Udr(Z1,A1; Z3,A3) is
determined by the values of the PES in Eq. (1) corresponding
to the minimum values of the potential wells in the nucleus-
nucleus interaction Vint between neighbor fragments as a
function of the distances between their centers of mass:

Udr(Z1,A1,β
(1),β(2),Z3,A3,β

(3))

= U
(
Z1,A1,β

(1),β(2),Z3,A3,β
(3),R

(min)
13 ,R

(min)
32

)
. (5)

A change of Ai leads to the change of Qggg which depends
on the binding energies Bi . As a result, Udr is sensitive to the
mass distribution between the TNS fragments.

B. Probability of the yield of ternary fission fragments

The mass and charge distributions of the TNS fragments are
related to the driving potential Udr. Therefore, the knowledge
of Udr allows us to calculate the yield of the products of ternary
fission as in Ref. [11]:

Y (Z1,A1; Z3,A3) = P (Z1,A1; Z3,A3)W13(Z1,A1; Z3,A3)

×W32(Z1,A1; Z3,A3), (6)

where P (Z1,A1; Z3,A3) is the probability of the charge and
mass distributions of the TNS fragments. The probability of
the formation of a TNS, P (Z1,A1; Z3,A3), can be found from
the condition of statistical equilibrium as in Ref. [20], i.e., the
TNS has an equilibrium state before scission:

P (Z1,A1; Z3,A3)

= P0 exp[−Udr(Z1,A1; Z3,A3)/TTNS(Z1,A1; Z3,A3)],

(7)

where TTNS is the effective temperature of the TNS and
Udr(Z1,A1; Z3,A3) is determined by the formula (5). The nor-
malization coefficient for the yield probability is represented
by P0.

In Eq. (6), W13 and W32 are the decay probabilities of the
TNS that are caused by overcoming the pre-scission barriers
B13 and B32 which correspond to the separation of the first and
second nuclei, respectively. Their explicit expressions can be
found as [11]

W13(Z1,A1; Z3,A3) = W 0
13 exp

[
−B13

T13

]
, (8)

W32(Z2,A2; Z3,A3) = W 0
32 exp

[
−B32

T32

]
, (9)

where (B13,B32) and (T13,T32) are the pre-scission barriers
and the effective temperatures on these barriers of the
corresponding parts of the TNS. The barriers B13 and B32
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prevent the separation of the outer fragments from the middle
one. These pre-scission barriers are defined by the depth of the
nucleus-nucleus potential well between neighbor fragments of
the TNS. Here, W 0

13 and W 0
32 are normalization coefficients for

the corresponding probability distributions.
The effective temperatures are determined by the excitation

energy of the TNS which is generated by the descent of the
system from the saddle point in binary fission. We assume that
the third cluster is formed between the two parts of fissioning
nuclei before their splitting. In this case, E∗

TNS(Z1,A1,Z3,A3),
the excitation energy of the system, is determined by the
difference between the values at the saddle point and at the
point of the minimum driving potential with the considered
charge and mass numbers of clusters:

E∗
TNS(Z1,A1,Z3,A3) = E∗

CN − Udr(Z1,A1; Z3,A3). (10)

The effective temperatures of the TNS, necks 1-3 and 2-3
are defined by the excitation energies on the minimum of
the driving potential and pre-scission barriers B13 and B32,
respectively:

TTNS =
√

12E∗
TNS

ACN

,

T13 =
√

12E∗
13

(A1 + A3)
, (11)

T32 =
√

12E∗
32

(A2 + A3)
,

where E∗
13 and E∗

32 are the excitation energies on the top of
the pre-scission barrier of DNS 1-3 and 2-3, respectively; the
level density parameter is taken as a = A/12. These excitation
energies are the result of sharing the TNS excitation energy
between different degrees of freedom. The parts of E∗

TNS
corresponding to the decay axes R13 and R32 are estimated
by assuming that their inertial masses are A13 = A1(A2 +
A3)/ACN and A32 = A2(A1 + A3)/ACN , respectively. Then
the values of E∗

13 and E∗
32 are found from the effective

temperature of the TNS:

E∗
13(Z1,A1,Z3,A3) = T 2

TNSA13

12
− B13, (12)

E∗
32(Z1,A1,Z3,A3) = T 2

TNSA32

12
− B32. (13)

If the residual part of the TNS excitation energy, E∗
res =

E∗
TNS − E∗

13 − E∗
32, is larger than the energy Bn for the

emission of neutrons from the TNS fragments, the ternary
fission is accompanied by neutrons.

III. INVESTIGATION OF TRIPARTITION
IN 252Cf (sf) REACTION

A. Potential energy surface showing cluster formation in
trinuclear system

In the experiment reported in Ref. [4], the ternary products
were formed in the spontaneous fission of 252Cf and the yields
of 68Ni, 80−82Ge, 94Kr, 128,132Sn, and 144Ba were obtained.

In the plot of the mass-mass distribution of two products (third
one is missing) given in Fig. 10 of Ref. [4], these events were
found to form a rectangle, and the authors of Ref. [4] assumed
that the points in the right half of the rectangle likely reflect
the shell effects around N = 88.

The effect of the shell structure of the proton and neu-
tron single-particle states in the formation of a trinuclear
system and in its decay into the observed fission products
is obviously seen in the mass-mass distribution data of
Ref. [4]. This observation stimulates us to calculate the
PES, i.e., V (Z1,Z3,A1,A3,R13,R32), and the driving potential
Udr(Z1,A1,Z3,A3) for the intermediate system preceding their
formation. The products of a CCT decay should be formed
before being separated from the other part of the system.

Our results for the PES are presented in Fig. 3. Each point
in the driving potential Udr(Z1,A1,Z3,A3) for the TNS corre-
sponds to a specific configuration (channel), which consists of
three interacting nuclei placed in one line, as shown in Fig. 2.
In calculating the PES, the distances between fragments are
fixed at the values corresponding to the minimum values of the
corresponding wells in the interaction potential between them
(see Figs. 4 and 5). The quadrupole deformation parameters of
the first-excited 2+ state of nuclei [21] are used in calculation
of the PES.

The rectangle “CCT” shows the area of the mass numbers
Z1(A1) and Z3(A3) which corresponds to the CCT products.
The rectangle “FFF” shows the area of formation of three
fragments with similar mass numbers. The solid and dashed
lines show the TNS configuration having 132Sn and 134Te,
respectively, as the outer nucleus Z2. So we can see the valley,
which is the minimal energy area (Z2 = 50 and Z2 = 52)
and corresponds to the 252Cf → f1 + f3 + 132Sn and 252Cf →
f1 + f3 + 134Te fission channels. The valley extends up to
the area of about Z3 = 28. As was mentioned earlier, Z3 is
the charge number of the middle cluster. The phase space
of the configurations corresponding to the dark (blue) color
region is large. Therefore, the probability of finding the TNS
of configurations with a lower potential energy is larger. The
configuration of Ni + Ca + Sn has large probability compared
with the Ca + Ni + Sn configuration since the PES value of
the latter configuration is about 12 MeV higher than that of
the former configuration.

The calculations were performed to find the yield of the
CCT products from the collinear geometry based on the
formula of Eq. (6). In these calculations we found that the value
of the pre-scission barrier plays the decisive role. Therefore, in
the next section we discuss the behavior of the barriers B13 and
B32 for the CCT channel of the Ni + Ca + Sn configuration.

B. Decrease of pre-scission barrier due to Coulomb field of
outer fragments

The mechanism of almost sequential ruptures of the two
necks connecting the fragments of a collinear TNS is suggested
to explain the observed yields of heavy clusters such as Ni,
Ge, and Se isotopes that appear with products having a mass
number of A = 138–148 in the CCT of 252Cf [1,4]. The PES
shows the structure of valleys and local minima that correspond
to the formation of heavy clusters observed in experiments as
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FIG. 3. (Color online) The potential-energy surface of the 252Cf (sf,fff) reaction. The wide solid rectangle “CCT” shows the area of the
mass numbers Z1(A1) and Z3(A3) which corresponds to the CCT products. The red dashed rectangle “FFF” shows the area of formation of
three fragments with similar mass numbers. The solid (yellow) and dashed (pink) lines show the TNS configurations having 132Sn and 134Te,
respectively, as the outer nucleus Z2.

shown in Fig. 3. These fragments of a TNS should be emitted
from the potential wells and, therefore, it is important to
estimate the depths of the potential wells, since heavy clusters
are allowed to exist during a definite long time. In Fig. 4
the potential wells calculated for the TNS of Ni + Ca + Sn,
which forms a linear chain, are presented as functions of the
distances between centers of the middle nucleus (Ca) and the

13 14 15 1610 9 8 7 6

-16
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-10

-8

-6

R
CaSn

(fm)

50Ca+132Sn

132Sn

70Ni+50Ca

R
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70Ni 50Ca

VNi Ca+VCaSn+VNi Sn+Qggg

FIG. 4. (Color online) The pre-scission barriers BNiCa and BCaSn

keeping TNS fragments together.

outer nuclei (Ni and Sn). The values of these nucleus-nucleus
potentials are shifted by the values of Qggg as the contour plot
of the PES [see Fig. 3 and Eq. (1)] to take into account the
change of the intrinsic energy of the TNS.

For the calculation of the interaction potential VCaSn, the
distance RNiCa is fixed to the value corresponding to the mini-
mum of VNiCa, while the VNiCa potential is calculated at the
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FIG. 5. (Color online) The total nucleus-nucleus interaction po-
tential Vint as a function of intercenter distances R13 and R32 between
fragments of the TNS with collinear geometry.
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FIG. 6. The dependence of the change of the pre-scission barrier
�B13 for the decay of the binary system Ni + Ca on the distance R32

due to the Coulomb interaction of the massive third fragment Sn in
the collinear geometry.

fixed value of RCaSn that gives the minimum of VCaSn. The
results for the nucleus-nucleus interaction between the nuclei
of the collinear TNS of Ni + Ca + Sn as a function of the
independent variables R13(RNiCa) and R32(RCaSn) are given by
a three-dimensional plot of the PES in Fig. 5. The contour lines
of the PES presented in Fig. 3 is calculated with the minimum
value of the nucleus-nucleus interaction at R13 = 11 fm and
R32 = 12 fm in Fig. 5. The decay of the TNS occurs due to
the motion of the system along R13 or R32. The height of the
pre-scission barrier is smaller in the direction along R32 (RCaSn

in Fig. 4) and, therefore, the massive fragment Sn is separated
first from the TNS. This result is obtained by the use of Eqs. (8)
and (9). If the residual Ni + Ca part of the TNS does not decay,
the binary decay would be observed since the Ni + Ca system
is considered as a superdeformed shape of 118Cd.

The excitation energy of the residual Ni + Ca system should
be large enough so that it decays into Ni and Ca, if these nuclei
are observed as CCT products. The probability of this event
strongly depends on the position of the separated massive
product, i.e., the Sn nucleus. The depth of the potential VNiSn,
which is the pre-scission barrier BNiSn, changes as a function
of the distance R32. To show this phenomenon we estimate the
change of the B13 barrier, which is the difference between the
maximum (on the barrier) and the minimum values of Vint as a
function of R13 in Eq. (2). The dependence of the change of the
barrier B13 by the distance R32 is reduced to a simple form of

�B13(R32) = Z1Z2e
2(

R
(B)
13 + R32

) − Z1Z2e
2(

R
(min)
13 + R32

) , (14)

where e2 = 1.44 MeV fm. The dependence of B13 on R32 is
presented in Fig. 6. The negative values mean the decrease of
the depth of the potential well [B13(R32 → ∞) + �B13(R32)]
in the interaction of the Ni + Ca system. The main observation
of the present work is that the presence of the third fragment
is important to cause the decay of the Ni + Ca system in an

FIG. 7. (Color online) Theoretical results for the yield of the
outer fragments A1 Z1 and A2 Z2 of the TNS formed at the spontaneous
fission of 252Cf. The yield is high at Z2 ∼ 50.

easier way. The presence of the third massive fragment Sn
makes the pre-scission barrier shallower by 4 MeV, and thus
the decay probability of the Ni + Ca system increases.

By taking into account the change of the pre-scission
barrier, one can obtain reasonable results for the yields of the
Ni isotopes followed by the emission of massive Sn isotopes
from the formula in Eq. (6) that includes the effects of the
pre-scission barriers B13 and B32. The results are presented in
Figs. 7 and 8. In the former figure we use Z1(A1) and Z2(A2)
axes for the plot, while in the latter figure we use Z1(A1) and
Z3(A3) axes.

Although the calculated yields of heavy clusters such as Ni,
Ge, and Se isotopes are found to be in good agreement with the
experimental data, there still remains a difference between the
mass numbers of the massive CCT products of 252Cf observed
in Refs. [1,4], namely A = 138–148, which overlap with our
results with A = 132–140 presented in Figs. 7 and 8. The
strong yield of the products with mass numbers A = 132–140

FIG. 8. (Color online) Theoretical results for the yield of the
outer A1 Z1 and middle A3 Z3 fragments of the TNS formed in the
spontaneous fission of 252Cf.
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indicates the important role of the magic number of neutrons
at N = 82. This difference may be ascribed to our use of
the tabulated masses of Refs. [18,19] to obtain the binding
energies of nuclei. This procedure, in fact, gives the binding
energies of the ground states, but we may have deformed nuclei
at the scission point, which is highly probable for massive
nuclei. But we should recall the procedure of calculating
the PES by variation of the charge and mass numbers
of the two fragments of TNS [2 < Z1 < ZCN/2 and 2 <
Z3 < ZCN/2, where A1,min < A1(Z1) < A1,max and A3,min <
A3(Z3) < A3,max]. The dependence of shell corrections on the
deformation should be studied for most of the numerous (some
thousands of) combinations. Since the primary goal of this
work is to demonstrate the possibility of the formation of the
Ni, Ge, and Se isotopes and their yields in the CCT mechanism,
we leave the more accurate and sophisticated description of
the production of massive isotopes of A = 138–148 to future
studies.

IV. ESTIMATE OF KINETIC ENERGY OF
MIDDLE FRAGMENT

The range of the kinetic energy of the middle fragment
3 can be estimated by applying the energy and momentum
conservation laws. For simplicity, we assume that the kinetic
energy of the binary process is determined by the Coulomb
barrier of the nucleus-nucleus interaction. The first step of the
sequential collinear ternary fission is the separation of the right
fragment 2 as shown in Fig. 1. The sum of the kinetic energies
of this fragment and the residual part of the TNS is the same
as the Coulomb repulsion between them, which leads to

Z1Z2e
2

R13 + R23 + d
+ Z3Z2e

2

R23 + d
= m(A1 + A3)v2

13

2
+ mA2v

2
2

2
,

(15)

m(A1 + A3)v13 + mA2v2 = 0, (16)

where v13 and v2 are the relative velocities of the DNS 1-3
and of the separated fragment 2, respectively, in the laboratory
frame. The free parameter d is introduced to decrease the sum
of the total Coulomb barriers that cannot be larger than the
reaction-energy balance Qggg given in Eq. (4). The second
step of the sequential collinear ternary fission is a decay of the
DNS 1-3 into two fragments 1 and 3. The sum of their kinetic
energies is then equal to the Coulomb repulsion between them
so that

Z1Z3e
2

R13
= mA1v

′2
1

2
+ mA3v

′2
3

2
,

(17)
mA1v

′
1 + mA3v

′
3 = 0,

where v′
1 and v′

3 are the velocities of the fragments 1 and
3, respectively, in the moving frame with velocity v13 in the
direction opposite to v2. Therefore, we have

v1 = v′
1 + v13,

(18)
v3 = −v′

3 + v13.

FIG. 9. (Color online) The contour map of the calculated velocity
v3 (in cm/ns) of the middle A3 Z3 fragment of the TNS formed at the
spontaneous fission of 252Cf as a function of the charge and mass
numbers of the outer fragments A1 Z1 and A2 Z2. The negative values
of v3 mean that its direction is opposite the direction of v2.

We then obtain v3 as a function of the mass numbers of the
outer fragments A1 Z1 and A2 Z2 and the results are presented
in Fig. 9. The negative values of v3 mean that its direction is
opposite to the direction of v2. This figure also allows us to find
the region of mass numbers A1 and A2 where the velocity of the
middle cluster is large enough to be registered in experiments.
One of the features in the experimental data on the collinear
tripartition presented in Refs. [1,2,4] is the missing third
fragment. As can be understood from this analysis, the main
physical reason for this phenomenon is the smallness of the
velocity of the “missing” third product.

In Fig. 9 one can see that the third product has a small
velocity (|v3| < 0.25 cm/ns) for the case of A1 = 60–80 and
A3 = 24–64, which means that the range of mass numbers for
the massive fragment is A2 = 108–168. This region overlaps
with the observed mass region, where a Ni-like product with
a mass number of A1 = 68–72 was observed with a massive
product of A2 = 136–144 [1,2,4]. In the case of the symmetric
masses, A1 ∼ A2 ∼ A3, we have a small velocity of the middle
fragment A3; namely, we get v3 = 0.3–0.4 cm/ns. The range
of the mass numbers where the third middle fragment has
an observable velocity is found to be A1 = 100–120 and
A3 = 4–16 (i.e., A2 = 116–148) which corresponds to the
well-known ternary fission with emission of the light nuclei
with a mass number of A3 = 4–12 [22,23]. In the experiments
reported in Refs. [22,23], all three ternary fission products
were registered. The other range of mass numbers of the
outer fragments of TNS which allows to the observation of
the middle fragment is A1 = 104–112 and A3 = 64–90(A2 =
50–84). The decay channel of A2 < 100 has a very small
probability to be realized since the pre-scission barrier B32 is
sufficiently high. Our analysis on the sequential true ternary
fission shows that the possibility of observing the middle
fragment in this case is small.
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V. CONCLUSION

In this work, we suggested a sequential ternary fission
process with a very short time between the ruptures of two
necks connecting the middle cluster of the collinear trinuclear
system. The necessity of this mechanism is revealed in the
decrease of the pre-scission barrier of the residual part of
the TNS due to the Coulomb field of the massive fragment
being separated first. This mechanism leads to the probability
of about 10−3 for the yield of massive clusters such as
70Ni, 80−82Ge, 86Se, and 94Kr produced with a product
of A = 132–140 in the CCT of 252Cf. The yields of such
products were observed in coincidence with a massive product
of A = 138–148 with a relatively large probability in the
experiments of the FOBOS group at the FLNR of the Joint
Institute of Nuclear Research (Dubna).

To verify the realization of this mechanism, the total
potential energy of the chain-like TNS was calculated as a sum
of Qggg and the nucleus-nucleus interaction potential energy
between its constituents. The minima and valleys of the PES
related to the shell effects in nuclei were determined by using
the binding energies obtained from the well-known mass tables
of Refs. [18,19] and the calculation of the interaction potential
for the charge and mass numbers of the three fragments as
a function of distances between their centers of mass. The
distances R13 and R32 between interacting nuclei were varied
to find the minimum values of the potential wells of V13

and V32, respectively, which are affected by the Coulomb
interaction V C

12 of the border fragments. The driving potential
as a function of the charge and mass numbers of two fragments
was obtained at the values of the distances R

(min)
13 and R

(min)
32

that correspond to the minimum values of the nucleus-nucleus
interactions V13 and V32, respectively.

In order to find the dominant cluster states of the TNS,
the driving potential Udr(Z1,A1,Z3,A3) was calculated for the
values of the charge (mass) numbers of the two fragments
in the ranges of 2 < Z1 < ZCN/2 and 2 < Z3 < ZCN/2
[A1,min < A1(Z1) < A1,max and A3,min < A3(Z3) < A3,max].
The analysis of the results allows us to find the mass number
Ai corresponding to the minimum value of the PES for
a given value of Zi . The calculated total potential energy
as a function of (Z1,A1,Z3,A3) enabled us to establish
the three-dimensional driving potential that determines the
configurations of TNS with probable cluster states in the
pre-fission states.

Finally, the contour lines of the three-dimensional driving
potential showed the structure of a valley corresponding to
the formation of the outer cluster with Z2 = 50 or N2 = 82 at
the ternary fission, which corresponds to the fission channel
of 252Cf → f1 + f3 + 132Sn. It was found that the valley
extends up to the area of about Z3 = 28 and the probability of
a configuration having lower potential energy for the TNS
is large. Therefore, the configuration of Ni + Ca + Sn has
a large probability in comparison with the configuration of
Ca + Ni + Sn since the PES value of the latter configuration
is about 12 MeV higher than that of the former configuration.

The dependence of the velocity of the middle cluster
on the mass numbers A1 and A2 was also analyzed for
the case of the collinear tripartition of 252Cf. The main
physical reason associated with the collinear tripartition is
the smallness of the missed third product. We found that the
middle fragment has a very small velocity, when it is formed
between fragments with the mass numbers A1 = 60–80 and
A2 = 132–140 which is in agreement with the observed range
of mass values presented in Refs. [1,2,4]. This means that it
is indeed difficult to observe the middle product of a collinear
tripartition of 252Cf producing Ni with the second product
having a mass number of A2 = 132–140. In the case of the
symmetric masses, A1 ∼ A2 ∼ A3, we have a small velocity of
the middle fragment A3; namely, we get v3 = 0.3–0.4 cm/ns.
The smallness of the middle cluster velocity may explain why
it is missing in the collinear tripartition in the 252Cf(sf,fff) [1]
and 235U(nth,fff) [4] reactions.

The mass ranges of the two outer products, where the
middle fragment can be observed, are (i) A1 = 100–120
and A2 = 130–140 which corresponds to the well-known
ternary fission with emission of the light nucleus with A3 =
4–12 [22,23] and (ii) A1 = 90–110 and A2 = 100–132.
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