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Spin dependence of the incident channel distorted wave in the theory of the A(d, p)B reaction
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The adiabatic distorted wave approximation (ADWA) model of A(d,p)B reactions is generalized to include
the effects of nucleon-nucleus spin-orbit potentials and the neutron-proton tensor force and associated D-state
terms in the interaction between the neutron and proton in the incident deuteron. The ADWA predicts that the
incident channel distorting potential must include momentum-dependent rank-2 spin tensor force terms with
novel properties not normally considered in the deuteron-nucleus scattering.
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I. INTRODUCTION

In the adiabatic distorted wave approximation (ADWA)
model of the A(d,p)B reaction the transition amplitude has
a similar structure to the distorted wave Born approximation
(DWBA). Reference [1] gives a review of the origins of the
ADWA and a discussion of open problems. Both models use a
distorted wave to describe the initial and final state interactions.
However, in the ADWA the distorted wave in the incident
channel does not describe elastic deuteron scattering from A,
but is rather a coherent superposition of elastic scattering and
continuum deuteron break-up components projected onto the
region of configuration space in which the neutron, n, and
proton, p, of the incident deuteron are within the range of
the n-p interaction Vnp. For a recent successful application of
the ADWA method to the analysis of experimental data see
Ref. [2]. This application involves a version of the ADWA
that does not include full spin dependence and considers only
differential cross sections.

Other methods of calculating (d,p) reactions which go
beyond the DWBA have been developed. In particular the
continuum discretized coupled-channels (CDCC)x and Fad-
deev methods have helped to throw some light on the validity
of the ADWA. It has been shown [3] using the CDCC method
that for typical A(d,p)B reactions at low energies of current
experimental interest the transition matrix is completely
dominated by the first component of the Weinberg expansion
of the three-body scattering wave function. This result suggests
that as far as calculating the (d,p) transition matrix is
concerned it would be useful to focus on finding viable
practical methods of calculating the first Weinberg component
of the three-body wave function, rather than following the
DWBA and CDCC routes which calculate the three-body wave
function everywhere. This is precisely the thrust of the ADWA
method.

Unlike Faddeev methods that are based on three-body
models of the d + A nucleus system, the ADWA method
focuses on the evaluation of a many-body expression for the
A(d,p)B and therefore lends itself well to the practical analysis
of experiments designed to probe the overlap functions of
nuclei A and B. Faddeev calculations of three-body models
cannot be used in this way. However, Faddeev calculations
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can be used to check the ADWA when both the ADWA and
the Faddeev calculations are based on the same three-body
Hamiltonian.

There is evidence from comparisons of this type [4] that the
ADWA is inadequate at very low and very high energies. These
calculations are based on a Faddeev model that cannot fully ac-
count for the true many-body problem; for example, the treat-
ment of neutron absorption in the Faddeev calculations in Ref.
[4] is not consistent. However, the results in Ref. [4] do indicate
that over a large energy range the ADWA gives an excellent first
approximation to the component of the three-body scattering
wave function of most relevance to the (d,p) reaction.

The Faddeev approach has been generalized [5] to take
into account explicitly some features arising from the internal
degrees of freedom of nucleus A as well as treating the
three-body aspects completely, but this method has not yet
been developed to the point that it can be used as a tool for
analyzing experimental data in a routine way. In any case
both the Faddeev and CDCC methods require the input of far
more information than is probably needed to calculate the first
Weinberg component to useful accuracy.

This paper focuses on the spin dependence of the ADWA
distorting potential in the incident channel of the A(d,p)B
reaction. The results are probably of most relevance to
A(d,p)B experiments that involve polarized nuclei as beams
or targets. In fact such an experiment with polarized deuteron
beams and proton polarization measurements was the first to
show convincingly that failure of DWBA calculations to give
a good account of experimental data could be remedied by an
ADWA approach [6]. It is a challenge to theory to see how far
the results obtained here will be of use in understanding the
modern polarization experiments with exotic beams that are
beginning to become available [7].

The Faddeev calculations reported in Ref. [4] included both
a tensor force in the n-p interaction and spin-orbit forces in
the nucleon-A potentials. Therefore, the calculated transition
amplitudes used in Ref. [4] must contain spin-dependent
effects that would be included in an approximate way in an
ADWA calculation using the spin-dependent ADWA potential
described here. Experience [6] shows that these effects are
most likely to show up in the calculation of nucleon and
deuteron polarizations and analyzing powers which were not
discussed in Ref. [4]. A virtue of the ADWA approach is
that the tensorial nature and origin of any spin dependence
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is relatively transparent. It would certainly be of interest
to compare polarization observables, especially deuteron
analyzing powers, with the two methods.

Standard CDCC calculations [8] do not fully take into
account spin-dependent couplings and therefore cannot re-
produce the spin-dependent effects reported here. CDCC
calculations of (d,p) observables including both the n-p tensor
force and nucleon-A spin-orbit potentials have been reported
[9]. It is not clear how far complete spin couplings were taken
into account in the breakup channels in this work. It should
be noted that difficulties in accounting for polarization data
were reported. None of these calculations, or those reported
in Refs. [2,4], took into account recent insights [1,10] into the
role of nonlocality in the theory of the A(d,p)B reaction.

Section II reviews the definition of the ADWA distorting
potential in terms of nucleon optical potentials and properties
of the n-p system, including n-p tensor force effects. Sections
III and IV explain how the contribution to the ADWA potential
from the central and spin-orbit terms in the nucleon optical
potentials is calculated. A comparison with earlier work is
included where possible. A novel type of tensor force in the
ADWA is described in Sec. IV H and a simplifying low-energy
approximation is derived and interpreted in Secs. IV I and
IV J. Explicit formulas for the various components of the
ADWA distorting potential are collected in Sec. V and the
paper ends with some comments in Sec. VI. In Appendix C the
general symmetry properties of the ADWA potential, including
Hermiticity and time-reversal invariance, are discussed. It
is explained why the ADWA potential cannot be Hermitian
in general even when the underlying two-body forces are
Hermitian. Appendix D gives explicit formulas for the matrix
elements of the novel tensor force obtained in Sec. IV in
a convenient basis for coupled-channel calculations of the
ADWA distorting potential.

II. THE ADWA DISTORTING POTENTIAL

It has been shown that in a well defined approximation
[3], and under simplifying assumptions about the effective
interactions of the three-body model [1,10], the projection
of the d + A scattering wave function most relevant to the
A(d,p)B transition amplitude should be calculated as a
distorted wave in a potential that is defined in terms of local
n-A and p-A optical potentials corresponding to a well defined
energy related to the incident deuteron kinetic energy and an
average kinetic energy associated with the n-p interaction,
Vnp [10–12]. Apart from terms linear in momentum arising
from the nucleon-nucleus spin-orbit force, nonlocalities are
not treated explicitly. It is assumed here that the effective
interaction in a three-body model of the n + p + A system
is VnA(n) + VpA(p), the sum of local n-A and p-A optical
potentials evaluated at nucleon kinetic energies as described
in Ref. [10]. This means that the incident channel distorted
wave in the ADWA transition amplitude is calculated using
the potential

V JT (R, pR,Sd )Md′ ,Md
= 〈φ(1)

Md′

∣∣(VnA + VpA)
∣∣φ(0)

Md

〉
. (1)

The bra and ket on the right-hand side in Eq. (1) are states in the
space of n and p spin variables and the relative n-p coordinate

r and are defined below. The notation used for the matrix
element on the right implies an inner product in this space
to give an operator in the space of R, the relative coordinate
of the n-p center of mass and the target nucleus A. Current
versions of the ADWA assume that there is only coupling via
elastic breakup to states in which the total internal angular
momentum of the n-p system is Sd = 1. As a result V JT is
an operator in the space of a spin-1 particle with Md ′ ,Md

labeling possible projections on the z axis. An estimate of the
contribution from singlet n-p, L = 0, states can be found in
Ref. [13]. Coupling to singlet states without target excitation
arises from the isospin dependence of the nucleon-nucleus
spin-orbit force. There is great uncertainty in the magnitude
of these terms in the nucleon optical potential but the effects
found in Ref. [13] are not large.

It is shown below that the spin-orbit components of VnA(n)
and VpA(p) generate a dependence on the momentum operator,
pR(= −ı∇R), associated with R and therefore appear as one
of the arguments of V JT in Eq. (1).

The expression for V JT in Eq. (1) first appeared in work by
Johnson and Tandy in Ref. [14]. A superscript JT will be used
to distinguish it from the zero-range form introduced earlier by
Johnson and Soper [15]. Both of these potentials are designed
to include the coherent superposition of elastic deuteron and
breakup components that contribute to the A(d,p)B transition
amplitude. The Johnson-Soper potential is an approximation
treatment of the same physics as the Johnson-Tandy potential.
Both of them should be distinguished from the Watanabe
potential discussed below which also involves a folding of
nucleon optical potentials but describes completely different
physics. The potential V JT defined in Eq. (1) is referred to as
the ADWA distorting potential.

The ket on the right of the V JT matrix element is the
deuteron ground-state wave function, φ(0)

Md
, where Md = 0, ± 1

is the projection of the deuteron ground-state spin on the z axis.
The state φ

(0)
Md

is assumed to be a combination of components
with orbital angular momentum L = 0 and L = 2 and radial
components φ

(0)
L (r) and therefore has the form

φ
(0)
Md

(r,p,n) =
∑

L=0,2,�,σ

(L�,1σ |Sd Md )

×YL �(r)χ1,σ (p,n)φ(0)
L (r). (2)

Both components have the intrinsic spins of n and p in a
spin triplet state χ1,σ (p,n),σ = ±1,0, which is coupled to the
angular momentum to give a definite total angular momentum.
For clarity in some of the subsequent formulas this total angular
momentum is written Sd . It has the numerical value 1. The
operator (Sd )2 that appears as Sd in the argument of V JT in
Eq. (1) has eigenvalue Sd (Sd + 1) = 2.

The state in the bra on the right-hand side of Eq. (1) is
defined by

∣∣φ(1)
Md′

〉 = Vnp

∣∣φ(0)
Md′

〉
〈
φ

(0)
Md′

∣∣Vnp

∣∣φ(0)
Md′

〉 . (3)

Note that the denominator in this expression is independent of
Md ′ if Vnp is a tensor of rank zero in combined r− and spin
space.
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It is readily seen from the Schrödinger equation satisfied
by φ

(0)
Md′ that φ

(1)
Md′ has a similar structure and can be written

φ
(1)
Md′ (r,p,n) =

∑
L′=0,2,�′,σ ′

(L′ �,1σ ′|Sd Md ′ )

×YL′ �′(r)χ1,σ ′(p,n)φ(1)
L′ (r), (4)

where

φ
(1)
L′ (r) = Cnp(−ε0 − TL′)φ(0)

L′ (r), (5)

where Cnp is defined as

Cnp = 1〈
φ

(0)
Md′

∣∣Vnp

∣∣φ(0)
Md′

〉 (6)

and ε0 is the deuteron binding energy. The radial operator TL′

is the n-p kinetic energy operator in a state with orbital angular
momentum L′. It is defined by

TL′ = − �
2

2μnp

[
1

r

d2

d r2
r − L′(L′ + 1)

r2

]
, (7)

where μnp is the n-p reduced mass.

The Watanabe optical potential for elastic deuteron scattering

A formal expression similar to Eq. (1) appears in folding
models of the optical potential for elastic deuteron scattering
in which deuteron elastic breakup is neglected. This approx-
imation is often referred to as the Watanabe model [16]. It is
interesting to compare this model with the ADWA potential.

The Watanabe model leads to an expression like Eq. (1)
except that φ

(1)
Md′ in the bra is replaced by φ

(0)
Md′ . The Watanabe

potential is therefore given by

V Watanabe(R, pR,Sd )Md′ ,Md
= 〈φ(0)

Md′

∣∣(VnA + VpA)
∣∣φ(0)

Md

〉
.

(8)

I show that the ADWA potential has qualitative features
that are quite different from the Watanabe potential. In the
former case the presence of the function φ

(1)
Md′ , which has a

much shorter range than weakly bound deuteron ground-state
function φ

(1)
Md′ , also has important quantitative effects.

III. CONTRIBUTION TO THE ADWA DISTORTING
POTENTIAL FROM THE CENTRAL NUCLEON

OPTICAL POTENTIALS

The evaluation of the central part of V JT using a realistic
n-p interaction, including D-state effects, has been thoroughly
explored quantitatively in Ref. [17]. The purpose of the present
paper is discuss new features in the spin dependence of V JT

that arise from the n-p tensor force. The main new effects
appear in the predicted spin dependence of V JT in which a
new type of tensor force appears.

For completeness I first give expressions for the contri-
butions to V JT from the central neutron optical potential.
These results are a simple generalization of the results already
given in Ref. [18], except that I include terms quadratic in the
deuteron D-state components ignored in Ref. [18].

The central parts of VnA(n) and VpA(p) are denoted V Cen
nA (n)

and V Cen
pA (p). Formulas for the ADWA potential that arise from

these terms are very similar to the corresponding Watanabe po-
tential, although quantitatively there are important differences.
I consider the neutron contribution explicitly. The proton
contributions have exactly the same form.

The central neutron optical potential depends only on the
magnitude |R + 1

2 r| and therefore can be expanded in the form

V Cen
nA (|R + r/2|) =

∑
k,q

Y ∗
k q(R) Yk q(r)V Cen

nA (k,R,r), (9)

where

V Cen
nA (k,R,r) =

∫
d�r V Cen

nA (|R + r/2|)Pk(cos θ (R,r))

(10)

and

cos θ (R,r) = R · r
R r

. (11)

Inserting this expansion into Eq. (1) and separating the
integration over the direction and magnitude of r gives

(V JT (R,Sd )n,Cen)Md′ ,Md

=
∑
k,q

Y ∗
k q(R)

∑
L,L′

〈(L′,1)Sd |Yk q(r)|(L,1)Sd〉

×
∫

r2drφ
(1)∗
L′ (r)V Cen

nA (k,R,r)φ(0)
L (r), (12)

where now the angular brackets denote an integration over
the intrinsic n and p spins and the direction of r only. This
integration can be carried out using the Wigner-Eckart theorem
and the general result given in Eq. (5.9), p. 81, of Ref. [19].
The reduced matrix element of Yk q(r) is also standard formula
given in Eq. (4.17), p. 57, of Ref. [19]. In the notation used
here one finds

〈YL||Yk||YL〉 = L̂k̂√
4πL̂′ (L 0,k 0|L′ 0). (13)

In this way I obtain

〈(L′,1)Sd Md ′ |Yk q(r)|(L,1)Sd Md〉 = (Sd Md,k q|Sd Md ′ )(−1)Sd+L−k−1 Ŝd L̂k̂√
4π

W (LL′ Sd Sd ; k 1)(L 0,k 0|L′ 0)

= (1 Md ′ ,|τk,q(1)|1 Md ′)

√
3L̂√
4π

W (LL′ 1 1; k 1)(L 0,k 0|L′ 0), (14)
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where the value Sd = 1 has been inserted. The fact that L and L are always even, and hence k must also be even, is also used.
The operator τk,q(1) is a tensor of rank k constructed from the components of Sd . It has matrix elements

〈1 Md ′ |τk q(1)|1 Md〉 = k̂(1 Md,k q|1 Md ′ ). (15)

The contribution to V JT from the central part of the n-A optical potential is

V JT (R,Sd )n,Cen =
∑

k=0,2,q

Yk(R) · τk(1)
∑
L,L′

√
3L̂√
4π

W (LL′ 1 1; k 1)(L 0,k 0|L′ 0)F (1,0)
k (L′,L,R; Cen,nA), (16)

where I have defined the radial integral

F
(1,0)
k (L′,L,R; Cen,nA) =

∫
r2drφ

(1)∗
L′ (r)V Cen

nA (k,R,r)φ(0)
L (r). (17)

I have used the notation

Yk(R) · τk(1) =
∑

q

Y ∗
k,qτk,q(1). (18)

This expression has a central component V JT (R,Sd )k=0
n,Cen with k = 0, and a rank-2 spin-tensor component, V JT (R,Sd )k=2

n,Cen, with
k = 2. Explicitly

V JT (R,Sd )k=0
n,Cen = 1

4π

[
F

(1,0)
0 (0,0,R; Cen,nA) + F

(1,0)
0 (2,2,R; Cen,nA)

]
, (19)

and

V JT (R,Sd )k=2
n,Cen = TR(R,Sd )

∑
L,L′

3
√

15√
2

L̂

4π
W (LL′ 1 1; 2 1)(L 0,2 0|L′ 0)F (1,0)

2 (L′,L,R; Cen,nA). (20)

The operator TR(R,Sd ) is the standard form for one of
the three possible rank-2 tensor forces for a spin-1 particle as
defined by Satchler [20]:

TR(R,Sd ) = (Sd · R)2

R2
− 2

3

= 1

3

√
8π

5
Y2(R) · τ2(Sd ), (21)

Note that the TR term vanishes if L = 2 terms in the
deuteron coming from the n-p tensor force are neglected.

Comparison with the Watanabe optical potential

Watanabe model results equivalent to Eq. (16) can be found
in Ref. [18], but with terms with L = L′ = 2 missing. Unlike
the Watanabe case, these terms are not necessarily small in V JT

because short range properties of Vnp are involved through the
factor φ

(1)
Md

in the definition of V JT in Eq. (1).
Although the formulas given in Eqs. (19) and (20) are

perfectly adequate for numerical applications, for ease of
comparison with Ref. [18] I give here the explicit form of
Eq. (20) that is obtained when the numerical values of the
Racah coefficient, etc., are inserted:

V JT (R,Sd )k=2
n,Cen = TR(Sd ,R)UJT

TR(n,Cen)(R), (22)

where the form factor is given by

UJT
TR(n,Cen)(R) = 3√

2

1

4π

[
F

(1,0)
2 (0,2,R; Cen,nA)

+F
(1,0)
2 (2,0,R; Cen,nA)

− 1√
2
F

(1,0)
2 (2,2,R; Cen,nA)

]
. (23)

In the Watanabe case F
(0,0)
k (0,2,R; Cen,nA) =

F
(0,0)
k (2,0,R; Cen,nA) if phases are chosen so that the

radial wave function φ
(0)
L (r) is real. The cross terms in Eq. (23)

with L = 0,L′ = 2 and L′ = 2,L = 0 then agree with the
result given in Ref. [18] when a correct identification is
made with the notation used in Ref. [18] for u(r), the L = 0
component, and w(r), the L = 2 component of the deuteron
wave function, i.e.,

φ
(0)
0 = u(r)

r
,

(24)

φ
(0)
2 = 1

2

w(r)

r
.

In Ref. [18] the nuclear parts of the neutron and proton
potentials are assumed to have identical forms, in which case
the proton terms can be included simply by multiplying all the
expressions (16), (19), (20), and (22) by a factor of 2.
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IV. CONTRIBUTION TO THE ADWA DISTORTING
POTENTIAL FROM THE NUCLEON-NUCLEUS

POTENTIAL SPIN-ORBIT POTENTIAL

A. The nucleon-nucleus spin-orbit interaction

It is assumed that that the neutron-nucleus potential has the
Thomas form

V so
nA(rn,sn) = 1

rn

dU so
nA(rn)

drn

ln · sn, (25)

where ln = rnA ∧ pn and pn is the momentum of the neutron.
Throughout this paper the nucleon spin-orbit form factor,
U so

nA(rn), is assumed to be real.
For the purpose of the folding model being considered here

it is convenient to use the alternative expression

V so
nA(rn,sn) = 1

ı
∇rn

∧ U so
nA(rn)∇rn

· sn, (26)

where the ∇rn
operators act on everything to the right that

depends on the coordinate rn, including any state vector.
I take the nucleon to be a neutron for definiteness. The
equivalence of Eqs. (25) and (26) comes from the assumption
that U so

nA(rn) depends only on the magnitude of rn and that
∇rn

∧ ∇rn
= 0.

For the deuteron-nucleus case it is necessary to express the
right-hand side of Eq. (26) in terms of the coordinates of the
center of mass of n and p relative to the target, R, and r the
relative coordinate of n and p. They are related to the n-A and
p-A separation vectors, rnA and rnA, by

R = 1
2 (rnA + rpA),

(27)
r = (rnA − rpA).

I find

1

r n

dU so
nA(rn)

drN

ln · sn

= −2ı∇r ∧ U so
nA

(∣∣∣∣R + 1

2
r

∣∣∣∣
)

∇r · sn

− ı
1

2
∇R ∧ U so

nA

(∣∣∣∣R + 1

2
r

∣∣∣∣
)

∇R · sn. (28)

Note that there are no cross terms involving different ∇
operators. This has the consequence that folding matrix
elements of the neutron spin-orbit potential, such as in V JT ,
display the expected symmetries more transparently.

The right-hand side of Eq. (28) does not take into account
properly that the momentum pn that appears in ln should be the
momentum of the neutron in the n-A center-of-mass system.
As a result the term involving R operators should be multiplied
by

C2(A) = (A + 2)

(A + 1)
, (29)

and the term involving r operators should be multiplied by

C1(A) = A

(A + 1)
. (30)

I ignore these factors in the development, only restoring them
in the final formulas.

B. Some basic results for the neutron spin-orbit
contributions to V J T

In general, V JT is a linear combination of tensors of rank
0, 1, and 2 in the space of operator Sd with coefficients that
transform like tensors of the same rank in R space constructed
from the operators R, pR . I already show in Sec. III that the
central parts of the neutron optical potential contribute a central
term and rank-2 TR(R,Sd ) term arising from the deuteron D
state. Before showing detailed new expressions I discuss the
results obtained from the neutron spin-orbit contribution when
the D state is neglected.

If D-state components are ignored the states φ
(i)
Ms′

, i = 0,1,
are both L = 0 states and have the form

φ
(i)
Ms′

(r,n,p) = u
(i)
0 (r)χ1,Ms′ (n,p), (31)

where, in the notation of Eqs. (2) and (4), u(i)
0 (r) = 1√

4π
φ

(i)
0 (r).

I show that in this case the contribution to V JT from the
first term on the right-hand side of Eq. (28) vanishes.

This term contributes〈
u

(1)
0 χ1,Ms

∣∣(−2ı∇r ∧ U so
nA∇r · sn

)∣∣u(0)
0 (r)χ1,Ms′

〉
= 〈u(1)

0

∣∣(−2ı∇r ∧ U so
nA

)∣∣u(0)
0

〉 · 〈χ1,Ms
|sn|χ1,Ms′ 〉. (32)

The ∇r operator acting on u
(0)
0 (r) gives a state proportional to

r . The integrand vanishes for r → ∞ and hence integrating
by parts once allows the other ∇r to act on u

(1)
0 (r) and also

produce a state proportional to r . The result is an integrand
proportional to r ∧ r = 0.

More generally, it is shown in Sec. IV C that when the D-
state terms are included the (−2ı∇r ∧ U so

nA∇r · sn) term gives
a central and TR(R,Sd ) term only. If the deuteron has definite
parity there is no vector spin-orbit term, LR · Sd , from the
first term on the right-hand side of Eq. (28). The entire vector
spin-orbit term contribution to V JT comes from the second
term on the right-hand side of Eq. (28), −ı 1

2∇R ∧ U so
nA∇R · sn

as shown in detail in Sec. IV D.
When D-state terms are neglected the second term in

Eq. (28) gives the contribution

1

4

1

R

dVso(R)

dR
LR · Sd , (33)

where

Vso(R) =
∫

d ru(1)∗
0 (r)U so

nA

(∣∣∣∣R + 1

2
r

∣∣∣∣
)

u
(0)
0 (r). (34)

This is a well known result in the Watanabe case.
When the D state is included the term (−2ı∇r ∧ U so

nA∇r ·
sn) gives central and second rank tensor forces of a con-
ventional type, whereas the term −ı 1

2∇R ∧ U so
nA∇R · sn also

gives some novel non-Hermitian tensor terms that do not
appear in the Watanabe model. In the spin-dependent terms
the non-Hermitian nature of the ADWA potential is manifest
for the first time.
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In the following sections I give explicit formulas for the
complete contributions to V JT from the neutron spin-orbit
potential when φ

(1)
Ms′

and φ
(0)
Ms

have a general structure.
The analysis makes heavy use of spherical tensor concepts.

Key definitions and notations are collected in Appendix A.
I use methods that can readily be generalized to the case

when the φ
(i)
Md′ describe two-body cluster states of a very

general structure.

C. Contribution from the term −2ı∇r ∧ U so
nA(|R + 1

2 r|)∇r · sn

in Eq. (28)

First of all it is shown quite generally, as already mentioned
in the last section, that the first term on the right-hand side
of Eq. (28) gives a vanishing contribution to the rank-1 spin
dependence of V JT if |φ(0)

Ms
〉 and |φ(1)

Ms′
〉 have the same parity

(both positive parity in the case of the deuteron).
The term

(
V JT (R,Sd )Ms′ ,Ms

)
(n,1) = 〈φ(1)

Ms′

∣∣ (−2ı∇r ∧ U so
nA

(∣∣∣∣R + 1

2
r

∣∣∣∣
)

∇r · sn

) ∣∣φ(0)
Ms

〉
, (35)

involves an integration over r in which, if |φ(0)
Ms

〉 and |φ(1)
Ms′

〉 have the same parity, all terms except U so
nA(|R + 1

2 r|) have positive

parity in the variable r . Note that the product of the two operators, ∇r , cannot change parity. Because U so
nA(|R + 1

2 r|) depends on
the magnitude |R + r/2| only, the integration over r will produce an even parity function that depends on the single spatial vector
R only. Therefore, there can be no rank-1 component proportional to R. Since the only possible rank-1 spin term in (V JT )(n,1)

that depends only on Sd and R is Sd · R, this term must vanish. There will also be terms of rank 0 and 2 in (V JT )(n,1).
The details of the algebra involved in the explicit evaluation are given in Appendix B. The final result is

(
V JT (R,Sd )Ms′ ,Ms

)
(n,1) =

∑
K,Q

6
√

3√
4π

Y ∗
K Q(R)(1,Ms |τK Q(1)|1,Ms ′ )

×
∑

L,L′,L′′,L′′′
δL′′=L±1δL′′′=L′±1CK (L′′′ L′,L′′ L) F

(1,0)
K (L′′′ L′,L′′ L,R; so,nA), (36)

where

CK (L′′′ L′,L′′ L) =
∑
k1

L̂′′L̂′′′k̂2
1

⎧⎨
⎩

L 1 1
L′ 1 1
k1 1 K

⎫⎬
⎭
⎧⎨
⎩

L 1 L′′
L′ 1 L′′′
k1 1 K

⎫⎬
⎭ . (37)

The quantum numbers appropriate to the deuteron case are inserted into the result (B8) given in Appendix B, namely S = S ′ =
Sd = S ′

d = 1. Note that the pair L and L′ always has the same parity as does the pair L′′ and L′′′, but the latter pair has opposite
parity to the pair L and L′.

Note that, as anticipated, there is no K = 1 spin-orbit contribution here because the form factors FK vanish for odd K .
The spin-independent term corresponds to K = 0 and Eq. (36) gives

[(
V JT (R,Sd )Ms′ ,Ms

)
(n,1)

]
K=0 = δMs,M ′

s

3

2π

∑
L,L′′

L̂′′ (−1)LW (L 1L′ 1; L′′ 1) W (L 1L′ 1; 1 1) F
(1,0)
0 (L′′ L′,L′′ L,R; so,nA). (38)

It can be checked that this agrees with a direct evaluation from Eq. (B1).
The K = 2 tensor force term is

[(
V JT (R,Sd )

)
(n,1)

]
K=2 =

∑
Q

6
√

3√
4π

Y ∗
2 Q(R)τ2 Q(1)

∑
L,L′,L′′,L′′′

δL′′=L±1δL′′′=L′±1C2(L′′′ L′,L′′ L) F
(1,0)
2 (L′′′ L′,L′′ L,R; so,nA)

= TR(R,Sd )UJT
TR,(n,2,so)(R), (39)

with a form factor

UJT
TR,(n,1,so)(R) = 9

√
30

4π

∑
L,L′,L′′,L′′′

δL′′=L±1δL′′′=L′±1C2(L′′′ L′,L′′ L) F
(1,0)
2 (L′′′ L′,L′′ L,R; so,nA), (40)

where TR(R,Sd ) is defined in Eq. (21).
As noted in the discussion following Eq. (32), both the K = 0 and K = 2 terms vanish if components in φ(0) and φ(1) with

L > 0 are ignored.
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D. Contribution from the term −ı 1
2 ∇R ∧ U so

nA∇R · sn in Eq. (28)

This neutron contribution to V JT from this term, labeled
with the suffix (n,2), is

(
V JT (R, pR,Sd )Ms′ ,Ms

)
(n,2)

= 〈φ(1)
Ms′

∣∣ (−ı 1
2∇R ∧ U so

nA

(∣∣R + 1
2 r
∣∣)∇R · sn

) ∣∣φ(0)
Ms

〉
. (41)

I use the identity A ∧ B · C = −A ∧ C · B to write this
expression so that all terms involving integration over the
variable r and the nucleon spin variables n,p are together;
thus

(
V JT (R, pR,Sd )Ms′ ,Ms

)
(n,2)

= ı∇R ∧
[〈

φ
(1)
Ms′

∣∣ ( 1
2U so

nAsn

∣∣φ(0)
Ms

〉)] · ∇R. (42)

It is shown below that the rank-1 component of the
right-hand side of this expression has the form ıF (R)R ∧

〈Ms ′ |Sd |Ms〉 and so the result is a spin-orbit term F (R)R ∧
pR · 〈Ms ′ |Sd |Ms〉.

The quantity in square brackets is a matrix element in the
basis |R; Sd,Ms〉 of a vector operator M(R,Sd ), constructed
from the components of R and the spin-1 operator Sd .
Assuming that U so

nA(|R + 1
2 r|) is local gives

〈R′; Sd,Ms ′ |M(R,Sd )|R; Sd,Ms〉

= δ
(
R − R′)〈φ(1)

Ms′

∣∣ (1

2
U so

nA

(∣∣∣∣R + 1
2 r

∣∣∣∣
)

sn

) ∣∣φ(0)
Ms

〉
.

(43)

In terms of M(R,Sd ), Eq. (42) can be written

V JT (R, pR,Sd )(n,2) = ı∇R ∧ M(R,Sd ) · ∇R

= −ı pR ∧ M(R,Sd ) · pR. (44)

I proceed to evaluate the spherical component,
μ2, of the vector 〈φ(1)

Ms′
| 1

2U so
nAsn|φ(0)

Ms
〉 appearing in

〈R′; Sd,Ms ′ |M(R,Sd )|R; Sd,Ms〉 of Eq. (43). Using the ex-
pressions for the φ(i) from Eqs. (2) and (4) the result is

〈
φ

(1)
Ms′

∣∣1
2
U so

nA(sn)μ2 )
∣∣φ(0)

Ms

〉 = 1

2

∑
k q

Y ∗
k q(R)

∑
L,�,L′�′,σ,σ ′

(L′ �′,1 σ ′|Sd Ms ′ )(L�,1σ |Sd Ms)
L̂k̂√
8πL̂′ (L�,k q|L′ �′)

×(L 0,k 0|L′ 0)(1 σ,1 μ2|1 σ ′)
∫ ∞

0
r2 drφ

(1)∗
L′ (r)U so

nA(k,R,r)φ(0)
L (r), (45)

where U so
nA(k,R,r) is introduced in Eq. (B5) and I have used the results (13) and (B7). Note that because L and L′ always have

the same parity the coefficient (L 0,k 0|L′ 0) forces k to be even in Eq. (45).
I use the same technique that was applied in Sec. IV C to represent the summation over magnetic quantum numbers in terms

of a 9j symbol. Inserting the result (B8) in Eq. (45) gives

〈φ(1)
Ms′

|1

2
U so

nA(sn)μ2 )|φ(0)
Ms

〉 = 1

2

√
3

8π

∑
K,k L,L′

K̂k̂

⎧⎨
⎩

L 1 1
L′ 1 1
k 1 K

⎫⎬
⎭ L̂(L 0,k 0|L′ 0)

×
∑
q,Q

(k q,K Q|1 μ2)Yk q(R)F 1,0
k (L′,L,R; so,nA)〈1 Ms ′ |τKQ(1)|1 Ms〉. (46)

I define the form factor

F
(1,0)
k (L′,L,R; so,nA) =

∫ ∞

0
r2 drφ

(1)∗
L′ (r)U so

nA(k,R,r)φ(0)
L (r). (47)

The only difference between this form factor and the one defined in Eq. (17) is the presence of the form factor of the nucleon
spin-orbit potential U so

nA(k,R,r) instead of V Cen
nA (k,R,r).

The structure of the right-hand side of Eq. (46) is clearer if it is rewritten as

〈
φ

(1)
Ms′

∣∣1
2
U so

nA(sn)μ2 )
∣∣φ(0)

Ms

〉 = ∑
k,q,K,Q

(k q,K Q|1 μ2)Yk,q(R)G(1,0)
k (K,R,so,nA)〈1 Ms ′ |τKQ(1)|1 Ms〉, (48)

where I define the form factors G
(1,0)
k (K,R,so,nA) by

G
(1,0)
k (K,R,so,nA) = 1

2

√
3

8π
K̂k̂

∑
L,L′

⎧⎨
⎩

L 1 1
L′ 1 1
k 1 K

⎫⎬
⎭ L̂(L 0,k 0|L′ 0)F (1,0)

k (L′,L,R; so,nA). (49)
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The correct covariant structure displayed in Eq. (48) should
be noted. It shows Yk q(R), a tensor of rank k in R space,
coupled to τKQ(1), a rank-K tensor in deuteron spin space, to
form a tensor of rank 1, component μ2, in the combined space.
In Eq. (44) this vector is coupled with two vector operators
pR to make a tensor of rank 0 in the combined space of R and
deuteron spin.

Using Eq. (48) it is possible to show the contributions
from the n-A spin-orbit force [second term in Eq. (28)] to
the ADWA potential as a linear combination of spin tensors
of rank K = 0 (scalar), vector K = 1 (this turns out to be
an LR · Sd interaction), and K = 2 tensor terms. It can be
seen immediately from the 9j symbol in Eq. (49) or the
Clebsch-Gordan coefficient in Eq. (48) that the K = 0 term
always vanishes because K = 0 forces k to be 1 which violates
the parity condition mentioned above that k must be even.

A K = 0 and additional K = 2 contributions coming from
the first term in Eq. (28) are discussed in Sec. IV C.

E. Comparison with the Watanabe optical potential (2)

A further consequence of the structure of Eq. (48) is to
produce a significant difference between the spin dependence
of the ADWA potential and the Watanabe model. The latter
is a simple model for the deuteron elastic scattering optical
potential. In the Watanabe case φ

(1)
L (r) is replaced by the

real function φ
(0)
L (r) everywhere. From the definition (47) it

is found that for even k

F
(0,0)
k (L′,L,R; so,nA) = F

(0,0)
k (L,L′,R; so,nA). (50)

On the other hand, the 9j symbol in Eq. (49) is multiplied
by (−1)K+1 if L and L′ are interchanged. This symmetry
appears because a 9j symbol is multiplied by (−1)p when
two rows are interchanged, where p is the sum of all
nine entries in the symbol. In the current case (−1)p =
(−1)(L+L′+k+3+2+K) = (−1)K+1 because L + L′ + k must be
even by parity conservation. Also,

L̂(L 0,k 0|L′ 0) = L̂′(′L 0,k 0|L 0). (51)

Hence, interchanging the dummy summation variables L and
L′, it follows that if K = 2 the form factor G

(0,0)
k (2,R,so,nA)

must vanish. Thus, in the Watanabe model the first term in
Eq. (28) generates only a rank-1 spin-orbit force and no rank-2
forces.

F. Explicit expressions for the ADWA spin dependence
generated by the term −ı 1

2 ∇R ∧ U so
nA∇R · sn

According to Eqs. (44) and Appendix A, Eq. (A2), it is
necessary to calculate

V JT (R, pR,Sd )(n,2)

= ı(−ı
√

2)
∑

μ1,μ2,μ

(1 μ1,1 μ2|1 μ)

× [(∇R)μ1 (M(R,Sd ))μ2

]
(−1)μ(∇R)−μ. (52)

The results (B2) and (B3) can again be used to calculate the
effect of the gradient operator (∇R)μ1 in Eqs. (52). Using the

expansion (48) for (M(R,Sd ))μ2 gives(
V JT (R, pR,Sd )

)
(n,1) =

∑
μ

A(R,Sd )μ(−1)μ(∇R)−μ, (53)

where I define the vector operator A(R,Sd ) by

A(R,Sd )μ

=
∑

K,k,k′=k−1,k+1

√
6(−1)K+1k̂′W (1 1 k′ k ; 1 K)

×{Yk′(R) × τK (1)}1,μ

[
Ôk′ kG

(1,0)
k (K,R,so,nA)

]
=

∑
K,k,k′=k−1,k+1

{Yk′(R) × τK (1)}1,μA
(1,0)
k′,k (K,R,so,nA).

(54)

For clarity I introduce a new form factor

A
(1,0)
k′,k (K,R,so,nA) =

√
6(−1)K+1k̂′W (1 1 k′ k ; 1 K)

× [Ôk′ kG
(1,0)
k (K,R,so,nA)

]
, (55)

where G
(1,0)
k (K,R,so,nA) is defined in Eq. (49). In deducing

Eq. (53) the summation over μ1, μ2, and q has been carried
out using the result∑

μ1,μ2,q

(k q,K Q|1 μ2)(k q,1 μ1|k′ q ′)(1 μ1,1 μ2|1 μ)

=
√

3k̂′(−1)k+K+1W (1 1 k′ k; 1 K)(k′ q ′,K Q|1 μ), (56)

which follows from the definition of a Racah coefficient in
terms of Clebsch-Gordan coefficients.

Equations (53), (54), and (55) give an explicit formula
for all the spin-tensor components of the ADWA potential
generated by the neutron-nucleus spin-orbit interaction [first
term in Eq. (28)]. In the next sections formulas for the K = 1
and K = 2 are given separately.

G. Rank-1 spin dependence: K = 1

For K = 1, an important result that follows from properties
of the Racah coefficient in Eq. (55) is that for the allowed
values of k, namely k = 0 and k = 2, the only allowed value
of k′ is k′ = 1. Use can then be made of∑

q ′,Q

(1 q ′,1 Q|1 μ)Y1 q ′ (R)τ (1)1 Q

=
∑
q ′,Q

(1 q ′,1 Q|1 μ)

√
3

4π

Rq ′

R

√
3

2
(Sd )Q

= 3√
8π

× ı√
2

(R ∧ Sd )μ
R

, (57)

where the last of Eqs. (A2) and the identities

τ1 Q(1) =
√

3

2
(Sd )Q,

(58)

R Y1 q ′(R) =
√

3

4π
Rq ′ ,
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are used. Putting together all these results into Eq. (53) gives

(V JT (R, pR,Sd )K=1
(n,2)

=
∑

k

A
(1,0)
1,k (1,R,so,nA)

3ı√
16π

1

R
(R ∧ Sd · ∇R)

=
∑

k

3√
16π

1

R
A

(1,0)
1,k (1,R,so,nA)(LR · Sd ). (59)

The result is that the ADWA spin-orbit potential arising
from the neutron-nucleus spin-orbit potential is

V JT n
so (R, pR,Sd ) = UJT

so (R,nA) LR · Sd , (60)

with a form factor

UJT
so (R,nA)

= 27

16π

∑
k=0,2

k̂W (1 1 1 k ; 1 1)
∑
L,L′

⎧⎨
⎩

L 1 1
L′ 1 1
k 1 1

⎫⎬
⎭

× L̂(L 0,k 0|L′ 0)
1

R

[
Ô1,kF

(1,0)
k (L′,L,R; so,nA)

]
, (61)

where

Ô1 0 = 1√
3

d

dR
,

Ô1 2 = −
√

2

3

(
d

dR
+ 3

R

)
. (62)

Note that the k = 0 term, which includes both L = 0 and
L = 2 terms, has the Thomas form. Putting in the explicit
values for the Racah and 9j symbols gives

UJT
so (R,nA)(k=0) = 1

4

1

R

d

dR

[
F

(1,0)
k (0,0,R; so,nA)

4π

− 1

2

F
(1,0)
k (2,2,R; so,nA)

4π

]
. (63)

The L = 0 contribution agrees with that given in Eqs. (33)
and (34), but note that the quadratic L = 2 contribution enters
with a different weighting than the L = 2 contribution to the
central component of the ADWA potential from the central
n-A potential displayed in Eq. (19).

The k = 2 to UJT
so (R,nA) in Eq. (61), which is only present

when the n-p tensor force is taken into account, does not have
the Thomas form. As it includes terms linear in L = 2 radial
functions (L = 0,L′ = 2 and L = 2,L′ = 0) it may carry the
dominant D-state contribution to UJT

so (R,nA).

H. Rank-2 spin dependence: K = 2

For K = 2 the only allowed values for k and k′ in Eqs. (55)
and (54) are k = 2 and k′ = 1, 3, and hence

(V JT (R, pR,Sd ))K=2
(n,2) =

∑
k′=1, 3

A
(1,0)
k′,2 (2,R,so,nA)

∑
μ

{Yk′(R) × τ2(1)}1,μ(−1)μ(∇R)−μ

= ı
∑

k′=1, 3

A
(1,0)
k′,2 (2,R,so,nA){Yk′(R) × τ2(1)}1 · pR, (64)

where

A
(1,0)
k′,2 (2,R,so,nA) = −

√
6k̂′W (1 1 k′ 2 ; 1 2)

[
Ôk′ 2G

(1,0)
2 (2,R,so,nA)

]
. (65)

Using the explicit formulas for G
(1,0)
2 (2,R,so,nA) given in Eq. (49) gives

G
(1,0)
2 (2,R,so,nA) = 1

20

1√
8π

(
F

(1,0)
2 (2,0,R; so,nA) − F

(1,0)
2 (0,2,R; so,nA)

)
, (66)

Inserting explicit values for the Racah coefficient in Eq. (65) yields

A
(1,0)
1,2 (2,R,so,nA) =

√
6

40
√

5

(
d

dR
+ 3

R

) (
F

(1,0)
2 (2,0,R; so,nA) − F

(1,0)
2 (0,2,R; so,nA)

)
√

4π
, (67)

and

A
(1,0)
3,2 (2,R,so,nA) = 1

20
√

5

(
d

dR
− 2

R

) (
F

(1,0)
2 (2,0,R; so,nA) − F

(1,0)
2 (0,2,R; so,nA)

)
√

4π
. (68)

An alternative form that is more useful in applications is obtained by using the identity

{Yk′(R) × τ2(1)}1 · pR = (−1)k
′
√

3

5
{Yk′(R) × pR}2 · τ2(1), (69)

and the corresponding expression for (V JT (R, pR,Sd ))K=2
(n,2) is

(V JT (R, pR,Sd ))K=2
(n,2) = −ı

√
3

5

∑
k′=1, 3

A
(1,0)
k′,2 (2,R,so,nA){Yk′(R) × pR}2 · τ2(1). (70)
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Appendix D gives the matrix elements of the potential (70)
in a basis suitable for applications to the calculation of the
distorted wave needed in the evaluation of A(d,p)B transition
amplitudes in the ADWA.

Symmetry properties of the new tensor potential

It is not obvious from expressions (64) and (70) that they
define an anti-Hermitian interaction, although it is shown quite
generally in Appendix C that this is in fact the case. By
inverting the algebra that led to Eq. (70) this issue and the
connection with the work of Satchler [20] can be clarified.

The inverse of Eq. (B2) is∑
μ1,q

(k q,1 μ1|k′ q ′)(∇r )μ1f (r)Yk q(r)

= δk′=k±1Yk′ q ′ (r)(Ôk′ kf (r)). (71)

Using this and the Racah coefficient identity (56) I find that
Eq. (64) is equivalent to

(V JT (R, pR,Sd ))K=2
(n,2) = −ı pR · ({G(1,0)

2 (R) × τ2(1)
}

1 ∧ pR

)
,

(72)

where G
(1,0)
2q (R) is a second-rank tensor defined by

G
(1,0)
2q (R) = Y2q(R)G(1,0)

2 (2,R; so,n)

= Y2q(R)
1

20

1√
8π

(
F

(1,0)
2 (2,0,R; so,nA)

−F
(1,0)
2 (0,2,R; so,nA)

)
. (73)

Note that both pR operators in Eq. (72) can act on everything
to the right because pR ∧ pR = 0.

It is useful to compare the structure of expression (72)
with the form given in Eqs. (43) and (44) for the com-
plete contribution to the adiabatic potential from the second
term in Eq. (28). The anti-Hermitian nature of the second-
rank spin-tensor component of expression (44) is proved in
Appendix C. The proof of the anti-Hermitian property of
expression (72) follows similar lines. The crucial point is that
the vector {G(1,0)

2 (R) × τ2(1)}1μ that appears in Eq. (72) is
anti-Hermitian.

In Ref. [20] Satchler does not consider a spin-1 tensor force
of the type of Eq. (72), although it certainly satisfies all the
symmetry properties considered to be essential in Ref. [20],
i.e., to be a tensor of rank 0 in combined space and spin space,
reflection invariant, and to generate a symmetric S matrix
(reciprocity) in the angular momentum basis.

It does not seem possible to rewrite any of the equivalent
expressions (64), (70), or (72) in any of the forms considered
in Ref. [20]. Note that if the second-rank tensor G

(1,0)
2q (R) is

replaced by a first-rank tensor in R then the potential (72)
becomes Hermitian and violates the condition for a symmetric
S matrix used in Ref. [20].

In the case of the Watanabe potential, which is a model of
the elastic deuteron-nucleus optical potential in which open
deuteron elastic breakup channels are neglected, this new
tensor force would be expected not to contribute because
it gives a non-flux-conserving anti-Hermitian potential even

when the neutron optical potential is real. It was shown
already in Sec. IV E that it does indeed vanish automatically
in the Watanabe case. That this does not occur for the ADWA
distorting potential is because this potential is designed to
describe a coherent superposition of elastic deuteron and
elastic breakup channels projected onto a volume of space
within the range of Vnp. There is no reason why the flux
associated with this projection should be conserved even when
all other channels are closed and the nucleon optical potentials
are real. Therefore, the effective interaction that drives this
projection can be complex to reflect flux lost into regions
outside the range of Vnp.

I. Low-energy approximation for the new rank-2 spin-tensor
contribution to the ADWA potential

In this section I show that in an approximation that is
expected to be adequate for low-energy deuterons (center-
of-mass energy less than 10 MeV, say) I can replace the
momentum-dependent potential (64) by a local second-rank
potential of the TR type.

A low-energy deuteron incident with energy Ed on a
medium or heavy nucleus is moving in an attractive potential
well with real part Vd (R) of depth approximately 100 MeV. It
was pointed out by Goddard [21] that a result of this is that the
deuteron’s momentum direction in the region of the nucleus is
approximately radial; i.e.,

pR ≈ − R
R

p(R), (74)

where

p(R) =
√

2Md

�2
(Ed − Vd (R)). (75)

Goddard showed that using this insight a momentum-
dependent tensor potential of the Tp type [20] could be replaced
by an approximately equivalent TR potential. He showed that
this equivalence was well satisfied for 10-MeV deuterons and
deduced that at this energy it was very difficult to distinguish
the effects of Tp and TR potentials in the phenomenological
deuteron optical potential. Here I use the same idea to study
the rank-2 momentum-dependent contribution to the ADWA
potential derived in Sec. IV H.

Using approximation (74) in the K = 2 contribution to
Eq. (44) gives

V JT (R, pR,Sd )(K=2)
(n,2) = −ı pR ∧ M (K=2)(R,Sd ) · pR

= −ı[ pR ∧ M (K=2)(R,Sd )] · pR

≈ +ı[ pR ∧ M (K=2)(R,Sd )] · R
p(R)

R
,

(76)

where, in the last two lines, the square brackets mean that the
operator pR acts only on the factor M (K=2)(R,Sd ).

Because R commutes with [ pR ∧ M (K=2)] the identity
A · B ∧ C = A ∧ B · C can be used to rewrite that last line
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of Eq. (76) as

V JT (R, pR,Sd )(K=2),approx
(n,2) = +ı[R ∧ pR · M (K=2)(R,Sd )]

p(R)

R

= ı[LR · M (K=2)(R,Sd )]
p(R)

R
. (77)

The effect of the angular momentum operator LR on M (K=2) can be calculated by using the expressions for M (K=2) as a linear
combination of spherical harmonics in Eqs. (43), (48), and (49). The result is

[L R · M (K=2)] =
∑

μ

(−1)μ
[
(LR)μ M (K=2)

−μ

]

=
∑

μ

(−1)μ
∑
k,q,Q

(k q,2 Q|1 − μ)[LμYk,q(R)]G(1,0)
k (2,R,so,nA)τ2Q(1)

=
∑

μ

(−1)μ
∑
k,q,Q

(k q,2 Q|1 − μ)

⎛
⎝∑

q ′

√
k(k + 1)(k q,1 μ|k q ′)Yk,q ′(R)

⎞
⎠G

(1,0)
k (2,R,so,nA)τ2Q(1), (78)

where I used (Ref. [19], p. 150)

ŁμYk,q(R) =
√

k(k + 1)
∑
q ′

(k q,1 μ|k q ′)Yk,q ′(R). (79)

This just expresses the fact that the spherical harmonics are eigenfunctions of L2 and Lz. Note that LR commutes with any
function of the magnitude R.

The summation over q and μ is carried out using properties of the Clebsch-Gordan coefficients to give

∑
q,μ

(−1)μ(k q,2 Q|1 − μ)(k q,1 μ|k q ′) =
√

3√
5

(−1)Q δk,2δq ′,−Q, (80)

so that

[L R · M (K=2)] =
√

3√
5

√
6G

(1,0)
2 (2,R,so,nA)

∑
Q

(−1)QY2,−Q(R)τ2Q(1)

=
√

3√
5

√
6G

(1,0)
2 (2,R,so,nA)Y2(R) · τ2(1). (81)

Finally, Eq. (76) reduces to

V JT (R, pR,Sd )(K=2),approx
(n,2) = ı3

√
2

5

p(R)

R
G

(1,0)
2 (2,R,so,nA)Y2(R) · τ2(1)

= ı
9
√

2√
8π

p(R)

R
G

(1,0)
2 (2,R,so,nA)TR(R,Sd ), (82)

where TR is the standard rank-2 tensor force defined in Eq. (21).
Using the explicit formulas for G

(1,0)
2 (2,R,so,nA) given in

Eq. (66) gives

V JT (R, pR,Sd )(K=2),approx
(n,2)

= ı
9
√

2

40

p(R)

R

1

4π

(
F

(1,0)
2 (2,0,R; so,nA)

−F
(1,0)
2 (0,2,R; so,nA)

)
TR(R,Sd ). (83)

The factor ı in this formula shows clearly the anti-Hermitian
nature of this tensor potential contribution for a real nucleon
spin-orbit potential and how it vanishes in the case of the

Watanabe potential when the factor involving F
(1,0)
2 becomes

(F (0,0)
2 (2,0,R; so,nA) − F

(0,0)
2 (0,2,R; so,nA)) = 0.

Note that when approximation (74) is applied to the K = 1
terms in V JT

(n,1) it gives a vanishing result and therefore does
not give a useful approximation to the vector spin-orbit force.

J. Origin of the new tensor force

Although the definition of the ADWA distorting potential
given in Eq. (1) is certainly not Hermitian in general even if the
nucleon optical potentials are, this property has not shown up in
the usual approximate evaluations that have been published so
far. The reason for this is that the contribution from states of the
n-p system that couple different orbital angular momenta have
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not been included before together with the nucleon-nucleus
spin-orbit force. The non-Hermitian tensor force given by
Eq. (64) or the approximate form given by Eq. (83) both give
a vanishing result if there are no terms with L �= L′.

The physical origin of the difference of form factors
appearing in Eq. (83), and hence the source of this interaction,
can be made more transparent by making use of the coupled
eigenvalue equations satisfied by the radial functions φ

(0)
L (r)

and φ
(1)
L (r).

I assume a nucleon-nucleon (NN) potential in the even-
parity, isospin zero state appropriate to the deuteron has central
(C), spin-orbit (SO), and tensor (T) components and has the
form

vNN(r, pr ,Sd ) = vC
NN(r) + vSO

NN(r, pr ,Sd ) + vT
NN(r,Sd ).

(84)

The eigenvalue equations for the radial parts of the deuteron
ground state are

(−εd − T0)φ(0)
0 (r) = vC

NN(r)φ(0)
0 (r) + +vT

NN(r)0,2φ
(0)
2 (r)

(−εd − T2)φ(0)
2 (r) = (vC

NN(r) + vSO
NN(r,2) + vT

NN(r)2,2
)
φ

(0)
2 (r)

+ vT
NN(r)2,0φ

(0)
0 (r), (85)

where TL is the kinetic energy operator for a state with
orbital angular momentum L, εd is the deuteron binding
energy, and vSO

NN(r,2) is the NN spin-orbit interaction in the
state L = 2,J = 1. The quantities vT

NN(r)L′,L are the matrix
elements of the NN tensor potential in the |L,J = 1,M〉 basis.

Equation (3) gives

φ
(1)
L (r) = Cnp(−εd − TL)φ(0)

L (r), (86)

where Cnp is the constant

Cnp = 1〈
φ

(0)
Ms

∣∣Vnp

∣∣φ(0)
Ms

〉 . (87)

Cnp is independent of Ms if Vnp is a tensor of rank 0 in the
combined spin and coordinate space of n and p.

Putting together Eqs. (83), (85), and (87) and assuming that
all the radial functions have been chosen to be real gives(

F
(1,0)
2 (2,0,R; so,nA) − F

(1,0)
2 (0,2,R; so,nA)

)
= Cnp

[〈
φ

(0)
0 vT

NN(r)20φ
(0)
0

〉+ 〈φ(0)
2 (vT

NN(r)22

+ vSO
NN(r,2))φ(0)

0

〉− 〈φ(0)
2 vT

NN(r)02φ
(0)
2

〉]
. (88)

Here the notation used temporarily is

〈(· · · )〉 ≡
∫

r2drU s0
nA(2,R,r)(· · · ). (89)

Note that if terms involving φ
(0)
2 , vT

NN, and vSO
NN are regarded

as all being of first order in small quantities then to first order(
F

(1,0)
2 (2,0,R,so,nA) − F

(1,0)
2 (0,2,R,so,nA)

)
≈ Cnp

〈
φ

(0)
0 vT

NN(r)20φ
(0)
0

〉
, (90)

which to the same approximation is the same as
F

(1,0)
2 (2,0,R; so,nA). Hence quantity (88) is expected to be

of the same order of magnitude as the terms appearing in
the TR potential displayed in Eqs. (22) and (23), modified by
the ratio of the strength of the neutron spin-orbit and central
potentials.

V. SUMMARY

In this section all formulas for the central, spin-orbit,
and rank-2 spin-tensor components of the ADWA distorting
potential generated by the n-A optical are brought together
with the appropriate recoil correction factors C1 and C2 defined
in Eqs. (29) and (30) inserted.

A. The central ADWA potential

From Eqs. (19) and (38),

V JT (R)n,Central = 1

4π

[
F

(1,0)
0 (0,0,R; Cen,nA) + F

(1,0)
0 (2,2,R; Cen,nA)

]
+ 3

2π

A

(A + 1)

∑
L,L′′

L̂′′ (−1)LW (L 1L 1; L′′ 1) W (L 1L 1; 1 1) F
(1,0)
0 (L′′ L′,L′′ L,R; so,nA). (91)

The form factors F
(1,0)
0 (L,L,R; Cen,nA) and F

(1,0)
0 (L′′ L′,L′′ L,R; so,nA) are defined in Eqs. (17) and (B5), respectively.

B. The ADWA spin-orbit potential

From Eqs. (60) and (61),

V JT (R, pR,Sd )n,so = UJT
so (R,nA) LR · Sd ), (92)

with a form factor

UJT
so (R,nA) = 27(A + 2)

16π (A + 1)

∑
k=0,2

k̂W (1 1 1 k ; 1 1)
∑
L,L′

⎧⎨
⎩

L 1 1
L′ 1 1
k 1 1

⎫⎬
⎭ L̂(L 0,k 0|L′ 0)

1

R

[
Ô1,kF

(1,0)
k (L′,L,R; so,nA)

]
, (93)

where Ô1 0 and Ô1 2 are defined in Eq. (62). The form factor F
(1,0)
k (L′,L,R; so,nA) is defined in Eq. (47).
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C. The ADWA rank-2 spin tensor of the TR(R,Sd) type

From Eqs. (23) and (40),

V JT (R,Sd )TR,nA = TR(Sd ,R)UJT
TR,nA(R), (94)

where the form factor is given by

UJT
TR,nA(R) = 3√

2

1

4π

(
F

(1,0)
2 (0,2,R; Cen,nA) + F

(1,0)
2 (2,0,R; Cen,nA) − 1√

2
F

(1,0)
2 (2,2,R; Cen,nA)

)

+ 9
√

30A

4π (A + 1)

∑
L,L′,L′′,L′′′

δL′′=L±1δL′′′=L′±1C2(L′′′ L′,L′′ L) F
(1,0)
2 (L′′′ L′,L′′ L,R; so,nA), (95)

where C2(L′′′ L′,L′′ L) is defined in Eq. (37) and F
(1,0)
2 (L′′′ L′,L′′ L,R; so,nA) is defined in Eq. (B5).

D. The new ADWA rank-2 spin-tensor potential

The new rank-2 potential can be expressed in several different forms. The expression most useful for applications to coupled
channels codes is probably Eq. (70), viz.,

(
V JT (R, pR,Sd )

)K=2

(n,2) = −ı

√
3

5

∑
k′=1, 3

A
(1,0)
k′,2 (2,R,so,nA){Yk′(R) × pR}2 · · · τ2(1). (96)

Explicit forms for the functions A
1,0
k′,2(2,R),k′ = 1,3 can be found in Eqs. (67) and (68).

An alternative expression that makes the anti-Hermitian property of this potential more evident and could be more useful in a
perturbative treatment can be found in Eq. (72), which I rewrite here as

(V JT (R, pR,Sd ))K=2
(n,2) = 1

ı

1

20
√

2
pR ·

⎛
⎝{Y2(R)

(
F

(1,0)
2 (2,0,R; so,nA) − F

(1,0)
2 (0,2,R; so,nA)

)
√

4π
τ2(1)}1 ∧ pR

⎞
⎠ . (97)

VI. COMMENTS

This paper forms part of an investigation into the implica-
tions of Ref. [3] for the calculation of A(d,p)B transition
amplitudes. It was shown there that for incident deuteron
energies of current experimental interest these amplitudes are
dominated by the first Weinberg component of the full three-
body scattering wave function. In the ADWA this component
is approximated by a distorted wave in the Johnson-Tandy
potential defined in Eq. (1). The systematics of calculations
using this potential with a finite range n-p interaction are
reported in Ref. [17] and methods for dealing with nonlocal
and energy-dependent nucleon-A optical potentials needed in
Eq. (1) are described in Refs. [10–12]. One result of these
studies is that when equivalent local potentials are used in the
ADWA potential they should be evaluated at an energy shifted
by about 40 MeV from the prescription that follows from the
Watanabe model [22]. This energy shift is determined by short
range properties of the n-p interaction. It will be interesting
to see how far this shift is modified by the D-state effects
included in the results presented here.

The emphasis here has been on the spin dependence of
the ADWA potential. Novel features not seen or expected
from studies of the Watanabe optical model are obtained.
The quantitative implications for these observations and their
relevance to deuteron stripping and pickup experiments,
including polarization experiments, will be the subject of
further work.
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APPENDIX A: SPHERICAL TENSOR NOTATION

This appendix gathers together the main definitions and
notations for spherical tensors and general tensor products
used in the main text.

Spherical components of a vector are

A0 = Az,
(A1)

A±1 = ∓1√
2

(Ax ± ıAy).

Expressions for vector products of vectors in terms of spherical
components are

A · B =
∑

μ=0,±1

(−1)μAμB−μ,

(A2)
(A ∧ B)μ = −ı

√
2
∑
μ1μ2

(1 μ1,1 μ2|1 μ)Aμ1Bμ2 .
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I use the following notation for general tensor products:

{Ak1 × Bk2}k3 q3 =
∑
q1,q2

(k1 q1,k2 q2|k3 q3)Ak1 q1Bk2 q2 . (A3)

Note the special case

{Ak1 × Bk1}0,0 =
∑
q1,q

′
1

(k1 q1,k1 q2|0 0)Ak1 q1Bk1 q ′
1

=
∑
q1

(−1)k1−q1

k̂1
Ak1 q1Bk1 −q1

= (−1)k1

k̂1
Ak1 · Bk1 . (A4)

APPENDIX B: DERIVATION OF EQ. (36)

To proceed with the evaluation of Eq. (35), an integration
by parts once with respect to r is carried out. Since the
deuteron wave function vanishes exponentially at infinite r
all the surface terms vanish and the result is a change of sign

and a factor ∇r acting to the left on φ(1). Thus, remembering
that ((∇r )μ)∗ = (−1)μ(∇r )−μ, I obtain(

V JT (R,Sd )Ms′ ,Ms

)
(n,1)

= 〈(∇rφ
(1)
Ms′

)∣∣(2ı ∧ U so
nA∇r · sn)

∣∣φ(0)
Ms

〉
=

∑
μ1,μ2,μ

(−ı
√

2)(1 μ1,1 μ2|1 μ)(−1)μ1

× 〈(∇r )−μ1φ
(1)
Ms′

)
∣∣2ıU so

nA(∇r )μ2 (−1)μ(sn)−μ

∣∣φ(0)
Ms

〉
.

(B1)

I evaluate the effects of the ∇r by using Eqs. (2) and (4)
and the formula

(∇r )μ1f (r)Yk q(r)

=
∑

k′=k−1,k+1, q ′
(k q,1 μ1|k′ q ′)Yk′ q ′ (r)(Ôk′ kf (r)), (B2)

where the radial operators Ôk′ k are defined by

Ôk+1 k =
√

(k + 1)

(2k + 3)

(
d

dr
− k

r

)
,

(B3)

Ôk−1 k = −
√

k

(2k − 1)

(
d

dr
+ (k + 1)

r

)
.

This result is equivalent to the formula given on p. 150 of Ref. [19]. Note the restriction of the sum over k′ to terms of opposite
parity to k.

Using Eq. (B2) twice in Eq. (B1) together with formula (13) gives(
V JT (R,Sd )Ms′ ,Ms

)
(n,1) = 2

√
2
∑

μ1,μ2,μ

(1μ1,1μ2|1μ)
∑
kq

Y ∗
kq(R)

∑
L,�,L′�′,σ,σ ′

(L′�′,1σ ′|SdMs ′)(L�,1σ |SdMs)

×(−1)μ(1σ,1 − μ|1σ ′)〈1||sn||1〉
∑

L′′′=L′±1,�′′′
(−1)μ1 (L′�′,1 − μ1|L′′′�′′′)

×
∑

L′′=L±1,�′
(L�,1μ2|L′′�′′)

k̂√
4πL̂′′′ (L

′′�′′,kq|L′′′�′′′)F (1,0)
k (L′′′L′,L′′L,R; so,nA). (B4)

I have introduced the radial integral

F
(1,0)
k (L′′′ L′,L′′ L,R; so,nA) = L̂′′(L′′ 0,k 0|L′′′ 0)

∫ ∞

0
r2 dr

(
ÔL′′′ L′φ

(1)
L′ (r)

)∗
U so

nA(k,R,r)
(
ÔL′′ Lφ

(0)
L (r)

)
, (B5)

where U so
nA(k,R,r) is defined by an expansion of U so

nA(|R +
1
2 r|) analogous to Eqs. (9) and (10).

The integration over the spin variables of the neutron and
proton needed in Eq. (B1) gives

〈χ1,σ ′ (p,n)|(sn)μ2 |χ1,σ (p,n)〉
= 1

2 〈χ1,σ ′ (p,n)|(Sd)μ2 |χ1,σ (p,n)〉
= 1

2 (1σ,1μ2|1σ ′)〈1||Sd ||1〉
= 1

2 (1σ,1μ2|1σ ′)
√

2, (B6)

so that the reduced matrix element needed in Eq. (B4) is

〈1||sn||1〉 = 1√
2
. (B7)

In the third line of Eq. (B6) I used the general result,
〈J ||J ||J 〉 = √

J (J + 1) (Eq. (4.18) of Ref. [19]).
Note that because L and L′ always have the same parity the

coefficient (L0,k0|L′0) forces k to be even in Eq. (B4).
Using the relation between the 9-j symbol and Clebsch-

Gordan coefficients given in Ref. [19] (p. 144), the summation
over magnetic quantum numbers in Eq. (B4) can be reex-
pressed in a form that displays its dependence on spin tensors
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in the deuteron spin space. In particular the summation over σ
and σ ′ can be reexpressed using∑

σ,σ ′
(L′�′,S ′σ ′|S ′

dMs ′ )(L�,Sσ |SdMs)(Sσ,k2q2|S ′σ ′)

=
∑

KQ,k1q1

(−1)pŜ ′Ŝd

K̂2

k̂2

k̂2
1

L̂′

⎧⎨
⎩

L S Sd

L′ S ′ S ′
d

k1 k2 K

⎫⎬
⎭

×(L�,k1q1|L′�′)(−1)k1−q1 (k1 − q1,KQ|k2q2)

×(SdMs,KQ|S ′
dMs ′ ), (B8)

where p = (L − L′ + S − S ′ + Sd − S ′
d ). Using this, the sum-

mations over μ1, μ2, μ, �, �′, �′′, and �′′′ can then also be
expressed in terms of a 9j symbol. The result is given in
Eq. (36) in the main text.

APPENDIX C: PROPERTIES OF THE SPIN-DEPENDENT
INTERACTIONS UNDER HERMITIAN CONJUGATION

AND TIME-REVERSAL TRANSFORMATIONS

In this section I discuss certain key symmetry properties
of the vector operator, M(R,Sd ), defined in Eqs. (43) and
(48) that lead to important features of the ADWA spin

dependence. It is assumed that the neutron spin-orbit form
factor, U so

nA(rn), is real and that phase conventions are chosen
so that the radial functions φ

(i)
L (r), and hence the form factors,

F
(1,0)
k (L′,L,R; Cen,n), in which they appear, are real.

1. Parity conservation

Parity conservation [see the Clebsch-Gordan coefficient in
Eq. (47)] means that k must be even and hence M(R,Sd ) is
unchanged under the transformation R → −R.

2. Hermiticity

I examine the Hermiticity of M(R,Sd ). I have, from
Eqs. (48) and (43),

M(R,Sd )μ2 =
∑

k,q,K,Q

(kq,KQ|1μ2)Ykq(R)G(1,0)
k

×(K,R,so,nA)τK,Q(Sd ), (C1)

and hence

(M(R,Sd )μ2 )† =
∑

k,q,K,Q

(kq,KQ|1μ2)(Ykq(R))∗
(
G

(1,0)
k (K,R,so,nA)

)∗
τ
†
K,Q

=
∑

k,q,K,Q

(kq,KQ|1μ2)(−1)qYk−q(R)G(1,0)
k (K,R,so,nA)(−1)QτK,−Q(Sd ), (C2)

where I used

τ
†
K,Q(Sd ) = (−1)QτK,−Q(Sd ). (C3)

Hence

(M(R,Sd )μ2 )† =
∑

k,q,K,Q

(kq,KQ|1μ2)(−1)qYk,−q( �R)(−1)QτK,−Q(1)G(1,0)
k (K,R,so,nA)

=
∑

k,q,K,Q

(−1)k+K+1(k − q,K − Q|1 − μ2)(−1)μ2Yk,−q( �R)τK,−Q(1)G(1,0)
k (K,R,so,nA)

= (−1)μ2
∑

k,q,K,Q

(−1)k+K+1(k q,K Q|1 − μ2)Yk,q( �R)τK,Q(1)G(1,0)
k (K,R,so,nA)

= (−1)μ2 (MK=1(R,Sd ))−μ2 − (−1)μ2 (MK=2(R,Sd ))−μ2 , (C4)

where the fact that k is even has been used.
Referring to the connection between the spherical and

Cartesian components given in Appendix A, Eq. (A1), the
result (C4) implies that the Cartesian components of the vector
M(R,Sd ) corresponding to a particular K are Hermitian if K
is odd, but anti-Hermitian if K is even. In the notation of
Eq. (44) this means that the vector operator M(R,Sd ) satisfies

M(R,Sd ) = MK=1(R,Sd ) + MK=2(R,Sd ),

(MK=1(R,Sd ))† = MK=1(R,Sd ), (C5)

(MK=2(R,Sd ))† = −MK=2(R,Sd ).

The n-A spin-orbit form factor U so
nA(rn) has a finite range

and the functions φ(i) vanish at large r so it can be assumed
that the momentum operators pR in Eq. (43) are Hermitian.
Therefore, using (A ∧ B · C)† = −C† ∧ B† · A† gives

(V JT (R, pR,Sd )Ms′ ,Ms
)(n,1) = (V JT (R, pR,Sd )Ms′ ,Ms

)K=1
(n,1)

+ (V JT (R, pR,Sd )K=2
Ms′ ,Ms

)(n,1),

((V JT (R, pR,Sd )Ms′ ,Ms
)K=1
(n,1) )

† = (V JT (R, pR,Sd )Ms′ ,Ms
)K=1
(n,1) ,

((V JT (R, pR,Sd )Ms′ ,Ms
)K=2
(n,1) )

† = −(V JT (R, pR,Sd )Ms′ ,Ms
)K=2
(n,1) .

(C6)
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Hence, if the neutron spin-orbit potential is real, the rank-1
components of these contributions to the ADWA potential are
Hermitian, but the rank-2 components are anti-Hermitian.

3. Reciprocity and time reversal

It is also desirable that the distorted waves generated by
the ADWA potential have appropriate properties under time
reversal. In practice this requires

KV JT (R, pR,Sd )(n,1)K−1 = (V JT (R, pR,Sd )(n,1))
†, (C7)

where K is the antilinear time-reversal operator. When this
reciprocity relation is satisfied, phases of scattering wave

functions can be chosen so that the corresponding S matrix
in the angular momentum basis is symmetric.

To see that this condition is satisfied note that the spin
tensors τK,Q satisfy

KτK,QK−1 = (−1)K+QτK,−Q. (C8)

The factor (−1)K arises because the components of Sd

satisfy K(Sd )iK−1 = −(Sd )i ,i = x,y,z, and the τK,Q are
homogeneous polynomials of degree K in those components.

The Yk,q( �R) satisfy

KYk,q( �R)K−1 = Yk,q( �R)∗ = (−1)qYk,−q( �R). (C9)

Following lines similar to those used in Eq. (C2) gives

KM(R,Sd )μ2K−1 =
∑

k,q,K,Q

(k q,K Q|1 μ2)(−1)qYk,−q( �R)(−1)K+QτK,−Q(1)G(1,0)
k (K,R,so,nA)∗

=
∑

k,q,K,Q

(−1)1(k − q,K − Q|1 − μ2)(−1)μ2Yk,−q( �R)τK,−Q(1)G(1,0)
k (K,R,so,nA)

= (−1)μ2
∑

k,q,K,Q

(−1)1(k q,K Q|1 − μ2)Yk,q( �R)τK,Q(1)G(1,0)
k (K,R,so,nA). (C10)

A comparison with Eq. (C2) gives

KM(R,Sd )K−1 = − (MK=1(R,Sd )
)† − (MK=2(R,Sd )

)†
= − (M(R,Sd ))† . (C11)

Putting this result into Eq. (44) and using K pRK−1 = − pR and

(A ∧ B · C)† = −C† ∧ B† · A† (C12)

gives

KV JT (R, pR,Sd )(n,1)K−1 = +ı pR ∧ KM(R,Sd )K−1 · pR

= −ı pR ∧ M(R,Sd )† · pR

= (−ı pR ∧ M(R,Sd ) · pR)†

= (V JT (R, pR,Sd )(n,1)
)†

. (C13)

It can be shown that the last equality is also valid when the neutron spin-orbit form factor, U so
nA(rn), in Eq. (25) is complex. Thus,

although the K = 2 terms are anti-Hermitian, they and the K = 1 terms do satisfy the required time-reversal condition (C7).
Note that for real nucleon optical potentials the Watanabe potential discussed in Sec. IV E is always Hermitian because it

involves no coupling to deuteron breakup channels. The ADWA potential, on the other hand, takes into account physical effects
not included in the Watanabe model. It is designed to describe a linear superposition of elastic and breakup channel wave
functions projected onto a restricted region of configuration space within the range of Vnp. There is no reason why probability
flux within this region should be conserved.

APPENDIX D: MATRIX ELEMENTS OF THE RANK-2 TENSOR FORCE (V J T (R, pR),Sd)Ms′ ,Ms )
K=2
(n,1)

In the calculation of distorted waves associated with spin-dependent forces it is natural to use the basis |(L,Sd ) J,M〉 where L
is the orbital angular momentum corresponding to LR , Sd = 1, J = LR + Sd , and M is an eigenvalue of Jz. The matrix elements
of the rank-0 potential (V JT (R, pR,Sd )Ms′ ,Ms

)K=2
(n,1) in this basis will be diagonal in J and M but not necessarily in L.

Equations (70) give

(V JT (R, pR,Sd ))K=2
(n,2) = ı

∑
k′=1, 3

3

√
2

5
k̂′W (1 1 k′ 2 ; 1 2)[Ôk′ 2G

(1,0)
2 (2,R,so,nA)]{Yk′(R) × pR}2 · τ2(1), (D1)

where G
(1,0)
2 (2,R,so,nA) is given in Eq. (66).
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Using the standard result given in Ref. [19], Eq. (5.13) of Ref. [19] gives

〈(L′,1)J ′,M ′|{Yk′(R) × τ2(1)}1 · pR|(L,1)J,M〉 = (−1)k
′
√

3

5
〈(L′,1)J ′,M ′|{Yk′(R) × pR}2 · τ2(1)|(L,1)J,M〉

= (−1)k
′
√

3

5
δJ,J ′δM,M ′L̂′√3(−1)J−L′−1W (L′ L 1 1 ; 2 J )

×〈L′||{Yk′(R) × pR}2||L〉〈1||τ2(1)||1〉. (D2)

Definition (15) results in the reduced matrix element

〈1||τ2(1)||1〉 =
√

5. (D3)

The other reduced matrix element in Eq. (D2) can be evaluated using the standard formulas in Appendix A, Eq. (A2), and
Eqs. (13), (B2), and (B3). These give

〈L′,�′|{Yk′(R) × pR}2,Q|L,�〉 =
∑
q ′,μ

(k′ q ′,1 μ|2,Q)〈L′,�′|Yk′,q ′ (R)( pR)μ|L,�〉

= ı−1
∑
q ′,μ

(k′ q ′,1 μ|2,Q)〈L′,�′|Yk′,q ′ (R)
∑

L′′=L±1,�′′
(L� 1μ|L′′ �′′)|L′′,�′′〉ÔL′′,L

= ı−1
∑

q ′,μ,L′′=L±1,�′′
(k′ q ′,1 μ|2 Q)(L� 1μ|L′′ �′′)〈L′,�′|Yk′,q ′ (R|L′′,�′′〉ÔL′′,L

= ı−1
∑

q ′,μ,L′′=L±1,�′′
(k′ q ′,1 μ|2 Q)

L̂′′k̂′
√

4πL̂′ (L� 1μ|L′′ �′′)(L′′ �′′,k′ q ′|L′ �′)

× (L′′ 0,k′ 0|L′ 0)ÔL′′,L. (D4)

The summation over q ′,μ,�′′ can be reduced using the definition of a Racah coefficient to give∑
q ′,μ,�′′

(k′ q ′,1 μ|2 Q)(L� 1μ|L′′ �′′)(L′′ �′′,k′ q ′|L′ �′) =
∑

q ′,μ,�′′
(−1)k

′+1+2(1 μ,k′ q ′|2 Q)(L� 1μ|L′′ �′′)(L′′ �′′,k′ q ′|L′ �′)

= (−1)k
′+1L̂′′√5W (L 1 L′ k′; L′′ 2)(L�,2 Q|L′ �′). (D5)

Putting together these results gives

〈L′,||{Yk′(R) × pR}2||L,�〉 = 1

ı

∑
L′′=L±1

L̂′′k̂′
√

4πL̂′ (L
′′ 0,k′ 0|L′ 0)(−1)k

′+1L̂′′√5W (L 1 L′ k′; L′′ 2)ÔL′′,L, (D6)

and hence
〈(L′,1)J ′||{Yk′(R) × τ2(1)}1 · pR||(L,1)J 〉

= δJ,J ′

ı

√
3

5
L̂′√3

√
5(−1)J−L′

W (L′ L 1 1 ; 2 J )
∑

L′′=L±1

(L̂′′)2k̂′
√

4π

√
5W (L 1 L′ k′; L′′ 2)(L′′ 0,k′ 0|L′ 0)ÔL′′,L

= δJ,J ′

ı
3
√

5k̂′(−1)J−L′
W (L′ L 1 1 ; 2 J )

∑
L′′=L±1

(L̂′′)2

√
4π

W (L 1 L′ k′; L′′ 2)(L′′ 0,k′ 0|L′ 0)ÔL′′,L. (D7)

In the special case L = 0, L′ = 2, k′ = 1, when L′′ = 1 is the only nonvanishing contribution, this reduces to

〈(2,1)1||{Yk′(R) × τ2(1)}1 · pR||(0,1)J 〉 = −δJ,1

ı

√
6

5

1√
4π

d

dR
. (D8)

It is readily checked by direct evaluation that this is the correct result.
Using Eq. (D1) the final result for the reduced matrix element of (V JT )K=2

(n,1) is

〈(L′,1)J ′||(V JT )K=2
(n,1) ||(L,1)J 〉 = δJ,J ′3

√
5

4π
(−1)J−L′

W (L′ L 1 1 ; 2 J )
∑

k′=1, 3

k̂′A(1,0)
k′,2 (2,R,so,nA)

×
∑

L′′=L±1

(L̂′′)2W (L 1 L′ k′; L′′ 2)(L′′ 0,k′ 0|L′ 0)ÔL′′,L, (D9)

where the functions A
1,0
k′,2(2,R), k′ = 1,3, are given explicitly in Eqs. (67) and (68).
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