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Role of the neck degree of freedom in cold fusion reactions

G. G. Adamian,1 N. V. Antonenko,1 and H. Lenske2

1Joint Institute for Nuclear Research, Dubna 141980, Russia
2Institut für Theoretische Physik der Justus–Liebig–Universität, D-35392 Giessen, Germany

(Received 9 March 2015; published 5 May 2015)

Mass parameters for collective variables of dinuclear systems formed in cold fusion reactions are
microscopically calculated with the linear response theory making use of the width of single-particle states and
the fluctuation-dissipation theorem. The single-particle spectrum and potential energy surface of the adiabatic
two-center shell model are used. The microscopical mass parameter in the neck is found to be much larger
than one obtained with the hydrodynamical model. Therefore, the dinuclear system lives a rather long time,
comparable to the characteristic time of fusion and, correspondingly, the fusion can be considered at fixed neck
parameter. With an adiabatic melting of the dinuclear system along the internuclear distance into a compound
system one cannot explain the experimental trends in cold fusion reactions.
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I. INTRODUCTION

The synthesis of superheavy nuclei [1,2] and the production
of strongly deformed nuclear states [3] stimulate the study
of the process of complete fusion in heavy ion collisions at
energies near the Coulomb barrier. The initial stage of the
fusion of heavy ions is characterized by the formation of a
dinuclear system (DNS) when a significant part of the kinetic
energy is transferred into the internal excitation energy. The
further evolution of the DNS predetermines the process of
compound nucleus formation or quasifission (the DNS decay).
To describe the evolution of the DNS in collective coordinates,
namely in the distance R between the centers of colliding
nuclei (or relative elongation λ of the system), the mass and
charge asymmetry degrees of freedom η = (A1 − A2)/A and
ηZ = (Z1 − Z2)/Z, respectively, (A1, A2 and Z1, Z2 are mass
and charge numbers of the nuclei, A = A1 + A2, Z = Z1 +
Z2), the parameter ε of the neck and deformation coordinates of
nuclei [4–12], the dissipative, conservative, and inertial forces
for these variables have to be determined.

The existing fusion models are distinguished by the choice
of the relevant collective variables along which the fusion
mainly occurs. While the approaches based on the macroscopic
dynamical model [8] the fusion in R at almost fixed value of
η, the DNS model [10,13–17] considers the DNS evolution
in mass asymmetry by nucleon or cluster transfers as the
main path to the compound nucleus. The DNS model assumes
basically that the neck degree of freedom is almost fixed in the
evolution in η and the nuclei are hindered to melt together by
a variation in the relative distance. As shown in Refs. [16–20],
this occurs due to the relatively large inertia of the neck degree
of freedom and structural forbiddenness effects. In this paper
we study dynamical restrictions for the growth of the neck in
the DNS with microscopically calculated DNS inertia tensor
in the cold fusion reactions.

There are various macroscopical and microscopical ap-
proaches to calculate the inertia tensor [21–23]. The macro-
scopical approaches (see, for example, [8,12,23]) are based
on the hydrodynamical model of the nucleus. A calculation
of the inertia tensor with a theory for quantum fluid dynamics
is suggested in Ref. [24]. By using a random-matrix model

to describe the coupling between a collective nuclear variable
and intrinsic degrees of freedom and applying the functional
integral approach, mass parameters are derived in Ref. [25]. In
the linear response theory [26,27] the inertia tensor is found
for fissioning nuclei. The microscopical approaches mainly
use the cranking type expression and perform calculations in
different single-particle bases applying adiabatic [6,7,28–30]
or diabatic [31] two-center shell models. The importance of
microscopical mass coefficients in describing the spontaneous
fission half-life for superheavy nuclei is stressed in Ref. [30].
Difficulties in the cranking-type calculations arise for collec-
tive motions with large amplitudes, for example, in fusion or
fission, due to pseudocrossings or crossings of levels in the
single-particle spectrum. Disregard the contributions from the
crossings (pseudocrossings) which means a neglect of effects
of configuration changes on the mass parameters during the
evolution of the nuclear shape in spite of the fact that the
collective inertia is strongly influenced by level crossings
(pseudocrossings) [32,33]. In order to overcome this problem,
two-body collisions should be incorporated through a width
of the single-particle levels and an effective reduction of
the level crossing effects. For example, calculations of the
nuclear inertia in a generalized cranking model with pairing
correlations yielded masses of about one order of magnitude
larger than the ones without pairing [34].

One of the aims of the paper is to present analytical
expressions for mass parameters using the microscopical
methods with residual interaction effects. In Sec. II the mass
parameters are obtained within the linear response theory tak-
ing the fluctuation-dissipation theorem and the width of single-
particle states into consideration. In Sec. III the mass parame-
ters for the relevant collective variables (elongation and neck)
of the system formed in cold fusion reactions are evaluated in
the two-center shell model with adiabatic basis. The complete
fusion process is discussed in adiabatic limit and the diabatic
effects are considered. Sec. IV contains a short summary.

II. MICROSCOPICAL MASS COEFFICIENTS

Let us consider a nuclear system described by a single col-
lective coordinate Q and intrinsic single-particle coordinates
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xi (with the conjugated momentum pi). By expanding the
Hamiltonian H (xi,pi,Q) to the second order in the vicinity of
Q0, we describe a collective motion within a locally harmonic
approximation:

H (xi,pi,Q) = H (xi,pi,Q0) + (Q − Q0)F (xi,pi,Q0)

+ 1

2
(Q − Q0)2

〈
∂2H (xi,pi,Q)

∂Q2

〉
Q0,T0

. (1)

The coupling term between the collective and intrinsic motion
is proportional to the first order in (Q − Q0) with an operator
F given by the derivative of the mean field with respect to Q
in the neighborhood of Q0.

The local motion in Q is described in terms of the collective
response function χcoll of the Q mode. By applying the linear
response theory [26,35], the Fourier transform of this function
is defined as

χcoll(ω) = k2χ (ω)

1 + kχ (ω)
, (2)

where χ (ω) is the Fourier transform of the response function
for intrinsic motion which measures how, at some given Q0

and temperature T0, the nucleonic degrees of freedom (xi,pi)
react to the coupling with collective motion. The coupling
constant k is then written in the form

− k−1 =
〈

∂2Ĥ (xi,pi,Q)

∂Q2

〉
Q0,T0

= ∂2E(Q,S0)

∂Q2
|Q0 + χ (ω = 0) = C(0) + χ (0) (3)

with χ (0) and C(0) being the static intrinsic response and
stiffness, respectively. Because the constant k is entirely
determined by quasistatic properties, E is the internal energy at
a given entropy S0 or the free energy at a given temperature T0.
The structure of Eq. (3) reflects the self-consistency between
the treatment of collective and microscopic dynamics. It
expresses the response of the system of interacting nucleons
in terms of the response of the individual nucleons. Note
that our application of linear response theory goes along the
assumption that the collective motion is slow compared to the
dynamics of the nucleons.

In general the frequency dependence of χcoll(ω) exhibits
a complex structure and shows individual peaks. They may
be interpreted to represent individual modes of the nuclear
system. For each one may then define the transport coefficients
for average motion, namely, mass M , friction γ , stiffness C
coefficients, by identifying for the corresponding range of
frequencies an oscillator response function

χosc(ω) = [−Mω2 − γ iω + C]−1. (4)

Replacing χcoll(ω) by χosc(ω) from Eq. (4) and employing
Eq. (2), we obtain the following expression for the mass
coefficient [26,27,35,36]:

M = −1

2

∂2

∂ω2

1

χosc(ω)

∣∣∣∣
ω=0

= 1

2k2

∂2

∂ω2

1

χ (ω)

∣∣∣∣
ω=0

=
(

1 + C(0)

χ (0)

)2 [
Mcr + γ 2(0)

χ (0)

]
, (5)

where

Mcr = 1

2

∂2χ (ω)

∂ω2

∣∣∣∣
ω=0

(6)

is the inertia in the zero-frequency limit of the second
derivative of the intrinsic response function. Mcr can be shown
to be similar to the one of the cranking model. For many
applications, the value of C(0)/χ (0) is much less than unity.
However, the additional term γ 2(0)/χ (0) in Eq. (5) gives a
positive contribution to M where γ (0) is the friction coefficient
defined by

γ (0) = −i
∂χ (ω)

∂ω

∣∣∣∣
ω=0

= ∂χ
′′
(ω)

∂ω

∣∣∣∣∣
ω=0

= 1

2T0
ψ

′′
(0). (7)

The dissipative part of the response function χ
′′
(ω) is con-

nected with the dissipative part of the correlation function
ψ

′′
(ω) through the fluctuation-dissipation theorem:

χ
′′
(ω) = 1

�
tanh

(
�ω

2T0

)
ψ

′′
(ω). (8)

The ψ
′′
(ω) has a singularity of δ-function type at ω = 0:

ψ
′′
(ω) = 2πψ0δ(ω) + ψ

′′
R(ω) (9)

with ψ
′′
R(ω) being regular at ω = 0. In the case of an

independent particle model we have

ψ
′′
(ω) = π�

∑
j,k

|Fjk|2n(ej )[1 − n(ek)]

× [δ(�ω − ekj ) + δ(�ω + ekj )]. (10)

Here, ekj = ek − ej is the difference of single-particle energies
calculated with respect to a Fermi energy, n(ej ) are the
occupation numbers, and Fjk = 〈j |F |k〉 the single-particle
matrix elements of the operator F . At j = k and ω = 0 we
find the contributions from the diagonal matrix elements:

ψ0 =
∑

k

|Fkk|2n(ek)[1 − n(ek)]

= T0

∑
k

∣∣∣∣∂n(e)

∂e

∣∣∣∣
e=ek

(
∂ek

∂Q

)2

. (11)

The last part in Eq. (11) was derived with a Fermi distribution
for the occupation numbers, which is characterized by the
temperature T0. The value of T0 does not effectively go to zero
with decreasing excitation energy because each single-particle
level has a width due to the two-body interaction. Indeed
at zero excitation energy the distribution of the occupation
numbers deviates from a step function at least due to pairing
correlations. If we replace the δ functions in Eq. (9) or (10),
we have to apply Lorentzian functions with the double
single-particle width 2�, where � is the single-particle width,
because �ω is the transition energy between two single-particle
states [26]. Therefore, we substitute the δ functions in Eq. (10)
by �/[π ((�ω ± ekj )2 + �2)]. Then using Eqs. (7)–(11), we
can write the friction coefficient in the following form:

γ (0) = γ diag(0) + γ nondiag(0), (12)
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where

γ diag(0) = �

�

∑
k

∣∣∣∣∂n(e)

∂e

∣∣∣∣
e=ek

(
∂ek

∂Q

)2

. (13)

For smaller temperatures T0 < 1.5 MeV which are of interest
here, γ diag(0) is much larger than γ nondiag(0) [26]. The static
response is found as

χ (0) = lim
ε→0

∫ +∞

−∞

dω

π

χ
′′
(ω)

ω − iε

= lim
ε→0

∫ +∞

−∞

dω

�π

tanh
(

�ω
2T0

)
ψ

′′
(ω)

ω − iε

= χdiag(0) + χnondiag(0), (14)

where

χdiag(0) =
∑

k

∣∣∣∣∂n(e)

∂e

∣∣∣∣
e=ek

(
∂ek

∂Q

)2

. (15)

With realistic assumptions γ diag(0) � γ nondiag(0) and
χdiag(0) � χnondiag(0) and neglecting C(0)/χ (0), we can
divide the mass parameter (5) as

M = Mdiag + Mnondiag. (16)

The contribution of the diagonal matrix elements of F to M is

Mdiag = (γ diag(0))2

χdiag(0)
= �

2

�2

∑
k

∣∣∣∣∂n(e)

∂e

∣∣∣∣
e=ek

(
∂ek

∂Q

)2

. (17)

If the single-particle widths are properly taken into considera-
tion, the nondiagonal contributions to the inertia are [28,29]

Mnondiag = Mcr = �
2
∑
k �=k′

|Fkk′ |2
e2
kk′ + �2

n(ek) − n(ek′)

ek′ − ek

. (18)

The main contribution to M is the diagonal part Mdiag because
it dominates for collective variables which are responsible
for changes of the single-particle spectrum [22,32,33]. If
the single-particle spectrum is almost independent of Q,
∂ek/∂Q ≈ 0 and the contribution of Mdiag to M is negligible.
For example, at Q = R and two separate nuclei Mdiag ≈ 0
and Mnondiag is equal to the reduced mass. The overlapping
of nuclei and motion to smaller R could considerably change
the shell structure. In this case Mdiag becomes much larger
than Mnondiag. The growth of the neck destroys the structure of
colliding nuclei and the diagonal part dominates in the mass
parameter in neck. Note that the calculation of Mdiag is simpler
than that of Mnondiag. It was stressed in [26,37] that within the
linear response theory the diagonal component of the friction
parameter originates from the “heat pole” of the correlation
function and vanishes when the system is ergodic. As shown
in Ref. [38], the well-necked DNS-type configurations are not
ergodic and stable against chaos. Even at zero excitation energy
the level crossings at the Fermi surface lead to considerable
mass flow [22,32,33] and the diagonal component of the
correlation function (or mass parameter) does not vanish.

Taking into account only the pairing interaction, in
Refs. [4,22,34] the following expression for the inertia was

derived:

M = Mnondiag + �
2
∑

k

1

v2
k

√
ek + �2

(
∂uk

∂Q

)2

, (19)

where u2
k = 1

2 (1 + ek√
e2
k+�2

), v2
k = 1 − u2

k , and � defines the

pairing gap. The diagonal part appears in Eq. (19). Taking into
account the main contribution to the sum in Eq. (19) from the
single-particle levels near the Fermi surface, the diagonal part
is rewritten as

Mdiag ≈ �
2

2�2

∑
k

∣∣∣∣∂n(e)

∂e

∣∣∣∣
e=ek

(
∂ek

∂Q

)2

, (20)

where n = v2
k . As seen, Eq. (20) coincides with Eq. (17) at

� = √
2�. The presence of residual interaction (at least the

paring forces) is responsible for the appearance of diagonal
term in the expression for the inertia parameter.

III. CALCULATED RESULTS

A. Adiabatic two-center shell model

Because in fusion and quasifission we deal with
strongly elongated systems, the two-center shell model
(TCSM) [6,7,14,39–41] is appropriate for calculating the
potential energy surface. In the TCSM we use, the nuclear
shapes are defined by the following collective coordinates:
the elongation λ = l/(2R0) measuring the length l of the
system in units of the diameter 2R0 of the spherical compound
nucleus and used to describe the relative motion, the mass and
charge asymmetry coordinates η and ηZ , respectively, the neck
parameter ε = E0/E

′ defined by the ratio of the actual barrier
height E0 to the barrier height E′ of the two-center oscillator,
and the deformation parameters βi = ai/bi , i = 1,2, of axially
symmetric fragments, defined by the ratio of the semiaxes of
the fragments. While in the cold fusion reactions we deal
with almost spherical nuclei, βi ≈ 1, the heavy nuclei in the
hot fusion reactions are well deformed, βi ≈ 1.3. The neck
grows with decreasing ε. There is no well necked-in shape for
λ < 1.65 and ε < 0.2.

With the TCSM the potential energy can be calculated as
the sum of two terms,

U (λ,ε,βi,η) = ULD(λ,ε,βi,η) + Ushell(λ,ε,βi,η). (21)

The first term is a smoothly varying macroscopic energy
calculated with the liquid-drop model. The second term
contains microscopic corrections which arise due to the shell
structure of the nuclear system. Because of the small (not
more than 15 MeV) DNS excitation energies considered, the
dependence of Ushell on the temperature can be disregarded. In
the cold fusion reactions only low angular momenta (<10–15)
contribute [13,15–17] to the formation of evaporation residues
of superheavy nuclei. Therefore, we neglect the dependence
of the potential energy on the angular momentum in the
reactions considered. Within the Strutinsky formalism the
potential energy cannot be correctly calculated for a small
neck (ε > 0.75) and values of λt corresponding to touching
configurations. The reason for this is the liquid-drop energy in
Eq. (21) which does not include the attractive nucleus-nucleus
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potential between almost separated nuclei. Therefore, we
mainly study the DNS dynamics at λ � λt and ε � 0.75. In
this region of collective coordinates the mass coefficients as
well as the potential energy are correctly calculated.

B. Mass parameters as functions of collective coordinates

Since each single-particle state “k” has its own width �k ,
Eq. (17) is generalized as (Qi = λ,η,ηZ,ε,β1,β2)

M
diag
ij = �

2
∑

k

fk

�2
k

∂ek

∂Qi

∂ek

∂Qj

. (22)

For the Fermi occupation numbers n(ek), the function

fk = −dnk

dek

= 1

4T0
cosh−2

(
ek

2T0

)
(23)

has a bell-like shape with a width T0 and is peaked at the
Fermi energy. Analogously one can generalize the formula for
nondiagonal mass parameters (18).

In order to calculate the width of the single-particle states,
we use the well-known expression [26]

�k = 1

�0

e2
k + (πT0)2

1 + [
e2
k + (πT0)2

]/
c2

. (24)

For small excitations, Eq. (24) is reduced to the expression
known in the theory of a Fermi liquid. Both parameters �0

and c are known from experience with the optical model
potential and the effective masses [26]. Their values are in
the following ranges: 0.030 MeV−1 � �0

−1 � 0.061 MeV−1,
15 MeV � c � 30 MeV. For the parameter c in Eq. (24) we
use the “standard” value 20 MeV although the mass tensor
depends quite weakly on this parameter. In the calculations we
set the parameter �−1

0 = 0.045 MeV−1 in Eq. (22).
Various calculations of the mass parameters were carried

out with the expressions similar to Eq. (22), for example in
Refs. [4,28,33]. When the system adiabatically moves toward
the compound nucleus in λ, the value of Mλλ approximately
increases by a factor of 10–15. For the well necked-in
configurations at λ > λt , Mλλ ≈ μ( ∂R

∂λ
)2, where μ = mA1A2

A
is the reduced mass (m—the nucleon mass) and R the relative
distance between the centers of nuclei. The microscopical part
of potential energy remains almost unchanged when the value
of λ increases from λt [39]. Thus, at large λ > λt , Mλλ ≈ Mcr

λλ

and M
diag
λλ = 0. In Fig. 1, one can see the dependence of

Mλλ = M
diag
λλ + Mcr

λλ on λ and ε in the case of the 64Ni + 208Pb
reaction. The inhomogeneities of this dependence are caused
by the shell effects. The value of Mλλ grows stronger with
decreasing λ at large ε than at small ε. At λ = 1.5–1.55 the
value of Mλλ is almost constant at 0.4 < ε < 0.8 and grows at
smaller ε.

The dependence of Mεε on λ and ε is presented in
Fig. 2 for the 64Ni + 208Pb system. The obtained values
of Mεε = M

diag
εε + Mcr

εε have the same order of magnitude
as in Ref. [17]. However, due to the larger shell effect in
the entrance channel of cold fusion reaction because of the
doubly magic 208Pb, the mass parameter in neck becomes
about two times larger (at the same fixed T0) than that in
the case of symmetric reactions like 110Pd + 110Pd [14]. At

FIG. 1. The calculated mass parameter Mλλ in units 103m fm2 as
a function of λ and ε in the 64Ni + 208Pb reaction.

λ corresponding to touching configuration the value of Mεε

increases by about a factor of 5 when ε decreases from 0.8 to
0. This increase is related to the decrease of the shell correction
Ushell with ε toward ε → 0. Smaller values of Ushell correspond
to larger mass parameters. At λ < 1.4 the value of Mεε is
almost independent of ε. Because at small λ the shape of the
system weakly depends on ε and the potential energy is rather
flat function of ε, the value of Mεε decreases with λ.

Comparing our results of Mij with MWW
ij obtained in the

Werner-Wheeler approximation for a touching configuration,
we find Mλλ = MWW

λλ , Mεε ≈ 50MWW
εε , Mλε ≈ 0.4MWW

λε , and
Mλε/

√
MλλMεε � 1 in the cold fusion reactions considered.

Therefore, we can conclude that the microscopical mass
parameter of the neck is much larger than the one in the Werner-
Wheeler approximation and the nondiagonal component Mλε

is small to be disregarded in the dynamical calculations.
The choice of the width is crucial for the value of Mdiag

in both the diabatic and adiabatic cases within a reasonable

FIG. 2. The calculated mass parameter Mεε in units 103m fm2 as
a function of λ and ε in the 64Ni + 208Pb reaction.
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variation. If instead of �−1
0 = 0.045 MeV−1 the value of

�−1
0 is taken as 0.03 MeV−1 at the lower limit, the value

of Mεε becomes 2.25 times smaller, but remains larger than
MWW

εε by about 20 times. For larger temperatures, the average
width � increases and the function fk/�2

k becomes smoother.
The mass parameter Mεε depends on temperature T0 mainly
due to the width �k of the single-particle levels (�k ∼ T 2

0 ).
The value of Mεε decreases with T −4

0 . One- and two-body
interactions [29] contribute to the nondiagonal and diagonal
parts of the mass parameter Mεε, respectively. Whereas the
one-body nondiagonal contribution to the mass is relatively
insensitive to the temperature of system, the diagonal two-body
contribution increases strongly with decreasing temperature.
So, Mdiag

εε (T0 = 1.0 MeV)/Mdiag
εε (T0 = 1.5 MeV) ∼ 5.2 which

is shown in Fig. 7. We found the largest contribution of the
two-body component to the neck mass parameter already at a
quite high excitation energy of 30 MeV (T0 = 1.3 MeV) of the
DNS in fusion reactions [17]. For comparison, the excitation
energies of the initial DNS in Pb- and Bi-based cold fusion
reactions are smaller than 20 MeV (T0 < 1.0 MeV). So, the
value of Mεε is not crucial to T0 in these reactions.

Because at the touching configuration the slope of the
single-particle levels is small, the microscopical mass param-
eter in λ is close to its smooth, hydrodynamical value. In
contrast, a large amount of internal reorganization occurs at
the level crossings with decreasing ε and leads to a large neck
inertia of the initial DNS. So, the value of Mεε exceeds the mass
in the hydrodynamical model due to large values of |∂ek/∂ε|.
The restriction for the growth of the neck may be understood
by analyzing the single-particle spectrum as a function of
ε [14]. Well necked-in shapes with large ε have single-particle
spectra with a good shell structure. The spectra show a larger
number of level crossings with increasing ε. Finally, we should
stress that the mass parameter in neck remains always much
larger in fusion reactions than the mass calculated with the
hydrodynamical Werner-Wheeler approximation.

C. Parametrizations for the mass parameters

Calculating the mass parameters for cold fusion reactions
48Ca, 50Ti, 54Cr, 58Fe, 64,72,78Ni, 70Zn + 208Pb [1], one can
suggest the following parametrizations for the mass parameters
as functions of λ and ε:

Mλλ ≈ μλ

(
1 + 274.9

N − Z

A

× exp

[
(λt − λ)(1 + 9ε) − 11.9

N − Z

A

])
, (25)

where μλ = (2R0)2μ, A = A1 + A2, N = N1 + N2, and Z =
Z1 + Z2 are the mass, neutron, and proton numbers of the
DNS, respectively, and

Mεε ≈ B(λ) + f (λ)

1 + v(λ) exp[9.09ε]
(26)

with

B(λ) = 617 − 930λ + 354λ2

and

f (λ) = 200 + 208

1 + exp[20(λ − 1.46)]

in units of 103m fm2, and

v(λ) = exp

[
9.09

(
0.89 − 0.16

A

N − Z
λ

)]
.

In the parametrization (26) of the mass coefficient Mεε as a
function of λ and ε, we obtain B = 26.36 × 103m fm2, f =
230 × 103m fm2, and v = 0.02 for the reactions considered.
In this case

∂Mεε

∂ε
≈ αf

v
exp[−αε]. (27)

D. Dynamics of DNS in potential energy surface

In this paper we concentrate on the role of the mass
parameter Mεε in the motion of the neck coordinate to test
whether the DNS exists with a relatively small neck during
sufficient time. For almost head-on collisions the classical
collective kinetic energy is given as

T = 1

2

∑
i,j

Mij (Q)Q̇iQ̇j , (28)

where Mij (i,j = “λ”,“ε”,Qλ = λ andQε = ε) are the shape-
dependent mass parameters. The dissipative forces are in-
cluded with the Rayleigh dissipation function

� = 1

2

∑
i,j

γij (Q)Q̇iQ̇j , (29)

where for simplicity the friction coefficients γij are calculated
with the expression

γij = �Mij/� (30)

following the linear response theory [26]. The quantity � =
2 MeV is consistent with Refs. [42–44]. The dynamics of the
nuclear shape is obtained by solving the equations of motion
resulting from the Lagrangian L = T − U and the Rayleigh
dissipation function �.

In order to obtain the correct potential energy, as in the DNS
model, for the touching configuration, in the TCSM the neck
parameter ε should be set about 0.75 [14]. With this value of
ε the neck radius and the distance between the centers of the
nuclei are approximately equal to the corresponding quantities
in the DNS.

The calculated potential energies in (λ,ε) space are pre-
sented in Figs. 3 an 4 for the reactions 64Ni + 208Pb and
70Zn + 208Pb. In these reactions the touching configurations
correspond to λ = λt = 1.53–1.54 and ε = εt = 0.75. At
1.25 < λ < 1.45 the shell effects shift the position of potential
minimum from ε = 0 toward larger ε. Therefore, the fission-
type valley along λ (the minimum of potential energy as a
function of ε at given λ) corresponds to ε = 0 at λ > 1.5, ε =
0.4 at 1.4 < λ < 1.5, and 0.1 < ε < 0.4 at 1.25 < λ < 1.4.

Because of the shell effects related to the doubly magic
208Pb in the cold fusion reactions, the gradient of the potential
to smaller ε is smaller than that in the case of symmetric fusion
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FIG. 3. Contours of the potential energy surface, in units of MeV,
calculated in the (λ,ε) plane for the 64Ni + 208Pb reaction. The
potential energy is with respect to the liquid-drop energy of
the spherical compound nucleus. The dynamical trajectories are
calculated at λ(0) = 1.53, ε(0) = 0.75 (solid line) and λ(0) = 1.59,
ε(0) = 0.85 (dashed line) with microscopic mass coefficients. The
dynamical trajectory calculated at λ(0) = 1.53, ε(0) = 0.75 with the
Werner-Wheeler masses is presented by a dotted line. The initial
kinetic energy is zero for all trajectories shown.

reactions [14]. Also the position of potential-energy minimum
at λ < λt can strongly deviate from ε = 0. Thus, the adiabatic
potential surface is not in favor of the fast growth of neck
at 1.4 < λ < λt . As in Ref. [41], the strong shell effects are
related to the certain neck size. In the 208Pb- and 209Bi-based
complete fusion reactions with almost spherical nuclei, the
fusioning system is in the potential minimum in η due to the
strong shell effect. So, the value of η and deformations can be

FIG. 4. (Color online) Contours of the potential energy surface,
in units of MeV, calculated in the (λ,ε) plane for the 70Zn + 208Pb
reaction. The potential energy is with respect to the liquid-drop energy
of the spherical compound nucleus. The dynamical trajectories are
calculated at λ(0) = 1.53, ε(0) = 0.75 (solid line) and λ(0) = 1.53,
ε(0) = 0.8 (dashed line) with microscopic mass coefficients and zero
initial kinetic energy. The dynamical trajectory calculated at λ(0) =
1.53, ε(0) = 0.75 with microscopic mass coefficients and 1 MeV
initial kinetic energy is presented by dotted line.

FIG. 5. Time-dependence of the neck parameter ε in the 64Ni +
208Pb reaction calculated with microscopic (solid line) and Werner-
Wheeler (dotted line) mass parameters. The initial conditions are
λ(0) = 1.53, ε(0) = 0.75, and zero kinetic energy.

taken fixed and only the dynamics in λ (or R) and ε has to be
considered.

The calculated DNS trajectories on the potential energy
surfaces are shown in Figs. 3 an 4. As seen, with microscopical
mass parameters the system remains with rather long time near
the entrance configuration. In 2 × 10−20 s, which exceeds the
characteristic time of complete fusion, the value of ε decreases
only from 0.75 till about 0.5–0.6. The change of the initial
conditions leads to other trajectory which, however, comes in
about 10−20 s to the same region of (λ,ε) plane. Thus, the main
conclusion about the long-living DNS configuration coming
from our dynamical calculation is rather insensitive to the
reasonable variation of initial conditions.

While being considered with the microscopical mass
parameters, the system does not reach the fission-type valley
in 2 × 10−20 s, it falls into this valley in 10−21 s if the mass
parameters are taken in the Werner-Wheeler approximation.
The trajectory obtained with the Werner-Wheeler masses is
presented in Fig. 3. Time-dependence of the neck parameter
along the trajectories calculated with the microscopical and
Werner-Wheeler mass formulas are compared in Fig. 5. One
can see the fast decrease of ε (the increase of neck size) in the
liquid-drop approximation, where the DNS dynamics is mainly
ruled by only potential energy surface. In the microscopical
approach the neck growths very slowly and the system
remains close to the entrance channel. So, in the microscopical
consideration the mass tensor strongly affects the dynamics.

The same can be also concluded from the dynamics of more
asymmetric system 48Ca + 208Pb (Fig. 6). Because of the
strong shell effects in these two doublly magic nuclei, the mi-
croscopical mass parameter Mεε is much larger than that in the
Werner-Wheeler approach. This causes a quite small change
of neck in 2 × 10−20 s. With the hydrodynamical masses the
system would instantly fall into the fission-type valley and
evolves there to the compound nucleus on the way to which
there is no potential barrier. In Fig. 7 the contours of the poten-
tial energy surface are presented for the 78Ni + 208Pb reaction.
As seen, the potential energy prevents the motion to smaller λ,
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FIG. 6. Contours of the potential energy surface, in units of MeV,
calculated in the (λ,ε) plane for the 48Ca + 208Pb reaction. The
potential energy is with respect to the liquid-drop energy of the spher-
ical compound nucleus. The dynamical trajectories are calculated at
λ(0) = 1.51, ε(0) = 0.75 with microscopic mass coefficients (solid
line) and with the Werner-Wheeler masses (dotted line). The initial
kinetic energy is zero for all trajectories shown.

i.e., the fusion being considered as an adiabatic melting in λ
is suppressed with increasing neutron number in the projectile
of cold fusion reactions. Comparing Figs. 3, 4, 6, and 7 we can
conclude that the system is easily captured into the potential
valley at smaller Z1 × Z2 and smaller number of neutrons.

E. Effect of dependence of Mεε on ε

In order to show analytically the influence of the increase
of Mεε with decreasing ε on the neck dynamics, one can write
the one-dimensional equation of motion in ε

Mεεε̈ = −∂U

∂ε
− ε̇2

2

∂Mεε

∂ε
. (31)

FIG. 7. Contours of the potential energy surface, in units of MeV,
calculated in the (λ,ε) plane for the 78Ni + 208Pb reaction. The
potential energy is with respect to the liquid-drop energy of the
spherical compound nucleus.

The effect of friction is disregarded here and will be considered
below. At ε̇(0) = 0, Eq. (31) is rewritten as

Mεεε̈ = −∂U

∂ε
− (Ut − U )

1

Mεε

∂Mεε

∂ε
. (32)

Here Ut is the potential energy of the initial DNS with ε = εt

at λ = λt . Taking into consideration Eqs. (26) and (27) and
approximating the potential energy by the linear function of ε,

U (ε) ≈ Ut + β(εt − ε), (33)

we obtain

Mεεε̈ ≈ −∂U

∂ε
+ αβ(εt − ε) = ∂

∂ε

[
U + αβ

2
(εt − ε)2

]
.

(34)

Because α and β are positive, the dependence of Mεε on
ε effectively leads to the additional potential which partly
compensates the decrease of U . Thus, the absolute value of
the gradient of potential becomes smaller and the neck grows
with smaller rate.

In the case of nonzero friction coefficient γ at quite small
time

Mεεε̇
2

2
≈ Ut − U − γ ε̇(εt − ε) = (β − γ ε̇)(εt − ε), (35)

where ε̇ is the average velocity in the interval between εt and
ε. As seen, the friction effectively decreases the value of β. So,
the effects of Mεε(ε) and friction on the rate of neck growth are
opposite. However, in the vicinity of εt the value of ε̇ is rather
small due to quite large Mεε and the coordinate dependence of
Mεε mainly influences the neck dynamics. It promotes small
change of ε and long-living DNS configuration.

F. Complete fusion probability with adiabatic potential

An adiabatic potential energy surface is used in our
calculations. Because there are no suitable potential barriers
in it which hinders a growth of the neck, the neck parameter
decreases steadily to smaller values, faster in the case with the
Werner-Wheeler mass parameters, and much slower with the
microscopical mass parameters. Therefore, one has to explore
whether at almost fixed ε an adiabatic melting of nuclei in λ
can explain the experiments on the cold fusion [14].

The potential energies as functions of λ at fixed ε
are presented in Fig. 8 for the systems formed in cold
fusion reactions 48Ca, 50Ti, 54Cr, 58Fe, 64Ni, 70Zn + 208Pb.
The touching configurations correspond to λ = λt =
1.51–1.54. The position of the outer barrier, which keeps the
system against a decay in λ, corresponds to larger values of λ.
So, after touching the system slides in the potential minimum
at almost fixed ε. The melting in λ would compete in this case
with the decay over the outer barrier. Denoting the height of
the inner barrier by Bλ and the height of the outer barrier by
Bλ

qf , one can estimate the fusion probability in λ as

P λ
CN ∼ exp

[(
Bλ − Bλ

qf

)
/T0

]
.

If there is no outer barrier, then in this expression we take
U (λt ) instead of Bλ

qf .
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FIG. 8. (Color online) Potentials as functions of elongation λ at
indicated values of ε in the systems 48Ca + 208Pb (solid lines),
50Ti + 208Pb (dashed lines), 54Cr + 208Pb (dotted lines), 58Fe +
208Pb (thick solid lines), 64Ni + 208Pb (dash-dotted lines), and
70Zn + 208Pb (dash-dot-dotted lines). The potential energy is with
respect to the liquid-drop energy of the corresponding spherical
compound nucleus.

One can see in Fig. 8 that the fusion probability PCN, which
depends on the difference of the heights of the inner and outer
barriers, would be larger in the the reactions 50Ti, 54Cr, 58Fe +
208Pb than in the 48Ca + 208Pb reaction at ε = 0.6 and 0.75. At
ε = 0.45 the fusion probability in the 48Ca + 208Pb reaction
is expected to be smaller than in the 50Ti + 208Pb reaction.
At ε = 0.45 and 0.6 the fusion probabilities in the reactions
54Cr, 58Fe + 208Pb are expected to be close. However, the
DNS model [15] provides the difference of about 30 times to
explain the experimental data. While the fusion probability in
the 58Fe + 208Pb reaction should be 3–5 times larger than in
the 64Ni + 208Pb reaction [15], the potentials in Fig. 8 show
the results of the difference of more than 30 times. The ratio
of the fusion probabilities in the reactions 64Ni, 70Zn + 208Pb,
which is about 10 [15], seems to be correctly described with
the potentials at ε = 0.45 and 0.6 in Fig. 8. So, in most cases
the adiabatic potential energy surface causes the problems in
describing the fusion probabilities in the cold fusion reactions.
In the 50Ti + 208Pb reaction, the adiabatic potential provides
Bλ − Bλ

qf < 0 that cannot be consistent with the experimental
data.

As follows from the potentials in Fig. 9, in the reactions
64,72,78Ni + 208Pb the fusion probability in λ decreases with
increasing mass number of the projectile. There are no
good potential minima near the touching configuration in
the reactions 72,78Ni + 208Pb. This causes quite a fast decay

FIG. 9. (Color online) The same as in Fig. 8, but for the systems
64Ni + 208Pb (solid lines), 72Ni + 208Pb (dashed lines), and 78Ni +
208Pb (dotted lines).

in λ. The ratio of the fusion probabilities in the reactions
64,72Ni + 208Pb is estimated as 6 × 103 with the potentials
in Fig. 9 while it is about 2 × 102 in the DNS model. So,
the adiabatic melting in λ results in a much stronger isotopic
dependence of the fusion probability than in the DNS model
which describes well many complete fusion reactions.

G. Role of diabatic effects in complete fusion

Besides the microscopic mass parameters, the transition
between diabatic and adiabatic regimes has to be taken into
account in the consistent consideration of fusion because the
fusion time is rather short [17,19,45]. The diabatic effect
might additionally restrict the neck growth and the motion
to smaller λ [17,45]. Therefore, the dynamical calculations
with the adiabatic potential energy U = Uad show a maximum
possible growth of the neck. The time-dependent potential

U (t) = Uad + (Ud − Uad)e−t/τ , (36)

where Ud is diabatic potential, τ characterizes the transient
time from diabatic regime to adiabatic limit. As in Ref. [19],
the value of τ is estimated as

τ = 2�

〈�〉 , (37)

where 〈�〉 is an average single-particle width near the Fermi
surface. Because Uad(ε ≈ 0.75) − Uad(ε = 0) at λ = λt is
about 10 MeV in the reactions treated, and Ud could exceed
Uad by about 100 MeV, the value of τ must be larger than
2 × 10−21 s to get at least flat potential U at interaction time
t ≈ 8 × 10−21 s. The rough estimate with Eq. (37) gives the
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values of τ just close to 2 × 10−21 s. Thus, the diabatic effect
additionally prohibits the neck growth.

IV. SUMMARY

Mass parameters for the relevant collective variables of
the systems formed in cold fusion reactions were evaluated
with the two-center shell model. Formulas for the mass
parameters were derived within the linear response theory
by taking the fluctuation-dissipation theorem and the width
of single-particle states into account. The obtained mass
parameter for the neck degree of freedom is much larger
than the one obtained in the hydrodynamical model with the
Werner-Wheeler approximation. By applying the microscopic
mass parameters we found a relatively stable neck during the
time of cold fusion reaction. So, the complete fusion in the
208Pb-based reactions occurs at almost fixed neck parameter
ε. In addition the diabatic or structural forbiddenness effect
hinders the motion to smaller internuclear distances and
larger neck size. Therefore, the DNS configuration exists for
a sufficiently long time, comparable with the characteristic
time of complete fusion, that is just assumed in the DNS

model of fusion. If one tries to describe fusion as a
melting with adiabatic potential surface and realistic mass
parameters, then incorrect ratios of fusion probabilities could
come out for neighboring cold fusion reactions. Our re-
sults could also support the existence of long-living cluster
configurations.

The cold fusion reactions considered contain magic 208Pb.
As a result, the neck growth leads to the strong change of
nuclear structure and the mass parameter in ε is quite large. In
the case of hot fusion actinide-based reactions the shell effects
are weaker in the entrance channel and the mass parameter in
ε is expected to be smaller than those presented in the paper.
However, its value is still enough to prevent the fast growth of
the neck.
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