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Regularity and chaos in 0+ states of the interacting boson model using quantum measures
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Background: Statistical measures of chaos have long been used in the study of chaotic dynamics in the framework
of the interacting boson model. The use of large numbers of bosons renders possible additional studies of chaos
that can provide a direct comparison with similar classical studies of chaos.
Purpose: We intend to provide complete quantum chaotic dynamics at zero angular momentum in the vicinity
of the arc of regularity and link the results of the study of chaos using statistical measures with those of the study
of chaos using classical measures.
Method: Statistical measures of chaos are applied on the spectrum and the transition intensities of 0+ states in
the framework of the interacting boson model.
Results: The energy dependence of chaos is provided for the first time using statistical measures of chaos. The
position of the arc of regularity was also found to be stable in the limit of large boson numbers.
Conclusions: The results of the study of chaos using statistical measures are consistent with previous studies
using classical measures of chaos, as well as with studies using statistical measures of chaos, but for small number
of bosons and states with angular momentum greater than 2.
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I. INTRODUCTION

The interacting boson model (IBM) [1], apart from being
successful in describing the low-lying levels and electro-
magnetic transition intensities of even-even heavy nuclei,
has also been used in studying transitions [2,3] between the
different dynamical symmetries of the model, by changing its
parameters. The model is known to possess three dynamical
symmetries, namely U(5), O(6), and SU(3). When a system
possesses a certain dynamical symmetry, it is completely
integrable. Away from these dynamical symmetries, one would
expect chaos. However, this is not always the case. A situation
of great interest is the notion of quasidynamical symmetry
(QDS), i.e., the approximate persistence of a symmetry, in spite
of strong symmetry breaking interactions [4–8]. Symmetry
breaking can also be seen as the transition of a system from
regular dynamics (exhibited by the presence of a dynamical
symmetry) to chaos [9,10].

The interplay between regular and chaotic behavior in
the context of the interacting boson model (IBM) has been
extensively studied by Alhassid and Whelan [11–15] and other
authors [16], using both classical and quantum measures of
chaos. In their study, they had found integrability at the three
dynamical symmetry limits of the symmetry triangle [17] of
the IBM, namely, U(5), O(6), and SU(3), as well as at the
O(6)-U(5) side of the triangle, due to the O(5) symmetry
known [18] to underlie the O(6)-U(5) line. Away from these
integrable regions, one expected chaotic behavior. However,
the study of the interior of the symmetry triangle of the IBM
brought to the surface a region of nearly regular behavior
[12,14,15], connecting the U(5) and SU(3) vertices, known as
the “Alhassid-Whelan arc of regularity” (AW arc).

The increased regularity observed in the region of the
Alhassid-Whelan arc, as well as the locus of the arc, have
been studied using several different techniques:

(1) Information entropy of the wave functions is a measure
that quantifies the eigenstate localization of a particular
IBM Hamiltonian in different symmetry bases associated
with dynamical symmetries, linking it with the degree of
regularity [19,20]. It has indeed been found [19,20] that
increased localization in the symmetry bases occurs on the
Alhassid-Whelan arc of regularity.

(2) The line corresponding to the degeneracy of the 02
+

and 2+
2 states within the symmetry triangle of the IBM has

been found to closely follow the arc of regularity [21,22].
Furthermore, more than twelve nuclei exhibiting this behavior
were placed on the arc, providing an experimental confirmation
of its existence [21,22]. Later on, the approximate degeneracy
of the 0+

2 and 2+
2 states has been related to the degeneracy

of the β and γ bandheads, and its locus has been determined
through the intrinsic state formalism and has been found to be
located very close to the Alhassid-Whelan arc [23,24].

(3) The dynamics of 0+ states have also been considered,
using the nearest neighbor spacing distribution of 0+ states,
in order to demonstrate the semiregular nature of the arc of
regularity, in agreement with results obtained using classical
measures based on Poincaré sections [23]. In particular, a
bunching pattern of 0+ states has been found [23] on the arc,
similar to the bunching pattern seen along the O(6)-U(5) side
of the triangle [25], which is known for its regular dynamics
[18].

(4) The line corresponding to the degeneracy of the 2+
β

and 2+
γ states has also been found [26] to closely follow

the arc of regularity. In the large boson number limit this
degeneracy also guarantees the degeneracies predicted by the
SU(3) symmetry in the first few bands lying lowest in energy.
This can be considered [26] as a sign of an underlying SU(3)
quasidynamical symmetry; however, its validity is limited to
low-lying states and to the large boson number limit.
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(5) A line within the symmetry triangle of the IBM, also
lying close to the arc of regularity, has been obtained [27]
using a contraction of the SU(3) algebra to the algebra of the
rigid rotator. This finding is related to the ground-state band
alone and has again been obtained in the limit of large boson
numbers.

(6) Recently, families of high-lying regular rotational bands
have been found [28,29] in the IBM framework, occurring even
in nuclei far away from the SU(3) dynamical symmetry and
leading to increased overall regularity.

The present paper offers a closer view of the quantum
chaotic dynamics at the vicinity of the arc of regularity, without
attempting to elucidate the nature of the symmetry underlying
the arc. Taking advantage of the new code IBAR [30,31], which
can handle up to NB = 1000 bosons, the present study is
focused on states with zero angular momentum (J = 0), but
can be easily extended to other angular momentum values. The
main objectives are described here:

(1) To determine any energy dependence of statistical
measures of quantum chaos in 0+ states and in B(E0)
transition strengths. This study is for the first time feasible, due
to the good statistics allowed by the large number of bosons
used.

(2) To examine the stability of the location of the arc of
regularity within the symmetry trianlge of IBM with changing
boson number. The IBAR code allows us for the first time to
examine this stability for large boson numbers. The question of
stability is of importance in relation to the empirical evidence
[21,22] found for the arc of regularity, since different nuclei
are described by different boson numbers, in the region of
deformed nuclei already used [21,22] with the boson number
being close to 14.

In Sec. II, the IBM Hamiltonian is described. The fluctu-
ation measures used to study the quantum dynamics in the
symmetry triangle of the IBM are introduced in Sec. III, while
in Sec. IV the numerical results are presented. An O(6) line is
considered in Sec. V, while in Sec. VI the discussion of the
results is given.

II. IBM HAMILTONIAN AND SYMMETRY TRIANGLE

In the context of the IBM, low-lying states in nuclei can
be described in terms of a monopole boson, s, with angular
momentum 0 and a quadrupole boson, d, with angular momen-
tum 2. The 36 bilinear combinations (s†s, s†d̃μ, d†

μs, d†
μd̃ν)

form a U(6) spectrum generating algebra. The three dynamical
symmetries of the model, U(5), SU(3), and O(6), which
correspond to vibrational, rotational, and γ -unstable nuclei,
respectively, are placed at the vertices of the symmetry triangle,
shown in Fig. 1, which is the parameter space of the model.

In what follows we use the IBM Hamiltonian [12,14,15],

H (η,χ ) = c

[
ηn̂d + η − 1

NB

Q̂χ · Q̂χ

]
, (1)

where n̂d = d† · d̃ is the d boson number operator, Q̂χ =
(s†d̃ + d†s) + χ (d†d̃)(2) is the quadrupole operator, and NB

is the number of valence bosons. The parameters (η,χ ) are the
coordinates of the triangle and serve for symmetry breaking.

FIG. 1. The IBM symmetry triangle and the points in the vicinity
of the arc, where calculations were performed.

η ranges from 0 to 1, and χ ranges from 0 to −√
7

2 ≈ −1.32.
By varying η and χ , the three dynamical symmetries of the
model can be reached. U(5) corresponds to (η,χ ) = (1,0), O(6)
to (η,χ ) = (0,0), and SU(3) to (η,χ ) = (0,−√

7
2 ). Numerical

calculations of energy levels and B(E0) transition rates have
been performed using the code IBAR [30,31], which can handle
up to NB = 1000 bosons.

III. FLUCTUATION MEASURES

In this section, the fluctuation measures or statistics, which
are applied to the spectrum and the transition intensities of
0+ states, are introduced. However, before proceeding to the
quantum chaotic analysis of the spectrum or of the transitions
intensities, the eigenvalues should be unfolded. The reason
is that the Gaussian orthogonal ensemble (GOE) requires
that the average level spacing, S, of a spectrum in the limit
N → ∞ should be constant; however, the ordered sequence
of levels (E1,E2, . . . ,EN ) produced, for example, from the
IBM Hamiltonian, forms a spectrum in which the low energy
levels have consistently larger spacings than the high energy
ones. In order to be consistent with the GOE requirements,
one needs to unfold the spectra, that is to say, modify the
spectrum, so that the average level spacing, S, is constant. The
first step of unfolding is performed by constructing a staircase
function of the data. A staircase function is the number of
levels found below some specific energy. Then, a low-order
polynomial N (E) is fitted to the staircase function [32]. The
unfolded energies, called normalized energies, are defined as
εi = N (Ei). With this mapping, the average level spacing
of the spectrum of the normalized energies, the unfolded
spectrum, becomes constant and specifically equal to one,
〈S〉 = 1. The fluctuation measures are then applied to the
unfolded spectrum, which might have constant average level
spacing; however, the spacings still show strong fluctuations.

The statistical measures used for the determination of
the fluctuation properties of the unfolded spectrum are the
nearest neighbor level spacing distribution P (S) [33] and the
�3 statistics of Dyson and Mehta [34,35]. For the quantum
statistical analysis of the transition intensities, the distribution
P (y) [36,37], a χ2 distribution, with ν degrees of freedom is
applied to the B(E0) transition intensities.
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P (S) is defined as the probability that two adjacent energies
differ by an amount of S. First, the normalized spacings, Si =
εi+1 − εi , are calculated and placed into bins, so a histogram of
normalized spacings is produced. Then, the Brody distribution
[33] is fitted to the histogram

Pω(S) = Aα(1 + ω)Sω exp(−αS1+ω), (2)

where A is a scaling factor and α = �[(2 + ω)/(1 + ω)]1+ω.
The value of ω is found by fitting Eq. (2) to the data by least
squares. The Brody distribution takes the form of Poisson
statistics when ω = 0, which characterize a regular system, and
of the Wigner distribution when ω = 1, which corresponds to
a chaotic system. For intermediate cases, larger ω values imply
more chaos.

Spectral rigidity, �3(L), is a measure of the deviation of
the staircase function from a straight line, used to measure
long-range correlations. It was introduced by Dyson and Mehta
[34,35], who defined the function

�3(a,L) = 1

L
minA,B

∫ a+L

a

[N (E) − (AE + B)]2dE, (3)

where the constants A and B will give the best local fit to N (E)
in the interval a � E < a + L and L is the energy length of
the interval. For a random Poisson spectrum (regular case), �3

takes the form

�P
3 (L) = L

15
. (4)

For the GOE (chaotic) case there is an approximate expression,
for large L,

�GOE
3 (L) = 1

π2
(logL − 0.0687). (5)

The exact expression, good for all L, is also known [38]. In
fact, in order to calculate the �3 statistics, in terms of the
normalized energies ε1,ε2, . . . ,εn, the function of �3(a,L) is
used, as given in Eq. (22) in Ref. [32],

�3(α,L) = n2

16
− 1

L2

(
n∑

i=1

ε̃i

)2

+ 3n

2L2

(
n∑

i=1

ε̃2
i

)

− 3

L4

(
n∑

i=1

ε̃2
i

)2

+ 1

L

(
n∑

i=1

(n − 2i + 1)ε̃i

)
,

(6)

where ε̃i = εi − (α + L/2) is the measure of the normalized
energies with respect to the center of the energy interval (α,α +
L). �3(L) is calculated in energy intervals of length L, which
span the whole normalized spectrum, once for intervals starting
at α = 0 and once for intervals starting at α = L/2. Then,
�3(L) is found as the average over all �3(α,L). The form of
the function that should be fitted on the data is [33]

�
q
3(L) = �GOE

3 (qL) + �P
3 [(1 − q)L]. (7)

The value of q is again found from the fitting of Eq. (7) to the
data points. For q = 0, the regular case is reached, �P

3 (L),
while for q = 1, the chaotic limit emerges, �GOE

3 (L). For
intermediate values of q, the behavior of the system is closer
to chaos as q is closer to 1.

The last distribution, P (y), where y is the relevant transition
intensity, e.g., B(E0), is constructed in such a way that P (y)dy
is the probability of finding an intensity in the interval dy
around y. After proper normalization of the transition strengths
y (see Refs. [14,15,32]), their logarithms are assigned to bins
and a histogram of normalized transition strengths is produced.
Then, the interpolating function [36,37]

Pν(y) = A

(
ν

2〈y〉
)ν/2

y
ν
2 −1exp(−νy/2〈y〉)

�
(

ν
2

) , (8)

where A is a factor added for scaling reasons, is fitted to
the histogram, through a least squares fitting, in order to find
the best value of ν. However, since y is the logarithm of the
normalized transition strengths, one should change the variable
y of the interpolating function of Eq. (8) to z = log10(y) and
use for the fitting the form of the interpolating function after
the change of variable. When ν = 1, the interpolating function
reduces to the Porter-Thomas distribution [39], which is the
GOE case (chaotic),

PGOE(y) = 1√
2π〈y〉

1√
y

exp(−y/2〈y〉). (9)

For small values of ν regularity is expected. There is no formal
expression for the regular case.

IV. NUMERICAL RESULTS

A. Quantum chaotic dynamics of 0+ states

Measures of chaotic dynamics were calculated at four
different points in the IBM symmetry triangle, as is shown
in Fig. 1, namely on the SU(3) vertex, a point on the arc
of regularity having parameters (η,χ ) = (0.632, − 0.803) and
at two points with the same η lying off the arc at (η,χ ) =
(0.632, − 0.7) and (η,χ ) = (0.632, − 1.1). The value η =
0.632 corresponds to ζ = 0.7 in a different parametrization
[27], and was chosen in order to be in accordance with the
value used in Ref. [26]. The region of coexistence begins at
η = 0.8. The points on the arc are given by the expression
χ (η) =

√
7−1
2 η −

√
7

2 , which was found by calculating the
values of χ versus η, where σ (a measure of classical chaos)
is minimized [20].

In order to have good statistics, NB = 175 was used for
the fluctuation measures P (S) and �3(L), producing 2640
0+ states. For the P (y) fluctuation measure, NB = 50 was
used, producing 54 756 possible transition strengths, B(E0)s,
between the 234 0+ states. The reason for selecting NB = 50
instead of NB = 175 was that in the latter case more than
6 000 000 possible transition intensities are produced between
the 2640 0+ states, which renders the calculation impossible
to run in terms of time, while for NB = 50, the run time and
the statistics are more than satisfactory. The allowed number
of B(E0)s differs from point to point in the symmetry triangle
of the IBM and this number gets larger, as the dynamics of
the point get more chaotic. Figure 2 shows the results for the
three statistical measures P (S), �3(L), and P (y) applied on
the three points illustrated in Fig. 1, accompanied by the results
on the SU(3) vertex, a point with regular dynamics.
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FIG. 2. (Color online) Results for the four points shown in Fig. 1, for NB = 175 and J = 0 states, using the fluctuation measures P (S)
of Eq. (2) [33] and �3(L) of Eq. (7) [34,35], and for NB = 50 and J = 0 states, for the fluctuation measure P (y) of Eq. (8) [36,37]. The
black dotted line shows the regular limit, the red (gray) dashed line describes the chaotic limit, while the blue (gray) solid line is the fit to the
distribution. It is evident from the values of ω, q, and ν that the SU(3) vertex and the point on the arc are more regular compared to the other
two points above and below the arc.

All three different measures of fluctuations show consistent
results. The SU(3) vertex is the more regular point, followed
by the point on the arc of regularity, which appears to also have
regular behavior. Then come the points labeled by χ = −0.7
and χ = −1.1 which are indeed chaotic, with the χ = −0.7
point being less chaotic than the χ = −1.1 point. The fitting of
the interpolating function of the last statistical measure, P (y),
on the SU(3) vertex is rather poor, which reflects the fact that
the expression of Eq. (8) does not reduce to the regular case
for any value of ν.

B. Chaos in 0+ states as a function of energy

The study of chaos as a function of energy, using the
quantum spectrum, is for the first time possible because of the
large number of bosons used, which allows for good statistics.
The spectrum of the produced states is divided into equal parts
and each part is studied using the three statistical measures.
For NB = 175, 2640 0+ states are produced. The spectrum
is divided into 8 parts of 330 states and each part is studied
separately for its chaotic dynamics. The highest energy in each
interval is shown in Table I. In all cases the first 0+ state is set
at zero energy, while all other energies are normalized to the
energy of the second 0+ state, i.e., to the first excited 0+ state,
thus rendering the parameter c appearing in Eq. (1) irrelevant.

The spectra shown in Table I are the original ones, before
any unfolding is applied to them. The division of the spectrum
in parts with equal number of states is the same as the division
of the spectrum in parts having equal energy differences, due to
the normalization of the spectrum which has led to neighboring

energies differing on average by 1. Figures 3 and 4 illustrate the
results obtained for the nearest spacing distribution, P (S), and
the spectral rigidity measure, �3(L), respectively. The first
energy interval, i.e., the part with the states 1–330, appears
at the top of the columns, while the last energy interval, the
part with the states 2311–2640, appears at the bottom. The
numerical results of ω and q are displayed in Tables II and III.

TABLE I. Spectra of 0+ states obtained from the Hamiltonian
of Eq. (1) for NB = 175 and for the (η, χ ) parameter sets (0,−√

7
2 )

[SU(3)], (0.632, −0.803) [arc], (0.632, −0.7), and (0.632, −1.1). In
all cases the first 0+ state is set at zero and all other energies are
normalized to the energy of the second 0+ state, i.e., to the energy
of the first excited 0+ state. For each of the 8 intervals of 330 states
each, into which the spectrum is divided, the energy of the highest
state in the interval is shown.

State SU(3) Arc χ = −0.7 χ = −1.1

1 0 0 0 0
2 1 1 1 1
330 29.19 26.16 25.39 28.64
660 38.14 36.99 36.52 38.38
990 43.30 46.91 46.82 47.32
1320 46.49 56.39 56.57 55.74
1650 49.58 65.39 65.94 63.78
1980 52.74 74.10 75.00 71.54
2310 55.87 82.55 83.79 79.16
2640 59.00 93.39 94.28 91.17
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FIG. 3. (Color online) Results obtained for the nearest spacing distribution P (S) of Eq. (2) [33] for each of the cases shown in Fig. 1, for
NB = 175, and when the set of J = 0 states is divided into 8 sets of 330 states each. The states 1–330 (labeled as interval 1 in Table II) appear
on the top, and the states 2311–2640 (labeled as interval 8 in Table II) appear at the bottom. The black dotted line shows the regular limit, the
red (gray) dashed line describes the chaotic limit, while the blue (gray) solid line is the fit to the distribution.

The degree of chaos is not uniform in energy. The low-
energy part of the spectrum (the first energy interval) is always
less chaotic than the closest higher parts of the spectrum
(the second and third energy intervals), where the motion
becomes apparently chaotic. However, at higher energies chaos

decreases significantly, with the spectrum becoming almost
regular at its highest part, even for the most chaotic point, χ =
−1.1. This behavior is common at all three points located at the
vicinity of the arc. However, the SU(3) point, which is of course
regular, seems not to follow the behavior of the others. Indeed,
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FIG. 4. (Color online) Results obtained for the spectral rigidity measure �
q
3 (L) of Eq. (7) [34,35], for each of the cases shown in Fig. 1,

for NB = 175, and when the set of J = 0 states is divided into 8 sets of 330 states each. The states 1–330 (labeled as interval 1 in Table III)
appear on the top, and the states 2311–2640 (labeled as interval 8 in Table III) appear at the bottom. The black dotted line shows the regular
limit, the red (gray) dashed line describes the chaotic limit, while the blue (gray) solid line is the fit to the distribution.

chaoticity falls in the middle part of the spectrum and rises
in the highest part, displaying exactly the opposite properties,
although on the average the SU(3) point is less chaotic than
the others, as indicated by the lowest values of ω, q associated
with it in Fig. 2. Another observation is that the point on the

arc is always less chaotic, in all energy intervals, compared to
the points above and below the arc and that chaotic behavior
is confined to fewer intervals at the arc or the SU(3) vertex.

These results are in accordance with several previous
studies of both classical chaos and quantum chaos; for the
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TABLE II. Numerical values of the parameter ω of the Brody
distribution Pω(S) of Eq. (2), for the 8 parts of each spectrum for
NB = 175. The states 1–330 are labeled as interval 1, and the states
2311–2640 are labeled as interval 8. The value of ω obtained from
fitting the whole spectrum, coming from Fig. 2, is labeled by “total.”

Interval SU(3) Arc χ = −0.7 χ = −1.1
P (S) ω ω ω ω

1 0.30 0.26 0.51 0.54
2 0.17 0.50 0.67 0.82
3 0.14 0.31 0.67 1.02
4 0.00 0.16 0.39 0.85
5 0.06 0.10 0.18 0.54
6 0.10 0.22 0.22 0.35
7 0.14 0.04 0.23 0.18
8 0.32 0.03 0.10 0.16

Total 0.17 0.18 0.34 0.53

latter nonstatistical measures of chaos have been used so far.
A few examples are listed here.

(1) The energy dependence of regularity in the classical
IBM has been studied for η = 0.5 in Ref. [23]. Increased
regularity has been found at low energies and again at
high energies, while reduced regularity has been observed in
between.

(2) The energy dependence of regularity for a quantum IBM
Hamiltonian has been studied, again for η = 0.5, in Ref. [24].
Increased regularity has been observed in the AW arc region,
both at low and at high energies. In this quantum study a
visual method originally proposed by Peres [40] has been
used, enabling a qualitative distinction between regular and
chaotic motion.

(3) The energy dependence of regularity in a quantum
IBM Hamiltonian has been studied in a region corresponding
to axially deformed ground states in Ref. [27]. Increased
regularity, with strong occurrence of SU(3)-like rotational

TABLE III. Numerical values of the parameter q of the �
q
3 (L)

distribution of Eq. (7) [34,35], for the 8 parts of each spectrum for
NB = 175. The states 1–330 are labeled as interval 1, and the states
2311–2640 are labeled as interval 8. The value of q obtained from
fitting the whole spectrum, coming from Fig. 2, is labeled by “total.”

Interval SU(3) Arc χ = −0.7 χ = −1.1
�3(L) q q q q

1 0.01 0.43 0.67 0.86
2 0.48 0.84 0.91 0.92
3 0.52 0.57 0.79 1.04
4 0.26 0.32 0.64 0.97
5 0.40 0.27 0.37 0.77
6 0.51 0.41 0.53 0.60
7 0.54 0.002 0.53 0.45
8 0.66 0.26 0.46 0.44

Total 0.39 0.44 0.63 0.76

FIG. 5. Results obtained for the quantum statistical parameters ω

and q, for 14 different values of χ along the η = 0.632 line of the
triangle. The calculations were performed for NB = 175 and J = 0.

bands, has been found at the AW arc at low energies and
again at high energies, with reduced regularity occurring in
between. Again the visual method of Peres [40] has been used.

C. Chaos in 0+ states as a function of the parameter χ

The results of the quantum statistical parameters, ω and q,
as a function of the parameter χ , determined at 14 different
points along the η = 0.632 line of the triangle, are seen
in Fig. 5. First, being on the SU(3)-U(5) line of the trian-
gle ((η,χ ) = (0.632, − 1.32)) chaotic behavior is displayed,
which keeps diminishing as one reaches the arc of regularity
((η,χ ) = (0.632, − 0.803)), where there is a minimum. Then,
as one moves to larger values of χ , chaoticity emerges again,
but once more gives its place to regular behavior as one reaches
the O(6)-U(5) line of the triangle ((η,χ ) = (0.632,0)), where
the O(5) symmetry causes integrability [18].

The results for the 0+ states are in complete agreement
with the original work of Alhassid and Whelan, who found the
existence of the arc of regularity using NB = 25 and J � 2
angular momentum. A strong peak on the arc of regularity has
also been noticed in Ref. [23], where the authors studied the
dependence on χ at η = 0.5 for the ratio of the number of
regular trajectories to the total number of trajectories.

D. Chaos in 0+ states as a function of the number of bosons NB

The results of the quantum statistical parameters, ω and
q, as a function of the number of bosons NB are seen in
Fig. 6. In general, there is a drop of the values of the measured
quantum statistical parameters ω and q as NB increases. For
small numbers of bosons (until about NB = 100) this drop is
steep, while for larger NB (larger than NB = 175), the drop is
very small and the quantum statistical parameters seem to have
reached steady values. A reason for this steep drop, for small
values of bosons, can be explained in terms of the total number
of states for J = 0, for different number of bosons, seen in
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FIG. 6. Results obtained for the quantum statistical parameters ω

and q, for various values of NB at the three points in the vicinity of
the arc of regularity.

Table IV, which affects the statistical results. For example, for
NB = 25 there are only 65 states, which give barely sufficient
statistics; for NB = 50 there are 234 states, which give better
statistics; while for NB = 175 there are 2640 states, which give
more validity to the statistical analysis of the eigenvalues. As
the size of the system becomes larger, in the limit NB → ∞,
ω and q seem to approach fixed asymptotic values.

Despite the drop of the values of the parameters, as a
function of NB , the point on the arc has the smallest values
of ω and q, for all NB � 50, compared to the other two
points, χ = −0.7 and χ = −1.1, the point χ = −0.7 being
always less chaotic than χ = −1.1 in the same NB region.
The situation is different for NB = 25, where the value of ω
is greater at the position corresponding to the arc of regularity
than at the neighboring points (χ = −0.7 and χ = −1.1). This
comes as a surprise, since in their work, Alhassid and Whelan
had used NB = 25 and J = 2 or J = 10 in order to locate the
arc of regularity. Probably, the failure to locate the arc, using
the fluctuation measure P (S), in our case, has to be attributed
to the marginal quality of the statistics, since for NB = 25 and
J = 0 there are 65 states, while for NB = 25 and J = 2 or
J = 10, there are 117 and 211 states respectively. However, as
the number of bosons increases, the limiting values are quickly
reached and the position of the arc of regularity becomes stable.
One should recall at this point that the nuclei found to lie close

TABLE IV. Total number of states for J = 0 for different number
of bosons NB .

NB Number of states NB Number of states

25 65 175 2640
50 234 200 3434
75 507 225 4332
100 884 255 5334
125 1365 275 6440
150 1951 300 7651

TABLE V. Numerical values of the parameter ν of the distribution
Pν(y) of Eq. (8) [36,37], for the 8 parts of each spectrum for NB = 50.
The states 1–30 are labeled as interval 1, and the states 211–234 are
labeled as interval 8. The value of ν obtained from fitting the whole
spectrum, coming from Fig. 2, is labeled by “total.”

Interval Arc χ = −0.7 χ = −1.1
P (y) ν ν ν

1 0.40 0.62 0.44
2 0.48 0.81 0.84
3 0.39 0.60 0.87
4 0.32 0.49 0.77
5 0.29 0.35 0.54
6 0.23 0.26 0.37
7 0.21 0.21 0.30
8 0.21 0.27 0.22

Total 0.34 0.42 0.49

to the arc of regularity [21,22] have boson numbers close to
NB = 14, and therefore the location of the arc for these nuclei
might be different from the one corresponding to the NB → ∞
limit.

E. Chaos in B(E0) intensities as a function of energy

In the following subsections, a quantum chaotic study is
carried out for the transition intensities between the 0+ states.
The chaotic behavior of B(E0) intensities as a function of
energy is first presented. The 234 0+ states occuring for NB =
50 were divided into 7 parts of 30 states each and 1 part of 24
states. For each interval of 30 0+ states, the statistical measure
P (y) was applied to the B(E0) intensities, produced by these
30 0+ states. The results are displayed in Table V and Fig. 7.
The first energy interval, i.e., the part with the states 1–30,
appears at the top of the columns, while the last energy interval,
the part with the states 211–234, appears at the bottom. The
SU(3) point is missing from Table V, for the following reason:
As already mentioned, for points possessing some dynamical
symmetry and thus characterized by regularity, as the SU(3)
point, the interpolating function of Eq. (8) is poorly fitted,
since the number of B(E0) intensities occurring in this case is
much smaller than the number of B(E0) intensities obtained at
other points, characterized by chaotic dynamics. In addition,
these relatively few B(E0) intensities are greatly dispersed. As
a consequence, the study of chaos as a function of energy in
the SU(3) limit, using NB = 50, was statistically impossible.

Again, the degree of chaos is not uniform in energy. The
low-energy part of the spectrum (the first energy interval)
is always less chaotic than the next energy interval, where
the motion becomes apparently chaotic. However, at higher
energies chaos decreases significantly, the spectrum becoming
almost regular at the highest part of the spectrum, even for
the most chaotic point, χ = −1.1. This behavior is common
at all three points located in the vicinity of the arc. Again,
the point on the arc displays less chaoticity, in all energy
intervals, compared to the points above and below the arc, and
chaotic behavior is confined to fewer intervals at the arc. It is
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FIG. 7. (Color online) Results obtained for the statistical measure P (y) of Eq. (8) [36,37], for each of the cases shown in Fig. 1, for
NB = 50 and, when the set of 234 J = 0 states is divided into 7 sets of 30 states and one set of 24 states. The states 1–30 (labeled as interval 1
in Table V) appear on the top, and the states 211–234 (labeled as interval 8 in Table V) appear at the bottom. The blue (gray) solid line is the
fit to the distribution.
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FIG. 8. Results obtained for the quantum statistical parameter ν,
for 14 different values of χ along the η = 0.632 line of the triangle.
The calculations were performed for NB = 50 and J = 0.

fascinating that the study of quantum chaotic dynamics, both
on the transition intensities and the spectrum of 0+ states, show
consistency in the degree of chaos as a function of energy. In all
cases, there is a jump in the degree of chaoticity as one passes
the low part of the spectrum, which is replaced by regularity
as one gets at the upper part of the spectrum.

F. Chaos in B(E0) intensities as a function of the parameter χ

The results of the quantum statistical parameter ν, as a
function of the parameter χ , along the η = 0.632 line of the
triangle for NB = 175 are seen in Fig. 8. For these calculations
NB = 50 was used, which produced 54,756 possible B(E0)s
between the 234 0+ states.

The results show the same general behavior as those of the
quantum statistical parameters ω and q. There is a characteris-
tic minimum of the curve, at χ = −0.8, revealing the minimum
chaoticity of the arc. Chaotic behavior is encountered at the
regions below and above the arc of regularity, while at the
O(6)-U(5) line of the triangle ((η,χ ) = (0.632,0)), regularity
emerges again. The study of chaoticity of the B(E0) intensities
distribution gives results which are in complete agreement with
the study of chaoticity of the B(E2) intensities distribution of
the original work of Alhassid and Whelan.

V. STUDY OF CHAOS ON A LINE BASED ON O(6) PDS

In addition to the notion of quasidynamical symmetry
(QDS), i.e., the approximate persistence of a symmetry in spite
of strong symmetry-breaking interactions [4–8], the notion
of partial dynamical symmetry (PDS) has been introduced
[41–44], including three different cases. In type I PDS, part of
the states possess all the dynamical symmetry; in type II PDS,
all the states possess part of the dynamical symmetry; while in
type III PDS, part of the states possess part of the dynamical
symmetry [44]. The linkage between QDS and PDS has been
only recently clarified, by proving that coherent mixing of one
symmetry (QDS) can lead to partial conservation of a different,
incompatible symmetry (PDS) [45].

In Ref. [45], by using a measure of σ fluctuations in a state
�, called �σ� , a valley of almost vanishing �σg.s. fluctuations
has been found, i.e., a valley where the ground-state wave
functions have a high degree of purity with respect to the
σ quantum number of O(6), providing an example of an

TABLE VI. Numerical values for NB = 175 of the parameter ω

of the distribution Pω(S) of Eq. (2) [33], for the 7 points around the
intersection (labeled as “on arc, on O(6)”) of the O(6) PDS line with
the arc of regularity.

χ η ω

Below arc, on O(6) −1.10 0.60 0.49
On arc, on O(6) − 0.88 0.54 0.16
On arc, right of O(6) − 0.98 0.41 0.23
On arc, left of O(6) − 0.80 0.63 0.18
Above arc, on O(6) − 0.50 0.38 0.63
Above arc, right of O(6) − 0.50 0.17 0.55
Above arc, left of O(6) − 0.50 0.57 0.80

O(6) approximate PDS of type III. This line begins from the
O(6) vertex and reaches the U(5)-SU(3) line of the triangle,
intersecting, at a certain point, with the arc of regularity.

As a preliminary test, we applied the nearest neighbor
spacing distribution, on 0+ states, for NB = 175 bosons at
various points on and around the O(6) PDS line, in order to see
whether the O(6) PDS line induces regular dynamics to the 0+
states considered here. The results for the relevant parameter,
ω, are presented in Table VI. The only regular points are those
located on the arc of regularity, including the intersection of the
O(6) PDS line with the arc. Therefore, the O(6) PDS does not
seem to induce regularity to the 0+ states considered here, a fact
not unexpected since the O(6) PDS regards the ground-state
band while the present study focuses on all 0+ states, and the
two sets have only one state in common.

It is expected that in general PDS can lead to suppression
of chaos; however, this is expected to depend on the number
of states exhibiting the PDS. In Ref. [46] a model Hamiltonian
with an SU(3) PDS has been used, in order to examine
whether there is suppression of chaos on the point of the
PDS. Classical and quantum measures of chaos have been
used for three different values of the angular momentum
(J = 2,10,25) and NB = 25. Minimum chaoticity has been
found around the point where the SU(3) PDS was supposed
to exist, but the minimum diverged slightly from this point
for the two lowest values of angular momentum, while it was
more pronounced and closer to this point for the larger value
of angular momentum (J = 25). The same behavior has been
seen for the average SU(3) entropy of the eigenstates of the
model Hamiltonian, which also showed a more pronounced
and closer to the point of the SU(3) PDS minimum for J = 25.
This behavior has been explained in terms of the increase of
the number of soluble states with increasing J . In contrast,
in Ref. [47], where a large number of states had an SU(2)
PDS, the classical and quantum measures of chaos showed
a minimum exactly at the point where the SU(2) PDS was
supposed to exist.

VI. CONCLUSIONS

In this paper, we presented the application of statistical
measures of chaos on the energy spectrum and the transition
strengths of excited 0+ states, in the context of the interacting
boson model and more precisely on a line connecting a point on
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the U(5)-SU(3) leg of the symmetry triangle with a point on the
U(5)-O(6) leg. While the statistical measures of chaos reveal
regularity on the U(5)-O(6) leg, due to the O(5) symmetry
known [18] to underlie this leg, the point on the U(5)-SU(3)
leg seems to be the most chaotic point on this connection line.
Besides the U(5)-O(6) leg, one more minimum is revealed on
the transition line, located on the arc of regularity, which is
in agreement with previous studies performed with smaller
number of bosons and levels with angular momentum J > 2.

Concerning the objectives posed at the end of the introduc-
tion, the following comments are made:

(1) The study of chaos as a function of energy gave some
intriguing results. This study has already been performed using
both classical [23] and quantum measures of chaos [24,27] but
never using the fluctuation measures of the quantum spectrum
or the transition intensities, due to the bad statistics imposed by
the small number of bosons used. The degree of chaos differs
as the energy changes. The results, both for the spectrum and
the transition intensities, show that the low-energy part of the
spectrum has always more regular dynamics compared to the
immediately higher energy parts, which are almost completely
chaotic. However, as the energy increases, chaoticity decreases
and regularity prevails at the highest parts of the spectrum. This
is the general behavior for points studied in the vicinity of the
arc. However, the point on the arc is always more regular,
compared to the other points, in all energy intervals, giving a
confirmation for its regular character.

(2) Quantum chaos also depends on the number of bosons
used. As the number of bosons increases, the degree of chaos
converges to a steady value. Beyond NB = 50, the relative
chaoticity of different points is the same, for all numbers
of bosons used in the context of this work. For example,
chaoticity on the arc points is less than on the neighboring
points, regardless of the number of bosons beyond NB = 50,
giving for the arc a steady position in the symmetry triangle as a
function of boson number beyond NB = 50. Below NB = 50,
however, the location of the arc appears to be sensitive in NB ,
affecting the efforts of finding nuclei lying on or near the arc

[21,22], since the boson numbers corresponding to these nuclei
are around NB = 14.

While the fluctuation measures of chaos reveal semiregular-
ity on the arc, they cannot reveal the nature of the approximate
symmetry underlying the Alhassid-Whelan arc of regularity,
a question which has been addressed in several recent studies
[24,27,26,30] but still remains open.

Recently, a line based on an O(6) PDS was found in the
symmetry triangle, extending from the O(6) vertex to a point on
the U(5)-SU(3) leg of the triangle, intersecting with the arc of
regularity. Calculations of chaos around the intersection point
show that the O(6) PDS does not contribute to the development
of regular dynamics for the 0+ states, a reasonable result since
the O(6) PDS under consideration regards only the ground-
state band of the nuclear spectrum.

The extension of the present study to states with nonzero
angular momentum is desirable. In this case, attention should
be paid to handling degeneracies in the spectrum [15].

Study of the interplay of order and chaos has also been
extended to the region of shape-phase transitions in the
triangle. Shape-phase transitions between different dynamical
symmetries, as well as critical point symmetries appearing
at the relevant transition points, have been an active field of
investigation over the past decade [2,3]. In the framework
of the interacting boson model, in particular, a first-order
shape-phase transition between spherical and deformed shapes
is known to exist [48], characterized by a phase coexistence
region [49]. The appearance of degeneracies within the phase
coexistence region [50,51], as well as the evolution of order and
chaos across the first-order transition [52–55], are emerging
fields of investigation.
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