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Nucleon-pair approximations for low-lying states of even-even N = Z nuclei
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In this paper we study nucleon-pair correlations of low-lying states for two typical cases of even-even N = Z

nuclei. The first case is a single g9/2 shell with eight valence nucleons. In this case we study S-pair, isoscalar
spin-aligned-pair, isoscalar spin-one-pair approximations, with both schematic and realistic interactions. We find
that electric quadrupole transition rates and electric quadrupole moments exhibit different patterns depending on
the pair-truncated scheme. In the second case we study ground states of 20Ne, 24Mg, 32S, 36Ar, 44Ti, 48Cr, 60Zn,
64Ge, 92Pd, and 96Cd. For ground states of these nuclei, the S-pair approximation is reasonably good (though
not as good as for semimagic nuclei); the isoscalar spin-one-pair approximation is not very good. The isoscalar
spin-aligned pair approximation is good for ground states of 44Ti and 96Cd, and not very good for 48Cr and
92Pd. The effect of the spin-orbit coupling strength on pairing correlations is studied. Our calculations suggests
that the spin-orbit coupling favors the S-pair correlation in ground states of N = Z nuclei.
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I. INTRODUCTION

The pairing correlation plays an important role in nuclear
structure. Nucleon pairs with spin J = 0 (denoted by S pairs)
are dominant ingredients in low-lying states of semimagic
nuclei [1], as a consequence of the strong monopole pairing
interaction between like nucleons. Such isovector pairing
correlation has been emphasized in the seniority scheme [2],
the BCS theory [3–6], the interacting boson model [7], the
broken pair model [8,9], and the nucleon-pair approximation
of the shell model [10]. See Ref. [11] for a comprehensive
review.

In addition to isovector pairing interaction, isoscalar pairing
interaction is strong. This can be seen from the δ interaction
for two nucleons in a single-j orbit: spin J = Jmax = 2j and
J = 1 states achieve very low energies. Therefore the isoscalar
spin-aligned J = Jmax pair approximation and isoscalar
deuton-like J = 1 pair (namely the P pair) approximation
might provide us with proper scenario for low-lying states of
nuclei with equal numbers of protons and neutrons [12].

Indeed, studies of the isoscalar spin-aligned pair could be
traced back to the so-called stretch scheme in 1966 [13],
and particularly in recent years the spin-aligned pairs of the
g9/2 orbit were suggested to be dominant building blocks in
low-lying states of a few N = Z nuclei below the doubly
magic nucleus, 100Sn [14–25]. On the other hand, it was also
pointed out that the spin-aligned pair approximation is not the
unique scenario for these cases; for instance, Refs. [14,26]
showed that the seniority scheme is also relevant in the ground
state of two valence protons and two valence neutrons, and of
four valence protons and four valence neutrons; Refs. [19,27]
showed that both isovector pairs and isoscalar pairs can provide
good descriptions in low-lying states of 20Ne, 24Mg, 92Pd,
and 96Cd. Such dual description is a consequence of the
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nonorthogonality of nucleon-pair basis. Analytical formulas of
the overlap between wave functions with the lowest seniority
quantum number and the spin-aligned pair approximation for
T = 0 states of four nucleons are given in Ref. [27].

The isoscalar P -pair correlation has also attracted consid-
erable attention. A number of approaches, such as the exactly
solvable SO(5) and SO(8) models of isoscalar and isovector
pairing, the mean field approaches, and the nuclear shell model
studies with the “pair counting” operators, have been applied to
study P -pair correlation in low-lying states of N ≈ Z nuclei.
A summary of isoscalar pairing correlation was recently given
in Ref. [28].

The purpose of this paper is to study isovector and
isoscalar pair approximations for low-lying states of even-
even N = Z nuclei, in terms of the nucleon-pair approx-
imation of the shell model [10,11,29]. We calculate level
energies, wave functions, electric quadrupole transition rates,
as well as electric-quadrupole moments in nucleon-pair bases.
This paper is organized as follows. In Sec. II we study
eight valence nucleons in a single j = 9/2 shell, with
both schematic and effective interactions. In Sec. III we
study pair correlations in the ground states of N = Z even-
even nuclei, including 20Ne, 24Mg, 32S, 36Ar, 44Ti, 48Cr,
60Zn, 64Ge, 92Pd, and 96Cd. In Sec. IV we summarize our
results.

II. SINGLE- j SHELL CALCULATION

The ground states of two protons and two neutrons, and of
four valence protons and four valence neutrons in a single-j
shell were studied by Neergård in Refs. [14,26], in terms of
both the seniority scheme and the spin-aligned isoscalar pair
approximation. In Ref. [27] the seniority scheme, the spin-
aligned pair approximation, and the P pair approximation were
applied to low-lying states with spin 0,2, . . . ,8 and isospin
0, of four nucleons in a single-j shell. In this section we
study nucleon-pair approximations for low-lying states of eight
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nucleons in a single j = 9/2 shell, for both schematic and
realistic interactions.

We use I and T to denote the total spin and isospin of a
given state, respectively; we use J and M to denote the spin of
one nucleon pair and its z-component projection, respectively;
we use T and τ to denote the isospin of one nucleon pair and
its z-component projection, respectively. For a single-j shell,
T = 1 if J is even, and T = 0 if J is odd. For simplicity the
index T is suppressed without confusion.

The simplest schematic interaction is the zero-range δ
interaction (denoted by Vδ), and the two-body matrix elements
〈j 2J |Vδ|j 2J 〉 are the lowest in energy for J = 0 (with T = 1),
J = 1 or 2j (with T = 0) in the case of a single-j shell.
Therefore we assume our schematic interaction as follows:

H (a,b) = (1 − a − b)VJ=0 + aVJ=2j + bVJ=1, (1)

where a and b are adjustable parameters ranging between 0 to
1, and

VJ = −
J∑

M=−J

T∑

τ=−T

A
(JT)
Mτ

†
A

(JT)
Mτ ,

A
(JT)
Mτ

† = 1√
2

(aj
† × aj

†)(JT)
Mτ ,

where aj
† is the creation operator of a nucleon in the j orbit.

A. Framework

In the nucleon-pair approximation [11], the building blocks
of a wave function are nucleon pairs with given spin and
isospin. For 2N valence nucleons, N nucleon pairs are coupled
successively, i.e.,

A(JN )†(r1 · · · rN ,J1 · · · JN )

≡ ( · · · ((A(r1)† × A(r2)†)(J2)

×A(r3)†)(J3) × · · · × A(rN )†)(JN )
, (2)

where A(ri )† = (aj
† × aj

†)(ri ) denotes a nucleon pair with spin
Jri

and isospin Tri
; (ri) is short for (Jri

,Tri
); (Ji) is short for

(Ji,Ti).
In the quasispin formalism with isospin [30,31], the wave

function of eight nucleons with the lowest seniority number of
I = 0,2, . . . ,8 and T = 0 is written as

|�LS(I )〉 = ((
(S† × S†)(0,0) × S†)(0,1) × A(I,1)†)(I,0)|0〉, (3)

where we use the subscript “LS” to represent the abbreviation
“lowest seniority”, and S† = A(0,1)†. This wave function is
not normalized. We note that in the notation of Flowers [32]
the above “LS” wave function has (s,t) = (0,0) for I = 0
and (s,t) = (2,1) for I = 2,4,6,8, where s is the seniority
number and t is the reduced isospin. It is also noted that
Eq. (3) is very similar to the pair basis used in the broken
pair approximation [8,9].

In the spin-aligned pair approximation, the basis states are
constructed by four isoscalar pairs with J = 9,

|�SA〉 = ((
(A(9,0)† × A(9,0)†)(J2,0)

×A(9,0)†)(J3,0) × A(9,0)†)(I,0)|0〉, (4)

where J2 and J3 are intermediate spins. By choosing inter-
mediate spins in all possible ways, one gets a set of states
that are generally linearly dependent. From this set we select
a maximal linearly independent subset, which is determined
by inspection of the norm matrix, that is, the matrix of inner
products, by using as the criterion for linear independence that
it has only nonzero eigenvalues. The subset can be chosen
in several equivalent ways. The calculated states are then
obtained by diagonalization of Hamiltonian matrix in the space
spanned by the selected subset of states. The maximum spin I
of a state |�SA〉 is 24, and the numbers of states with even I
(=0,2,4, . . . ,24) are 3,4,6,7,7,7,7,5,4,3,2,1,1, respectively.
The subscript “SA” refers to the abbreviation of “spin aligned”.

In the P -pair approximation, we take two configurations.
The first is the P -pair condensation, i.e.,

|�SO1〉 = ((
(P † × P †)(J2,0) × P †)(J3,0) × P †)(I,0)|0〉, (5)

where P † = A(1,0)†. The maximum spin I of a state |�SO1〉 is
4. The state with even values of I is unique, and states with odd
values of I do not exist. Thus the intermediate spin J2 is equal
to either 0 or 2, and J3 is equal to either 1 or 3. The number of
states and the intermediate spins for the P -pair condensation
system are exactly the same as those for a spin-one boson (i.e.,
p boson) system. For a system with n spin-one bosons, the
number of state is 1 for even values of I + n, and is 0 for
odd values of I + n. This fact can be proved straightforwardly
via the m-scheme method [33]. Therefore the above basis is
the wave function of H in the P -pair condensation subspace.
The subscript “SO” refers to the abbreviation “spin one”. The
second configuration is constructed by three P pairs and one
isoscalar pair, i.e.,

|�SO2〉 = ((
(P † × P †)(J2,0) × P †)(J3,0) × A(J,0)†)(I,0)|0〉,

(6)

where J2 and J3 are intermediate spins, and J is the spin of
the fourth pair which is equal to 1,3,5,7, or 9. The basis states
are chosen in the same way as they are in the SA space. The
maximum spin I of a state |�SO2〉 is 12, and the numbers of
states with I (=0,2,4, . . . ,12) are 2,4,6,6,5,3,1, respectively.
Finally, we denote the calculated wave functions in the full
shell model space by |�SM〉, where “SM” stands for “shell
model”.

B. Pair approximation with schematic interactions

In this paper we call the quantity 〈�a|�b〉2 the overlap
between two states, |�a〉 and |�b〉. We calculate overlaps of
the pair-truncated wave functions |�LS〉, |�SA〉, |�SO1〉, |�SO2〉
with shell model wave functions |�SM〉, for low-lying states of
eight nucleons with I = 0,2, . . . ,8 and T = 0 in the single j =
9/2 shell. We also calculate the reduced electric-quadrupole
transition probability [B(E2)] between these states and the
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FIG. 1. (Color online) Nucleon-pair approximation for yrast T = 0 states with spin I = 0,2,4,6,8, for eight nucleons in the single j = 9/2
shell with schematic Hamiltonian H (a,b) = (1 − a − b)VJ=0 + aVJ=2j + bVJ=1, where a and b are adjustable parameters between 0 to 1.
(a) Overlaps between pair-truncated wave functions and the shell model wave functions. (b) E2 transition rates between yrast T = 0 states.
(c) electric quadrupole moments of yrast T = 0 states. The abbreviations “LS”, “SA”, “SO1”, and “SO2” represent the lowest seniority scheme
[see Eq. (3)], the isoscalar spin-aligned pair approximation [see Eq. (4)], the P pair condensation [see Eq. (5)], and the subspace constructed
by three P pairs plus another isoscalar pair [see Eq. (6)], respectively.

electric-quadrupole moment (Q), by using the shell model
wave functions. The effective charges are simply taken to be
1 for valence protons and 0 for valence neutrons. Because the
relative values of B(E2) and Q are independent of the effective
charges for N = Z nuclei, the general feature of B(E2) and
Q does not depend on specific values of effective charges.

The calculated results are shown in Fig. 1. The transverse
axis and the vertical axis in Fig. 1 correspond to the adjustable
parameters a and b, respectively, in the Hamiltonian of

Eq. (1). The first, second, third, fourth, and fifth columns in
Fig. 1(a) correspond to states with I = 0,2, . . . ,8, respectively.
Overlaps of |�LS〉, |�SA〉, |�SO1〉, |�SO2〉 with |�SM〉 are
presented in each of the four rows. One sees that the yrast
I = 0–8 states are very well described by the seniority scheme
in the cases with a strong J = 0 pairing interaction (where
both a and b are small), and are very well described by
the spin-aligned pair approximation if the J = 2j pairing
interaction is strong (where a is close to 1). On the other

054322-3



G. J. FU, Y. M. ZHAO, AND A. ARIMA PHYSICAL REVIEW C 91, 054322 (2015)

FIG. 2. (Color online) Overlaps between wave functions of the “LS+SA+SO2” pair subspace and those of the shell model space. (a) Yrast
T = 0 states, and (b) the second lowest spin I states with T = 0. Abbreviations “LS”, “SA”, and “SO2” are the same as in Fig. 1.

hand, in the limit of strong J = 1 pairing interaction (b is
close to 1), 〈�SO1(I )|�SM(I+

1 )〉2 is about 0.62 and 0.66 for
the yrast I = 0 and 2 states, respectively, and is close to 1 for
the yrast I = 4 state; the P pair condensation is not a very
good approximation for the yrast I = 0,2 states and very good
for the yrast I = 4 state. Interestingly, all yrast even I = 0-8
states are very well described by |�SO2〉 in the limit of strong
J = 1 pairing interaction.

In Ref. [27] the analytical formula of the overlap between
the wave function with the lowest seniority number and the
spin-aligned pair-truncated wave function is given for T = 0
states with I = 0,2, . . ., 2j − 1 of four nucleons in a single-j
shell. One can use the formula to calculate the overlap, which
is close to 0 for I ∼ 2j − 1, and relatively large for I ≈ 2.
For eight nucleons, it is impossible to derive the analytical
formula of 〈�LS|�SA〉2. Yet numerical calculations show the
similar pattern. In the limit of large a and small b (where
the spin-aligned pair approximation is good), the value of
〈�LS(I )|�SM(I+

1 )〉2 is smaller than 0.1 for I � 4, and is equal
to ∼0.4 for I = 2 and ∼0.3 for I = 0. For small a and b
[where the seniority scheme is good, see the second row of
Fig. 1(a)], 〈�SA(I )|�SM(I+

1 )〉2 is close to 0 for I � 4, and
∼0.6 for I = 2 and ∼0.5 for I = 0. In the cases with small
a and large b (where |�SO2〉 is good), 〈�LS(I )|�SM(I+

1 )〉2 is
smaller than 0.1, and 〈�SA(I )|�SM(I+

1 )〉2 is ∼0.4 for I = 0,
and smaller than 0.01 for I = 2,4,6, and 8.

The behaviors of the E2 transition rates and the electric-
quadrupole moments are very interesting. In Fig. 1(b) our
calculated E2 transition rates are presented in the Weisskopf
unit. In the case of strong J = 0 pairing interaction, the E2
transition rates of 4+

1 → 2+
1 , 6+

1 → 4+
1 , and 8+

1 → 6+
1 are close

to 0. In the case of strong J = 2j pairing interaction, the
relative E2 transition rates of 4+

1 → 2+
1 , 6+

1 → 4+
1 , and 8+

1 →
6+

1 with respect to 2+
1 → 0+

1 are all approximately equal to 1.5.
In the case with a strong J = 1 pairing interaction, the relative
E2 transition rates exhibit a staggering behavior [B(E2) of
4+

1 → 2+
1 , 6+

1 → 4+
1 , and 8+

1 → 6+
1 with respect to 2+

1 → 0+
1

are approximately equal to 2.6, 0.2, and 3.4, respectively].
The electric-quadrupole moment for the yrast T = 0 states

of eight nucleons is presented in Fig. 1(c). In the large a
limit, Q for I = 2, 4, 6, 8 is positive and larger than 15 efm2;

in the large b limit, the value of Q is larger than 11 efm2

for I = 4 and smaller than −12 efm2 for I = 6; and in the
limit of small a and b, Q is very small. It is noted that for
eight-nucleon holes in the j = 9/2 shell (such as 92Pd), the
values of Q in Fig. 1(c) should be multiplied by −1 due to
the particle-hole transformation. The very different behaviors
of B(E2) and Q mentioned above might be useful to predict
which pair approximation is important in the T = 0 states of
eight nucleons in a single-j shell.

We investigate the validity of the “LS+SA+SO2” pair
approximation, in which the “LS”, “SA”, and “SO2” subspaces
are all included in the configuration. We calculate overlaps
between the wave functions of the “LS+SA+SO2” space and
those of the shell model space for the yrast and the second
lowest states of I = 0,2, . . . ,8 and T = 0, and present the
values in Fig. 2. One sees that the overlaps are mostly close to
1 in the yrast states. However, the overlap evolves quickly in
a few specific regions. For example, for a ≈ 0.4 and b ≈ 0.5
in row (a) of Fig. 2, the value of overlap for the I = 6 state
becomes unexpectedly small. In the second lowest states, the
overlap changes irregularly.

C. Pair approximation with realistic interactions

Now we come to the nucleon-pair approximation with
realistic interactions. As in the case of schematic interactions,
here we calculate overlaps between wave functions obtained
in a few pair-truncated spaces and those obtained in the exact
shell model space, for the yrast states with I = 0,2, . . . ,8
and T = 0 of eight nucleons in the single-1g9/2 shell but
with realistic interactions. Many realistic interactions were
obtained for the single-1g9/2 shell, and we adopt ten sets of
them [15,16,34–38], denoted by (a)–(j), respectively, in the
same sequence as in Ref. [27] (see Table I therein).

Reference [26] showed that the 0+
1 state for a nucleus with

four valence protons and four valence neutrons is composed
of 75% of the seniority-zero wave function (the S pair
condensation) with (s,t) = (0,0). In Fig. 3, we obtain similar
results for the 0+

1 state. The lowest seniority wave function is
reasonably good for the 0+

1 and 2+
1 states, and becomes almost

irrelevant for the 4+
1 and 6+

1 states. For the 8+
1 state, 〈�LS|�SM〉2
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FIG. 3. (Color online) Overlaps between wave functions of pair-truncated spaces and those of the shell model space for the lowest
I = 0,2, . . . ,8 and T = 0 states of eight nucleons in a single j = 9/2 shell, by using effective interactions (a)–(j). The abbreviations “LS”,
“SA”, and “SO2” are the same as in Fig. 1.

is sensitive to the specific interaction, and its value ranges from
0.29 to 0.86 for the effective interactions (a)–(j). We also note
here that although the overlap 〈�LS|�SM〉2 is large for the yrast
I = 0,2 states, the energies of |�LS〉 are very different from
the shell model results, see Fig. 4.

In the single g9/2 shell calculations, low-lying states of a
nucleus with four valence protons and four valence neutrons
have been found to be well represented by the spin-aligned
pair approximation [15,17,24–26], and for the ground state
the spin-aligned pair approximation provides us with a more
proper picture than the S pair approximation [17,26]. In Fig. 3,
one sees that this is indeed the case: for the 0+

1 , 2+
1 and 4+

1
states, the spin-aligned pair approximation remarkably well
reproduces the shell model results of the g9/2 shell. For the
8+

1 state, 〈�SA|�SM〉2 depend on the interactions. The P pair
approximation is not good for any of these yrast states.

One might be interested in the calculated results in the space
spanned by our above pair-truncated subspaces, which include
the “LS+SO2”, “SA+SO2”, “LS+SA”, and “LS+SA+SO2”
spaces. The “LS+SO2” space is the space spanned by �LS

and �SO2; the “SA+SO2” space is the space spanned by
�SA and �SO2; the “LS+SA” space is the space spanned
by �LS and �SA. We present the overlaps between the wave
functions in these configurations and the SM results in Fig. 3.
One sees that the “LS+SO2” subspace does not substantially
improve the overlaps in comparison with the overlaps of the
“LS” subspace; nor the “SA+SO2” subspace substantially
improves the overlaps in comparison with the overlaps of the
“SA” subspace. The “LS+SA” and “LS+SA+SO2” spaces
are remarkably good for all the states, except for the case with
the interaction (g).

Finally, we present energy spectra calculated in the “SM”,
“LS”, “SA”, and “SO2” spaces with the realistic interaction (a).
In Fig. 4, the spin-aligned pair approximation well reproduces
spectra obtained in the “SM” space. The spin-aligned pair
approximation shows an underbinding of ∼0.5 MeV for the

ground state, and this underbinding shrinks to ∼0.2 MeV if
the contribution of S pairs is taken into account. This result is
consistent with the result in Refs. [15,25]. Neither the lowest
seniority scheme nor the P pair approximation reproduces the
spectra well.

III. NUCLEON-PAIR CONDENSATION
IN REALISTIC NUCLEI

To proceed our discussion, we define the shell model
Hamiltonian for many-j shells,

Heff = H0 + VT=1 + VT=0. (7)

Here the first term, H0, is the single-particle energy term,

H0 =
∑

j

εnlj

∑

mτ

ajmτ
†ajmτ , (8)

where εnlj is the single-particle energy of orbit with quantum
numbers n,l,j . The second and third terms in Eq. (7), VT=0 and
VT=1, are the isoscalar and isovector two-body interactions,
respectively,

VT=0 =
∑

J

∑

j1�j2

∑

j3�j4

VJ0(j1j2j3j4)√
(1 + δj1j2 )(1 + δj3j4 )

×
∑

m

A
(J0)
m0 (j1j2)

†
A

(J0)
m0 (j3j4),

VT=1 =
∑

J

∑

j1�j2

∑

j3�j4

VJ1(j1j2j3j4)√
(1 + δj1j2 )(1 + δj3j4 )

×
∑

mτ

A(J1)
mτ (j1j2)

†
A(J1)

mτ (j3j4),

where VJ0 and VJ1 are isoscalar and isovector two-body matrix
elements, respectively.
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FIG. 4. The yrast states of T = 0 for eight nucleons in the
j = 9/2 shell by using effective interaction (a). “SM” represents
the shell model, and the abbreviations “LS”, “SA”, and “SO2” are
the same as in Fig. 1. All the level energies are plotted as relative
energies with respect to the 0+

1 state energy obtained by the SM.

In this section we focus on ground states of ten N = Z
even-even nuclei, including four nuclei in the sd shell,
20Ne, 24Mg, 32S, and 36Ar, for which we take the USDB
interaction [39], two nuclei in the pf shell, 44Ti and 48Cr, for
which we take the GXPF1 interaction [40], and four nuclei in
the p1/2p3/2f5/2g9/2 shell, 60Zn, 64Ge, 92Pd, and 96Cd, for
which we take the JUN45 [41] interaction.

In our previous paper [27] we calculated low-lying states
of 20Ne and 24Mg by using various isovector and isoscalar
pair approximations. In this paper we study S-pair and P -pair
condensations for the ground states. The S-pair condensation
wave function is defined in Eq. (3), and the P -pair condensa-
tion wave function is defined in Eq. (5). Because the state with
I = 0 is unique for the P -pair condensation, the calculated
result is independent of different choices of intermediate spins
in Eq. (5) (the intermediate spin J2 is equal to either 0 or
2, and J3 is equal to 1). The nucleon-pair creation operator
with spin Jri

and isospin Tri
for many-j shells is defined

by A(ri )† = ∑
j1j2

y(j1j2ri)(aj1
† × aj2

†)(ri ), where y(j1j2ri) is
called pair structure coefficient determined by minimizing the
expectation value of Hamiltonian.

We calculate the overlap between the pair-condensation
wave function and the SM wave function, for ground states of
these N = Z even-even nuclei. We also calculate the energy

FIG. 5. (Color online) Overlaps between the pair-condensation
wave function and the shell-model wave function, and differences
between the ground state energy obtained by the pair condensation
and that obtained by the shell model, for the ground state of N = Z

even-even nuclei by using effective interactions. Solid squares in
black represent S pair condensation; solid circles in red represent P

pair condensation; solid triangles in blue represent spin-aligned pair
condensation. Hallow squares in black represent S pair condensation
in semimagic even-even nuclei.

difference between the binding energy obtained by the pair
condensation and that obtained by the shell model (denoted by
�E). The calculation results are presented in Fig. 5.

It is useful to recall how good S-pair condensation is
for ground states of nuclei with same mass numbers but
semimagic, 20O, 24O, 32Mg, 36S, 44Ca, 48Ca, 60Ni, 64Ni,
92Mo, and 96Pd. The overlaps between the S-pair conden-
sation wave function and the shell model wave function for
these nuclei are plotted in Fig. 5, where one sees that S-pair
condensation presents us with a remarkably good truncation
scheme. The overlap between the S-pair-condensation wave
function and the SM wave function is larger than 0.92, in
accordance with the conclusion of the generalized seniority
scheme [1]. Interestingly, S-pair condensation is essential
in ground states of 20O, 36Ar, 44Ti, 60Zn, and 96Cd, N =
Z nuclei with four valence particles (holes). The overlaps
are typically 0.52 ∼ 0.75. For the case with eight valence
particles (holes), namely here 24Mg, 32S, 48Cr, 64Ge, and
92Pd, the overlap between the S-pair-condensation wave
function and the SM wave function decreases by about 0.10,
typical overlaps are between 0.36 and 0.65, see solid squares
in Fig. 5.

The P -pair condensation is comparably good as the S-pair
condensation for 20Ne and 60Zn. For other N = Z nuclei,
P -pair condensation presents smaller overlaps with the shell
model results, and for 24Mg, 48Cr, 64Ge, 92Pd, and 96Cd, the
overlap is below 0.22.
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In Ref. [21], low-lying states of 92Pd were calculated
in the p1/2p3/2f5/2g9/2 shell by using the shell model, and
the importance of the spin-aligned pairs was stressed. In the
Supplementary Information of Ref. [21], it was reported that
the ground state is composed of 95% of the spin-aligned pair
truncated wave function. In Refs. [14–20,24–27], low-lying
states of 92Pd and 96Cd were studied in the single g9/2 shell,
and the spin-aligned isoscalar pairs with J = 9 was noted to be
a key configuration. Similarly, 44Ti and 48Cr were calculated
in the single f7/2 shell, and the spin-aligned isoscalar pairs
with J = 7 might present the key configurations [14,25,26].
For these four nuclei, we calculate the ground states in the
spin-aligned pair approximation [defined in Eq. (4)], and find
that the spin-aligned pair approximation is reasonably good
for 96Cd and 44Ti (with four nucleons, see solid triangles
in blue in Fig. 5). On the other hand, for nuclei with eight
valence particles (holes), 92Pd and 48Cr, the spin-aligned pair
approximation is not proper (the overlaps are 0.26 and 0.35,
respectively). This is easy to understand, as there is a large
probability for valence nucleons (holes) to occupy on orbits
other than the f7/2 (g9/2) orbit for 48Cr ( 92Pd). Robinson
et al. calculated low-lying states of 44Ti, 48Cr, 88Ru, 92Pd,
and 96Cd in many-j shells by using the shell model, and found
the component of the pure g9/2-hole configuration in the 0+

1

and 2+
1 state wave function of 92Pd is lower than 33% [42].

Neither the result in Ref. [42] nor our result agrees with the
Supplementary Information of Ref. [21].

Now we come to the effect of the two-body interactions
(with given isospin) on the validity of nucleon-pair approxima-
tion. We exemplify this investigation by ground states of 24Mg,
48Cr, and 64Ge, with modified shell model Hamiltonian.
We assume two artificial interactions, H = H0 + VT=1 and
H = H0 + VT=0, i.e., we switch off either the isoscalar or
the isovector interactions among the effective interaction
parameters. In Fig. 6 one sees that the S-pair condensation for
H = H0 + VT=1 is a much better approximation than for the
effective interaction Heff , as expected. For H = H0 + VT=1,
the overlaps between the S-pair-condensation wave function
and the SM wave function are 0.72, 0.87, and 0.86 for ground
states of 24Mg, 48Cr, and 64Ge, respectively. This seems to
suggest that the S-pair condensation is not favored for isoscalar
interactions. From calculated results shown in Fig. 6, one also
sees that the isoscalar P -pair and the isoscalar spin-aligned pair
approximation for H = H0 + VT=0 works better than those for
Heff , and this suggests that the isoscalar-pair approximations
are not favored for isovector interactions. However, there
are exceptions to the above naive conjectures; for examples,
the S-pair condensation for H = H0 + VT=0 works better
than that for Heff in the ground state of 64Ge; the isoscalar
spin-aligned pair approximation for H = H0 + VT=1 works
better than that for Heff in the ground state of 48Cr; the isoscalar
P -pair condensation for H = H0 + VT=1 is superior to that for
Heff in the ground state of 24Mg and 48Cr.

References [43–46] suggested that both the isovector and
isoscalar pair correlations are suppressed by the spin-orbit
coupling potential in medium and heavy nuclei. The isovector
pair was defined as a spin-singlet pair with J = 0 (total orbital
angular momentum L = 0 and total spin S = 0) and T = 1,

FIG. 6. (Color online) Same as Fig. 5 but for three Hamiltonians,
the original effective interaction Heff [Eq. (7)], and two artificial
Hamiltonians, one of which switches off the T = 0 matrix elements
and the other of which switches off the T = 1 two-body matrix
elements, i.e., H = H0 + VT=1 and H0 + VT=0.

and the isoscalar pair was defined as a spin-triplet pair with
J = 1 (L = 0 and S = 1) and T = 0. In this paper we study
the effect of the spin-orbit coupling potential on the S-pair
and P -pair condensations. The S and P pairs in this paper
are slightly different from the isovector and isoscalar pairs in
Refs. [43–46] as L and S are not good quantum numbers here;
the former generalize the latter. We assume a Hamiltonian with
parametrized spin-orbit coupling strength,

H ′ = H ′
0 + VT=1 + VT=0, (9)

where H ′
0 is the modified single-particle energy term in Eq. (8),

H ′
0 =

∑

j

ε′
nlj

∑

mτ

ajmτ
†ajmτ ,

and

ε′
nlj = εnl − xSOVSO

j (j + 1) − l(l + 1) − 3/4

2
,

εnl = 2
εnl< − εnl>

2l + 1
,

VSO = lεnl< + (l + 1)εnl>

2l + 1
.

Here εnl< and εnl> are defined by εnl< ≡ εnl(l− 1
2 ) and εnl> ≡

εnl(l+ 1
2 ), respectively. VSO is the original spin-orbit coupling

potential obtained in the shell model effective Hamiltonian,
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FIG. 7. (Color online) Same as Fig. 5 except that the single-particle energies are reparametrized by xSO, a scale of spin-orbit coupling
strength parameter.

and xSO is a parameter we define for the spin-orbit coupling
strength ranging between 0 and 3. When xSO = 1, H ′

0 and
ε′
nlj are reduced to H0 and εnlj in Eq. (8), respectively.

Similarly, xSO = 0 means no spin-orbit coupling potential;
xSO > 1 means a stronger spin-orbit coupling potential in H ′

0
than in H0; if xSO is large (e.g., xSO � 3), the single-particle
energy difference in H ′

0 is large, and multi-j shells can be
approximately represented by a single-j shell.

We study the the ground states of 20Ne, 24Mg, 32S,
36Ar, 44Ti, and 48Cr with the modified effective Hamiltonian
H ′. We calculate the overlap between the pair-condensation
wave functions and the SM wave function, and the difference

between the binding energy obtained by the pair condensations
and that obtained by the SM, and plot the calculated results in
Fig. 7. In general, the overlaps evolve rapidly for xSO = 0.5-1,
and smoothly for xSO > 1. The overlap between the S-pair-
condensation wave function and the SM wave function is small
at xSO = 0, and gradually increases as xSO increases. This
behavior of S-pair condensation is consistent with the result
in Ref. [47] where S-pair condensation is found to be favored
by larger single-particle splittings for semimagic nuclei, 22O
and 46Ti, with random interactions. The P -pair condensation
is suppressed by the spin-orbit potential in the region with
xSO < 1. However, it becomes more relevant for xSO > 1. The
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behavior of the P -pair condensation, as well as the S-pair
condensation, is different from Refs. [43–46], in which both
the isovector pair correlation and the isoscalar pair correlation
are noted to be suppressed by the spin-orbit potential.

Finally, it is worth pointing out that the P -pair condensation
works better than S-pair condensation for xSO ≈ 0. As xSO be-
comes larger than 0.5, the S-pair condensation is more relevant
than P -pair condensation for the ground states of these nuclei.

IV. SUMMARY

In this paper we study isovector and isoscalar pair approxi-
mations for low-lying T = 0 states of a eight-nucleon system
in a single j = 9/2 shell and for ground states of N = Z
even-even nuclei, 20Ne, 24Mg, 32S, 36Ar, 44Ti, 48Cr, 60Zn,
64Ge, 92Pd, and 96Cd. We present overlaps between wave
functions obtained in our various pair-truncated spaces and
those obtained in the shell model space.

For eight nucleons in a single j = 9/2 shell, the lowest
T = 0 states with I = 0,2, . . ., 8 are well described by the
wave functions with the lowest seniority quantum number
with strong J = 0 pairing interaction, and are well described
by four spin-aligned pairs with strong J = 2j = 9 pairing
interaction. On the other hand, the low-lying states are not
well represented by four P pairs for strong J = 1 pairing
interaction. The overlap between the wave function with the
lowest seniority quantum number and that with spin-aligned
pair approximation is ∼0.5 for I = 0 and 2, and is ∼0 for
I = 4,6,8. The overlap between the P -pair wave function and
the lowest-seniority wave function (or the spin-aligned pair
wave function) is small. For the yrast T = 0 states of eight
nucleons in the g9/2 shell by using realistic interactions, the
spin-aligned pair approximation is very good. If the S pairs
and P pairs are further taken into account, the nucleon-pair
truncated subspace presents better descriptions.

For the yrast T = 0 states of eight nucleons in a single
j = 9/2 shell, we find that for strong J = 0 interaction (the
seniority scheme is very good), the E2 transition rates of
4+ → 2+, 6+ → 4+, and 8+ → 6+ are close to 0, and the
electric-quadrupole moments of the 2+, 4+, 6+, and 8+ states
are very small. When the J = 2j pairing interaction is very
strong (the isoscalar spin-aligned pair approximation is very
good), the relative E2 transition rates of 4+ → 2+, 6+ → 4+,
and 8+ → 6+ with respect to 2+ → 0+ are all approximately
equal to 1.5, and the electric-quadrupole moments are all
positive (negative) and large for the eight-nucleon (-hole)

nucleus. If the J = 1 pairing interaction is very strong (the
isoscalar P pair approximation is very good), the relative E2
transition rates of 4+ → 2+ and 8+ → 6+ with respect to
2+ → 0+ are approximately equal to 2.6 and 3.4, respectively,
and that of 6+ → 4+ is close to 0. The electric-quadrupole
moments of the 4+ and 6+ states are opposite in signs.

We study ground states of 20Ne, 24Mg, 32S, 36Ar, 44Ti,
48Cr, 60Zn, 64Ge, 92Pd, and 96Cd in multi-j shells. As well
known, the S-pair condensation works very well in the case
of even-even semimagic nuclei. For even-even N = Z nuclei,
the calculated overlap between the S-pair-condensation wave
function and the shell model wave function is reasonably large
for four valence particles (holes), and becomes smaller for
eight valence particles (holes). The P -pair condensation is
not good here. The isoscalar spin-aligned pair approximation
is good in 96Cd and 44Ti, and is not good in 92Pd and
48Cr. This is different from the single-j shell model results
[15–20,25,26]. The reason is that valence holes (nucleons) in
92Pd ( 48Cr) occupy orbits other than the g9/2 (f7/2) orbit at
large probabilities. By using an artificial interaction without
the T = 0 (T = 1) two-body part, the isovector (isoscalar) pair
condensation works better than that with the original effective
interaction.

We study the effect of the spin-orbit coupling potential
on the isovector and isoscalar pair condensations. We find
that the isoscalar P -pair condensation is indeed suppressed in
the range that the spin-orbit coupling is weaker than that in
effective interactions. When the coupling is stronger, however,
isoscalar P pairs become more relevant in the ground state.
The isovector S-pair condensation is not good when the
spin-orbit coupling is weak, and becomes a better description
of the ground state when the coupling is strong. This suggests
a different scenario of Refs. [43–46] in which both the
correlation of the pair with J = 0 (L = 0, S = 0) and T = 1
and the correlation of the pair with J = 1 (L = 0, S = 1) and
T = 0 are suppressed by the spin-orbit potential.
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[26] K. Neergård, Phys. Rev. C 90, 014318 (2014).
[27] G. J. Fu, Y. M. Zhao, and A. Arima, Phys. Rev. C 90, 054333

(2014).
[28] S. Frauendorf and A. O. Macchiavelli, Prog. Part. Nucl. Phys.

78, 24 (2014).

[29] G. J. Fu, Y. Lei, Y. M. Zhao, S. Pittel, and A. Arima, Phys. Rev.
C 87, 044310 (2013).

[30] K. Helmers, Nucl. Phys. 23, 594 (1961).
[31] M. Ichimura, On the Quasispin Formalism (Pergamon Press,

Oxford/New York, 1968).
[32] B. H. Flowers, Proc. R. Soc. London, Ser. A 212, 248 (1952).
[33] R. D. Lawson, in Theory of Nuclear Shell Model (Clarendon,

Oxford, 1980), pp. 8–21.
[34] L. Zamick and A. Escuderos, Nucl. Phys. A 889, 8 (2012).
[35] J. P. Schiffer and W. W. True, Rev. Mod. Phys. 48, 191

(1976).
[36] I. P. Johnstone and L. D. Skouras, Eur. Phys. J. A 11, 125

(2001).
[37] E. J. D. Serduke, R. D. Lawson, and D. H. Gloeckner,

Nucl. Phys. A 256, 45 (1976).
[38] R. Gross and A. Frenkel, Nucl. Phys. A 267, 85 (1976).
[39] B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315 (2006).
[40] M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Phys. Rev.

C 69, 034335 (2004).
[41] M. Honma, T. Otsuka, T. Mizusaki, and M. Hjorth-Jensen,

Phys. Rev. C 80, 064323 (2009).
[42] S. J. Q. Robinson, T. Hoang, L. Zamick, A. Escuderos, and

Y. Y. Sharon, Phys. Rev. C 89, 014316 (2014).
[43] A. Poves and G. Martinez-Pinedo, Phys. Lett. B 430, 203 (1998).
[44] O. Juillet and S. Josse, Eur. Phys. J. A 8, 291 (2000).
[45] G. F. Bertsch and S. Baroni, arXiv:0904.2017v2.
[46] G. F. Bertsch and Y. Luo, Phys. Rev. C 81, 064320 (2010).
[47] Y. Lei, Z. Y. Xu, Y. M. Zhao, S. Pittel, and A. Arima, Phys. Rev.

C 83, 024302 (2011).

054322-10

http://dx.doi.org/10.1016/S0375-9474(97)00502-2
http://dx.doi.org/10.1016/S0375-9474(97)00502-2
http://dx.doi.org/10.1016/S0375-9474(97)00502-2
http://dx.doi.org/10.1016/S0375-9474(97)00502-2
http://dx.doi.org/10.1103/PhysRevC.62.014304
http://dx.doi.org/10.1103/PhysRevC.62.014304
http://dx.doi.org/10.1103/PhysRevC.62.014304
http://dx.doi.org/10.1103/PhysRevC.62.014304
http://dx.doi.org/10.1016/j.physrep.2014.07.002
http://dx.doi.org/10.1016/j.physrep.2014.07.002
http://dx.doi.org/10.1016/j.physrep.2014.07.002
http://dx.doi.org/10.1016/j.physrep.2014.07.002
http://dx.doi.org/10.1038/nphys291
http://dx.doi.org/10.1038/nphys291
http://dx.doi.org/10.1038/nphys291
http://dx.doi.org/10.1038/nphys291
http://dx.doi.org/10.1103/PhysRevLett.17.703
http://dx.doi.org/10.1103/PhysRevLett.17.703
http://dx.doi.org/10.1103/PhysRevLett.17.703
http://dx.doi.org/10.1103/PhysRevLett.17.703
http://dx.doi.org/10.1103/PhysRev.161.1034
http://dx.doi.org/10.1103/PhysRev.161.1034
http://dx.doi.org/10.1103/PhysRev.161.1034
http://dx.doi.org/10.1103/PhysRev.161.1034
http://dx.doi.org/10.1103/PhysRevC.88.034329
http://dx.doi.org/10.1103/PhysRevC.88.034329
http://dx.doi.org/10.1103/PhysRevC.88.034329
http://dx.doi.org/10.1103/PhysRevC.88.034329
http://dx.doi.org/10.1103/PhysRevC.83.064314
http://dx.doi.org/10.1103/PhysRevC.83.064314
http://dx.doi.org/10.1103/PhysRevC.83.064314
http://dx.doi.org/10.1103/PhysRevC.83.064314
http://dx.doi.org/10.1103/PhysRevC.84.021301
http://dx.doi.org/10.1103/PhysRevC.84.021301
http://dx.doi.org/10.1103/PhysRevC.84.021301
http://dx.doi.org/10.1103/PhysRevC.84.021301
http://dx.doi.org/10.1143/PTPS.196.414
http://dx.doi.org/10.1143/PTPS.196.414
http://dx.doi.org/10.1143/PTPS.196.414
http://dx.doi.org/10.1143/PTPS.196.414
http://dx.doi.org/10.1016/j.nuclphysa.2011.12.005
http://dx.doi.org/10.1016/j.nuclphysa.2011.12.005
http://dx.doi.org/10.1016/j.nuclphysa.2011.12.005
http://dx.doi.org/10.1016/j.nuclphysa.2011.12.005
http://dx.doi.org/10.1103/PhysRevC.87.044312
http://dx.doi.org/10.1103/PhysRevC.87.044312
http://dx.doi.org/10.1103/PhysRevC.87.044312
http://dx.doi.org/10.1103/PhysRevC.87.044312
http://dx.doi.org/10.1103/PhysRevC.85.034335
http://dx.doi.org/10.1103/PhysRevC.85.034335
http://dx.doi.org/10.1103/PhysRevC.85.034335
http://dx.doi.org/10.1103/PhysRevC.85.034335
http://dx.doi.org/10.1038/nature09644
http://dx.doi.org/10.1038/nature09644
http://dx.doi.org/10.1038/nature09644
http://dx.doi.org/10.1038/nature09644
http://dx.doi.org/10.1103/PhysRevLett.107.172502
http://dx.doi.org/10.1103/PhysRevLett.107.172502
http://dx.doi.org/10.1103/PhysRevLett.107.172502
http://dx.doi.org/10.1103/PhysRevLett.107.172502
http://dx.doi.org/10.1103/PhysRevC.28.958
http://dx.doi.org/10.1103/PhysRevC.28.958
http://dx.doi.org/10.1103/PhysRevC.28.958
http://dx.doi.org/10.1103/PhysRevC.28.958
http://dx.doi.org/10.1088/0031-8949/2012/T150/014042
http://dx.doi.org/10.1088/0031-8949/2012/T150/014042
http://dx.doi.org/10.1088/0031-8949/2012/T150/014042
http://dx.doi.org/10.1088/0031-8949/2012/T150/014042
http://dx.doi.org/10.1142/S0218301313300282
http://dx.doi.org/10.1142/S0218301313300282
http://dx.doi.org/10.1142/S0218301313300282
http://dx.doi.org/10.1142/S0218301313300282
http://dx.doi.org/10.1103/PhysRevC.90.014318
http://dx.doi.org/10.1103/PhysRevC.90.014318
http://dx.doi.org/10.1103/PhysRevC.90.014318
http://dx.doi.org/10.1103/PhysRevC.90.014318
http://dx.doi.org/10.1103/PhysRevC.90.054333
http://dx.doi.org/10.1103/PhysRevC.90.054333
http://dx.doi.org/10.1103/PhysRevC.90.054333
http://dx.doi.org/10.1103/PhysRevC.90.054333
http://dx.doi.org/10.1016/j.ppnp.2014.07.001
http://dx.doi.org/10.1016/j.ppnp.2014.07.001
http://dx.doi.org/10.1016/j.ppnp.2014.07.001
http://dx.doi.org/10.1016/j.ppnp.2014.07.001
http://dx.doi.org/10.1103/PhysRevC.87.044310
http://dx.doi.org/10.1103/PhysRevC.87.044310
http://dx.doi.org/10.1103/PhysRevC.87.044310
http://dx.doi.org/10.1103/PhysRevC.87.044310
http://dx.doi.org/10.1016/0029-5582(61)90285-1
http://dx.doi.org/10.1016/0029-5582(61)90285-1
http://dx.doi.org/10.1016/0029-5582(61)90285-1
http://dx.doi.org/10.1016/0029-5582(61)90285-1
http://dx.doi.org/10.1098/rspa.1952.0079
http://dx.doi.org/10.1098/rspa.1952.0079
http://dx.doi.org/10.1098/rspa.1952.0079
http://dx.doi.org/10.1098/rspa.1952.0079
http://dx.doi.org/10.1016/j.nuclphysa.2012.06.003
http://dx.doi.org/10.1016/j.nuclphysa.2012.06.003
http://dx.doi.org/10.1016/j.nuclphysa.2012.06.003
http://dx.doi.org/10.1016/j.nuclphysa.2012.06.003
http://dx.doi.org/10.1103/RevModPhys.48.191
http://dx.doi.org/10.1103/RevModPhys.48.191
http://dx.doi.org/10.1103/RevModPhys.48.191
http://dx.doi.org/10.1103/RevModPhys.48.191
http://dx.doi.org/10.1007/s100500170077
http://dx.doi.org/10.1007/s100500170077
http://dx.doi.org/10.1007/s100500170077
http://dx.doi.org/10.1007/s100500170077
http://dx.doi.org/10.1016/0375-9474(76)90094-4
http://dx.doi.org/10.1016/0375-9474(76)90094-4
http://dx.doi.org/10.1016/0375-9474(76)90094-4
http://dx.doi.org/10.1016/0375-9474(76)90094-4
http://dx.doi.org/10.1016/0375-9474(76)90645-X
http://dx.doi.org/10.1016/0375-9474(76)90645-X
http://dx.doi.org/10.1016/0375-9474(76)90645-X
http://dx.doi.org/10.1016/0375-9474(76)90645-X
http://dx.doi.org/10.1103/PhysRevC.74.034315
http://dx.doi.org/10.1103/PhysRevC.74.034315
http://dx.doi.org/10.1103/PhysRevC.74.034315
http://dx.doi.org/10.1103/PhysRevC.74.034315
http://dx.doi.org/10.1103/PhysRevC.69.034335
http://dx.doi.org/10.1103/PhysRevC.69.034335
http://dx.doi.org/10.1103/PhysRevC.69.034335
http://dx.doi.org/10.1103/PhysRevC.69.034335
http://dx.doi.org/10.1103/PhysRevC.80.064323
http://dx.doi.org/10.1103/PhysRevC.80.064323
http://dx.doi.org/10.1103/PhysRevC.80.064323
http://dx.doi.org/10.1103/PhysRevC.80.064323
http://dx.doi.org/10.1103/PhysRevC.89.014316
http://dx.doi.org/10.1103/PhysRevC.89.014316
http://dx.doi.org/10.1103/PhysRevC.89.014316
http://dx.doi.org/10.1103/PhysRevC.89.014316
http://dx.doi.org/10.1016/S0370-2693(98)00538-3
http://dx.doi.org/10.1016/S0370-2693(98)00538-3
http://dx.doi.org/10.1016/S0370-2693(98)00538-3
http://dx.doi.org/10.1016/S0370-2693(98)00538-3
http://dx.doi.org/10.1007/s100500070081
http://dx.doi.org/10.1007/s100500070081
http://dx.doi.org/10.1007/s100500070081
http://dx.doi.org/10.1007/s100500070081
http://arxiv.org/abs/arXiv:0904.2017v2
http://dx.doi.org/10.1103/PhysRevC.81.064320
http://dx.doi.org/10.1103/PhysRevC.81.064320
http://dx.doi.org/10.1103/PhysRevC.81.064320
http://dx.doi.org/10.1103/PhysRevC.81.064320
http://dx.doi.org/10.1103/PhysRevC.83.024302
http://dx.doi.org/10.1103/PhysRevC.83.024302
http://dx.doi.org/10.1103/PhysRevC.83.024302
http://dx.doi.org/10.1103/PhysRevC.83.024302



