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Effects of three-body forces on the maximum mass of neutron stars in the lowest-order constrained
variational formalism
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The equation of state of neutron star matter is calculated within the lowest order constrained variational
(LOCV) method using different two-body interactions and an Urbana type three-body force. The core of the
neutron star is modelled by β-stable matter. The corresponding neutron star mass-radius relations are presented
and the effect of using a three-body interaction on the maximum gravitational mass of the star is also discussed.
It is shown that including the three-body force generally increases the maximum gravitational mass.
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I. INTRODUCTION

Neutron stars (NSs) are compact objects supported by
degenerate-neutron pressure which were born as a result of
the gravitational collapse of the iron core of massive stars
in a type-II supernova [1]. Some minutes after birth, the
temperature throughout the NS is less than 1 MeV and the
thermal effects are negligibly small [2]. Therefore neutron
stars can be used as astrophysical environments for testing
theories of cold and dense matter. The existence of massive
neutron stars has been recently reported. One remarkable
example is the radio pulsar J1614-2230 with a mass of
M = 1.97 ± 0.04M� [3]. The other one is J0348+0432 with
M = 2.01 ± 0.04M� [4]. According to recent analysis [5,6]
radii of 0.8M� to 2.0M� neutron stars are ranged from 10.9
to 12.8 km. In order to determine the structure of neutron
stars, the equation of state (EOS) of NS matter over a wide
range of densities is required. For any given EOS, there is a
maximum mass a neutron star can have. All acceptable EOS
should generate mass-radius relations which are in agreement
with the empirical restrictions on neutron star radii and masses.
Therefore theoretical study of the NS matter is fundamentally
important in neutron star modeling.

There are some reliable many-body approaches that have
been used for studying nuclear matter as well as neutron star
structure. Theoretical methods such as Brueckner-Hartree-
Fock (BHF) [7,8], Dirac-BHF [9,10], variational [11,12], and
Monte Carlo [13–15] methods are among them. In the present
work we use the lowest order constrained variational (LOCV)
approach for determining the EOS of a neutron star.

The LOCV method was presented in a series of pa-
pers [16,17] to calculate the properties of nuclear matter at zero
temperature for the Reid-type potentials [18,19]. Later on, this
method was developed for finite temperature calculations [20]
and also for determining various thermodynamic properties of
different nuclear systems such as symmetric and asymmetric
nuclear matter [21,22], neutron matter [23], and β-stable
matter [24] using more sophisticated interactions [25] such
as AV14 [26], AV18 [27], and UV14 [28]. This technique
has also been generalized to include relativistic corrections
in calculating thermodynamic properties of nuclear matter at
both zero [29] and finite temperature [30]. The LOCV method
is also fully self-consistent which means that no free parameter

is considered in its formalism. Moreover, there is a constraint
in this approach in the form of normalization condition [31,32]
to keep the higher cluster terms small. Mentioned features are
two valuable advantages of the LOCV method compared to
other many-body techniques.

One important point that must be considered in studying the
neutron star structure is the crucial role of three-body forces
(TBF) at very high densities. On the other hand, like other the-
oretical approaches, the LOCV formalism is unable to produce
the correct empirical saturation properties of cold symmetric
nuclear matter if only two-body interactions are included in the
Hamiltonian. In this work we intend to correct this deficiency
and take into account the role of TBF at supernuclear densities
by adding three-body forces to the nuclear matter Hamiltonian.
To do this task we use the phenomenological Urbana-type
(UIX) three-body force [13,33] and by adopting it in our
method we discuss the procedure of adding this force to the
former LOCV formalism. Therefore studying the effect of
using three-body forces in the LOCV method is one of our
aims in this work as well as discussing the role played by TBF
in determining the mass-radius relation of neutron stars.

In view of the above, in the present work we study the
mass-radius relation of cold neutron stars. The star is assumed
to be in β-equilibrium during its lifetime, i.e., it is composed
of an uncharged mixture of neutrons, protons, electrons, and
muons in equilibrium with respect to the weak interaction.
We construct the EOS for the above system by using the
LOCV method with different nucleon-nucleon potentials such
as AV18, AV14, UV14, and Reid68 [18].

The structure of the article is as follows. In Sec. II we
present our formalism based on the LOCV model for nuclear
matter and β-stable matter at zero temperature. In Sec. III we
briefly review the UIX three-body force model and describe
combining TBF with the two-body interaction in our method.
Results and discussion are presented in Sec. IV. Finally the
conclusion is given in Sec. V.

II. THE LOCV FORMALISM

In this section we briefly review the lowest order con-
strained variational method. First we restrict our attention to
baryonic matter and at the next stage we apply this formalism
to determine the EOS of stellar matter in β-equilibrium.
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A. Asymmetric matter

In the LOCV method we use a trial wave function for
the many-body interacting system which can be written as
follows [24]:

�(1 . . . A) = F (1 . . . A)�(1 . . . A), (1)

where � represents the uncorrelated ground state wave
function, simply the Slater determinant of plane waves, and
F is an A-body correlation operator which is defined as the
product of two-body correlation function operators, i.e.,

F = S
∏
i>j

f (ij ), (2)

where S is the symmetrizing operator. f (ij ) are written as

f (ij ) =
3∑

α,p=1

f p
α (ij )Op

α (ij ), (3)

where α = {J,L,S,T ,Tz} and p=1, 2, and 3. For singlet and
triplet channels with J = L we choose p = 1 and for triplet
channels with J = L ± 1 we set p = 2 and 3. The operators
O

p
α (ij ) are written as

Op=1−3
α = 1,

(
2
3 + 1

6S12
)
,
(

1
3 − 1

6S12
)
, (4)

where S12 = 3(σ1 · r̂)(σ2 · r̂) − σ1 · σ2 is the usual tensor
operator. At this stage a cluster expansion for the expectation
value of the nuclear Hamiltonian can be constructed by using
the trial wave function. The Hamiltonian has the general form
of

H =
∑

i

p2
i

2m
+

∑
i<j

V (ij ), (5)

where V (ij ) is a two-nucleon potential. In the cluster expan-
sion series [34] we keep only the first two terms of the energy
functional,

E[f ] = 1

A

〈�|H |�〉
〈� | �〉 = E1 + EMB

∼= E1 + E2, (6)

where A is total number of particles. The one-body term E1

is independent of f (ij ) and is simply the Fermi-gas kinetic
energy for asymmetrical nuclear matter,

E1 =
∑

i

3�
2k2

fi

10mi

. (7)

While the two-body energy is defined as

E2 = 1

2A

∑
ij

〈ij |W (12)|ij − ji〉, (8)

and

W (12) = − �
2

2m

[
f (12),

[∇2
12,f (12)

]] + f (12)V (12)f (12).

(9)

The two-body matrix elements 〈ij |W (12)|ij − ji〉 are calcu-
lated by using plane waves. Now by inserting a complete set of
two-particle states twice in Eq. (8) and doing some algebra we
arrive at the final expression for the two-body cluster energy.

This expression is then minimized with respect to variations
in the functions f

p
α but subject to the normalization constraint

which is designed to ensure the rapid convergence of the cluster
expansion [31,32,35]. The constraint which is employed is

1

A

∑
ij

〈ij |h2
Tz

(12) − f 2(12)|ij − ji〉 = 0, (10)

where hTz
(r) is the modified Pauli function which for the

asymmetric nuclear matter takes the following form:

hTz
(r) =

⎡
⎣1 − 9

2

(
J1

(
kF
i r

)
kF
i r

)2
⎤
⎦

− 1
2

, Tz = ±1

= 1, Tz = 0, (11)

where JL(x) is the spherical Bessel function of order L. The
constraint given in Eq. (10) introduces a Lagrange multiplier λ.
By minimizing the two-body cluster energy we get coupled and
uncoupled Euler-Lagrange differential equations depending on
the two-body potential we use. The reader is referred to the
mentioned references for more detail.

B. β-stable matter

By assuming the neutron star as an object which is made
of only neutrons, one can calculate the equation of state of
such star by using Eq. (6). On the other hand it is well known
that the presence of leptons is also crucial since the star matter
has to be equilibrated against the weak leptonic decay. Thus
we consider the NS as an object in which its matter contains
neutrons, protons, electrons, and muons. τ lepton is ignored
because of its large rest mass with respect to two other leptons.
For such matter the β- equilibrium conditions without trapped
neutrinos are

μn = μp + μe, (12)

μe = μμ, (13)

where μi indicates the chemical potential of each particle. At
zero temperature the chemical potentials of leptons are their
Fermi energy and can be expressed as

μi =
√

(pF,ic)2 + (mic2)2. (14)

On the other hand the charge neutrality condition in NS matter
requires the following equality:

ρp = ρμ + ρe. (15)

By solving the coupled Eqs. (12), (13), and (15) self-
consistently at a given baryon density (ρB = ρn + ρp), the
energy of β-stable matter which is written as the sum of the
baryonic part energy EB and leptonic part energy EL can be
determined:

E = EB + EL. (16)

The energy of baryonic part is calculated by using Eq. (6).
Leptons are supposed to be noninteracting highly relativistic
particles. Therefore at zero temperature the energy of leptonic
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part can be written as

EL = 2

h3ρB

∑
l=e,μ

∫ pFl

0
d3pl

√
(plc)2 + (mlc2)2, (17)

which can be calculated analytically. By introducing φl = pFl

mlc
,

EL takes the final following form:

EL =
∑
l=e,μ

πc5m4
l

h3ρB

[
φl

(
2φ2

l + 1
)√

φ2
l + 1 − sinh−1 φl

]
.

(18)

It is clear that there is no muon in NS matter if μe < mμc2.
Equation (12) is satisfied by minimizing the total mass
energy of the system with respect to proton density ρp.
At this stage the pressure of NS matter as a function of
baryon density can be determined by using the following
relation:

P = ρ2
B

∂(E/ρB)

∂ρB

. (19)

III. THREE-BODY FORCE

As we mentioned before, three-body forces are included
in our nuclear Hamiltonian for the purpose of reproduc-
ing the empirical saturation properties of cold asymmet-
ric nuclear matter. We use the UIX interaction which is
based on meson-exchange theory and is generally written
as

V123 = V 2π
123 + V R

123. (20)

The two-pion exchange contribution is written as [13]

V 2π
123 = A

∑
cyc

(
{X12,X23}{τ1.τ2,τ2.τ3}

+ 1

4
[X12,X23][τ1.τ2,τ2.τ3]

)
, (21)

where

X12 = Y (mπr12)σ1.σ2 + T (mπr12)S12 (22)

is the one-pion exchange operator. 1, 2, and 3 indices stand
for three interacting nucleons. σ and τ are the Pauli spin
and isospin operators and S12 is the usual tensor operator.
mπ indicates the average pion mass and Y (mπr) and T (mπr)
are the Yukawa and tensor functions, respectively, which are
written as

Y (mπr) = e−mπ r

mπr

(
1 − e−cr2)

, (23a)

T (mπr) =
(

1 + 3

mπr
+ 3

(mπr)2

)
e−mπ r

mπr

(
1 − e−cr2)2

,

(23b)

with c = 2.1 fm−2 [13,27]. The shorter-range part of V123 is a
phenomenological one and has the form of [13]

V R
123 = U

∑
cyc

T (mπr12)2T (mπr23)2. (24)

The strengths A and U in Eqs. (21) and (24) are determined
in such a way that the resulting EOS will be able to reproduce
the correct saturation properties of symmetric nuclear matter
at zero temperature. By averaging over the third particle
coordinates we reach to a reduced TBF [36], namely a
density dependent effective two-body interaction V̄12(r) being
weighted by the LOCV two-body correlation functions f (r)
at each density:

V̄12(r) = ρ

∫
d3r3

∑
σ3,τ3

f 2(r13)f 2(r23)V123. (25)

By inserting Eq. (20) in the above relation, one can get an
effective two-body potential which has the following operator
structure:

V̄12(r) = (τ1.τ2)(σ1.σ2)V 2π
στ (r)

+ S12(r̂)(τ1.τ2)V 2π
t (r) + V R

c (r), (26)

where

V 2π
στ (r) = 2π

r
ρ

∫ ∞

0
xdx

∫ |r+x|

|r−x|
ydyf 2(x)f 2(y)

×
∑
cyc

∑
σ3τ3

4A × [Y (mπx)Y (mπy)

+ 2P2(cos θ )T (mπx)T (mπy)], (27a)

V 2π
t (r) = 2π

r
ρ

∫ ∞

0
xdx

∫ |r+x|

|r−x|
ydyf 2(x)f 2(y)

×
∑
cyc

∑
σ3τ3

4A × [Y (mπx)T (mπy)P2(cos θx)

+ T (mπx)Y (mπy)P2(cos θy)

+ T (mπx)T (mπy)P ], (27b)

V R
c (r) = 2π

r
ρ

∫ ∞

0
xdx

∫ |r+x|

|r−x|
ydyf 2(x)f 2(y)

×
∑
cyc

∑
σ3τ3

U × (T (mπx)T (mπy))2. (27c)

In the above equations P2(x) are the usual Legendre
polynomials. The z axis is taken along the vector r12 and
the following definitions and abbreviations are also used:

r12 = r13 + r32, x = |r13|, y = |r32|, r = |r12|, (28)

cos θx = r̂12.r̂23, cos θy = r̂12.r̂13, cos θ = r̂13.r̂23, (29)

P = − 3
2 cos θ (cos θ + 3 cos θx cos θy) − P2(cos θy)

−P2(cos θx). (30)

To calculate Eq. (25) three different scenarios for two-body
correlation functions are considered in this work which are
explained in the following. In the LOCV approach, two-body
correlation functions can be extracted for each two-body
channel. Since S waves have the most contributions to the
wave function at short distances, it is a good approximation
to determine V̄12(r) by using only the 1S0 channel two-body
correlation function. Therefore we have applied this approx-
imation as the first scenario for determining the effective
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two-body potential. Then we go beyond this approximation
in order to understand the effect of other two-body channels

on V̄12(r). To do this task we insert a state-averaged two-body
correlation function in Eq. (25) which is defined as [37]

f̄ 2(r) =
∑

α,i(2T + 1)(2J + 1) 1
2 [1 − (−1)L+S+T ]f (i)2

α a(i)2

α (kF r)∑
α,i(2T + 1)(2J + 1) 1

2 [1 − (−1)L+S+T ]a(i)2

α (kF r)
, (31)

where a(i)2

α (kF r) come from summing over the plane-wave
states and are written as

a(1)2

α (x) ≡ x2IL(x), (32a)

a(2)2

α (x) ≡ x2(2J + 1)−1[(J + 1)IJ−1(x) + JIJ+1(x)],

(32b)

a(3)2

α (x) ≡ x2(2J + 1)−1[JIJ−1(x) + (J + 1)IJ+1(x)],

(32c)

where

IJ (x) ≡ 48
∫ 1

0
dzz2

(
1 − 3

2
z + 1

2
z3

)
J 2

J (xz). (33)

In this case, the resulting effective two-body force is noted by
V̄ av

12 (r). To be more precise, as the third scenario, we first put
f̄ (r) in Eq. (25) and use the resulting effective two-body force
in the LOCV procedure. By doing this process, a so-called
effective two-body correlation function is obtained. Then
again we insert the mentioned effective two-body correlation
function in Eq. (25) and repeat this iteration process till the
convergence is reached. The final obtained effective two-body
correlation function and the corresponding effective two-body
potential are noted by f̄it(r) and V̄ it

12(r), respectively.
In the next section we present our results regarding three

mentioned types of effective two-body potentials and the effect
of using TBF on the EOS of asymmetric nuclear matter and

FIG. 1. (a) Three different types of two-body correlation func-
tions mentioned in the text at ρB = 0.17 fm−3 using the AV18
potential for SNM. (b) Components of three different types of
effective two-body potentials corresponding to panel (a) correlation
functions.

β-stable matter as well as the neutron star structure using
different two-body interactions.

IV. RESULTS AND DISCUSSION

We begin presenting our results by providing those of
effective two-body potential. As we mentioned in the previous
section, one can reach three different values for effective
two-body force depending on using f (r), f̄ (r), or f̄it(r)
in Eq. (25) which are noted by V̄12(r), V̄ av

12 (r), and V̄ it
12(r),

respectively. Three mentioned types of two-body correlation
functions are shown in panel (a) of Fig. 1 for symmetric
nuclear matter at ρB = 0.17 fm−3 using the AV18 potential
as the bare two-body interaction. It is seen that there is no
significant difference between the values of f̄ (r) and f̄it(r) at
each given density while f (r) has larger values compared to
other two correlaton functions particularly at short distances.
In panel (b) of this figure three components of corresponding
two-body effective potentials, namely Eqs. (27a) to (27c),
are plotted. It is seen that the absolute value of V̄12(r) is
slightly larger than other two effective two-body potentials
since its corresponding correlation function, i.e., f (r), has an
overshoot at short distances [see panel (a) of this figure]. it
can also be concluded from this panel that using different
two-body correlation functions in Eq. (25) affects mostly the
repulsive component of the resulting effective two-body force
more than the other two components. The effect of increasing
the baryon density on the V 2π

στ , V 2π
t , and V R

c components of
the effective two-body force are shown in Figs. 2, 3, and 4,
respectively. It can be seen that increasing the baryon density

FIG. 2. V 2π
στ Component for three types of effective two-body

potentials at different baryon densities using AV18 potential for SNM.
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FIG. 3. Same as Fig. 2 but for the V 2π
t component.

will result in increasing the absolute value of all three types of
effective two-body potentials, as is expected. Moreover, as the
density increases, the values of the V 2π

στ and V 2π
t components

of all three types of effective two-body potentials are more or
less close to each other while the repulsive component V R

c of
V̄ av

12 (r) and V̄ it
12(r) becomes smaller than those of V̄12(r). As a

result the EOS obtained by using V̄12(r) is slightly stiffer at
high densities compared to those obtained by either V̄ av

12 (r) or
V̄ it

12(r). On the other hand, since these differences occur mainly
at short distances, namely less than 0.5 fm, they do not have
a great influence on the energy expectation value. Therefore
one can conclude that the approximation of using only the
1S0 channel correlation function for obtaining the effective
two-body potential is still a good one as other authors used it
in their calculations [8,38]. The values of parameters A and U ,
which are adjusted in order to reproduce the correct saturation
point in each individual mentioned cases, are listed in Table I.
Results of the BHF approach for these two parameters [8] are
also presented in this table for comparison.

FIG. 4. Same as Fig. 2 but for the V R
c component.

TABLE I. The values of parameters A and U in the LOCV method
(this work) as well as the BHF approach [8].

Potential Method A (MeV) U (MeV)

AV18 + V̄12 LOCV −0.041 0.000 523
AV + V̄ av

12 LOCV −0.048 0.000 514
AV18 + V̄ it

12 LOCV −0.051 0.000 512
AV18 + UIX BHF [8] −0.050 0.000 42

In Fig. 5 we have shown the effect of using the mentioned
effective two-body forces on the EOS of symmetric nuclear
matter. The AV18 potential is used as the bare two-body
interaction in this comparison. As we have already concluded
from previous figures, there is no significant difference
between equations of state if one uses V̄ av

12 (r) or V̄ it
12(r) in

the Hamiltonian, since both effective two-body forces have
approximately the same value at each baryon density. While
V̄12(r) is more repulsive compared to other mentioned effective
two-body forces, the resulting EOS is correspondingly stiffer
and as the baryon density increases, this difference becomes
clearer. However, this difference is still quite small so that one
can neglect the effect of other two-body channels in calculating
the effective two-body force. Therefore V̄12(r) is used as the
effective two-body force in obtaining the following results.
The EOS calculated without using TBF is also plotted in this
figure. As we expected, adding TBF to the nuclear Hamiltonian
makes the EOS much stiffer compared to that obtained by using
only the AV18 potential and also shifts the saturation density
toward lower densities. These results are in agreement with
those obtained by other many-body methods [11,39,40].

Equations of state of symmetric nuclear matter determined
by using different two-body potentials supplemented by a UIX
three-body force are presented in panel (a) of Fig. 6. It is seen
that by adding TBF to the nuclear Hamiltonian the empirical
saturation point of the nuclear matter (ρ0 = 0.17 ± 1 fm−3

and E0/A = −16 ± 1 MeV) is correctly reproduced for all
used two-body forces. Therefore to reproduce the empirical

FIG. 5. Equation of state of symmetric nuclear matter using
different effective two-body forces as well as using only the AV18
potential.
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FIG. 6. (a) EOS of symmetric nuclear matter for different two-
body potentials supplemented by TBF. (b) EOS of asymmetric nuclear
matter for a number of asymmetry parameter X as well as β-stable
matter using AV18 + V̄12 potential.

saturation point for each two-body interaction, an appropriate
effective two-body force is first introduced by a self-consistent
procedure using two-body correlation functions that come
from the given two-body potential. Parameters A and U in
the TBF are then changed until the empirical saturation point
is reproduced correctly. Our results for saturation points with
and without using TBF are listed in Table II.

It is also seen that in the low-density region the effect
of TBF on the EOS is quite the same for all two-body
potentials while at relatively high density this force provides
different repulsive contributions to the EOS depending on the
bare two-body interaction. This behavior is due to the fact
that correlation functions that come from different two-body
potentials do not have the same density dependence. However,
because of the density-dependent nature of the UIX three-body
force, the repulsion from this interaction becomes stronger
for each individual EOS by increasing the baryon density. In
panel (b) of Fig. 6 the EOS of asymmetric nuclear matter
using the AV 18 + V̄12 interaction is plotted for a number of
asymmetric parameters X = (ρn − ρp)/ρB from symmetric
nuclear matter (X = 0) to pure neutron matter (X = 1). The
EOS of β-stable matter is also presented in this panel. It is

TABLE II. Saturation density ρ0 and saturation energy E0/A of
symmetric nuclear matter using different potentials with and without
TBF.

potential ρ0(fm−3) E0/A(MeV)

AV18 0.32 −23.37
AV14 0.3 −19.78
UV14 0.38 −16.08
Reid68 0.29 −22.83
AV18 + V̄12 0.1748 −15.58
AV14 + V̄12 0.1742 −15.88
UV14 + V̄12 0.1741 −15.70
Reid68 + V̄12 0.1742 −15.61

seen that, as is expected, by increasing the number of neutrons
in the system the effective “potential well” becomes more
shallow so that the system is no longer bound beyond a
specific asymmetry parameter Xb. We have found Xb = 0.771
for AV18+TBF model and Xb = 0.839 in the case of using
only AV18 potential. By comparing these two values one can
conclude that TBF causes the bound system to occur at lower
asymmetry parameter. These values are comparable with those
obtained by the BHF approach [41]. It is also seen that as the
asymmetry parameter increases the saturation point of bound
systems shifts toward lower densities.

Another important quantity which plays a crucial role in
understanding different physical and astrophysical issues is
the nuclear symmetry energy (NSE) which is defined as

Esym(ρ) = 1

2

∂2E(ρ,X)

∂X2

∣∣∣∣
X=0.

(34)

Despite of both experimental and theoretical efforts in deter-
mining the NSE, its value at normal density is still uncertain
and the density dependence of this quantity is poorly known
particularly at supernormal densities. A liquid drop model
calculation gives a result of 32.65 MeV for this quantity [42].
Moreover, an analysis of isovector giant dipole resonance
(GDR) data within relativistic mean-field (RMF) theory set a
range of 34 � Esym � 36 MeV [43]. The density dependence
of Esym predicted by LOCV calculations is presented in Fig. 7
as well as the results of some other many-body approaches
such as BHF [7,44,45], variational [11], and DBHF [46,47]
models. The effect of the inclusion of TBF is also shown in
this figure. It is seen that using TBF in nonrelativistic methods
leads to a repulsive contribution to the symmetry energy and
consequently to a stiffening of the density dependence of this
quantity. This effect becomes much stronger at high densities.
Although the NSE predicted by all models and potentials is an
increasing function of density, the density dependence of Esym

FIG. 7. Density dependence of the nuclear symmetry energy
obtained by the LOCV approach as well as some other many-body
techniques such as BHF (with AV18, AV18+TBF, Bonn-B, Bonn
B+TBF) [44,45], BHF (AV18+microTBF) [7], variational (AV18,
AV18+δν+UIX) [11], and DBHF [46,47].
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TABLE III. Approximate values of saturation density as well as binding energy per nucleon and symmetry energy at normal density for a
number of many-body approaches with and without TBF.

Method Potential ρ0(fm−3) E0/A(MeV) Esym(ρ0)(MeV)

LOCV (This work) AV18 0.32 −23.37 39.13
BHF [44,45] AV18 0.26 −18.2 38.15
Variational [11] AV18 0.3 −18.23 38.86
LOCV (This work) AV18+TBF 0.1748 −15.58 37.51
BHF [44,45] AV18+TBF 0.19 −15.2 33.48
Variational [11] AV18+δυ+UIX 0.186 −12.37 33.34
BHF [7] AV18+microTBF 0.17 −15.5 36.03
BHF [44,45] Bonn B 0.34 −22.07 50.68
BHF [44,45] Bonn B+TBF 0.17 −15.87 32.9
DBHF [46] Bonn A(complete pυ) 0.193 −16.9 36.74
DBHF [46] Bonn A(subtracted T -matrix) 0.1814 −16.3 34.36

from each approach is quite different at high densities. The
values of saturation density as well as the binding energy per
nucleon and Esym at normal density are reported in Table III.
The approximate values of mentioned quantities obtained
within other approaches are also presented in this table. In
the case of the inclusion of the TBF, the saturation density and
binding energy per nucleon predicted by the LOCV model
is in agreement with the empirical saturation point although
the value of nuclear symmetry energy at normal density is
high since the EOS obtained by the LOCV model is generally
stiff. High value of NSE can also be seen in the results of
other approaches such as the DBHF calculation with Bonn-A
potential [46]. It is also seen that in some models, although the
value of NSE is in agreement with the experimental results,
either the saturation density or the binding energy is not in the
proper range. For example see the results of the variational
approach [11].

In order to understand the effect of using TBF on the
neutron star structure, one should study the role played by this
force in the EOS of NS matter. For determining neutron star
gravitational mass as a function of radius and central energy
density, one can use the Tolman-Openheimer-Volkoff (TOV)
equations [48] which are written as

dP (r)

dr
= −GM(r)ε(r)

c2r2

(
1 + P (r)

ε(r)

) (
1 + 4πr3P (r)

M(r)c2

)

×
(

1 − 2GM(r)

rc2

)−1

, (35)

dM(r)

dr
= 4πε(r)r2

c2
. (36)

In the above relations P (r), ε(r), and M(r) denote the pressure,
mass-energy density of the NS matter (which is defined as
the total energy of the system plus the rest mass of involved
particles), and the enclosed gravitational mass, respectively.
G is the gravitational constant. Starting with a central mass-
energy density εc, calculations are done until we reach zero
pressure that indicates the surface of the neutron star.

In this work we model the NS by β-stable matter. Panel (a)
of Fig. 8 displays the mass-energy [ε(r)ρB] of β-stable matter
as a function of baryon density with and without TBF for two
two-body potentials, namely AV18 and AV14. It is clearly

seen that the repulsive term in the TBF dominates at high-
density region and results in increasing the stiffness of the EOS
and correspondingly in increasing the maximum gravitational
mass of the star. In panel (b) of this figure the pressure of
β-stable matter is plotted using different two-body interactions
combined with TBF. Results presented in this figure are then
used in Eq. (35) for determining the structure of neutron stars.

Figure 9 displays particle fractions xi for β-stable matter
as a function of baryon density. In panel (a) of this figure, the
LOCV results of the proton fraction and electron fraction as
well as muon fraction are presented using the AV18 potential
with and without TBF. It is seen that particle fractions obtained
from the AV18+TBF calculation have, in general, larger values
but the same behavior compared to those calculated by using
only the AV18 interaction. It is also seen that using TBF causes
muons to appear at lower densities compared to the case where
no TBF is used in the Hamiltonian. In our model muons start to
appear at ρ ∼ 0.12 fm−3 if TBF is used and at ρ ∼ 0.17 fm−3

if TBF is not included. Figure 9(b) shows a comparison
between the results for proton fraction xp obtained by the
LOCV approach and those provided by other many-body
methods and three-body forces, namely the variational chain
summation methods by APR (AV18+UIX) [11] and WFF

FIG. 8. (a) Mass-energy and (b) pressure of β-stable matter using
different potentials.
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FIG. 9. (a) Proton, electron, and muon fractions for β-stable
matter against baryon density with and without TBF using the
AV18 potential. (b) Comparison of proton fraction obtained in the
present work (black solid curve) with the results of AV18+UIX
(APR) [11], AV14+UVII [40], UV14+UVII [40], UV14+TNI [40],
U14-DDI [43], AV18+UIX (ZBLS) [7], and AV18+microTBF [7].

(AV14+UVII, UV14+UVII and UV14+TNI models) [40],
the U14-DDI model [49] and BHF method (using AV18+UIX
and AV18+microTBF potentials)[7]. A saturation in xp can be
seen in some calculations such as UV14+TNI and U14+DDI
while the proton fraction shows the same general behavior as
the results of our approach in other models.

To ensure the relativistic causality condition in such matter,
we have plotted in Fig. 10 the speed of sound which is given
by the following relation:

cs

c
=

(
dP

dε

) 1
2

. (37)

In this figure cs is plotted in units of the speed of light
c as a function of density up to the central density which
corresponds to the maximum mass of a neutron star using the
AV18 potential with and without TBF. It is seen that in both

FIG. 10. Speed of sound as a function of baryon density for β-
stable matter with and without TBF.

FIG. 11. Mass-radius relation of neutron star with (b) and without
(a) TBF using different two-body potentials.

cases the speed of sound does not exceed that of light through
whole density range that NS is stable.

Now we are in the position of presenting our results
regarding the neutron star structure. The gravitational mass
of the NS in the unit of solar mass is plotted in Fig. 11 as a
function of radius for different two-body potentials with [panel
(a)] and without [panel (b)] TBF. The exact values of maximum
masses are reported in Table IV. This table also includes
approximate values for maximum masses obtained by other
many-body models for comparison. In general, as we expected,
the equation of sates calculated by using TBF produce larger
gravitational masses compared to those obtained by using only
two-body forces. More precisely, as can be seen in Fig.11(a)
calculations based on only two-body interactions result in
maximum masses below 1.8 M�, while the models containing

TABLE IV. Comparison of maximum masses obtained in
the present work with those calculated within other many-body
approaches.

Potential Method Author M/M�

BOB + microTBF BHF LS [8] 2.5
AV18 + microTBF BHF LS [8] 2.3
N93 + microTBF BHF LS [8] 2.12
AV18 + UIX BHF LS [8] 1.8
AV18 + UIX Varitional APR [11] 2.38
AV18 Varitional APR [11] 1.67
UV14 + UVII Varitional WFF [40] 2.19
AV14 + UVII Varitional WFF [40] 2.13
UV14 + TNI Varitional WFF [40] 1.84
AV18 LOCV This work 1.68
AV14 LOCV This work 1.67
UV14 LOCV This work 1.64
Reid68 LOCV This work 1.60
AV18 + UIX LOCV This work 2.33
AV14 + UIX LOCV This work 2.18
UV14 + UIX LOCV This work 2.31
Reid68 + UIX LOCV This work 2.23
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TBF have maximum masses above 2M�. Equations of state
which provide maximum masses above 2M� are able to predict
the existence of a M = 2.01 ± 0.04M� neutron star which has
been recently reported [4] and therefore are in good agreement
with empirical observations. Moreover, from panel (b) of this
figure it can be seen that radii of neutron stars modelled by
using TBF are close to or in the proper range that is determined
by recent analysis [5,6].

V. CONCLUSION

In conclusion we have improved the LOCV approach by
using a three-nucleon potential in this formalism and have
shown that by adding TBF to our nuclear Hamiltonian, this
method is able to reproduce the correct saturation point of

symmetric nuclear matter. We have calculated the effective
two-body force by using different two-body correlation func-
tions and have shown that the approximation of using only the
1S0 channel correlation function for determining the effective
two-body potential is an acceptable one. We have also shown
that using TBF results increases the maximum gravitational
mass of neutron stars compared to that determined without
using TBF so that results we obtained for maximum mass and
the corresponding radius of neutron stars are in acceptable
agreement with recently reported empirical values.
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