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The analytic quadrupole octupole axially symmetric model, which had successfully predicted 226Ra and 226Th
as lying at the border between the regions of octupole deformation and octupole vibrations in the light actinides
using an infinite well potential (AQOA-IW), is made applicable to a wider region of nuclei exhibiting octupole
deformation, through the use of a Davidson potential, β2 + β4

0 /β2 (AQOA-D). Analytic expressions for energy
spectra and B(E1), B(E2), B(E3) transition rates are derived. The spectra of 222–226Ra and 224,226Th are described
in terms of the two parameters φ0 (expressing the relative amount of octupole vs quadrupole deformation) and
β0 (the position of the minimum of the Davidson potential), while the recently determined B(EL) transition
rates of 224Ra, presenting stable octupole deformation, are successfully reproduced. A procedure for gradually
determining the parameters appearing in the B(EL) transitions from a minimum set of data, thus increasing the
predictive power of the model, is outlined.
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I. INTRODUCTION

Rotational nuclear spectra have long been attributed to
quadrupole deformations [1]. However, octupole deformations
[corresponding to reflection asymmetric (pearlike) shapes]
[2–4] are supposed to occur in certain regions, most notably in
the light actinides [5–8] and in some light rare earths [9–11].
The hallmark of octupole deformation is a negative parity
band with levels Lπ = 1−, 3−, 5−, . . . , lying close to the
ground state band and forming with it a single band with
Lπ = 0+, 1−, 2+, 3−, 4+, . . . , while a negative parity band
lying systematically higher than the ground state band is a
footprint of octupole vibrations.

The transition from the regime of octupole vibrations into
the region of octupole deformation has been considered by
several authors [12–14]. In the analytic quadrupole octupole
axially symmetric (AQOA) model [15], the actinides lying on
the border between the regions of octupole deformation and
octupole vibrations have been described, making the following
assumptions.

(1) Quadrupole and octupole deformations are taken into
account on equal footing, their relative presence de-
scribed by the only free parameter in the model, φ0.

(2) Axial symmetry is assumed, in order to keep the
problem tractable.

(3) Separation of variables is achieved in a way analogous
to the one used in the framework of the X(5) model
[16], describing the first-order shape phase transition
between spherical and quadrupole deformed shapes
[17].

(4) An infinite well potential is assumed appropriate for
the description of the border region, as in the E(5) [18]
and X(5) [16] models, the former one describing the
second-order shape phase transition between spherical
and γ -unstable nuclei. Therefore we are going to call
this solution the AQOA-IW model.

A different approach to the problem of phase transition
in the octupole mode has been developed by Bizzeti and
Bizzeti-Sona [19,20], characterized by the introduction of a
new parametrization of the quadrupole and octupole degrees
of freedom, using as intrinsic frame of reference the principal
axes of the overall tensor of inertia, resulting from the
combined quadrupole and octupole deformation. The main
differences between the two models are

(1) The AQOA model is analytic, while the model of
Refs. [19,20] is not.

(2) In the AQOA model the symmetry axes of the
quadrupole and octupole deformations are taken to
coincide, in order to guarantee axial symmetry, while in
the more general framework of Refs. [19,20] nonaxial
contributions, small but not frozen to zero, are taken
into account.

In both models [15,19,20], 226Ra and 226Th appear to lie
close to the point of transition between octupole deformation
and octupole vibrations, with heavier isotopes corresponding
to octupole vibrations and lighter isotopes exhibiting octupole
deformation.

The recent experimental verification of stable octupole de-
formation in 224Ra [21] stirred interest in octupole deformation
in the light actinides and their theoretical interpretation. The
AQOA model can be made applicable to deformed nuclei near
the transition point by replacing the infinite well potential by
the Davidson potential [22] of the form β2 + β4

0/β2, which
contains an additional free parameter, the position β0 of
the minimum of the potential well. The flexibility acquired
through the replacement of the infinite well potential by the
Davidson potential has been demonstrated and exploited in
the case of quadrupole deformation in [23]. The analytic
quadrupole octupole axially symmetric model with a Davidson
potential, to be called the AQOA-D model, is the subject of the
present work. In addition to the spectra of 222–226Ra [7,8] and
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224,226Th [24,25], the recently measured [21] electric transition
probabilities of 224Ra provide an excellent test ground for
the model, already exploited in the Bizzeti and Bizzeti-Sona
approach [26].

The above mentioned work on the octupole degree of
freedom has been developed in the framework of the collective
model [1]. Alternative approaches include the following.

(1) A complete algebraic classification of the states occur-
ring in the simultaneous presence of the quadrupole
and octupole degrees of freedom has been provided
in terms of the spdf -interacting boson model [27–30],
which has been successfully applied to Ra [31], Th [31],
U [32], and Pu [32] isotopes. Mean field studies of the
critical point for the onset of octupole deformation in
quadrupole deformed systems have been carried out in
Refs. [33,34].

(2) An alternative interpretation of the low-lying negative
parity states in the light actinides has been provided in
terms of clustering [35–39]. The recent experimental
findings for 224Ra [21] seem to point against this
interpretation, but wider evidence in more nuclei is
desirable.

(3) Relativistic mean field calculations involving the oc-
tupole degree of freedom have been carried out both
in the light actinides region [40,41] and in the light
rare earths [42,43], corroborating [41,44] the transition
from octupole deformation to octupole vibrations in
the light Th isotopes.

(4) A hybrid approach combining the algebraic approach
of the interacting boson model of (1) with the relativis-
tic energy density functional theory of (3) has been
recently developed [45] and applied the Ra and Th
isotopes [44,46], as well as to the rare earths Ba and Sm
[46], again corroborating the transition from octupole
deformation to octupole vibrations in the light Ra and
Th isotopes.

(5) The extended coherent state model (ECSM) has been
successfully applied to the description of several
negative parity bands in Rn [47], Ra [47–50], Th [50],
U [50], and Pu [50] isotopes.

The AQOA-D model is described in Sec. II, while in Sec. III
numerical results are provided and subsequently discussed in
Sec. IV. The integrals needed in the calculation of electric
transition probabilities are calculated in Appendices A–C,
while in Appendix D some details of the derivation of the
Hamiltonian, the method of solution, and the comparison to
other approaches are given.

II. THE ANALYTIC QUADRUPOLE OCTUPOLE AXIALLY
SYMMETRIC (AQOA) MODEL

A. Formulation

In the AQOA model [15] the following assumptions are
made:

(a) The axes of the quadrupole and octupole deformations
are taken to coincide. In other words, axial symmetry
is assumed, while the γ degree of freedom is ignored.

(b) Levels with K �= 0 (where K is the projection of
the angular momentum on the body-fixed z′ axis) are
ignored, since they are lying infinitely high in energy
[51].

The Hamiltonian of the AQOA model reads [51,52]

H = −
∑
λ=2,3

�
2

2Bλ

1

β3
λ

∂

∂βλ

β3
λ

∂

∂βλ

+ �
2L̂2

6
(
B2β

2
2 + 2B3β

2
3

)
+V (β2,β3) (1)

where β2 and β3 are the quadrupole and octupole deformations,
B2, B3 are the mass parameters, and L̂ is the angular
momentum operator in the intrinsic frame, taken along the
principal axes of inertia.

The solutions of the Schrödinger equation read [51]

�±
L (β2,β3,θ ) = (β2β3)−3/2
±

L (β2,β3)|LM0,±〉, (2)

where θ are the Euler angles describing the orientation of the
body-fixed axes x ′, y ′, z′ relative to the laboratory-fixed axes x,
y, z, while the function |LM0,±〉 describes the rotation of an
axially symmetric nucleus with angular momentum projection
M onto the laboratory-fixed z axis and projection K = 0 onto
the body-fixed z′ axis [1]

|LM0,±〉 =
√

2L + 1

32π2
(1 ± (−1)L)DL

0,M (θ ), (3)

with D(θ ) denoting Wigner functions of the Euler angles.
Wave functions with the + label correspond to positive

parity states with L = 0, 2, 4, . . . , while these with the − label
correspond to negative parity states with L = 1, 3, 5, . . . .

The Schrödinger equation can be simplified by introducing
[51,52]

β̃2 = β2

√
B2

B
, β̃3 = β3

√
B3

B
, B = B2 + B3

2
, (4)

reduced energies ε = (2B/�
2)E and reduced potentials v =

(2B/�
2)V , as well as polar coordinates (with 0 � β̃ < ∞ and

−π/2 � φ � π/2) [51,52]

β̃2 = β̃ cos φ, β̃3 = β̃ sin φ, β̃ =
√

β̃2
2 + β̃2

3 , (5)

leading to[
− ∂2

∂β̃2
− 1

β̃

∂

∂β̃
+ L(L + 1)

3β̃2(1 + sin2 φ)
− 1

β̃2

∂2

∂φ2

+v(β̃,φ) + 3

β̃2 sin2 2φ
− εL

]

±

L (β̃,φ) = 0. (6)

In addition, separation of variables can be achieved by
assuming the potential to be of the form v(β̃,φ) = u(β̃) +
w(φ̃±), where w(φ̃±) is supposed to be of the form of two very
steep harmonic oscillators centered at the values ±φ0. In this
way Eq. (6) is separated into[

− ∂2

∂β̃2
− 1

β̃

∂

∂β̃
+ 1

β̃2

(
L(L + 1)

3(1 + sin2 φ0)
+ 3

sin2 2φ0

)
+u(β̃) − εβ̃(L)

]
ψL(β̃) = 0, (7)
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and [
− 1

〈β̃2〉
∂2

∂(φ̃±)2
+ w(φ̃±) − εφ

]
χ (φ̃±) = 0, (8)

where 
±
L (β̃,φ) = Nβ̃ψL(β̃)Nφ(χ (φ̃+) ± χ (φ̃−))/

√
2, with

Nβ̃ and Nφ being normalization factors, while 〈β̃2〉 is the
average of β̃2 over ψ(β̃), and εL = εβ̃(L) + εφ .

On the above the following comments apply:

(a) φ = 0 corresponds to quadrupole deformation alone,
while φ = ±π/2 corresponds to octupole deformation
alone.

(b) Because of the two steep oscillators involved, φ re-
mains close to ±φ0 and, therefore, the relative amount
of quadrupole and octupole deformation remains con-
stant.

Some details of the derivation of the Hamiltonian, the
method of solution, and the comparison of the present model
to other approaches are given in Appendices D 1–D 4.

B. The β̃ part of the spectrum

Equation (7) is exactly soluble [53,54] in the case of the
Davidson potentials [22]

u(β̃) = β̃2 + β̃4
0

β̃2
, (9)

in which the eigenfunctions are Laguerre polynomials,

FL
nβ

(β̃) =
√

2nβ!

�(nβ + aL + 1)
β̃aLLaL

nβ
(β̃2)e−β̃2/2, (10)

with

aL =
√

L(L + 1)

3(1 + sin2 φ0)
+ 3

sin2 2φ0
+ β4

0 , (11)

while the energy eigenvalues are given by

Enβ,L = 2nβ + aL + 1 = 2nβ + 1

+
√

L(L + 1)

3(1 + sin2 φ0)
+ 3

sin2 2φ0
+ β4

0 . (12)

Equation (7) is also exactly soluble in the case of an infinite
well potential in β̃, in which the eigenfunctions are Bessel
functions. This solution has been worked out in Ref. [15].

C. The φ part of the spectrum

Equation (8) with the potential corresponding to two
harmonic oscillators centered at ±φ0,

w(φ̃±) = 1
2c(φ ∓ φ0)2 = 1

2c(φ̃±)2, φ̃± = φ ∓ φ0, (13)

has been solved in Ref. [15]. The energy eigenvalues are

εφ =
√

2c

〈β̃2〉
(

nφ + 1

2

)
, nφ = 0,1,2, . . . (14)

FIG. 1. (Color online) Excitation energies Enβ,L [Eq. (12)] for
nβ = 0 and L = 2 are shown as a function of the free parameters
β0 and φ0. All quantities shown are dimensionless. See Sec. II C for
further discussion.

where nφ is the number of quanta in the φ degree of freedom,
while the eigenfunctions are Hermite polynomials Hnφ

,

χnφ
(φ̃±) = Nnφ

Hnφ
(bφ̃±)e−b2(φ̃±)2/2,

(15)

b =
(

c〈β̃2〉
2

)1/4

,

with normalization constant Nnφ
=

√
b√

π2nφ nφ ! .

The total energy in the present model is then

E(nβ,L,φ0,nφ) = E0 + C1Enβ,L + C2nφ,

C1 = �
2

2B
, C2 = �

2

2B

√
2c

〈β2〉 . (16)

In what follows only bands with nφ = 0 will be considered.
As an example of the dependence of the energy levels on

the free parameters β0 and φ0 in Eq. (12), the energy levels
with nβ = 0 and L = 2 are shown in Fig. 1. Smooth variation
with both parameters is seen. It is worth remarking that very
slight dependence on φ0 is observed between π/8 and 3π/8,
in agreement with the findings of Ref. [15]. This observation
(partly) justifies a posteriori the adiabatic approximation used
in relation to the φ degree of freedom, described in Appendix
D 3.

D. B(EL) transition rates

The electric quadrupole and octupole operators are
(Eq. (6-63) of [1])

T (E2)
μ = t2β2D(2)

0,μ(θ ) = t2

√
B

B2
β̃ cos φD(2)

0,μ(θ ),

(17)

T (E3)
μ = t3β3D(3)

0,μ(θ ) = t3

√
B

B3
β̃ sin φD(3)

0,μ(θ ),

with

t2 = 3Ze

4π
R2, t3 = 3Ze

4π
R3, (18)
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where R is the effective radius of the nucleus, while the electric
dipole operator reads [51]

T (E1)
μ = t1β2β3D(1)

0,μ(θ ) = t1
B√
B2B3

β̃2 sin 2φ

2
D(1)

0,μ(θ ). (19)

The total wave function reads

�±
L,M,q(β̃,φ,θ )

= (β2β3)−3/2Nβ̃FL
nβ

(β̃)Nφ

[χnφ
(φ̃+) ± χnφ

(φ̃−)]√
2

×
√

2L + 1

32π2
[1 ± (−1)L]DL

0,M (θ ), (20)

where q stands for the rest of the quantum numbers (nβ ,
nφ). Since in what follows only bands with nφ = 0 will be
considered, in the remainder of the paper, as well as in the
Appendices, we simplify the notation by using n instead of
nβ . As a result, in what follows, ni and nf indicate the initial
and final values of nβ , while qi and qf denote ni and nf

respectively, with nφ = 0 at all times.
B(EL) transition rates are given by

B(EL; Liqi → Lf qf ) = |〈Lf qf ||T (EL)||Liqi〉|2
(2Li + 1)

, (21)

where the reduced matrix element is obtained through the
Wigner-Eckart theorem

〈Lf μf qf |T (EL)
μ |Liμiqi〉

= (LiLLf |μiμμf )√
2Lf + 1

〈Lf qf ||T EL||Liqi〉. (22)

In Eq. (21) the integration over the Euler angles θ involves
standard integrals over three Wigner functions calculated in
Appendix B, while the rest of the integrations are performed
over

∫ ∫
β3

2dβ2β
3
3dβ3, where the β3

2 , β3
3 factors come from the

volume element and cancel with the first factor of Eq. (20).
Using Eqs. (4) and (5), as well as the relevant Jacobian,
one finds (up to constant factors) that the integration is over∫ ∫

dβ2dβ3 = B√
B2B3

∫ ∫
β̃dβ̃ dφ.

Relevant integrals over φ are calculated in Appendix A,
while integrals over β̃ are determined in Appendix C. The
final results for matrix elements are summarized here.

Matrix elements of T (E2) between positive parity levels
within the ground state band (ni = nf = 0) read

〈Lf qf ||T E2||Liqi〉S→S

= t2

√
B

B2
e
− 1

4b2
cos φ0 + e−b2φ2

0

1 + e−b2φ2
0

×
√

2Li + 1(Li2Lf |000)
�

(
ai

2 + af

2 + 3
2

)√
�(ai + 1)�(af + 1)

. (23)

Matrix elements of T (E2) from a positive parity level of
the first excited band (ni = 1) to a positive parity level of the

ground state band (nf = 0) are

〈Lf qf ||T E2||Liqi〉S→S

= t2

√
B

B2
e
− 1

4b2
cos φ0 + e−b2φ2

0

1 + e−b2φ2
0

√
2Li + 1(Li2Lf |000)

× �
(

ai

2 + af

2 + 3
2

)
�

(
ai

2 − af

2 + 1
2

)√
�(ai + 2)�(af + 1)�

(
ai

2 − af

2 − 1
2

) . (24)

Matrix elements of T (E2) between negative parity levels
within the lowest band (ni = nf = 0) have the form

〈Lf qf ||T E2||Liqi〉A→A

= t2

√
B

B2
e
− 1

4b2
cos φ0 − e−b2φ2

0

1 − e−b2φ2
0

×
√

2Li + 1(Li2Lf |000)
�

(
ai

2 + af

2 + 3
2

)√
�(ai + 1)�(af + 1)

. (25)

Matrix elements of T (E3) between a positive parity level of
the ground state band and a negative parity level of the lowest
band, or vice versa, read

〈Lf qf ||T E3||Liqi〉

= t3

√
B

B3

e
− 1

4b2 sin φ0√
1 − e−2b2φ2

0

√
2Li + 1

×(Li3Lf |000)
�

(
ai

2 + af

2 + 3
2

)√
�(ai + 1)�(af + 1)

. (26)

Matrix elements of T (E1) between a positive parity level of
the ground state band and a negative parity level of the lowest
band, or vice versa, are

〈Lf qf ||T E1||Liqi〉S→S

= 1

2
t1

B√
B2B3

e
− 1

b2 sin 2φ0√
1 − e−2b2φ2

0

×
√

2Li + 1(Li1Lf |000)
�

(
ai

2 + af

2 + 2
)√

�(ai + 1)�(af + 1)
. (27)

The final results for B(EL)s are summarized here.
B(E2)s between positive parity levels within the ground

state band (ni = nf = 0) read

B(E2; Liqi → Lf qf )S→S

= t2
2

B

B2
e
− 1

2b2

(
cos φ0 + e−b2φ2

0
)2(

1 + e−b2φ2
0
)2

× (Li2Lf |000)2

[
�

(
ai

2 + af

2 + 3
2

)]2

�(ai + 1)�(af + 1)
. (28)
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B(E2)s from a positive parity level of the first excited band (ni = 1) to a positive parity level of the ground state band (nf = 0)
are

B(E2; Liqi → Lf qf )S→S = t2
2

B

B2
e
− 1

2b2

(
cos φ0 + e−b2φ2

0
)2(

1 + e−b2φ2
0
)2 (Li2Lf |000)2

[
�

(
ai

2 + af

2 + 3
2

)
�

(
ai

2 − af

2 + 1
2

)]2

�(ai + 2)�(af + 1)
[
�

(
ai

2 − af

2 − 1
2

)]2 . (29)

B(E2)s between negative parity levels within the lowest band (ni = nf = 0) have the form

B(E2; Liqi → Lf qf )A→A = t2
2

B

B2
e
− 1

2b2

(
cos φ0 − e−b2φ2

0
)2(

1 − e−b2φ2
0
)2 (Li2Lf |000)2

[
�

(
ai

2 + af

2 + 3
2

)]2

�(ai + 1)�(af + 1)
. (30)

B(E3)s between a positive parity level of the ground state band and a negative parity level of the lowest band, or vice versa,
read

B(E3; Liqi → Lf qf ) = t2
3

B

B3

e
− 1

2b2 sin2 φ0(
1 − e−2b2φ2

0
) (Li3Lf |000)2

[
�

(
ai

2 + af

2 + 3
2

)]2

�(ai + 1)�(af + 1)
. (31)

B(E1)s between a positive parity level of the ground state band and a negative parity level of the lowest band, or vice versa,
are

B(E1; Liqi → Lf qf ) = 1

4
t2
1

B2

B2B3

e
− 2

b2 sin2 2φ0(
1 − e−2b2φ2

0
) (Li1Lf |000)2

[
�

(
ai

2 + af

2 + 2
)]2

�(ai + 1)�(af + 1)
. (32)

In Ref. [46] it has been pointed out that B(E1)s for
transitions from positive parity levels L of the ground state
band to negative parity levels L − 1 of the lowest band and
B(E1)s for transitions in the opposite direction, i.e., from
negative parity levels L − 1 of the lowest band to positive
parity levels L of the ground state band, should be of the same
order, as seen experimentally. This condition is clearly fulfilled
by Eq. (32).

III. NUMERICAL RESULTS

A. Spectra

In the spectra of the AQOA model with Davidson potential
(AQOA-D) only the parameters φ0 and β0 play an essential
role, as seen in Eq. (12), while the quantities E0, C1, and C2 of
Eq. (16) do not enter, if we consider only bands with nφ = 0
and normalize all energies to that of the first excited state,
E(2+

1 ). The parameters of rms fits, using the quality measure

σ =
√∑n

i=1[Ei(expt) − Ei(th)]2

(n − 1)E(2+
1 )2

, (33)

to the spectra of the Ra and Th isotopes lying at the
border between the regions of octupole deformation and
octupole vibrations, as well as within the former region, are
shown in Table I, while in Table II the relevant spectra are
shown. For 226Ra and 226Th, the predictions of the original
one-parameter (φ0) AQOA with an infinite well potential
(AQOA-IW), applicable at the border between the regions of
octupole deformation and octupole vibrations, are shown for
comparison. The following comments apply.

(a) Good agreement between the theoretical predictions of
AQOA-D and experimental data is obtained up to high
angular momenta, both in the ground state band and
in the negative parity band. The predictions for the 1−

and 3− states are poor, since no finite barrier is used in
the phi potential [55–57].

(b) When moving from the border region towards the
interior of the region of octupole deformation, the pa-
rameter φ0 increases, in agreement with an increasing
role of the octupole deformation (which is proportional
to sin φ0), while the parameter β0 decreases. In parallel,
a decreasing role of the quadrupole deformation is
revealed by the decreasing R4/2 ratios.

(c) The agreement between the predictions of AQOA-IW
and the data is comparable to that of AQOA-D, except
at high angular momenta, where AQOA-D is closer
to the data, due to the term β4

0 appearing in Eq. (12),
which moderates the increase of the energy with L.

B. Transitions

With the parameters φ0 and β0 determined from the spectra,
we now turn attention to electromagnetic transition rates,
following the procedure described below.

(a) From Eqs. (28) and (29) it is clear that ratios of
B(E2)S→Ss involve only the parameters φ0 and β0,
thus they are already fixed. The same holds separately
for ratios of B(E2)A→As, or B(E3)s, or B(E1)s, as
seen from Eqs. (30), (31), and (32) respectively.

(b) Ratios of B(E2)S→Ss over B(E2)A→As involve in
addition the parameter b, which can then be determined
from such ratios, as seen from Eqs. (28) and (30).

(c) Ratios of B(E3)s over B(E2)s involve in addition the
ratio t3/t2, which can be determined from the nuclear
radius (see Sec. III B 2), and the ratio B2/B3, which
can be determined from the B(E3)/B(E2) ratios, as
seen from Eqs. (31) and (28).

This procedure can be tested against the recently measured
transition matrix elements of 224Ra [21], shown in Table III.
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TABLE I. Parameters φ0 and β0 of the AQOA model with Davidson potential (AQOA-D) obtained from rms fits to experimental spectra
of 222Ra [7,8], 224Ra [7,8], 226Ra [7,8], 224Th [24], and 226Th [25]. The experimental R4/2 = E(4+

1 )/E(2+
1 ) ratios are also shown. The angular

momenta of the highest levels of the ground state, β, and negative parity bands included in the rms fit are labeled by Lg , Lβ , and Lo respectively,
while n indicates the total number of levels involved in the fit and σ is the quality measure of Eq. (33). The theoretical predictions are obtained
from the formulas mentioned in Sec. II B. See Sec. III A for further discussion. For completeness, the parameter b, and the parameter ratios
t3/t2, and B2/B3, appearing in the fitting of electric transition rates, are shown, wherever known. All quantities shown are dimensionless, except
t3/t2, which is given in fm. See Sec. III B for further discussion.

Nucleus R4/2 φ0 β0 Lg Lβ Lo n σ b t3/t2 (fm) B2/B3

222Ra 2.715 62.7 0.00 20 0 19 20 0.917 7.266
224Ra 2.970 41.9 1.80 28 0 27 28 1.351 1.836 7.288 0.65
226Ra 3.127 24.7 2.14 28 0 27 28 1.360 7.309
224Th 2.896 67.9 0.79 18 17 17 0.843 7.288
226Th 3.136 9.5 0.94 20 0 19 20 0.994 7.309

1. E2 transitions

The ratio of any E2A→A matrix element [Eq. (25)] over any
E2S→S matrix element [Eq. (23)] contains the ratio

r = (cos φ0 − a)(1 + a)

(cos φ0 + a)(1 − a)
, a = e−b2φ2

0 . (34)

In the case of 224Ra, the ratios of experimental matrix elements
3−→1−
2+→0+ , 3−→1−

4+→2+ , 3−→1−
6+→4+ , 3−→1−

8+→6+ lead to r = 0.852, 0.887, 0.909,
0.908, i.e., to an average value of 0.889.

Solving for a one obtains the quadratic equation

(r − 1)a2 + (r + 1)(cos φ0 − 1)a + (1 − r) cos φ0 = 0,
(35)

TABLE II. Comparison of theoretical predictions of the AQOA model with Davidson potential (AQOA-D, columns labeled as D) and with
an infinite well potential (AQOA-IW, columns labeled as IW) to experimental data [normalized to E(2+

1 )] of 222Ra [7,8], 224Ra [7,8], 226Ra [7,8],
224Th [24], and 226Th [25]. The AQOA-D parameters are shown in Table I, while the AQOA-IW predictions have been taken from Ref. [15].
The theoretical predictions for AQOA-D are obtained from the formulas mentioned in Sec. II B. See Sec. III A for further discussion.

Lπ 222Ra 222Ra 224Ra 224Ra 226Ra 226Ra 226Ra 224Th 224Th 226Th 226Th 226Th
expt. D expt. D expt. D IW expt. D expt. D IW

4+ 2.72 3.00 2.97 3.17 3.13 3.22 3.09 2.90 3.09 3.14 3.22 3.12
6+ 4.95 5.59 5.68 6.21 6.16 6.45 5.99 5.45 5.90 6.20 6.44 6.10
8+ 7.58 8.49 8.94 9.87 9.89 10.45 9.56 8.50 9.17 10.00 10.42 9.78
10+ 10.55 11.58 12.66 13.94 14.19 15.02 13.71 11.97 12.71 14.41 14.97 14.08
12+ 13.82 14.77 16.74 18.30 18.93 20.00 18.42 15.80 16.42 19.32 19.93 18.96
14+ 17.39 18.04 21.17 22.85 24.06 25.31 23.64 19.97 20.25 24.68 25.20 24.38
16+ 21.21 21.36 25.90 27.55 29.52 30.84 29.38 24.44 24.16 30.41 30.69 30.34
18+ 25.28 24.70 30.92 32.34 35.30 36.54 35.61 29.20 28.13 36.50 36.35 36.81
20+ 29.57 28.07 36.22 37.22 41.38 42.38 42.33 42.90 42.14 43.80
22+ 41.74 42.15 47.75 48.32 49.54
24+ 47.48 47.13 54.44 54.34 57.22
26+ 53.41 52.14 61.42 60.43 65.38
28+ 59.54 57.18 68.70 66.57 74.01
0+ 8.23 8.06 10.86 10.90 12.19 12.21 11.23 9.91 11.18 11.31 12.41
1− 2.18 0.35 2.56 0.34 3.75 0.34 0.34 2.56 0.34 3.19 0.34 0.34
3− 2.85 1.90 3.44 1.95 4.75 1.97 1.93 3.11 1.93 4.26 1.97 1.94
5− 4.26 4.24 5.13 4.60 6.60 4.72 4.45 4.74 4.43 6.24 4.72 4.51
7− 6.33 7.01 7.59 7.98 9.26 8.36 7.70 7.13 7.49 9.11 8.35 7.86
9− 8.92 10.02 10.73 11.86 12.68 12.67 11.57 10.17 10.91 12.79 12.64 11.86
11− 11.97 13.17 14.46 16.09 16.74 17.47 16.00 13.73 14.55 17.15 17.41 16.45
13− 15.38 16.40 18.68 20.56 21.39 22.63 20.96 17.72 18.32 22.11 22.53 21.61
15− 19.11 19.69 23.31 25.18 26.54 28.05 26.45 22.07 22.20 27.55 27.92 27.30
17− 23.11 23.03 28.27 29.93 32.13 33.67 32.43 26.71 26.14 33.42 33.50 33.51
19− 27.35 26.39 33.51 34.77 38.10 39.44 38.91 39.63 39.23 40.24
21− 38.99 39.68 44.41 45.34 45.87
23− 44.67 44.63 51.03 51.32 53.32
25− 50.55 49.63 57.93 57.38 61.24
27− 56.60 54.66 65.08 63.49 69.64
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TABLE III. Matrix elements of electric transitions in 224Ra. The
experimental data, in units of efm, e fm2, e fm3 for E1, E2, E3
respectively, have been taken from Ref. [21], while the theoretical
predictions have been obtained using the formulas of Sec. II D in the
way described in Sec. III B, where further discussion is given.

Matrix element Experiment Theory

〈0+||E2||2+〉 199 ± 3 196
〈2+||E2||4+〉 315 ± 6 323
〈4+||E2||6+〉 405 ± 15 426
〈6+||E2||8+〉 500 ± 60 525
〈1−||E2||3−〉 230 ± 11 236
〈3−||E2||5−〉 410 ± 60 334
〈0+||E2||2+

γ 〉 23 ± 4 36
〈0+||E3||3−〉 940 ± 30 1006
〈2+||E3||1−〉 1370 ± 140 1137
〈2+||E3||3−〉 <4000 1176
〈2+||E3||5−〉 1410 ± 190 1594
〈0+||E1||1−〉 <0.018 0.013
〈2+||E1||1−〉 <0.03 0.018
〈2+||E1||3−〉 0.026 ± 0.005 0.023
〈4+||E1||5−〉 0.030 ± 0.010 0.032
〈6+||E1||7−〉 <0.10 0.042

having the solution

a = 1

2(r − 1)
[−(r + 1)(cos φ0 − 1)

±
√

(r + 1)2(cos φ0 − 1)2 + 4(r − 1)2 cos φ0]. (36)

Since from Eq. (34) one has

b2 = − ln a

φ2
0

, (37)

ln a has to be negative for b to be real. Since r < 1, we see
that in Eq. (36) only the negative sign is allowed in order to
have a > 0, leading in the case of 224Ra to a = 0.1647 and
b = 1.836.

One can then keep

F = t2
√

B/B2 (38)

as an overall constant for all E2 transition matrix elements,
and determine it through rms fitting to the experimental data of
the transitions with ni = nf = 0, obtaining F = 127.20 and
the E2 predictions reported in Table III. Then from Eq. (24)
one can calculate also the transitions with ni = 1, nf = 0, one
of which is also reported in Table III.

2. E3 transitions

For the coefficients t2 and t3 one can use Eq. (18), leading
to

t3

t2
= R, (39)

where R is the nuclear radius, given by [58]

R = r0A
1/3, r0 = 1.2 fm, (40)

with A being the mass number of the nucleus. Thus in the case
of 224Ra one has R = 7.2878 fm.

One can then determine the ratio B2
B3

from any ratio of
E3 matrix element over E2 matrix element, since each of
these ratios contains the quantity (t3/t2)

√
B2/B3, as seen

from Eqs. (26), (23), and (25). In the case of 224Ra, six E2
matrix elements and three E3 matrix elements are known.
Considering all 18 possible ratios, we get an average value of
(t3/t2)

√
B2/B3 = 5.876, leading to B2/B3 = 0.65.

By now the E3 transition matrix elements have been
completely determined. The overall constant

F ′ = t3
√

B/B3 (41)

appearing in this case is connected to the overall constant F
through

F ′

F
= t3

t2

√
B2

B3
= R

√
B2

B3
, (42)

leading to F ′ = 747.47 and to the E3 matrix elements given
in Table III.

3. E1 transitions

In the case of E1 matrix elements, the quantity

F ′′ = 1

2
t1

B√
B2B3

e
− 1

b2 sin 2φ0√
1 − e−2b2φ2

0

(43)

can be treated as an overall constant, determined in the
case of 224Ra by rms fitting to the two known transitions to
be F ′′ = 2.676 10−3 and providing the predictions given in
Table III.

IV. CONCLUSIONS

The analytic quadrupole octupole axially symmetric model
with an infinite well potential (AQOA-IW) had success-
fully predicted the border between the regions of octupole
deformation and octupole vibrations in the light actinides,
identifying 226Ra and 226Th as border nuclei [15], with heavier
isotopes corresponding to octupole vibrations and lighter
isotopes exhibiting octupole deformation. The AQOA-IW
model involved only one free parameter, φ0, expressing the
relative presence of quadrupole vs octupole deformation, while
a parameter-free version has also been developed later [59].

In the present work, the infinite well potential is substituted
by a Davidson potential, resulting in the AQOA-D model,
which is able to deviate from the border line into the region
of octupole deformation. This is achieved through the extra
parameter β0, the position of the minimum of the Davidson
potential, which is increasing with increasing R4/2 ratios, as is
known from its use in the description of quadrupole deformed
nuclei [23].

Within the AQOA-D model, analytic expressions for energy
spectra and B(E1), B(E2), B(E3) transition rates are derived.
Then the following path is taken.

(a) The spectra of 222–226Ra and 224,226Th [normalized to
E(2+

1 )] are well reproduced in terms of the above
mentioned two parameters φ0 and β0.
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(b) The parameter b, related to the harmonic oscillator
potential used in the φ degree of freedom, can be
determined from the ratio of any E2 matrix element
between negative parity states over any E2 matrix
element between positive parity states, fixing the
determination of all E2 transitions up to an overall
scale factor.

(c) The ratio of mass parameters B2/B3 can be determined
from the ratio of any E3 matrix element over any
E2 matrix element, while the ratio of transition
coefficients t2/t3 is fixed by the nuclear radius. As
a result, the determination of all E2 and E3 tran-
sitions is fixed, without any additional overall scale
factor.

(d) E1 transitions are also fixed, up to another scale
factor.

The recently measured B(EL) transition rates of 224Ra [21],
presenting stable octupole deformation, provide a successful
test for the model. It is clear that for other nuclei, the minimum
set of data needed includes

(a) A few energy levels of both positive and negative
parity, from which the parameters φ0 and β0 can be
determined.

(b) At least one E2 transition between positive parity states
and one E2 transition between negative parity states,
from which the parameter b can be determined.

(c) At least one E3 transition, from which, in combination
with the E2 transitions of (b), the parameter ratio
B2/B3 can be determined.

From these pieces of data

(a) The spectrum (leaving out the γ bands) is determined
up to an overall scale factor.

(b) All relevant E2 and E3 transitions are determined up
to an overall scale factor.

(c) All relevant E1 transitions are determined up to another
overall scale factor.

It is of interest to apply the present model in the actinides
close to 240Pu, in which a second-order shape phase transition

from octupole-nondeformed to octupole-deformed shapes has
been recently found [60], while octupole bands have been
described [61] using supersymmetric quantum mechanics. The
light rare earths, in which octupole bands have been considered
recently both by the Bizzeti and Bizzeti-Sona approach [62]
and within density functional theory [63], are also of special
interest. A successful application of the AQOA-IW model to
148Nd has already been given in Ref. [64].
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APPENDIX A: φ INTEGRALS

Since we confine ourselves to states with nφ = 0, this
quantum number is omitted in the notation of the wave
functions, which then carry only the subscript i (f ) for the
initial (final) state.

For symmetric states one has

XS(φ) = NS

χ (φ̃+) + χ (φ̃−)√
2

, (A1)

while for antisymmetric states one has

XA(φ) = NA

χ (φ̃+) − χ (φ̃−)√
2

, (A2)

where NS and NA are normalization factors and, according to
Eq. (15),

χ (φ̃+) =
√

b√
π

e− b2

2 (φ−φ0)2
,

χ (φ̃−) =
√

b√
π

e− b2

2 (φ+φ0)2
.

(A3)

1. Normalization

For symmetric states one has

1

N2
S

=
∫ ∞

−∞
XSXS dφ

= 1

2

∫ ∞

−∞
[χ (φ+)]2 dφ + 1

2

∫ ∞

−∞
[χ (φ−)]2 dφ +

∫ ∞

−∞
χ (φ+)χ (φ−) dφ

= 1

2

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2+2b2φ0φ dφ + 1

2

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2−2b2φ0φ dφ + b√

π
e−b2φ2

0

∫ ∞

−∞
e−b2φ2

dφ. (A4)

Using Eq. (A41) of Appendix A 5 we see that the integrals appearing here are of the form∫ ∞

−∞
e−b2φ2±2b2φ0φ dφ =

√
π

b
eb2φ2

0 , (A5)

054315-8



OCTUPOLE DEFORMATION IN LIGHT ACTINIDES . . . PHYSICAL REVIEW C 91, 054315 (2015)

leading to

1

N2
S

= 1 + e−b2φ2
0 . (A6)

For antisymmetric states one has

1

N2
A

=
∫ ∞

−∞
XAXA dφ

= 1

2

∫ ∞

−∞
(χ (φ+))2 dφ + 1

2

∫ ∞

−∞
(χ (φ−))2 dφ −

∫ ∞

−∞
χ (φ+)χ (φ−) dφ

= 1

2

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2+2b2φ0φ dφ + 1

2

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2−2b2φ0φ dφ − b√

π
e−b2φ2

0

∫ ∞

−∞
e−b2φ2

dφ, (A7)

leading in the same way as above to

1

N2
A

= 1 − e−b2φ2
0 . (A8)

2. B(E2)s

The transition operator for B(E2)s contains β̃2 = β̃ cos φ.
For B(E2)s between symmetric states one has

I
(E2)
φ,S→S =

∫ ∞

−∞
XS cos φXS dφ

= N2
S

2

∫ ∞

−∞
(χ (φ+))2 cos φ dφ + N2

S

2

∫ ∞

−∞
(χ (φ−))2 cos φ dφ + N2

S

∫ ∞

−∞
χ (φ+)χ (φ−) cos φ dφ

= N2
S

2

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2+2b2φ0φ cos φ dφ + N2

S

2

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2−2b2φ0φ cos φ dφ

+N2
S

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2

cos φ dφ. (A9)

Using Eq. (A38) of Appendix A 5 we see that the integrals appearing here are of the form∫ ∞

−∞
e−b2φ2±2b2φ0φ cos φ dφ =

√
π

b
e
b2φ2

0− 1
4b2 cos φ0, (A10)

leading to

I
(E2)
φ,S→S = e

− 1
4b2

cos φ0 + e−b2φ2
0

1 + e−b2φ2
0

. (A11)

For B(E2)s between antisymmetric states one has

I
(E2)
φ,A→A =

∫ ∞

−∞
XA cos φXA dφ

= N2
A

2

∫ ∞

−∞
(χ (φ+))2 cos φ dφ + N2

A

2

∫ ∞

−∞
(χ (φ−))2 cos φ dφ − N2

A

∫ ∞

−∞
χ (φ+)χ (φ−) cos φ dφ

= N2
A

2

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2+2b2φ0φ cos φ dφ + N2

A

2

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2−2b2φ0φ cos φ dφ

−N2
A

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2

cos φ dφ, (A12)
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leading in the same way as above to

I
(E2)
φ,A→A = e

− 1
4b2

cos φ0 − e−b2φ2
0

1 − e−b2φ2
0

. (A13)

For B(E2)s between symmetric and antisymmetric states one has

I
(E2)
φ,S→A =

∫ ∞

−∞
XS cos φXA dφ

= NSNA

2

∫ ∞

−∞
(χ (φ+))2 cos φ dφ − NSNA

2

∫ ∞

−∞
(χ (φ−))2 cos φ dφ

= NSNA

2

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2+2b2φ0φ cos φ dφ − NSNA

2

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2−2b2φ0φ cos φ dφ, (A14)

leading to

I
(E2)
φ,S→A = 0. (A15)

In the same way one also finds

I
(E2)
φ,A→S = 0. (A16)

3. B(E3)s

The transition operator for B(E3)s contains β̃3 = β̃ sin φ.
For B(E3)s between symmetric states one has

I
(E3)
φ,S→S =

∫ ∞

−∞
XS sin φXS dφ

= N2
S

2

∫ ∞

−∞
(χ (φ+))2 sin φ dφ + N2

S

2

∫ ∞

−∞
(χ (φ−))2 sin φ dφ + N2

S

∫ ∞

−∞
χ (φ+)χ (φ−) sin φ dφ

= N2
S

2

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2+2b2φ0φ sin φ dφ + N2

S

2

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2−2b2φ0φ sin φ dφ

+N2
S

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2

sin φ dφ. (A17)

Using Eq. (A40) of Appendix A 5 we see that the integrals appearing here are of the form∫ ∞

−∞
e−b2φ2±2b2φ0φ sin φ dφ = ±

√
π

b
e
b2φ2

0− 1
4b2 sin φ0, (A18)

leading to

I
(E3)
φ,S→S = 0. (A19)

For B(E3)s between antisymmetric states one has

I
(E3)
φ,A→A =

∫ ∞

−∞
XA sin φXA dφ

= N2
S

2

∫ ∞

−∞
(χ (φ+))2 sin φ dφ + N2

S

2

∫ ∞

−∞
(χ (φ−))2 sin φ dφ − N2

S

∫ ∞

−∞
χ (φ+)χ (φ−) sin φ dφ

= N2
S

2

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2+2b2φ0φ sin φ dφ + N2

S

2

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2−2b2φ0φ sin φ dφ

−N2
S

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2

sin φ dφ, (A20)
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leading in the same way as above to

I
(E3)
φ,A→A = 0. (A21)

For B(E3)s between symmetric and antisymmetric states one has

I
(E3)
φ,S→A =

∫ ∞

−∞
XS sin φXA dφ

= NSNA

2

∫ ∞

−∞
(χ (φ+))2 sin φ dφ − NSNA

2

∫ ∞

−∞
(χ (φ−))2 sin φ dφ

= NSNA

2

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2+2b2φ0φ sin φ dφ − NSNA

2

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2−2b2φ0φ sin φ dφ, (A22)

leading to

I
(E3)
φ,S→A = e

− 1
4b2 sin φ0√

1 − e−2b2φ2
0

. (A23)

In the same way one finds

I
(E3)
φ,A→S = I

(E3)
φ,S→A. (A24)

4. B(E1)s

The transition operator for B(E1)s contains β̃2β̃3 = β̃ cos φβ̃ sin φ = β̃2 sin 2φ
2 .

For B(E1)s between symmetric states one has

I
(E1)
φ,S→S = 1

2

∫ ∞

−∞
XS sin 2φXS dφ

= N2
S

4

∫ ∞

−∞
(χ (φ+))2 sin 2φ dφ + N2

S

4

∫ ∞

−∞
(χ (φ−))2 sin 2φ dφ + N2

S

2

∫ ∞

−∞
χ (φ+)χ (φ−) sin 2φ dφ

= N2
S

4

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2+2b2φ0φ sin 2φ dφ + N2

S

4

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2−2b2φ0φ sin 2φ dφ

+ N2
S

2

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2

sin 2φ dφ. (A25)

Using Eq. (A40) of Appendix A 5 we see that the integrals appearing here are of the form∫ ∞

−∞
e−b2φ2±2b2φ0φ sin 2φ dφ = ±

√
π

b
e
b2φ2

0− 1
b2 sin 2φ0, (A26)

leading to

I
(E1)
φ,S→S = 0. (A27)

For B(E1)s between antisymmetric states one has

I
(E1)
φ,A→A = 1

2

∫ ∞

−∞
XA sin 2φXA dφ

= N2
A

4

∫ ∞

−∞
[χ (φ+)]2 sin 2φ dφ + N2

A

4

∫ ∞

−∞
[χ (φ−)]2 sin 2φ dφ − N2

A

2

∫ ∞

−∞
χ (φ+)χ (φ−) sin 2φ dφ

= N2
A

4

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2+2b2φ0φ sin 2φ dφ + N2

A

4

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2−2b2φ0φ sin 2φ dφ

− N2
A

2

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2

sin 2φ dφ, (A28)
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leading in the same way as above to

I
(E1)
φ,A→A = 0. (A29)

For B(E1)s between symmetric and antisymmetric states one has

I
(E1)
φ,S→A = 1

2

∫ ∞

−∞
XS sin 2φXA dφ

= NSNA

4

∫ ∞

−∞
[χ (φ+)]2 sin 2φ dφ − NSNA

4

∫ ∞

−∞
[χ (φ−)]2 sin 2φ dφ

= NSNA

4

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2+2b2φ0φ sin 2φ dφ − NSNA

4

b√
π

e−b2φ2
0

∫ ∞

−∞
e−b2φ2−2b2φ0φ sin 2φ dφ, (A30)

leading to

I
(E1)
φ,S→A = e

− 1
b2 sin 2φ0

2
√

1 − e−2b2φ2
0

. (A31)

In the same way one finds

I
(E1)
φ,A→S = I

(E1)
φ,S→A. (A32)

5. Useful integrals

We know that (Eq. 3.897.2 of Ref. [65])∫ ∞

0
e−βx2−γ x cos bxdx

= 1

4

√
π

b

{
e(γ−ib)2/(4β)

[
1 − �

(
γ − ib

2
√

β

)]
+e(γ+ib)2/(4β)

[
1 − �

(
γ + ib

2
√

β

)]}
, (A33)

where Re β > 0, b > 0, and �(x) is the error function, having
the property

�(−x) = −�(x). (A34)

Changing the variable into y = −x, Eq. (A33) takes the form

−
∫ −∞

0
e−βy2+γy cos bydy

= 1

4

√
π

b

{
e(γ−ib)2/(4β)

[
1 − �

(
γ − ib

2
√

β

)]
+e(γ+ib)2/(4β)

[
1 − �

(
γ + ib

2
√

β

)]}
, (A35)

Changing the symbol y into x and letting γ → −γ , one then
gets ∫ 0

−∞
e−βx2−γ x cos bxdx

= 1

4

√
π

b

{
e(−γ−ib)2/(4β)

[
1 − �

(−γ − ib

2
√

β

)]
+e(−γ+ib)2/(4β)

[
1 − �

(−γ + ib

2
√

β

)]}
. (A36)

Taking into account the property (A34), Eq. (A36) takes the
form ∫ 0

−∞
e−βx2−γ x cos bxdx

= 1

4

√
π

b

{
e(γ+ib)2/(4β)

[
1 + �

(
γ + ib

2
√

β

)]
+e(γ−ib)2/(4β)

[
1 + �

(
γ − ib

2
√

β

)]}
, (A37)

Adding Eqs. (A33) and (A37), we get∫ ∞

−∞
e−βx2−γ x cos bxdx = 1

2

√
π

β

(
e

(γ+ib)2

4β + e
(γ−ib)2

4β

)
=

√
π

β
e

γ 2−b2

4β cos
γ b

2β
. (A38)

In a similar way, starting from the integral (Eq. 3.897.1 of
Ref. [65])∫ ∞

0
e−βx2−γ x sin bxdx

= − i

4

√
π

b

{
e(γ−ib)2/(4β)

[
1 − �

(
γ − ib

2
√

β

)]
−e(γ+ib)2/(4β)

[
1 − �

(
γ + ib

2
√

β

)]}
, (A39)

where Re β > 0, b > 0, we get∫ ∞

−∞
e−βx2−γ x sin bxdx = i

2

√
π

β

(
e

(γ+ib)2

4β − e
(γ−ib)2

4β

)
= −

√
π

β
e

γ 2−b2

4β sin
γ b

2β
. (A40)
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For normalization purposes the integral∫ ∞

−∞
e−(ax2+bx+c)dx =

√
π

a
e(b2−4ac)/(4a) (A41)

suffices.

APPENDIX B: θ INTEGRALS

Integrals over θ involve three Wigner functions and can be
calculated using Eq. (4.6.2) of Ref. [66]∫

d3θD(j1)
k1m1

(θ )D(j2)
k2m2

(θ )D(j3)
k3m3

(θ )

= 8π2

(
j1 j2 j3

k1 k2 k3

) (
j1 j2 j3

m1 m2 m3

)
. (B1)

Using the relation between 3-j symbols and Clebsch Gordan
coefficients (3.7.3) of [66],(

j1 j2 j3

m1 m2 m3

)
= (−1)j1−j2−m3

√
2j3 + 1

(j1j2j3|m1m2 − m3),

(B2)
and the relation for conjugate Wigner functions (4.2.7) of [66],

D(j )∗
km (θ ) = (−1)k−mD(j )

−k−m(θ ), (B3)

one obtains∫
d3θD(j1)

k1m1
(θ )D(j2)

k2m2
(θ )D(j3)∗

−k3−m3
(θ )(−1)2k3

= 8π2

2j3 + 1
(j1j2j3|k1k2 − k3)(j1j2j3|m1m2 − m3),

(B4)

which by replacing m3 (k3) by −m3 (−k3) can be rewritten as∫
d3θD(j1)

k1m1
(θ )D(j2)

k2m2
(θ )D(j3)∗

k3m3
(θ )(−1)−2k3

= 8π2

2j3 + 1
(j1j2j3|k1k2k3)(j1j2j3|m1m2m3). (B5)

1. B(E2)s

In this case the integral reads

I
(E2)
θ =

∫
d3θ

√
2Li + 1

32π2
[1 ± (−1)Li ]DLi

0,Mi
(θ )D(2)

0,μ(θ )

×
√

2Lf + 1

32π2
[1 ± (−1)Lf ]DLf ∗

0,Mf
(θ ). (B6)

Using Eq. (B5) this gives

I
(E2)
θ = (1 ± (−1)Li )(1 ± (−1)Lf )

4

√
2Li + 1

2Lf + 1

× (Li2Lf |000)(Li2Lf |MiμMf ). (B7)

From the φ integrals we know that nonvanishing results are
obtained only in the S → S and A → A cases.

In the S → S case the two factors in the right-hand side
(rhs) of Eq. (B7) have the positive signs in the place of the

double signs, thus allowing only even values of Li and Lf ,
resulting in a factor of 4 in the numerator.

In the A → A case the two factors in the rhs of Eq. (B7)
have the negative signs in the place of the double signs, thus
allowing only odd values of Li and Lf , resulting again in a
factor of 4 in the numerator.

As a consequence, in all cases the final reasult reads

I
(E2)
θ =

√
2Li + 1

2Lf + 1
(Li2Lf |000)(Li2Lf |MiμMf ). (B8)

2. B(E3)s

The calculation parallels the one of the previous subsection,
the only difference being that the middle term, coming from
the transition operator, is D(3)

0,μ. The result reads

I
(E3)
θ = (1 ± (−1)Li )(1 ± (−1)Lf )

4

√
2Li + 1

2Lf + 1

× (Li3Lf |000)(Li3Lf |MiμMf ). (B9)

From the φ integrals we know that nonvanishing results are
obtained only in the S → A and A → S cases.

In the S → A case, Li is even and Lf is odd. The first
factor in the rhs of Eq. (B9) has the positive sign in the place
of the double sign in front of the (−1)Li term and the negative
sign in the place of the double sign in front of the (−1)Lf term,
resulting in a factor of 4 in the numerator. The same factor of
4 is obtained also in the A → S case. Therefore in all cases
the final result reads

I
(E3)
θ =

√
2Li + 1

2Lf + 1
(Li3Lf |000)(Li3Lf |MiμMf ). (B10)

3. B(E1)s

The calculation parallels the one of the previous subsection,
the only difference being that the middle term, coming from
the transition operator, is D(1)

0,μ. The result reads

I
(E1)
θ = (1 ± (−1)Li )(1 ± (−1)Lf )

4

√
2Li + 1

2Lf + 1

× (Li1Lf |000)(Li1Lf |MiμMf ). (B11)

From the φ integrals we know that nonvanishing results are
obtained only in the S → A and A → S cases.

In the S → A case, Li is even and Lf is odd. The first
factor in the rhs of Eq. (B11) has the positive sign in the place
of the double sign in front of the (−1)Li term and the negative
sign in the place of the double sign in front of the (−1)Lf term,
resulting in a factor of 4 in the numerator. The same factor of
4 is obtained also in the A → S case. Therefore in all cases
the final result reads

I
(E1)
θ =

√
2Li + 1

2Lf + 1
(Li1Lf |000)(Li1Lf |MiμMf ). (B12)
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4. Normalization

Normalization of the θ wave functions is guaranteed by the
integral of Eq. (4.6.1) of Ref. [66],∫

d3θD(j1)∗
k1m1

(θ )D(j2)
k2m2

(θ ) = δk1k2δm1m2δj1j2

8π2

2j1 + 1
. (B13)

The normalization integral for any state reads

Inorm =
∫

d3θ

√
2L + 1

32π2
[1 ± (−1)L]DL∗

0,M (θ )

×
√

2L + 1

32π2
[1 ± (−1)L]DL

0,M (θ ). (B14)

Using Eq. (B13) this gives

Inorm = 1 + (−1)2L ± 2(−1)L

4
= 1, (B15)

since for symmetric states the positive sign appears in the place
of the double sign and L is even, while for antisymmetric states
the negative sign appears in the place of the double sign and
L is odd.

APPENDIX C: β̃ INTEGRALS

1. B(E2)s

The transition operator contains a β̃ factor, thus the integrals
appearing in this case read

I
(E2)
β̃

=
√

2(ni)!

�(ni + ai + 1)

2(nf )!

�(nf + af + 1)
I (E2)(ni,nf ),

(C1)
with

I (E2)(ni,nf ) =
∫ ∞

0
β̃ai+af +2e−β̃2

Lai
ni

(β̃2)L
af

nf
(β̃2)dβ̃. (C2)

Using the substitution β̃2 = x with dx = 2β̃dβ̃, the integral
is written as

I (E2)(ni,nf ) = 1

2

∫ ∞

0
e−xx

ai
2 + af

2 + 1
2 Lai

ni
(x)L

af

nf
(x)dx. (C3)

Analytic expressions can be found for these integrals in the
case in which one of the quantum numbers ni , nf is zero.
(For the case in which both quantum numbers ni and nf are
nonzero, see Eq. (B5) of Ref. [67].) We consider nf = 0,
since both the ground state band and the octupole band are
characterized by this value. Then one has L

af

nf =0(x) = 1 and
the integral is simplified into

I (E2)(ni,0) = 1

2

∫ ∞

0
e−xx

ai
2 + af

2 + 1
2 Lai

ni
(x)dx. (C4)

Integrals of this form are known to have the analytic solution
([68], p. 463, Eq. (5))∫ ∞

0
e−cxx(α−1)Lλ

n(cx)dx = (1 − α + λ)n
n!cα

�(α), (C5)

where (a)n is the Pochhammer symbol,

(a)n = �(a + n)

�(a)
. (C6)

By replacing c = 1, λ = ai , α − 1 = ai

2 + af

2 + 1
2 , i.e., α =

ai

2 + af

2 + 3
2 , and applying the definition (C6) the result is

I (E2)(ni,0) = 1

2

�
(
ni + ai

2 − af

2 − 1
2

)
ni!�

(
ai

2 − af

2 − 1
2

) �

(
ai

2
+ af

2
+ 3

2

)
.

(C7)
In the simplest case of a transition between states with ni = 0
and nf = 0, which will be eventually of major interest in the
present work, one obviously has

I (E2)(0,0) = 1

2
�

(
ai

2
+ af

2
+ 3

2

)
. (C8)

Substituting these results in Eq. (C1), for the case with
ni � 0 and nf = 0 we find

I
(E2)
β̃

= �
(

ai

2 + af

2 + 3
2

)
�

(
ni + ai

2 − af

2 − 1
2

)√
ni!�(ni + ai + 1)�(af + 1)�

(
ai

2 − af

2 − 1
2

) ,

(C9)

while in the simplest case of ni = 0 and nf = 0 one has

I
(E2)
β̃

= �
(

ai

2 + af

2 + 3
2

)√
�(ai + 1)�(af + 1)

. (C10)

In the case of ni = 0, nf � 0, following the same steps one
finds

I (E2)(0,nf ) = 1

2

�
(
nf + af

2 − ai

2 − 1
2

)
nf !�

( af

2 − ai

2 − 1
2

) �

(
ai

2
+ af

2
+ 3

2

)
,

(C11)

I
(E2)
β̃

= �
(

ai

2 + af

2 + 3
2

)
�

(
nf + af

2 − ai

2 − 1
2

)√
nf !�(nf + af + 1)�(ai + 1)�

( af

2 − ai

2 − 1
2

) .

(C12)

2. B(E3)s

The transition operator again contains a β̃ factor, thus the
integrals appearing in this case are exactly the same as in the
previous subsection

I
(E3)
β̃

= I
(E2)
β̃

. (C13)

3. B(E1)s

The transition operator contains a β̃2 factor, thus the
integrals appearing in this case read

I
(E1)
β̃

=
√

2(ni)!

�(ni + ai + 1)

2(nf )!

�(nf + af + 1)
I (E1)(ni,nf ),

(C14)
with

I (E1)(ni,nf ) =
∫ ∞

0
β̃ai+af +3e−β̃2

Lai
ni

(β̃2)L
af

nf
(β̃2)dβ̃.

(C15)
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Using again the substitution β̃2 = x with dx = 2β̃dβ̃, the
integral is written as

I (E1)(ni,nf ) = 1

2

∫ ∞

0
e−xx

ai
2 + af

2 +1Lai
ni

(x)L
af

nf
(x)dx.

(C16)

For nf = 0 the integral is simplified into

I (E1)(ni,0) = 1

2

∫ ∞

0
e−xx

ai
2 + af

2 +1Lai
ni

(x)dx. (C17)

Using Eq. (C5) with c = 1, λ = ai , α − 1 = ai

2 + af

2 + 1, i.e.,
α = ai

2 + af

2 + 2, and applying the definition (C6) the result is

I (E1)(ni,0) = 1

2

�
(
ni + ai

2 − af

2 − 1
)

ni!�
(

ai

2 − af

2 − 1
) �

(ai

2
+ af

2
+ 2

)
.

(C18)
In the simplest case of ni = 0 and nf = 0 one has

I (E1)(0,0) = 1

2
�

(ai

2
+ af

2
+ 2

)
. (C19)

Substituting these results in Eq. (C14), for the case with
ni � 0 and nf = 0 we find

I
(E1)
β̃

= �
(

ai

2 + af

2 + 2
)
�

(
ni + ai

2 − af

2 − 1
)√

ni!�(ni + ai + 1)�(af + 1)�
(

ai

2 − af

2 − 1
) ,

(C20)

while in the simplest case of ni = 0 and nf = 0 one has

I
(E1)
β̃

= �
(

ai

2 + af

2 + 2
)√

�(ai + 1)�(af + 1)
. (C21)

In the case of ni = 0, nf � 0, following the same steps one
finds

I (E1)(0,nf ) = 1

2

�
(
nf + af

2 − ai

2 − 1
)

nf !�
( af

2 − ai

2 − 1
) �

(ai

2
+ af

2
+ 2

)
,

(C22)

I
(E1)
β̃

= �
(

ai

2 + af

2 + 2
)
�

(
nf + af

2 − ai

2 − 1
)√

nf !�(nf + af + 1)�(ai + 1)�
( af

2 − ai

2 − 1
) .

(C23)

4. Normalization

The total wave functions are given in Eqs. (2) and (20).
The integration over the Euler angles θ and the relevant
normalization have been studied in Appendix B, while the
rest of the integrations are performed over

∫ ∫
β3

2dβ2β
3
3dβ3,

where the β3
2 , β3

3 factors come from the volume element and
cancel with the first factor of Eq. (20). Using Eqs. (4) and
(5), as well as the relevant Jacobian, one finds that the rest
of the integrations are over

∫ ∫
dβ2dβ3 = B√

B2B3

∫ ∫
β̃ dβ̃ dφ.

The integration over φ and the relevant normalization fac-
tors have been studied in Appendix A. We determine here

the normalization factors related to the β̃ integration. We
have

1

N2
β̃

= 2(n)!

�(n + a + 1)

B√
B2B3

I (n,n) (C24)

with

I (n,n) =
∫ ∞

0
β̃2a+1e−β̃2

La
n(β̃2)La

n(β̃2)dβ̃. (C25)

Using the substitution β̃2 = x with dx = 2β̃dβ̃, the integral
is written as

I (n,n) = 1

2

∫ ∞

0
e−xxaLa

n(x)La
n(x)dx. (C26)

Considering the case with n = 0, which is of interest here, this
integral is of the form of Eq. (C5) with c = 1, α − 1 = a, thus
leading to

I (0,0) = �(a + 1)

2
. (C27)

Then Eq. (C24) for n = 0 leads to

1

N2
β̃

= B√
B2B3

. (C28)

This result indicates that when calculating β̃ integrals in
B(EL)s, the Nβ̃ normalization factors cancel out with the

B√
B2B3

factor appearing in the volume element and therefore
do not affect the final results.

APPENDIX D

1. Kinetic energy and volume elements

The expressions for the kinetic energy and the volume
element depend on the dimensionality of the space considered.
We distinguish three cases, with dimensionality five, four, and
three respectively.

(1) In the usual Bohr Hamiltonian describing the
quadrupole degree of freedom in the five-dimensional
(5D) space of the collective variables β and γ and the
three Euler angles (θ , φ, ψ), the kinetic energy term
reads [69]

T(β,γ )vib = − �
2

2B

[
1

β4

∂

∂β
β4 ∂

∂β

+ 1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

]
, (D1)

resulting from the Pauli–Podolsky quantization proce-
dure [70] in the full 5D space. The volume element
reads [69]

dτ = β4| sin 3γ | sin θ dβ dγ dθ dφ dψ. (D2)

If the β variable is separated from the rest, either
exactly, as in the E(5) critical point symmetry [18],
or through an adiabatic approximation, as in the X(5)
approach [16], the volume element in the β part of the
problem becomes [16,18]

dτβ (β) = β4dβ. (D3)
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(2) In the Davydov–Chaban approach [71] the γ variable
is removed from the Hamiltonian from the very
beginning of the problem, since γ is treated as an
effective deformation parameter. Then the quantization
procedure is applied in the 4D curvilinear space of β
and the three Euler angles. As a result the kinetic energy
term of the Hamiltonian is obtained in the form

T(β)vib = − �
2

2B

[
1

β3

∂

∂β
β3 ∂

∂β

]
. (D4)

Note that now the power of β in (D4) is 3 and not 4
as in the β part of (D1), while the respective volume
element is

dτ(β)vib(β) = β3dβ. (D5)

If the wave function is sought in the form [71]

ψ(β) = β−3/2ϕ(β), (D6)

the kinetic energy term in the Schrödinger equation for
the wave function ϕ(β) appears in the form [71]

T̃(β)vib = − �
2

2B2

∂2

∂β2
2

+ 3�
2

8B2β
2
2

, (D7)

where the second term is further moved into the
effective potential part.

(3) In the limit of strong γ instability of the Wilets–Jean
approach [72] the nucleus is considered as a droplet
which can only execute axially symmetric vibrations.
This system has only three degrees of freedom: β, θ ,
and φ. Then the kinetic energy term in the Hamiltonian
becomes

T = − �
2

2B

∂2

∂β2
, (D8)

where wave functions of the form ψ(β) = β−1ϕ(β) are
considered and the volume element reads

dτ = β2 sin θ dβ dθ dφ. (D9)

This approach has been recently used in Ref. [73].

The kinetic energy term of the Davydov–Chaban approach
has been generalized from quadrupole to any multipolarity λ
by Williams and Davidson [74], the final result being

Tλ = − �
2

2Bλ

[
1

β3
λ

∂

∂βλ

β3
λ

∂

∂βλ

]
. (D10)

The basic assumption behind this derivation is the requirement
of no vibration-rotation cross terms [74,75], which diagonal-
izes the inertial tensor and hence the rotated coordinate system
is the principal inertial (body) system.

In the case of simultaneous presence of quadrupole and oc-
tupole deformation, the kinetic energy within this generalized
Davydov–Chaban approach reads

T(β2,β3)vib = −
∑
λ=2,3

�
2

2Bλ

1

β3
λ

∂

∂βλ

β3
λ

∂

∂βλ

. (D11)

Using wave functions of the form

ψ±(β2,β3) = (β2β3)−3/2ϕ±(β2,β3), (D12)

which is a straightforward generalization of Eq. (D6), the
kinetic energy takes the form

T̃(β2,β3)vib = −
∑
λ=2,3

(
�

2

2Bλ

∂2

∂β2
λ

+ 3�
2

8Bλβ
2
λ

)
, (D13)

where again the second term is pushed into the effective
potential, as in Eq. (D7).

From the considerations given above, it becomes clear that
the kinetic energy term used in Refs. [15,51,52], as well as in
the present work, is based on the following assumptions:

(1) The γ degree of freedom is frozen from the very
beginning, thus reducing the degrees of freedom to four
(β, three Euler angles) in the case of pure quadrupole
deformation, and to five (β2, β3, three Euler angles) in
the case of simultaneous presence of quadrupole and
octupole deformations.

(2) Vibration-rotation cross terms are ignored, making
the inertial tensor diagonal and allowing the rotated
coordinate system to be the principal inertial (body)
system.

2. Moments of inertia

Using the standard Bohr expression for the nuclear surface
in the body-fixed frame, given by [69]

R(θ,φ) = R0

[
1 +

∑
lm

almYlm(θ,φ)

]
, (D14)

where Ylm(θ,φ) stands for the spherical harmonics, ignoring
vibration-rotation cross terms as above, and assuming that only
the even components (a30, a3±2) of the octupole parameters
are nonvanishing, we obtain for the moments of inertia in the
octupole degree of freedom the expressions [75,76]

J
(3)
1 = B3

(
6a2

30 + 2
√

30a30a32 + 8a2
32

)
, (D15)

J
(3)
2 = B3

(
6a2

30 − 2
√

30a30a32 + 8a2
32

)
, (D16)

J
(3)
3 = 8B3a

2
32, (D17)

which in the axial case (a30 = β3, a32 = 0) give

J
(3)
1 = J

(3)
2 = 6B3β

2
3 , J

(3)
3 = 0. (D18)

Different expressions for the moments of inertia are obtained
if one considers the odd components (a3±1, a3±3) as the
nonvanishing ones [75]. Here we make the assumption, as
in Ref. [75,76], that for low-lying collective negative parity
states the even components play the main role, since their
contributions to the shape are more symmetric, a property
usually associated with lower energy configurations.

For the moments of inertia in the quadrupole degree of
freedom we use the standard expression [69]

J
(2)
k = 4B2β

2
2 sin2

(
γ − 2

3πk
)
, (D19)

which in the axial case (γ = 0) gives

J
(2)
1 = J

(2)
2 = 3B2β

2
2 , J

(2)
3 = 0. (D20)
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Collecting (D18) and (D20) into the axial quadrupole
octupole moment of inertia one gets

J
(2+3)
1 = J

(2+3)
2 = J(2+3) = 3B2β

2
2 + 6B3β

2
3 , (D21)

which gives exactly the denominator in the angular momentum
part of Hamiltonian (1)

1

2J(2+3)
= 1

6
(
B2β

2
2 + 2B3β

2
3

) . (D22)

From the considerations given above, it becomes clear that
the moment of inertia term used in Refs. [15,52], as well as in
the present work, is based on the following assumptions:

(1) Vibration-rotation cross terms are ignored, as in the
case of the kinetic energy.

(2) Only the axial components of deformation are taken
into account, both in the quadrupole and in the octupole
degree of freedom, based on the qualitative expectation
that more symmetric configurations would lie lower in
energy.

It should be noted that in Ref. [51] an expression 3(B2β
2
2 +

B3β
2
3 ) has been used for the moment of inertia.

3. Separation of variables

Exact separation of the β and γ variables in the framework
of the Bohr Hamiltonian can be achieved by considering
potentials of the form u(β,γ ) = v(β) + w(γ )/β2 [72,77]. In
contrast, when the potential is of the form u(β,γ ) = v(β) +
w(γ ), only approximate adiabatic separation of variables can
be tried, as in the case of the X(5) critical point symmetry
[16,78]. In the case of X(5), a β2 term survives in the
differential equation involving the γ variable, replaced in
the adiabatic approximation by the average value 〈β2〉. The
accuracy of this approximation has been tested in Ref. [79] and
the limits of its validity have been pointed out. The recently
developed algebraic collective model [80–83] offers a path for
avoiding this approximation by performing rapidly converging
exact numerical calculations instead of pursuing approximate
analytical solutions.

In the present case, the γ variable has been “frozen”
from the very beginning, following the Davydov–Chaban
approach [71], as explained in Appendix D 1. Therefore,
no question of separating the β and γ variables appears.
However, separation of the β and φ variables is desirable,
in order to achieve analytical solutions in closed form. By
analogy to the X(5) situation described above, a potential of the
form v(β̃,φ) = u(β̃) + w(φ̃±) has been chosen and adiabatic
separation of variables has been tried, taking advantage of the
fact that the w(φ̃±) potential is supposed to be of the form
of two very steep harmonic oscillators centered at the values
±φ0. Because of the steepness of the oscillators it is plausible
to use the adiabatic approximation in the differential equation
involving the β̃ variable [Eq. (7)], by replacing the variable φ
by ±φ0. Again in analogy to the X(5) case mentioned above,
a 〈β̃2〉 term remains in the differential equation involving the
φ̃ degree of freedom [Eq. (8)]. There is no need to explicitly
determine 〈β̃2〉, since it enters the parameter b [Eq. (15)],
determined from E2 transitions as described in Sec. III B 1.

In other words, we exploit for the separation of variables
the fact that the w(φ̃±) potential is supposed to be of the form
of two very steep harmonic oscillators centered at the values
±φ0. This makes the adiabatic approximation of φ by ±φ0

plausible, isolating the two very steep harmonic oscillators
in the φ equation and leaving the rest of the terms in the β̃
equation. An alternative possibility is to consider a potential
of the form v(β̃,φ) = u(β̃) + w(φ̃±)/β̃2. Then the separation
of variables will become exact, but the distribution of terms in
the two equations will be different.

The adiabatic approximation used here, based on two very
steep harmonic oscillators, does have a cost. It is well known
that the correct description of the parity splitting, usually
depicted as the odd-even staggering of the energy levels of the
ground state band and the negative parity band, requires a finite
barrier between the two wells, which is angular momentum
dependent [55–57]. In the present approach a practically
infinite barrier between the two wells is used for all angular
momenta. This has as a consequence that the theoretical
predictions for the low-lying negative parity states (especially
for 1− and 3−) are poor, as pointed out in subsection III.A.

It should be mentioned that the Bohr Hamiltonian has
been solved for the potential 1/ sin2(3γ ) [resembling the last
fractional term in Eq. (7)], possessing a minimum at γ = π/6,
first by replacing the γ variable in the moments of inertia
by its expectation value, γ0, and subsequently avoiding this
approximation [84], the results revealing the approximation to
be a good one. Future tests of similar nature in the present
framework are desirable.

4. Comparison to other approaches

As it has already been mentioned in the Introduction, a more
general approach has been developed by Bizzeti and Bizzeti-
Sona [19,20], in which nonaxial contributions, small but not
frozen to zero, are taken into account. It is worth commenting
briefly on the relation between the two approaches.

(1) In the AQOA approach, no nonaxial contributions are
taken into account. As a result, all variables related to
nonaxiality in Ref. [19] are vanishing, and the matrix of
inertia (Tables I and II in Ref. [19]) becoming diagonal.

(2) Because of the same reason, in the invariants up to
fourth order reported in Table VIII of Ref. [19], only
the first term in each invariant, containing only β2

and/or β3, is surviving. In the present approach only
the invariants up to second order, being equal to β2

2 and
β2

3 , are used.
(3) In Ref. [19], in addition to the infinite square well

potential, a harmonic oscillator potential proportional
to the square of x = √

2β3/β2 has been used. In the
present approach, β3/β2 = tan φ

√
B2/B3. Therefore

the two potentials coincide, up to constant factors, for
small angles, for which tan φ ≈ sin φ ≈ φ.

(4) The total moment of inertia appearing in Ref. [19]
[Eq. (32)], coincides with the total moment of inertia
used here [Eq. (D22)], if the nonaxial variables vanish,
as seen from Eq. (6a) of Ref. [19].
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