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Systematic approach to β and 2νββ decays of mass A = 100–136 nuclei
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In this work we perform a systematic study of pairs of single-β-decaying nuclei in the mass region A = 100–136
to extract information on the effective value of the axial-vector coupling constant gA. As the many-body framework
we use the quasiparticle random-phase approximation (QRPA) and its proton-neutron variant (pnQRPA) in single-
particle valence bases with Woods-Saxon-calculated single-particle energies. It is found that, to a reasonable
approximation, gA is a linear function of the mass number A, with a slightly different parametrization below and
above the mass A = 121. Using the values of gA extracted from the linear fit, as well as an average constant value
of gA, we calculate the two-neutrino double-β (2νββ) decay half-lives of 11 β−β− decays and 10 mixed β+ and
electron-capture (EC) decays, β+β+/β+EC/ECEC, to both the ground state and the lowest three excited states.

DOI: 10.1103/PhysRevC.91.054309 PACS number(s): 21.60.Jz, 23.40.Bw, 23.40.Hc, 27.60.+j

I. INTRODUCTION

The research on double-β decay is both timely and of
great interest for particle and nuclear physics [1–3]. Both
the neutrinoless double-β (0νββ) and two-neutrino double-β
(2νββ) decays depend sensitively on the involved nuclear
matrix elements (NMEs). A large number of different nuclear
models have been used to describe the associated nuclear
wave functions. Among these models are the quasiparticle
random-phase approximation (QRPA), its proton-neutron ex-
tension (pnQRPA) (see Ref. [4] and references therein), and
its renormalized extensions [5,6]. A different category of
nuclear models are formed by the interacting shell model
(ISM) [7], the (proton-neutron) interacting boson model (IBA-
2) [8], the Gogny-based energy-density functional approach
(EDF) [9], and the projected Hartree-Fock-Bogoliubov mean-
field scheme (PHFB) [10]. An extensive comparison of
the double-β properties of the aforementioned models is
performed in Ref. [11].

The 2νββ decays can occur in two different categories:
The decays on the β− side, i.e., 2νβ− decays, have favorable
decay Q values and abundances, and they have been under
intensive experimental and theoretical investigation over the
years. Many decay transitions have already been detected for
these decays [12]. The positron-emitting modes of decays,
2νβ+β+, 2νβ+EC, and 2νECEC (generically called 2νβ+/EC
hereafter, EC referring to electron capture) are much less
studied due to their relatively low Q values and abundances. No
such decay transitions have yet been observed in the laboratory.
On the theory side, these decays have been investigated for
their lepton aspects in Ref. [13] and nuclear-structure aspects,
e.g., in Refs. [14–22]. Some of these studies refer to decays to
the ground states and some refer to decays to both ground and
excited states.

The phase space of the 2νβ− and 2νβ+/EC decays depends
on the fourth power of the value of the weak axial-vector
coupling constant gA. Hence, it is of paramount importance
to know the (effective) value of gA in medium-mass and
heavy-mass nuclear systems. An effective value of gA ∼ 1
has been advocated in several ISM calculations in the past
(see, e.g., Refs. [23,24]). Even stronger quenchings have been

proposed in Refs. [25,26]. At the same time the pnQRPA, used
in the calculations of the involved NMEs, suffers from the “gpp

problem,” i.e., from the unsettled value of the particle-particle
interaction parameter gpp describing the strength of the proton-
neutron interaction in the 1+ channel. Since the introduction
of this parameter [27,28], several researchers have tried to fix
its values by the inspection of the measured single-β-decay
rates [29,30] or 2νββ decay rates [31–34].

The effective value of gA can also be studied together
with the value of gpp within the pnQRPA framework. The
first work on this line of study is that of Ref. [35] where
both the β-decay and 2νβ−-decay data were analyzed for the
A = 100,116 systems in the framework of the pnQRPA using
least squares to achieve best-fit values for gA. In Ref. [35] the
best-fit values gA = 0.74 (A = 100) and gA = 0.84 (A = 116)
were obtained. A monotonic behavior of gA as a function
of the mass number A was parametrized in Ref. [36] by
analyzing the magnitudes of the NMEs of several 2νβ− decays
computed by the IBA-2 model. In this study the obtained
gA-versus-A slope was very flat. Simultaneous use of the 2νβ−
and β− data for the A = 100,116,128 systems lead to a much
quenched value of gA ∼ 0.6 in Refs. [37,38]. In Ref. [39]
the interacting boson-fermion-fermion model (IBFFM-2) was
used to derive effective value of gA ∼ 0.3 in the A = 128 case.
In Ref. [40] an extension of the gA analysis to first-forbidden
2− → 0+

gs β decays was achieved.
In the present article we adopt a more systematic approach

to attack the problem of the effective value of gA. We are
going to allow the values of both gA and gpp to vary in
an analysis of 24 isobaric triplets within the mass range
A = 100–136. In these triplets an intermediate odd-odd isobar
connects via β transitions to its two adjacent even-even isobars
and the rates of the connecting transitions are experimentally
known. We try to reproduce the measured transition rates
in a pnQRPA calculation by varying gA and gpp in each
isobaric triplet separately. In this way the present analysis
is an extension of that of Ref. [41] where nine such pairs were
analyzed within a very rudimentary pnQRPA approach. At the
same time the present study extends the idea of Ref. [40],
i.e., of using the geometric mean of the decay rates, to the
Gamow-Teller β decays. The geometric means of the two
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decay branches are more stable against variations in gpp and gA

than the individual branches of decay and are thus preferable
in the analysis. By this analysis we derive a piecewise linear
relationship between the mass number A and the parameter gA.
By using this relationship we then predict 2νβ− and 2νβ+/EC
decay half-lives for a total of 21 nuclei in the mass range
A = 100–136. We also compare these predictions with those
derived from a constant mean value of gA.

This article is organized as follows: In Sec. II we give a
brief introduction to the underlying formalism of the Gamow-
Teller β transitions, and the 2νβ− and 2νβ+/EC decays. In
Sec. III we display and discuss the obtained single-β-decay
and double-β-decay results. The final conclusions are drawn
in Sec. IV.

II. REVIEW OF THE FORMALISM OF COMPUTATION

In this section only the basic theoretical ingredients of the
computations are given. The single- and double-β decay half-
lives are defined in terms of the involved NMEs and the phase-
space factors. The NMEs are given in terms of the single-
particle matrix elements and the one-body transition densities.
For the calculation of the phase-space factors and the one-body
transition densities we refer to the available literature at the
appropriate places.

A. Gamow-Teller β decays

The Gamow-Teller β-decay transitions are mediated by the
Pauli spin operator σ . In this work we extract the needed
experimental Gamow-Teller NMEs by using the experimental
comparative half-lives (log f t values). They are defined as [42]

log f t = log(f0t1/2[s]) = log

[
6147

BGT

]
, (1)

where the reduced transition probabilities BGT are given by

BGT = g2
A

3

∣∣∣∣∣
∑
pn

σpn(I+
f ‖[c†pc̃n]1‖1+

1 )

∣∣∣∣∣
2

, (β−) (2)

BGT = g2
A

3

∣∣∣∣∣
∑
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σnp(I+
f ‖[c†nc̃p]1‖1+

1 )

∣∣∣∣∣
2

. (β+) (3)

The single-particle matrix elements are defined as

σpn = 1
3 (p‖σ‖n) , σnp = 1

3 (n‖σ‖p) , (4)

where the matrix elements of the Pauli operator are given in
Ref. [42]. In Eqs. (2) and (3) the final states appearing in
the one-body transition densities are considered to be I+

f =
0+

gs,2
+
1 ,0+

1 ,2+
2 , where 0+

gs is assumed to be the vacuum state
of the quasiparticle random-phase approximation (QRPA),
discussed briefly in Sec. II C. The first 2+ state in the final
even-even nucleus, 2+

1 , is considered to be a one-phonon
QRPA state and the first excited 0+ state, 0+

1 , and the second
2+ state, 2+

2 , are considered to be two-phonon QRPA states;
see Sec. II C. Exact expressions for the one-body transition
densities are given in Ref. [20].

B. Two-neutrino double-β decays

The two-neutrino double-β decays are of either the 2νβ− or
the 2νβ+/EC type. The associated half-lives can be expressed
as [13,20,43][
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(8)

where the expressions for the lepton phase-space integrals
Gα

2ν(I+), α = β−β− are given in Ref. [1] and the integrals
Gα

2ν(I+), α = β+β+, β+EC, ECEC are given in Ref. [13]. The
NMEs Mα

2ν(I+) include energy denominators and a summation
over all the 1+ states of the intermediate nucleus (see below).
Above, the symbols EC(K) and EC(L) denote electron captures
from the atomic K and L1 shells, respectively.

The NMEs involved in the above half-life expressions can
be cast in the form

Mα
2ν(I+) =

∑
k1

Mk1 (I+)Fα
k1

(I+) ,

(9)
α = β−β−,β+β+, β+EC, ECEC ,

where in the QRPA framework one writes

Mk1 (I+) = 1√
1 + 2δI2

∑
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∑
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× (
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f ‖[c†p′ c̃n′ ]1‖1+

k1
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〉
× (

1+
k2

‖[c†pc̃n]1‖0+
i

)
, (2νβ−) (10)

Mk1 (I+) = 1√
1 + 2δI2

∑
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pp′nn′

m(nn′,pp′)

× (
I+
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k1
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1+

k1
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k2

〉
× (

1+
k2

‖[c†nc̃p]1‖0+
i

)
. (2νβ+/EC) (11)

Here the operator c
†
p (c†n) creates a proton (neutron) particle in

the orbital p = np,lp,jp (n = nn,ln,jn), where n is the radial,
l is the orbital angular-momentum, and j is the total single-
particle angular-momentum quantum number. The same holds
for the particle annihilation operators, written without the
dagger. The single-particle parts in Eqs. (10) and (11) are
written as

m(pp′,nn′) = σp′n′σpn , m(nn′,pp′) = σn′p′σnp , (12)

where the matrix elements of the Pauli operator were defined
in Eq. (4).

The one-body transition densities involved in Eqs. (10)
and (11) are given separately for the different types of I+

f

final states in Ref. [20]. Furthermore, the overlap between the
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two sets of pnQRPA states used in the calculations is given by〈
Jπ

k1

∣∣Jπ
k2

〉 =
∑
pn

[
X

Jπ
k2

pn X̄
Jπ

k1
pn − Y

Jπ
k2

pn Ȳ
Jπ

k1
pn

]
(13)

and it takes care of the matching of the corresponding states
in the two sets of states based on the initial and final even-
even reference nuclei. The amplitudes X and Y (X̄ and Ȳ )
come from the pnQRPA calculation starting from the initial
(final) nucleus of the double-β decay (see Sec. II C). Here
it is appropriate to note that the expression (13) is only
an approximation if the initial and final ground states are
not identical. However, the approximation is reasonable if
these ground states are not very different in terms of orbital
occupancies.

The quantities Fα
k1

(I+) in Eq. (9) are the following energy
denominators:
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0
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(19)

where the normalized (by the electron rest-mass energy)
intermediate energy is given by

�k = (Ek − Mic
2)/mec

2 (20)

and the decay energies are

W0 = (Mic
2 − Ef )/mec

2 ;

W
β+EC
0 = W0 + εb1 , (21)

WECEC
0 = W0 + εb1 + εb2 .

Here the quantity Ef is the final-state (ground-state or excited-
state) energy and

εbi = (mec
2 − Bi)/mec

2 , i = 1,2 , (22)

where Bi is the binding energy of electron i in an atomic K
or L1 orbital [13]. In �k [see Ref. (20)] Ek is the energy of
the kth 1+ state in the intermediate nucleus. In the pnQRPA
calculations the energy Ek is taken to be the average of the kth
energy eigenvalues based on the two pnQRPA calculations,

one for the initial and one for the final nucleus of the ββ
decay. Furthermore, the energy difference E1 − Mic

2 is taken
from experiment whenever the excitation energy of the first
1+ state of the intermediate nucleus is known experimentally.

C. Nuclear models

The initial and final 1+ states of β decays and intermediate
1+ states of double-β decays (both always in odd-odd nuclei)
are handled within the framework of the pnQRPA. The
pnQRPA states, in an odd-odd nucleus, can be written as

|1+
k M〉 =

∑
pn

(
X1+k

pn [a†
pa†

n]1M − Y 1+k
pn [a†

pa†
n]†1M

)|QRPA〉 ,

(23)

where |QRPA〉 is the QRPA vacuum. The operator a
†
p (a†

n)
creates a proton (neutron) quasiparticle in the orbital p (n). The
sum runs over all proton-neutron configurations in the chosen
valence space. In the pnQRPA formalism states (23) connect
directly to the neighboring even-even ground states, both in
the initial nucleus, 0+

i = 0+
gs, and the final one, I+

f = 0+
gs.

The wave functions of the final states I+
f = 2+

1 ,0+
1 ,2+

2 of
the β and double-β decays are computed by the use of the
multiple-commutator model (MCM) [44,45]. It is designed
to connect excited states of an even-even reference nucleus
to states of the neighboring odd-odd nucleus. The states
of the odd-odd nucleus are given by the pnQRPA in the
form (23). The excited states of the even-even nucleus are
generated by the (charge conserving) quasiparticle random-
phase approximation (QRPA) described in detail in Ref. [42].
Here the symmetrized form of the phonon amplitudes is
adopted contrary to Ref. [42] so that the first excited 2+ state
in the final nuclei of the β and double-β decays can be written
as a QRPA phonon of the form

|I+
f 〉 = |2+

1 M〉 = Q†(2+
1 ,M)|QRPA〉

=
∑
ab

(
Z

2+
1

ab [a†
aa

†
b]2M − W

2+
1

ab [a†
aa

†
b]†2M

)|QRPA〉 , (24)

where the amplitudes Z and W are obtained by solving the
QRPA equations of motion [42].

From the above 2+ phonons (24) one can build an ideal
two-phonon state of the form

|I+
2−ph〉 = 1√

2
[Q†(2+

1 )Q†(2+
1 )]I |QRPA〉 . (25)

An ideal two-phonon state consists of partner states Iπ =
0+,2+,4+ that are degenerate in energy, and exactly at an
energy twice the excitation energy of the 2+

1 state. In practice
this degeneracy is always lifted by the residual interaction
between the one- and two-phonon states [46]. In this work
we assume the I+

f = 0+
1 and I+

f = 2+
2 final states of β and

double-β decays to be reasonably well described by the ansatz
wave function (25).

III. RESULTS AND DISCUSSION

In this section we present and discuss the results of the
calculations. For the sake of completeness we introduce each of
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FIG. 1. A schematic figure of the orbitals used to form the bases
for nuclei with A < 110 and A � 110.

the elements entering the calculations, referring to the already
published material for details.

A. Determination of model parameters

Up to A = 108 a valence space consisting of 11 states,
the entire 1p − 0f − 0g and 2s − 1d − 0h shells, was used.
For A = 110 and onwards also the 2p and 1f shells were
included and the valence space was expanded to 15 states. The
valence spaces are visualized in Fig. 1. The single-particle
bases are built by using a Coulomb-corrected Woods-Saxon
potential and solving the radial Schrödinger equation. The
Woods-Saxon parameters used were the ones given by Bohr
and Mottelson in Ref. [47].

For the two-body part of the interactions, the renormalized
Bonn-A G matrix [44,48] has been used and the neutron

and proton pairing strength parameters A
p
pair and An

pair were
fitted such that the lowest quasiparticle energies from the BCS
calculation match the pairing gaps:

Ep
qp(lowest) = �p, and En

qp(lowest) = �n.

The pairing gaps can be calculated by the three-point for-
mula [49]

�p(A,Z) = 1
4 (−1)Z+1[Sp(A + 1,Z + 1)

− 2Sp(A,Z) + Sp(A − 1,Z − 1)],

�n(A,Z) = 1
4 (−1)A−Z+1[Sn(A + 1,Z)

− 2Sn(A,Z) + Sn(A − 1,Z)],

where Si is the proton or neutron separation energy. The
separation energies were taken from Ref. [50].

The particle-hole and particle-particle interaction strengths
are important interaction parameters in both the QRPA and
pnQRPA. As a convention for the present work, in the QRPA
these parameters are written as uppercase Gph and Gpp and in
the pnQRPA as lowercase gph and gpp.

In QRPA, Gpp has little effect on the first excited states [51]
and the common value of Gpp = 1.00 has been adapted for the
examined nuclei. The first excited state of the presently studied
even-even nuclei is a 2+ state, which is of a particle-hole
nature. Therefore, the value of Gph has a significant effect on
the energy of this state. The value of Gph was fixed for each
nucleus separately by fitting the energy of the first 2+ state to
experimental data.

In pnQRPA, the particle-hole parameter gph has a large
effect on the energy location of the Gamow-Teller giant reso-
nance (GTGR). The particle-particle parameter gpp has more to
do with the Gamow-Teller β-decay transition amplitudes [51].
The value of gph was fitted for each nucleus separately to
approximately match the GTGR location to the empirical
formula [42]:

�EGT = �EC + �EZ+1,N−1 = [
1.444

(
Z + 1

2

)
A− 1

3

− 30.0(N − Z − 2)A−1 + 5.57
]

MeV, (26)

where �Ec is the Coulomb energy and �EZ+1,N−1 is the
energy difference between the GTGR state and the 0+ isobaric
analog state of the odd-odd nucleus.

The particle-particle interaction parameter gpp is often
used to fit the log f t value of the transition from the first
1+ state of the odd-odd nucleus to the ground state of the
even-even nucleus [48,51]. In the present work, to better
examine the systematics of Gamow-Teller β decay, we assign
an array of constant values of gpp = 0.6, 0.7, 0.8, 0.9. By
fitting the geometric means of the β-decay matrix elements to
experimental values, the behavior of the axial-vector coupling
constant gA is expressed as a function of the mass number
A for each value of gpp. This enables us to find a systematic
behavior of gA for a given value of gpp.

B. Single-β decays and determination
of the effective value of gA

In this work a selection of medium heavy nuclei in the
mass region A = 100–134 are taken under investigation. This
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Z + 1

1+

e - e
Z + 2

0+

log ft
left log ft

right

FIG. 2. A schematic of the single-β decay triplets studied in this
work. The nucleus in the middle is odd-odd, and its neighbors on the
left and right are even-even.

selection spans practically all the nuclei where relevant log f t
data have been measured. The nuclei are grouped into triplets
where an odd-odd nucleus with a 1+ ground state is in the
“center” and two neighboring even-even isobars with 0+
ground states are to the “left” and “right” of the odd-odd
nucleus as is represented in Fig. 2. Ground-state-to-ground-
state β decays as well as decays to excited states of the
even-even nuclei are predicted using the QRPA framework.

In the present analysis it is preferable to use the geometric
mean of the two transition matrix elements since the geometric
mean is practically independent of the value of gpp, as visible
in Fig. 3. This owes to the particular behavior of the β− and
β+/EC decay amplitudes as a function of gpp in a pnQRPA
calculation: The β− (β+/EC) decay amplitude for a transition
from an odd-odd nucleus is a decreasing (increasing) function
of gpp, as shown explicitly in Ref. [29]. In this way the gpp

100 110 120 130
0.2

0.4

0.6

0.8

1

1.2

1.4

A

g A

gpp = 0.9

gpp = 0.8

gpp = 0.7

gpp = 0.6

linear fit
average

FIG. 3. (Color online) Values of gA as a function of the mass
number A. The data points were produced by fitting the theoretical
geometric means of the NMEs to the corresponding experimental
values.

dependencies of the two branches conspire to produce an
almost flat gpp dependence for the geometric mean.

One can calculate the experimental geometric means of the
left and right NMEs (multiplied by gA) from

gAMm
GT(exp.) = gA

√∣∣Ml
GT(exp.)Mr

GT(exp.)
∣∣

=

√√√√
6147×

√ (
2J l

i + 1
)(

J r
i + 1

)
10log f t l(exp.)×10log f t r(exp.)

. (27)

This quantity is actually independent of the value of gA taken
for theoretical calculations, which permits gA to be left as a
free parameter to fit calculations to experimental data. The
calculated experimental geometric means for the investigated
mass region are presented in Table I. The needed experimental
log f t values were taken from Ref. [52].

We first examined the ground-state-to-ground-state decays
in the investigated mass region. Four rounds of pnQRPA
calculations were performed using typical values of gpp =
0.6, 0.7, 0.8, 0.9 in order to analyze the left and right branches
of Gamow-Teller β decay from each odd-odd nucleus. The-
oretical geometric means of these matrix elements were then
calculated for each value of gpp and fitted to the experimental
values by altering the value of gA. The calculated matrix
elements and geometric means for gpp = 0.7 are given in
Table II and visualized in Fig. 4. The resulting values of gA

for each value of gpp are presented in Fig. 3 as a function of
the mass number A.

In Fig. 4 one can see a decreasing behavior of the NMEs as
a function of A. At first, around A = 100–112 there is some
alternation between the left and right matrix elements being
larger than the other, but at A = 112 onwards the right matrix
elements are always smaller than the left ones and eventually
become only about a fifth of the magnitude of the left matrix
elements. The experimental log f t values in the left branch are

100 110 120 130
0

0.5

1

1.5

2

A

M
G

T

Ml
GT

Mr
GT

Mm
GT

FIG. 4. (Color online) Theoretical β-decay matrix elements as a
function of the mass number A. The computations were done with
gpp = 0.7. The effect of gA has not yet been taken into account.
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TABLE I. Experimental geometric means of the NMEs. The experimental values were taken from Ref. [52], except the entry marked with
superscript 1 is extrapolated from systematics of similar neighboring decays and the entry marked with superscript 2 is from Ref. [53].

A Z Process log f t exp gAMGT(l) gAMGT(r) gAMm
GT

Z Z + 1 Z + 2 left right

100 40 Zr(0+) → Nb(1+) → Mo(0+) 4.65 5.1 0.371 0.382 0.377
100 42 Mo(0+) ← Tc(1+) → Ru(0+) 4.4 4.59 0.857 0.688 0.768
102 42 Mo(0+) → Tc(1+) → Ru(0+) 4.21 4.778 0.616 0.554 0.584
104 44 Ru(0+) ← Rh(1+) → Pd(0+) 4.32 4.55 0.939 0.721 0.823
106 44 Ru(0+) → Rh(1+) → Pd(0+) 4.31 5.168 0.548 0.354 0.441
106 46 Pd(0+) ← Ag(1+) → Cd(0+) 4.92 4.41) 0.471 0.857 0.635
108 44 Ru(0+) → Rh(1+) → Pd(0+) 4.22) 5.5 0.623 0.241 0.388
108 46 Pd(0+) ← Ag(1+) → Cd(0+) 4.70 4.425 0.607 0.833 0.711
110 46 Pd(0+) ← Ag(1+) → Cd(0+) 4.09 4.6596 1.224 0.635 0.882
112 48 Cd(0+) ← In(1+) → Sn(0+) 4.70 4.12 0.607 1.183 0.847
114 46 Pd(0+) → Ag(1+) → Cd(0+) 4.199 5.1 0.623 0.383 0.488
114 48 Cd(0+) ← In(1+) → Sn(0+) 4.89 4.4701 0.487 0.790 0.621
116 48 Cd(0+) ← In(1+) → Sn(0+) 4.47 4.662 0.790 0.634 0.708
118 48 Cd(0+) → In(1+) → Sn(0+) 3.91 4.79 0.870 0.547 0.690
118 50 Sn(0+) ← Sb(1+) ← Te(0+) 4.525 5.0 0.742 0.248 0.429
120 48 Cd(0+) → In(1+) → Sn(0+) 4.1 5.023 0.699 0.418 0.541
122 48 Cd(0+) → In(1+) → Sn(0+) 3.95 5.11 0.830 0.378 0.561
122 52 Te(0+) ← I(1+) ← Xe(0+) 4.95 5.191 0.455 0.199 0.301
124 54 Xe(0+) ← Cs(1+) ← Ba(0+) 5.10 5.2 0.383 0.197 0.275
126 54 Xe(0+) ← Cs(1+) ← Ba(0+) 5.066 5.36 0.398 0.164 0.255
128 52 Te(0+) ← I(1+) → Xe(0+) 5.049 6.061 0.406 0.127 0.227
128 54 Xe(0+) ← Cs(1+) ← Ba(0+) 4.847 5.28 0.512 0.180 0.303
130 54 Xe(0+) ← Cs(1+) → Ba(0+) 5.073 5.36 0.395 0.284 0.335
134 56 Ba(0+) ← La(1+) ← Ce(0+) 4.883 5.23 0.491 0.190 0.306

TABLE II. Theoretical and experimental geometric means of the NMEs with gpp = 0.7. The values of gA were fixed for each process by
fitting the theoretical geometric mean to the experimental value.

A Z Process gA Mth
GT(l) Mth

GT(r) gAMm
GT

Z Z + 1 Z + 2 exp. th.

100 40 Zr(0+) → Nb(1+) → Mo(0+) 0.30 1.664 0.922 0.377 0.372
100 42 Mo(0+) ← Tc(1+) → Ru(0+) 0.54 1.236 1.645 0.768 0.770
102 42 Mo(0+) → Tc(1+) → Ru(0+) 0.41 1.534 1.305 0.584 0.580
104 44 Ru(0+) ← Rh(1+) → Pd(0+) 0.56 1.322 1.632 0.823 0.823
106 44 Ru(0+) → Rh(1+) → Pd(0+) 0.33 1.540 1.194 0.441 0.447
106 46 Pd(0+) ← Ag(1+) → Cd(0+) 0.43 1.045 2.045 0.635 0.629
108 44 Ru(0+) → Rh(1+) → Pd(0+) 0.32 1.680 0.8502 0.388 0.382
108 46 Pd(0+) ← Ag(1+) → Cd(0+) 0.50 1.251 1.643 0.711 0.717
110 46 Pd(0+) ← Ag(1+) → Cd(0+) 0.70 1.373 1.155 0.882 0.882
112 48 Cd(0+) ← In(1+) → Sn(0+) 0.68 0.993 1.557 0.847 0.846
114 46 Pd(0+) → Ag(1+) → Cd(0+) 0.56 1.345 0.5676 0.488 0.489
114 48 Cd(0+) ← In(1+) → Sn(0+) 0.58 1.021 1.106 0.621 0.616
116 48 Cd(0+) ← In(1+) → Sn(0+) 0.86 0.989 0.692 0.708 0.711
118 48 Cd(0+) → In(1+) → Sn(0+) 0.88 0.942 0.653 0.690 0.690
118 50 Sn(0+) ← Sb(1+) ← Te(0+) 0.77 1.013 0.309 0.429 0.430
120 48 Cd(0+) → In(1+) → Sn(0+) 0.74 0.886 0.600 0.541 0.540
122 48 Cd(0+) → In(1+) → Sn(0+) 0.78 0.889 0.576 0.561 0.558
122 52 Te(0+) ← I(1+) ← Xe(0+) 0.50 1.026 0.353 0.301 0.301
124 54 Xe(0+) ← Cs(1+) ← Ba(0+) 0.39 0.988 0.500 0.275 0.274
126 54 Xe(0+) ← Cs(1+) ← Ba(0+) 0.44 0.956 0.355 0.255 0.256
128 52 Te(0+) ← I(1+) → Xe(0+) 0.68 0.918 0.120 0.227 0.226
128 54 Xe(0+) ← Cs(1+) ← Ba(0+) 0.63 0.942 0.246 0.303 0.304
130 54 Xe(0+) ← Cs(1+) → Ba(0+) 0.81 0.910 0.186 0.335 0.333
134 56 Ba(0+) ← La(1+) ← Ce(0+) 0.76 0.877 0.184 0.306 0.305
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generally smaller than the log f t values in the right branch,
so this is in good agreement with the experimentally observed
behavior.

In Fig. 3 one can immediately see that, with respect to
increase in gpp, gA becomes more unstable with increasing
A. The value of gpp = 0.9 is thus discarded as only a small
variation in gA is desired. It is also evident, given a reasonable
interval of gpp values, that the geometric mean does not depend
very much on the value of gpp as was expected. This can be
seen in Fig. 3 as the data points representing different values
of gpp for a given nucleus are very close to each other. In other
words, it does not take a significant change in gA to compensate
for a relatively large change in gpp.

Interestingly enough, the calculations replicate the experi-
mental geometric means of the NMEs for gpp = 0.6, 0.7, 0.8
only for values of gA < 1. This is solid evidence that an
effective gA is needed when working with this mass region.
Not only are the values in general smaller than the bare value
of gA = 1.25 but in some cases an effective value as low as
gA = 0.3 is required.

In Fig. 3 one can see an interesting rising behavior in gA as
a function of A. There seem to be two mass regions in which
gA behaves, on average, linearly with a positive slope. The
average linear behavior is depicted in the figure as two dashed
lines. These lines are represented by

gA =
{

0.02A − 1.6, for A ∈ [100, 120]
1
60A − 43

30 , for A ∈ [122, 134]
. (28)

By using this function to generate values of gA and adopting a
reasonably average value of gpp = 0.7 across the entire mass
region, the Gamow-Teller matrix elements were calculated for
the ground-state-to-ground-state decays. The resulting left and
right log f t values are presented in Figs. 5 and 6 respectively
along with results of the same calculation made with an average
constant value of gA = 0.6 for comparison. The linear model
appears to fare better overall in predicting the log f t values
of single-β decays, especially in the right branch decays. The
agreement with experiment is decent at the very least. The
decays which are not quite along the line of Eq. (28) in Fig. 3
expectedly produce somewhat less accurate predictions, for
example, the A = 124 triplet.

To evaluate the success of the linear model, the mean
deviation of the theoretical log f t values from the experimental
ones was used as a quality value. The mean deviation reads:

�m = 1

#D

∑
D

| log f t th − log f texp| , (29)

where the summation is over all of the investigated decay
processes. The mean deviations for the linear gA model
yield �m = 0.27, 0.18, 0.23 for the left branch, right branch,
and all decays, respectively. For the constant gA = 0.6 the
corresponding numbers are �m = 0.27, 0.30, 0.29. The linear
model fares even better in the A = 100–120 region, where
the mean deviations are �m = 0.22, 0.14, 0.18, while we
get �m = 0.28, 0.28, 0.28 for the constant gA. The use of
this linear gA is thus feasible as the overall accuracy of the
predictions is very good for such a simple model.
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FIG. 5. (Color online) Experimental and theoretical log f t val-
ues of the ground-state-to-ground-state left branch single-β decays
across the examined mass region. The computations were made with
gpp = 0.7 using the linear gA model (upper panel) and a constant value
of gA = 0.6 (lower panel). Solid black and hollow red (gray) symbols
are used to represent the experimental and theoretical log f t values,
respectively. Different symbols are used to distinguish different decay
processes within the same mass number.

The examination of the linear gA model was then extended
to decays from the 1+ ground state of the odd-odd nuclei to
the first excited 2+ state of the even-even nuclei and to the 0+
and 2+ two-phonon states constructed from the wave function
of the first 2+ state.

All processes in the investigated mass region with experi-
mental data available for decays to these excited states have
been included and the resulting log f t values are visualized in
Figs. 7–9. The results with gA = 0.6 have again been included
in the figures for reference. The predictions of log f t values
for decays beyond ground states are generally more tricky. The
QRPA and pnQRPA calculations are often accurate for only
the lowest-lying states and even then the wave function of the
obtained state might connect to some other state with the same
angular momentum and parity, perhaps at a higher energy. The
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FIG. 6. (Color online) Same as Fig. 5 for the right branch decays.

assumption of the simple structure (25) of the two-phonon
states is one more limitation of the present model.

Still, the accuracy of the prediction is quite passable,
especially for decays to the first 2+ state, the energy of which
was fitted to the experimental value. The calculated log f t
values for decays to the two-phonon 2+ state are systematically
too large compared to the experimental values. For these
states the assumed simple two-phonon structure seems to be
inadequate.

A curious case arises in the decay of rhodium to palladium
via β− decay, in which the transition to the first 2+ state is
predicted very slow for each A = 104, 106, 108. This can be
seen in Fig. 7 as the largest deviations from the experimental
values. The deviation arises from subtle cancellations among
the pnQRPA X and Y amplitudes in the major components of
the wave function of the ground state of the Rh nucleus and
the QRPA amplitudes of the first 2+ state of the even-even
reference nucleus. There are thus large cancellations in the
transition amplitudes and the calculated log f t values are very
high, making the comparative half-lives too long by several
orders of magnitude.

The mean deviations in decays to excited states using
the linear gA model are �m = 0.75, 0.70, 0.81 for decays
to the 2+

1 , 0+
2−ph, and 2+

2−ph states respectively. For the
constant value, gA = 0.6, the corresponding numbers are
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FIG. 7. (Color online) Experimental and theoretical log f t val-
ues of decays to the first excited 2+ states of the even-even nuclei.
The computations were made with gpp = 0.7 using the linear gA

model (upper panel) and a constant value of gA = 0.6 (lower panel).
Solid black and hollow red (gray) symbols are used to represent the
experimental and theoretical log f t values, respectively. Different
symbols are used to distinguish different decay processes within the
same mass number.

�m = 0.70, 0.79, 0.88. A major part of the deviation of the
2+

1 case comes from the three rhodium to palladium decays
which do not function well in the theoretical framework. With
those three processes excluded, we find the mean deviations
to be �m = 0.47,0.70,0.83 for the linear model, and �m =
0.43,0.79,0.91 for the constant gA.

The constant gA seems actually preferable for the decay
to the first 2+ state, but for the two-phonon states the linear
model is again more accurate. This is quite peculiar, as the
two-phonon states are formed from the one-phonon 2+ state.
It appears that the decays to excited states follow some other
gA systematic than the ground-state-to-ground-state decays.
The standard QRPA framework is clearly not an accurate
framework for depicting these transitions.

A disappearance of a clear two-phonon 0+ state happens at
A � 126. The experimental log f t values used in Fig. 8 are
for the lowest excited 0+ state, but this state is always too
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FIG. 8. (Color online) Same as Fig. 7 for decays to the 0+

quadrupole two-phonon states of the even-even nuclei.

high in energy to be the two-phonon state the theory predicts.
Either the breaking of the degeneracy of the collective two-
phonon triplet increases with increasing mass number A or
the formation of this particular multipolarity is prevented by
some mechanism in nuclei investigated here with A � 126.
The theoretical log f t values for these transitions often seem
to deviate more than one unit from the experimental log f t
value for the 0+

2 state. This makes it more probable for the
lowest excited experimental 0+ state to result from some other
origin than two quadrupole phonons.

The β-decay rates in the A = 104 and A = 110 systems
were also calculated in Ref. [30]. The computed log f t values
of the present work are compared to these results in Table III. In
Ref. [30] the transition rates were also computed using adjusted
single-particle bases where the Woods-Saxon energies of some
orbitals had been altered to better replicate experimental
values. The comparison is made between results computed
using the plain Woods-Saxon bases as was used in the present
work. The results appear quite similar. Our present analysis
predicts the ground-state-to-ground-state decays slightly more
accurately. The computations of Ref. [30] systematically yield
too fast transition rates while the present work gives more
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FIG. 9. (Color online) Same as Fig. 7 for decays to the 2+

quadrupole two-phonon states of the even-even nuclei.

balanced results. The use of adjusted single-particle orbitals
might enhance the accuracy of our present predictions as it did
in Ref. [30].

TABLE III. Single-β decay log f t values compared with those
of Ref. [30].

Transition J π
f log f t

Exp. Ref. [30] Linear gA gA = 0.60

104Rh → 104Pd 0+
gs 4.55 4.32 4.48 4.28

2+
1 5.80 6.50 7.43 7.24

0+
2 7.36 5.08 5.70 5.51

2+
2 8.7 6.85 7.13 6.93

104Rh → 104Ru 0+
gs 4.32 3.73 4.66 4.47

2+
1 5.42 5.35 5.94 5.74

0+
2 5.15 4.63 5.23 5.04

110Ag → 110Cd 0+
gs 4.66 4.84 4.58 4.58

2+
1 5.52 5.46 5.75 5.75

0+
2 6.80 5.02 5.55 5.55

2+
2 7.35 7.52 7.47 7.47

110Ag → 110Pd 0+
gs 4.09 3.72 4.43 4.43
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TABLE IV. The phase-space integrals used in calculating the 2νββ matrix elements for different final states. The effect of gA is included
in the tabulated values. In the cases of double-positron decay, only modes with nonzero phase-space factors have been included.

Transition gA Mode Phase-space integral (J π
f )

0+
gs 2+

1 0+
2 2+

2

100Mo → 100Ru 0.40 β−β− 9.907 × 10−20 1.892 × 10−20 1.836 × 10−21 1.331 × 10−22

104Ru → 104Pd 0.48 β−β− 2.017 × 10−22 2.044 × 10−26

110Pd → 110Cd 0.60 β−β− 2.125 × 10−20 7.608 × 10−23 6.985 × 10−25 1.400 × 10−27

114Cd → 114Sn 0.68 β−β− 1.302 × 10−24

116Cd → 116Sn 0.72 β−β− 8.788 × 10−19 7.014 × 10−22 2.687 × 10−22 6.477 × 10−26

122Sn → 122Te 0.60 β−β− 5.767 × 10−26

124Sn → 124Te 0.63 β−β− 1.095 × 10−19 1.890 × 10−21 4.080 × 10−24 2.316 × 10−24

128Te → 128Xe 0.70 β−β− 8.668 × 10−23

130Te → 130Xe 0.73 β−β− 5.623 × 10−19 3.323 × 10−20 3.010 × 10−23 4.828 × 10−22

134Xe → 134Ba 0.80 β−β− 1.491 × 10−22 1.176 × 10−30

136Xe → 136Ba 0.83 β−β− 9.444 × 10−19 7.024 × 10−21 2.748 × 10−22 6.834 × 10−24

102Pd → 102Ru 0.44 β+EC(K) 6.277 × 10−33

β+EC(L) 3.816 × 10−33

ECEC(KK) 3.704 × 10−25 2.990 × 10−29

ECEC(KL) 1.161 × 10−25 1.500 × 10−29 1.601 × 10−29 1.159 × 10−38

106Cd → 106Pd 0.52 β+β+ 1.408 × 10−27 8.369 × 10−38

β+EC(K) 1.190 × 10−23 9.297 × 10−24 3.925 × 10−27 8.249 × 10−27

β+EC(L) 1.838 × 10−24 1.633 × 10−24 7.406 × 10−28 8.249 × 10−27

ECEC(KK) 8.768 × 10−23 5.869 × 10−24

ECEC(KL) 2.555 × 10−23 2.171 × 10−25 1.764 × 10−24 2.247 × 10−26

108Cd → 108Pd 0.56 ECEC(KK) 2.910 × 10−28

ECEC(KL) 1.411 × 10−28

112Sn → 112Cd 0.64 β+EC(K) 1.813 × 10−25 2.673 × 10−30

β+EC(L) 3.191 × 10−26 1.116 × 10−30

ECEC(KK) 4.209 × 10−23 1.882 × 10−25

ECEC(KL) 1.271 × 10−23 1.550 × 10−26 6.492 × 10−26 5.590 × 10−29

120Te → 120Sn 0.80 β+EC(K) 5.109 × 10−26

β+EC(L) 1.009 × 10−26

ECEC(KK) 7.506 × 10−23

ECEC(KL) 2.326 × 10−23 7.167 × 10−29

124Xe → 124Te 0.63 β+β+ 7.279 × 10−27 6.817 × 10−38

β+EC(K) 5.590 × 10−23 2.741 × 10−23 1.448 × 10−31 2.689 × 10−27

β+EC(L) 9.119 × 10−24 5.326 × 10−24 1.086 × 10−31 7.704 × 10−28

ECEC(KK) 6.072 × 10−22 6.592 × 10−24

ECEC(KL) 1.844 × 10−22 2.179 × 10−24 2.170 × 10−24 1.367 × 10−25

126Xe → 126Te 0.67 ECEC(KK) 1.217 × 10−24

ECEC(KL) 5.328 × 10−25 7.746 × 10−32

130Ba → 130Xe 0.73 β+β+ 1.321 × 10−28

β+EC(K) 3.179 × 10−23 7.334 × 10−24 7.339 × 10−28

β+EC(L) 5.453 × 10−24 1.583 × 10−24 2.649 × 10−28

ECEC(KK) 8.788 × 10−22 1.521 × 10−24

ECEC(KL) 2.733 × 10−22 3.180 × 10−24 5.604 × 10−25 2.767 × 10−25

132Ba → 132Xe 0.77 ECEC(KK) 2.546 × 10−24

ECEC(KL) 9.256 × 10−25 5.568 × 10−33

136Ce → 136Ba 0.83 β+β+ 1.718 × 10−30

β+EC(K) 2.273 × 10−23 1.887 × 10−26

β+EC(L) 4.079 × 10−24 5.913 × 10−27

ECEC(KK) 1.375 × 10−21 4.177 × 10−24

ECEC(KL) 4.363 × 10−22 1.265 × 10−24 1.564 × 10−24 1.266 × 10−26

C. Half-lives of double β decays
The half-life of every possible two-neutrino double-β

decay in the examined mass region was calculated using
the gA scheme of Eq. (28). The calculation was also done

with a constant value of gA = 0.6 for comparison. For the
particle-particle interaction parameter we adopted the value
of gpp = 0.7, which functioned quite well in predicting the
single-β decay comparative half-lives. One should note here
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TABLE V. Theoretical NMEs (columns 2–5) and half-lives (columns 7–10) of double-β−-type decays with the linear gA model and
gA = 0.6 (column 6), using gpp = 0.7. Contributions from the first intermediate state only are in parentheses below the NMEs calculated using
all contributions. The computation for 136Xe was made for (a) E1+

1
= 0.0 MeV and (b) E1+

1
= 1.0 MeV. The experimental half-lives (column

11) are from Ref. [54] and the lower limits from Ref. [55].

Nucleus |M2ν | gA t
(2ν)
1/2 (y) t

exp.
1/2 (y)

0+
gs 2+

1 0+
2−ph 2+

2−ph 0+
gs 2+

1 0+
2−ph 2+

2−ph

100Mo 0.6560 0.0227 0.1150 0.0028 0.40 2.3 × 1019 1.0 × 1023 4.1 × 1022 9.8 × 1026 (7.1 ± 0.4) × 1018

(0.618) (0.0227) (0.0993) (0.0028) 0.60 4.6 × 1018 2.0 × 1022 8.1 × 1021 1.9 × 1026

104Ru 0.6520 0.0026 0.1381 0.0026 0.48 1.2 × 1022 7.1 × 1030

(0.615) (0.0025) (0.124) (0.0026) 0.60 4.8 × 1021 2.9 × 1030

110Pd 0.4651 0.0149 0.1415 0.0015 0.60 2.2 × 1020 5.9 × 1025 7.1 × 1025 3.1 × 1032 >6.0 × 1016

(0.429) (0.0150) (0.122) (0.0016) 0.60 2.2 × 1020 5.9 × 1025 7.1 × 1025 3.1 × 1032

114Cd 0.3829 0.0568 0.0961 0.0445 0.68 5.2 × 1024 >9.2 × 1016

(0.342) (0.0576) (0.0912) (0.0445) 0.60 8.6 × 1024

116Cd 0.2169 0.0238 0.0483 0.0103 0.72 2.4 × 1019 2.5 × 1024 1.6 × 1024 1.4 × 1029 (2.85 ± 0.15) × 1019

(0.188) (0.0236) (0.0453) (0.0103) 0.60 5.0 × 1019 5.2 × 1024 3.3 × 1024 3.0 × 1029

122Sn 0.07515 0.0102 0.2016 0.0014 0.60 3.1 × 1027

(0.0298) (0.0106) (0.0881) (0.0019) 0.60 3.1 × 1027

124Sn 0.0575 0.0100 0.1727 0.0018 0.63 2.8 × 1021 5.3 × 1024 8.2 × 1024 1.4 × 1029 >1.0 × 1017

(0.0204) (0.0103) (0.0737) (0.0023) 0.60 3.4 × 1021 6.4 × 1024 1.0 × 1025 1.7 × 1029

128Te 0.1041 0.0082 0.1951 0.0012 0.70 1.1 × 1024 (2.0 ± 0.3) × 1024

(0.0303) (0.0085) (0.0730) (0.0020) 0.60 2.0 × 1024

130Te 0.1066 0.0085 0.2145 0.0014 0.73 1.6 × 1020 4.2 × 1023 7.2 × 1023 1.0 × 1027 (6.9 ± 1.3) × 1020

(0.0320) (0.0084) (0.0862) (0.0024) 0.60 3.4 × 1020 9.1 × 1023 1.6 × 1024 2.2 × 1027

134Xe 0.0979 0.0029 0.1738 0.0007 0.80 7.0 × 1023 9.9 × 1034 >1.1 × 1016

(0.0270) (0.0023) (0.0589) (0.0016) 0.60 2.2 × 1024 3.1 × 1035

136Xe (a) 0.0532 0.0003 0.1675 0.0003 0.83 3.7 × 1020 1.6 × 1025 1.3 × 1023 1.2 × 1030 (2.20 ± 0.06) × 1021

(0.0016) (0.0003) (0.00003) (0.00001) 0.60 1.4 × 1021 5.9 × 1025 4.7 × 1023 4.3 × 1030

136Xe (b) 0.0405 0.0010 0.1224 0.0003 0.83 6.5 × 1020 1.3 × 1026 2.4 × 1023 1.7 × 1030 (2.20 ± 0.06) × 1021

(0.0009) (0.00004) (9 × 10−6) (4 × 10−7) 0.60 2.4 × 1021 4.8 × 1026 8.9 × 1023 6.3 × 1030

that although this value of gpp works well for the geometric
means of the left- and right-side NMEs, it does not remove the
ambiguity of gpp for individual NMEs. Eleven β−-type and
10 β+/EC-type processes were examined. The phase-space
integrals used to calculate the double-β decay matrix elements
are tabulated in Table IV. The calculated matrix elements and
half-lives for the β− processes are presented in Table V and

for the β+/EC mode decays are in Table VII for systems with
A � 120 and Table VIII for A � 124. It should be noted that
half-lives are given only for processes that are allowed by
positive Q value while the values of the NMEs are calculated
nevertheless.

The success of our predictions can only be evaluated by the
experimental half-lives known for five β−β− processes. The

TABLE VI. Theoretical and experimental half-lives of double β− type decays computed with the linear gA model along with constant
gA = 0.6. The computation for 136Xe was made for (a) E1+

1
= 0.0 MeV and (b) E1+

1
= 1.0 MeV. The experimental half-lives are from Ref. [54].

A quality value (see text) of each result is presented in the last column.

Nucleus gA t th
1/2(0+

gs)(y) t
exp
1/2 (0+

gs)(y) Quality

100Mo 0.40 2.3 × 1019 (7.1 ± 0.4) × 1018 2.2
0.60 4.6 × 1018 0.4

116Cd 0.72 2.4 × 1019 (2.85 ± 0.15) × 1019 0.2
0.60 5.0 × 1019 0.8

128Te 0.70 1.1 × 1024 (2.0 ± 0.3) × 1024 0.5
0.60 2.0 × 1024 0.0

130Te 0.73 1.6 × 1020 (6.9 ± 1.3) × 1020 0.8
0.60 3.4 × 1020 0.5

136Xe (a) 0.83 3.7 × 1020 (2.20 ± 0.06) × 1021 0.8
0.60 1.4 × 1021 0.4

136Xe (b) 0.83 6.5 × 1020 (2.20 ± 0.06) × 1021 0.7
0.60 2.4 × 1021 0.1
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TABLE VII. Theoretical NMEs (columns 3–6) and half-lives (columns 8–11) for double positron decays for A � 120. The computations
were made with the linear gA model and gA = 0.6 (column 7), using gpp = 0.7. Contributions from the first intermediate state only are in
parentheses below the NMEs calculated using all contributions. The matrix elements given for processes including electron capture are mean
values of the K capture and L capture or KK and KL matrix elements.

Nucleus Type |M2ν | gA t1/2(y)

0+
gs 2+

1 0+
2−ph 2+

2−ph 0+
gs 2+

1 0+
2−ph 2+

2−ph

102Pd β+β+ 0.7348 0.0008 0.28551 0.0097 0.44
(0.7287) (0.0006) (0.2833) (0.0097) 0.60

β+EC 1.5256 0.0009 0.5830 0.0144 0.44 4.3 × 1031

(1.5135) (0.0007) (0.5786) (0.0143) 0.60 1.2 × 1031

ECEC 1.4697 0.0009 0.5710 0.0139 0.44 9.5 × 1023 8.8 × 1034 6.7 × 1028 4.5 × 1041

(1.4574) (0.0007) (0.5666) (0.0138) 0.60 2.8 × 1023 2.5 × 1034 1.9 × 1028 1.3 × 1041

106Cd β+β+ 0.9355 0.0186 0.4061 0.0209 0.52 8.1 × 1026 3.5 × 1040

(0.9342) (0.0184) (0.4042) (0.0208) 0.60 4.6 × 1026 1.9 × 1040

β+EC 2.2052 0.0313 0.9865 0.0477 0.52 1.5 × 1022 9.5 × 1025 2.2 × 1026 4.5 × 1028

(2.2031) (0.0311) (0.9825) (0.0476) 0.60 8.5 × 1021 5.3 × 1025 1.3 × 1026 2.5 × 1028

ECEC 1.8710 0.0221 0.8123 0.0323 0.52 2.5 × 1021 9.4 × 1027 2.0 × 1023 4.3 × 1028

(1.8685) (0.0219) (0.8084) (0.0323) 0.60 1.4 × 1021 5.3 × 1027 1.1 × 1023 2.4 × 1028

108Cd β+β+ 0.8132 0.0175 0.2270 0.0072 0.56
(0.8048) (0.0175) (0.2260) (0.0072) 0.60

β+EC 1.6474 0.0202 0.4541 0.0098 0.56
(1.6306) (0.0202) (0.4523) (0.0098) 0.60

ECEC 1.6265 0.0200 0.4540 0.0098 0.56 8.7 × 1026

(1.6097) (0.0199) (0.4521) (0.0098) 0.60 6.6 × 1026

112Sn β+β+ 0.7843 0.0288 0.1488 0.0096 0.64
(0.7841) (0.0288) (0.1481) (0.0096) 0.60

β+EC 1.7170 0.0422 0.3208 0.0186 0.64 1.6 × 1024 1.5 × 1032

(1.7167) (0.0422) (0.3196) (0.0186) 0.60 2.1 × 1024 1.9 × 1032

ECEC 1.5686 0.0356 0.2975 0.0161 0.64 7.4 × 1021 5.1 × 1028 4.5 × 1025 6.9 × 1031

(1.5683) (0.0356) (0.2963) (0.0161) 0.60 9.6 × 1021 6.6 × 1028 5.8 × 1025 9.0 × 1031

120Te β+β+ 0.1061 0.0013 0.0031 0.0003 0.80
(0.0666) (0.0017) (0.0030) (0.0003) 0.60

β+EC 0.2210 0.0022 0.0063 0.0007 0.80 3.4 × 1026

(0.1414) (0.0026) (0.0062) (0.0007) 0.60 1.1 × 1027

ECEC 0.2122 0.0020 0.0062 0.0007 0.80 2.3 × 1023 3.5 × 1033

(0.1333) (0.0024) (0.0061) (0.0007) 0.60 7.1 × 1023 1.1 × 1034

computed and experimental half-lives of the ground-state-to-
ground-state decays of these nuclei are tabulated separately
in Table VI. In only one of these cases the experimental
half-life is better reproduced by our linear gA model than
the constant value as seen in Table VI, namely, the decay of
116Cd. The largest deviations from the experimental half-lives
with the linear model appear in the decays of 100Mo and 136Xe
where the discrepancy is of a factor of 3–6. One must bear in
mind, though, that the A = 136 process is an extrapolation of
our linear gA model and the results must be considered with
caution.

To compare the linear model and constant gA we introduce
a quality factor, which reads

� =
∣∣t th

1/2 − t
exp
1/2

∣∣
t

exp
1/2

. (30)

These calculated quality factors are presented in Table VI
for each decay process with experimental data available. The
mean of the individual quality factors yields 〈�〉 = 0.86 for
the linear gA model and 〈�〉 = 0.34 for the constant gA = 0.6.

It seems that the 2νβ−β− decay favors the constant gA = 0.6
instead of one fitted via the systematics of single-β decay.
Even with a function which more closely follows the zigzag
behavior of Fig. 3 one would not find much improvement, as
some of the predictions would essentially be corrected in the
wrong direction. For example, the half-life of the 130Te decay
is already predicted as too short by the linear model and taking
the exact value from Fig. 3 would lead to a larger gA which in
turn would lead to an even shorter half-life. In the basic QRPA
framework, the single- and double-β decays seem to follow
somewhat different gA schemes as pointed out in Refs. [37,38]
already.

For the processes with experimental data available, we
find that the calculated half-lives are not very far off the
experimental values for either the linear or the constant gA.
One might thus assume that a within-order-of-magnitude level
of accuracy holds also for the processes with yet unmeasured
half-lives. Of the processes with no present experimental data
available, the ground-state-to-ground-state decay of 110Pd,
with a predicted half-life of 2.2 × 1020 years appears the most
attractive for future experimental probing.
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TABLE VIII. Theoretical NMEs (columns 3–6) and half-lives (columns 8–11) for double positron decays for A � 124. The computations
were made with the linear gA model and gA = 0.6 (column 7), using gpp = 0.7. Contributions from the first intermediate state only are in
parentheses below the NMEs calculated using all contributions. The matrix elements given for processes including electron capture are mean
values of the K capture and L capture or KK and KL matrix elements.

Nucleus Type |M2ν | gA t1/2(y)

0+
gs 2+

1 0+
2−ph 2+

2−ph 0+
gs 2+

1 0+
2−ph 2+

2−ph

124Xe β+β+ 0.1480 0.0006 0.0045 5 × 10−5 0.63 6.3 × 1027 3.6 × 1043

(0.0658) (0.0006) (0.0043) (6 × 10−5) 0.60 7.6 × 1027 4.3 × 1043

β+EC 0.3066 0.0008 0.0095 8 × 10−5 0.63 1.6 × 1023 4.6 × 1028 4.4 × 1034 4.6 × 1034

(0.1403) (0.0008) (0.0091) (9 × 10−5) 0.60 2.0 × 1023 5.5 × 1028 5.4 × 1034 5.6 × 1034

ECEC 0.2960 0.0007 0.0091 7 × 10−5 0.63 1.4 × 1022 8.6 × 1029 1.4 × 1027 1.4 × 1033

(0.1315) (0.0007) (0.0087) (8 × 10−5) 0.60 1.8 × 1022 1.0 × 1030 1.7 × 1027 1.7 × 1033

126Xe β+β+ 0.1365 0.0008 0.0028 5 × 10−5 0.67
(0.0538) (0.0006) (0.0024) (6 × 10−5) 0.60

β+EC 0.2762 0.0009 0.0056 8 × 10−5 0.67
(0.1102) (0.0007) (0.0048) (10 × 10−5) 0.60

ECEC 0.2731 0.0009 0.0056 8 × 10−5 0.67 7.7 × 1024 1.6 × 1037

(0.1077) (0.0007) (0.0048) (9 × 10−5) 0.60 1.2 × 1025 2.4 × 1037

130Ba β+β+ 0.1757 0.0017 0.0039 10 × 10−5 0.73 2.5 × 1029

(0.0691) (0.0014) (0.0035) (11 × 10−5) 0.60 5.4 × 1029

β+EC 0.3721 0.0024 0.0086 19 × 10−5 0.73 1.9 × 1023 2.0 × 1028 2.9 × 1034

(0.1557) (0.0021) (0.0078) (21 × 10−5) 0.60 4.3 × 1023 4.3 × 1028 6.3 × 1034

ECEC 0.3514 0.0019 0.0077 14 × 10−5 0.73 7.0 × 1021 8.4 × 1028 8.0 × 1027 1.7 × 1032

(0.1381) (0.0016) (0.0069) (16 × 10−5) 0.60 1.5 × 1022 1.8 × 1029 1.8 × 1028 3.8 × 1032

132Ba β+β+ 0.1103 0.0007 0.0013 3 × 10−5 0.77
(0.0332) (0.0006) (0.0011) (3 × 10−5) 0.60

β+EC 0.2226 0.0009 0.0027 4 × 10−5 0.77
(0.0678) (0.0007) (0.0022) (5 × 10−5) 0.60

ECEC 0.2207 0.0009 0.0027 4 × 10−5 0.77 5.9 × 1024 2.4 × 1038

(0.0664) (0.0007) (0.0022) (5 × 10−5) 0.60 1.6 × 1025 6.5 × 1038

136Ce β+β+ 0.0922 0.0014 0.0008 5 × 10−5 0.83 6.8 × 1031

(0.0305) (0.0013) (0.0006) (6 × 10−5) 0.60 2.5 × 1032

β+EC 0.1934 0.0023 0.0016 13 × 10−5 0.83 1.0 × 1024 7.8 × 1030

(0.1366) (0.0022) (0.0013) (14 × 10−5) 0.60 3.7 × 1024 2.9 × 1031

ECEC 0.1844 0.0018 0.0015 10 × 10−5 0.83 1.6 × 1022 2.3 × 1029 7.7 × 1028 7.3 × 1033

(0.0609) (0.0017) (0.0012) (11 × 10−5) 0.60 5.9 × 1022 8.5 × 1029 2.8 × 1029 2.7 × 1034

The calculated half-lives of 2νβ+/EC decays are presented
in Tables VII and VIII. The matrix elements of the processes
involving electron capture can be calculated separately for an
electron captured from the K shell and an electron from the L
shell. The values of these matrix elements are often very close
to each other and, to a reasonable approximation, the mean
value of these matrix elements can be used to represent the
β+EC- and ECEC-type transitions. The matrix elements given
in Tables VII and VIII are the mean values of the K-capture
and L-capture matrix elements for the β+EC mode and KK
and KL matrix elements for the ECEC mode. The half-lives are
again calculated by using the linear gA model and a constant
gA = 0.6.

The positron-emitting double-β+ and EC decays have so
far eluded experimental detection, thus making it difficult to
evaluate the success of our predictions. However, the study of
β−-type decays gave a general insight of the quality of the
predictions therein, and a similar level of accuracy is to be
expected for the positron-emitting transitions.

One should also note that the NMEs of the different modes
of positron decay are quite in the same order of magnitude, but

the half-lives differ largely. It is thus not the matrix element
but the phase-space integral which determines the order of
the half-lives of the different modes. Of the positron-decay
modes, the ECEC channel to the ground state appears to be
the fastest in every investigated process. The β+EC mode is
not far behind in some cases. These modes in the ground-state
decay of 106Cd, 112Sn, and 130Ba, with predicted half-lives
of the order of 1021 years, seem favorable for experimental
investigation in the future.

TABLE IX. The computed half-lives of double-positron decay of
106Cd compared with Ref. [18].

Mode t1/2(y)

Ref. [18] gA = 0.52 gA = 0.60

β+β+ gs → gs 1.8 × 1027 8.1 × 1026 4.6 × 1026

β+EC gs → gs 4.4 × 1022 1.5 × 1022 8.5 × 1021

β+EC gs → 0+
2 5.8 × 1026 2.2 × 1026 1.3 × 1026

ECEC gs → gs 5.5 × 1021 2.5 × 1021 1.4 × 1021

ECEC gs → 0+
2 3.4 × 1023 2.0 × 1023 1.1 × 1023
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FIG. 10. The accumulation of the 2νβ−β− matrix element of
110Pd decay to ground state. The SSDH works to a reasonable
approximation.

The 2νβ− decays of the nuclei 104Ru, 110Pd, and 124Sn
were calculated recently in Ref. [30]. One should notice that
in Ref. [30] only the lower limits of the half-lives were
given due to difficulties in determining the model parameters
accurately. No systematic analysis of the β-decay transitions
was performed there such that it could help in determining the
2νβ− half-lives more accurately. The lower limits calculated in
Ref. [30] are in good agreement with our present results. Our
calculated values for both the linear and constant gA appear to
systematically lie roughly one order of magnitude above the
lower limits. The approach to fitting the model parameters in
Ref. [30] was based on a choice of values for gA that were less
quenched than the values found in the present work by varying
both gA and gpp.
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FIG. 11. The accumulation of the 2νβ−β− matrix element of
124Sn decay to ground state. The SSDH, in this case, is not realized.
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FIG. 12. The accumulation of the 2νβ+β+ matrix element of
124Xe decay to ground state. The SSDH, in this case, is not realized.

The double-β decays of 106Cd were previously treated
theoretically in Refs. [18,19]. In Ref. [18] the 2νβ+/EC and in
Ref. [19] the 0νβ+/EC decays were computed. A comparison
of our present work with the 2001 results of Ref. [18] is made in
Table IX. Our linear gA model as well as the constant gA = 0.6
predict the transitions of 106Cd systematically slightly faster
than the method used in Ref. [18]. The orders of magnitude are
generally the same. As there is no experimental data available
for double-positron decay modes, it is difficult to evaluate the
results further.

The case of 124Xe 2νβ+/EC and 0νβ+/EC decays was
treated in Ref. [22]. The decay half-lives of the 2νβ+/EC
mode have a wide range of variation in Ref. [22] since the
fixing of the model parameters in that work was rather loose
due to the lack in experimental input and in systematic study
of the model parameters. Contrariwise, in the present work
the obtained systematics help pin down the calculated half-
lives more accurately. Comparing our calculated 2νβ+/EC
half-lives with the corresponding ones of Fig. 2 of Ref. [22]
we notice that our results with both the linear and constant
gA predict the half-lives to be longer than those in Ref. [22],
especially for the decay to the ground state of 124Te where
the present predictions do not quite fit the range of variation
in Ref. [22]. In decays to higher excited states the calculated
half-life intervals of Ref. [22] are so wide that they contain our
present results, which still always lie toward the longer end of
the half-life interval. In Ref. [22] the values of the axial-vector
coupling constant were varied within gA = 1.00–1.25, which
is a range that is higher than the effective value of gA given
by our present analysis. The values of gpp in Ref. [22] were
taken to be gpp = 0.80–0.90, corresponding to the range of
gA. This range of gpp fits our analysis of Fig. 3 but here we
find that the effective value of gA for these isobars is required
to be quenched below 1.00 by the systematics of single-β
decay. Considering the quite different adopted values of gA, the
differences in the present work and Ref. [22] seem reasonable.
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TABLE X. The main contributions to the 2νββ matrix elements from intermediate states. The first column names the decaying nucleus,
and the following columns list the QRPA energies of the intermediate 1+ states and their contribution to the NME in descending order from
the largest contribution.

Nucleus Main contributions

Mode E(MeV) Contr. E(MeV) Contr. E(MeV) Contr. E(MeV) Contr. E(MeV) Contr.

100Mo β−β− 3.26 0.618
104Ru β−β− 3.22 0.615 16.34 0.011
110Pd β−β− 3.30 0.429
114Cd β−β− 3.30 0.342
116Cd β−β− 3.21 0.188 12.61 0.011
122Sn β−β− 3.91 0.030 9.33 0.019 5.19 0.009 7.17 0.006
124Sn β−β− 4.12 0.020 10.72 0.015 5.39 0.008 13.52 0.008 7.48 0.005
128Te β−β− 3.48 0.030 8.42 0.018 8.95 0.017 4.58 0.012 10.72 0.010
130Te β−β− 3.48 0.032 7.94 0.027 15.23 − 0.024 8.78 0.019 15.50 0.015
134Xe β−β− 8.89 0.028 3.45 0.027 7.44 0.020 15.31 − 0.017 4.61 0.012
136Xe (a) β−β− 7.99 0.023 4.87 0.016 11.03 0.015 16.09 − 0.012 12.57 − 0.008
136Xe (b) β−β− 7.99 0.020 11.03 0.013 4.87 0.011 16.09 − 0.011 12.57 − 0.007
102Pd β+β+ 3.68 0.729

β+EC 3.68 1.513
ECEC 3.68 1.457

106Cd β+β+ 3.33 0.934
β+EC 3.33 2.203
ECEC 3.33 1.869

108Cd β+β+ 2.99 0.805 15.47 0.013
β+EC 2.99 1.631 15.47 0.026
ECEC 2.99 1.609 15.47 0.026

112Sn β+β+ 3.21 0.784
β+EC 3.21 1.717
ECEC 3.21 1.568

120Te β+β+ 3.57 0.067 9.09 0.022 6.85 − 0.022 6.56 0.020 17.17 0.012
β+EC 3.57 0.141 9.09 0.044 6.85 − 0.044 6.56 0.041 17.17 0.023
ECEC 3.57 0.133 9.09 0.044 6.85 − 0.044 6.56 0.040 17.17 0.021

124Xe β+β+ 3.12 0.066 8.43 0.037 7.17 0.021 14.26 − 0.020 10.93 0.016
β+EC 3.12 0.140 8.43 0.075 7.17 0.043 14.26 − 0.039 10.93 0.032
ECEC 3.12 0.132 8.43 0.075 7.17 0.043 14.26 − 0.039 10.93 0.032

126Xe β+β+ 3.31 0.054 8.59 0.040 7.33 0.018 4.43 0.014 10.74 0.012
β+EC 3.31 0.110 8.59 0.080 7.33 0.035 4.43 0.027 10.74 0.025
ECEC 3.31 0.108 8.59 0.080 7.33 0.035 4.43 0.027 10.74 0.025

130Ba β+β+ 3.42 0.069 8.84 0.060 4.53 0.018 14.85 − 0.014 15.78 0.014
β+EC 3.42 0.156 8.84 0.122 4.53 0.037 14.85 − 0.029 15.78 0.028
ECEC 3.42 0.138 8.84 0.121 4.53 0.036 14.85 − 0.029 15.78 0.028

132Ba β+β+ 8.99 0.034 3.50 0.033 7.92 0.018 4.64 0.012 10.23 0.007
β+EC 3.50 0.068 8.99 0.067 7.92 0.036 4.64 0.025 10.23 0.025
ECEC 8.99 0.067 3.50 0.066 7.92 0.035 4.64 0.024 10.23 0.015

136Ce β+β+ 9.13 0.031 3.37 0.030 7.45 0.018 7.19 − 0.008 6.42 0.006
β+EC 3.37 0.068 9.13 0.061 7.45 0.036 7.19 − 0.016 4.53 0.013
ECEC 9.13 0.062 3.37 0.061 7.45 0.036 7.19 − 0.016 6.42 0.012

The single-state dominance hypothesis (SSDH) was dis-
cussed systematically in Refs. [56,57]. In the present study
the following nuclear systems seem to satisfy the criteria
of SSDH: 100Mo, 104Ru, 110Pd, 114Cd, and 116Cd of the
β−-type processes and 102Pd, 106Cd, 108Cd, and 112Sn of the
β+/EC-type processes. The realization of the SSDH appears
to be dependent on the mass number A. The contributions
from higher intermediate states start to dominate after A =
116, giving the transition more strength than with the first
contribution only. Typical accumulation of the NMEs is

depicted in Figs. 10–12 for the β−β− decay of 110Pd and
124Sn and the β+β+ decay of 124Xe respectively. One can see
in Fig. 10 that the running sum of the 110Pd NME gains its
final magnitude almost solely from the first intermediate state
and the behavior after the first state is nearly constant. For the
124Sn and 124Xe decay processes the graphs are more lively
and saturate to a constant final magnitude after the intermediate
state at roughly 14 MeV. Although this is in the typical energy
range of the Gamow-Teller giant resonance state, in these cases
the centroid of the involved GTGR lies somewhat higher in
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energy. Some minor contributions are still attributed to the
GTGR centroid and states nearby. The largest contributions
from single intermediate states to the NMEs are listed in
Table X. In all cases the contributions stem mainly from the
first intermediate state and only few other states. Only in a few
cases does the largest contribution come from some other state
than the first 1+ intermediate state.

IV. CONCLUSIONS

In this work we have scanned experimental data on Gamow-
Teller β− and β+/EC decay rates (comparative half-lives, i.e.,
log f t values) in triplets of nuclear isobars in the mass region
A = 100–136. We found 24 triplets where an odd-odd nucleus
appears between two even-even nuclei and the connecting
β-decay transitions have measured log f t values. The decay
amplitudes associated to the mentioned decays can also be
calculated, in this case by the proton-neutron QRPA. In the
present analysis we have used the geometric mean of the two
β-decay rates since, owing to the characteristic behavior of
the pnQRPA-computed β− and β+/EC decay amplitudes, that
quantity is almost independent of the value of the gpp parameter
of the pnQRPA. The experimental geometric means can be
reproduced for each triplet separately by varying the value
of the axial-vector coupling constant gA. Our study predicts a
rough piecewise linear increase in the value of gA as a function
of the mass number A. We have used this A dependence of
gA to predict two-neutrino double-β decay half-lives, both for
the 2νβ− and 2νβ+/EC transitions, in altogether 21 isobaric

triplets. Decays to both the ground state and lowest few excited
states have been considered and a comparison has been made
between results for the linear gA and an average constant value
of gA = 0.6.

The linear model for gA was found to be quite accurate in
describing the ground-state-to-ground-state single-β decays
with gpp = 0.7. This value of the particle-particle parameter
was then adopted for the examination of the double-β decays.
The calculated half-lives for β−β− decays were in decent
agreement with experimental data in cases where such data
was available although better accuracy was obtained by using
the constant value of gA = 0.6. This seems to support the
conclusions of Refs. [37,38] that the single- and double-β
decays follow a different trend in terms of variation of gA.

For the half-lives of the remaining β−β− processes as well
as the positron-emitting double-β+/EC decays with no present
experimental data, our study produced predictions that can be
expected to be not more than an order of magnitude off the true
values. The most attractive processes to probe experimentally
in the future seem to be ground-state-to-ground-state decays
of 110Pd (β−β−), 106Cd (ECEC), and 112Sn (ECEC) with
predicted half-lives of 2.2 × 1020, (1.4 − 2.5) × 1021, and
(7.4 − 9.6) × 1021 years respectively.
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