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Recursive method for computing matrix elements for two-body interactions
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A recursive method for the efficient computation of two-body matrix elements is presented. The method
consists of a set of recursion relations for the computationally demanding radial integral and adds one more
tool to the set of computational methods introduced by Horie and Sasaki [H. Horie and K. Sasaki, Prog. Theor.
Phys. 25, 475 (1961)]. The neutrinoless double-β decay will serve as the primary application and example, but
the method is general and can be applied equally well to other kinds of nuclear structure calculations involving
matrix elements of two-body interactions.
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I. INTRODUCTION

Computation of matrix elements of two-body interactions is
an inevitable task for many different kinds of nuclear structure
calculations. For small numbers of matrix elements these
computations can be done in a more or less straightforward
way. In realistic situations, however, the amount of needed
matrix elements is usually very large and this starts to pose
serious demands for the needed computing resources. In
this case more sophisticated methods for matrix element
calculations are called for.

In the present work the single-particle wave functions
are taken to be the eigenfunctions of the isotropic harmonic
oscillator. The usual method to compute the two-body matrix
elements in this case consists of the Moshinsky transformation
and the associated transformation brackets. The remaining
radial integral is reduced from two to just one dimension
and can be calculated numerically at least. The Moshinsky
transformation works very well for central interactions but
for noncentral interactions it is not so convenient. This is a
setback because for the neutrinoless double-β decay (0νββ),
for example, one has to calculate matrix elements of a tensor
force. The contribution of the tensor part to the total nuclear
matrix element is small but for precise computations one has to
take it into account. Because of these difficulties, in the present
work the two-body matrix elements are calculated by using
the Fourier-transform method of Horie and Sasaki, introduced
in [1], followed by the application of the usual methods of
spherical tensor algebra. The computationally most demanding
part in this approach is the calculation of the involved radial
integrals. To compute these integrals efficiently, a recursive
method is introduced. In this method the radial integral is
first expressed as a sum of simpler integrals. After this, a set
of three-index recursion formulas for these integrals can be
derived.

In this article we take the neutrinoless double-β decay to
serve as the primary example and application of the presented
recursive method, but the method itself is general and may be
applied to other types of transition operators as well. The first
rudimentary applications of the same method to neutrinoless
double-β decay were done already quite some time ago [2].

This article is organized as follows. In Sec. II the Fourier
transform method for computing two-body matrix elements
for central and tensor interactions is reviewed. The radial

integral is extracted from the two-body matrix element and
a recursive method for its computation is introduced. In
Sec. III the new method is applied to the case of 0νββ
decay and a computational algorithm for the nuclear matrix
element calculation is sketched. In Sec. III we also compare
the efficiency of our new 0νββ code (based on the sketched
algorithm) to our old 0νββ code and to the code presented in
Ref. [3]. Sec. IV summarizes the present work.

II. COMPUTATION OF RADIAL INTEGRALS FOR
CENTRAL AND TENSOR INTERACTIONS

The following set of two-body interaction operators is
considered in the present paper:

OF = V (r12)1, (1)

OGT = V (r12)σ 1 · σ 2, (2)

OT = V (r12) {3[(σ 1 · r̂12)(σ 2 · r̂12)] − σ 1 · σ 2} , (3)

where r = |r1 − r2| is the distance between the interacting
particles 1 and 2. The radial dependence V (r12) of the
interactions is left arbitrary at this point. The coordinate and
spin parts of the tensor operator (3) can be separated by using
the following expression [1]:

OT = 3
√

2
3 [σ 1σ 2]2 · V (r12)C2(�12), (4)

where we define the spherical tensor Cλμ(�12) = [4π/
(2λ + 1)]1/2Yλμ(�12). The spin parts of the interac-
tions (1), (2), and (4) are easily handled and only the
coordinate parts need further attention. Let us consider the
generalization of the coordinate parts of (1), (2), and (4),
namely, Oλ = V (r12)Cλ(�12). To separate the variables r1 and
r2 the Fourier-transform method of Horie and Sasaki [1] can be
used. This leads to the following two-particle matrix element:

(l1l2; L ||V (r12)Cλ(�12)|| l3l4; L′)

=
∑
λ1λ2

iλ1−λ2+λ (2λ1 + 1)(2λ2 + 1)

2λ + 1
(λ10λ20|λ0)
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× √
2L + 1

√
2λ + 1

√
2L′ + 1

⎧⎪⎨
⎪⎩

l1 l2 L

l3 l4 L′

λ1 λ2 λ

⎫⎪⎬
⎪⎭

× (l1||Cλ1 (�1)||l3)(l2||Cλ2 (�2)||l4)Rλ1,λ2,λ
1234 , (5)

where (λ10λ20|λ0) is a Clebsch-Gordan coefficient, the brack-
eted symbol a 9j symbol and the involved radial integral reads

Rλ1,λ2,λ
1234 =

∫
gb

n1l1
(r1)gb

n2l2
(r2)

×
(∫

v̄λ(p)jλ1 (pr1)jλ2 (pr2)p2 dp

)

× gb
n3l3

(r1)gb
n4l4

(r2)r2
1 r2

2 dr1 dr2, (6)

with

v̄λ(p) = 2

π

∫
V (r12)jλ(pr12)r2

12 dr12. (7)

The functions jλ are the spherical Bessel functions and
the harmonic-oscillator wave functions involved are defined
through the associated Laguerre polynomials L(α)

n as

gb
nl(r) = Nnl(b)

(
r

b

)l

e−r2/2b2
L(l+1/2)

n (r2/b2), (8)

with the normalization

Nnl(b) =
√

2n!

b3�(n + l + 3/2)
. (9)

Next we use the method of Horie and Sasaki [1] to cast the
radial integral (6) into the form

Rλ1,λ2,λ
1234 = Nn1l1 (1)Nn2l2 (1)Nn3l3 (1)Nn4l4 (1)

×
n1+n3∑
s1=0

n2+n4∑
s2=0

Aλ1
s1

(n1l1,n3l3)Aλ2
s2

(n2l2,n4l4)

× Jλ(q1λ1,q2λ2), (10)

where the J integral is defined as

Jλ(q1λ1,q2λ2) =
∫

v̄λ(uν)u2e−u2
g1

q1λ1
(u)g1

q2λ2
(u) du, (11)

and the additional coefficients as

Aλi
si

(nl,n′l′) =
√

π

4
qi!

1

Nqiλi
(ν)

asi
(nl,n′l′), (12)

where qi = (l + l′ + 2si − λi)/2 and ν = 2/b. The quantities
as(nl,n′l′) originate from a Taylor expansion of a product of
two associated Laguerre polynomials and have the following
explicit expression:

as(nl,n′l′) =(n + l + 1/2)(n′ + l′ + 1/2)
n∑

k1=0

n′∑
k2=0

k1+k2=n+n′−s

1

k1!(n − k1)!

1

k2!(n′ − k2)!

(−1)n+n′−k1−k2

(n + l + 1/2 − k1)!(n′ + l′ + 1/2 − k2)!
.

(13)

It is worth noting here that our definition (13) for the coefficients as(nl,n′l′) is different from that found from Ref. [1]. We see
that calculation of the radial integral (6) boils down to the computation of the J integrals (11). We note in addition, that for
many nuclear structure calculations the principal oscillator index n has a relatively small range of values. In that case the double
summation in Eq. (10) does not actually contain very many terms.

Our next task is to derive recursion formulas for the J integral. The standard way to find such formulas is by using an
appropriate generating function. By applying the properties of the spherical Bessel functions and the harmonic-oscillator wave
functions we get, after some algebra, the following set of recursion formulas:

Jλ(n + 1l,n′l′) =
√

n + l + 3/2

n + 1
Jλ(nl,n′l′) −

√
n′ + l′ + 3/2

n + 1
Jλ(nl + 1,n′l′ + 1) +

√
n′

n + 1
Jλ(nl + 1,n′ − 1l′ + 1), (14)

Jλ(n + 1l,0l′) =
√

n + l + 3/2

n + 1
Jλ(nl,0l′) −

√
l′ + 3/2

n + 1
Jλ(nl + 1,0l′ + 1), (15)

Jλ(0l,n′ + 1l′) =
√

n′ + l′ + 3/2

n′ + 1
Jλ(0l,n′l′) −

√
l + 3/2

n′ + 1
Jλ(0l + 1,n′l′ + 1). (16)

We notice that in the recursion formulas (14)–(16) the orbital
angular momentum indices l and l′ change in a coherent
manner. This is fine for the Fermi and GT type of interactions
for which we need J integrals with l = l′ only. For the tensor
interaction the situation is more complicated because we need

also the integrals with l �= l′. However, one can deduce from
the form of the matrix element (5) that we only need to consider
cases with l = l′ or |l − l′| = 2.

Relations (14)–(16) can now be used to recursively generate
all the possible J integrals. The needed seed points are
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of the form Jλ(0l,0l′). The actual calculation procedure is
highlighted in the next section, where the above derived
recursion formulas are applied to the case of neutrinoless
double-β decay.

III. APPLICATION: RADIAL INTEGRALS FOR
0νββ DECAY

As an example of the presented method we shall sketch
a computational algorithm for calculating the radial integrals
and two-particle matrix elements for the case of neutrinoless
double-β decay with light-neutrino exchange. The 0νββ decay
(Z,A) −→ (Z + 2,A) + 2e− is a nuclear process considered
today as one of the best probes for beyond-standard-model
physics [4,5]. Assuming the light-neutrino exchange as the
dominant decay mechanism the 0νββ half-life can be ex-
pressed as

1

T1/2
= g4

AG0ν |M (0ν)|2η2
x, (17)

where gA is the axial-vector coupling, G0ν the phase-space
factor of the final-state leptons, and M0ν the nuclear matrix
element which contains all the nuclear structure information
related to the decay process. The quantity η2

x contains the
beyond-standard-model physics in the form of neutrino-
mixing matrix elements and neutrino mass eigenstates.

The nuclear matrix element has the following decomposi-
tion in terms of the Fermi (F), Gamow-Teller (GT), and tensor
(T) contributions

M (0ν) = M
(0ν)
GT −

(
gV

gA

)2

M
(0ν)
F + M

(0ν)
T . (18)

The individual parts M
(0ν)
K can be written as [6]

M
(0ν)
K =

∑
Jπ ,k,J ′

∑
pp′nn′

(−1)jn+jp′+J+J ′√
2J ′ + 1

×
{

jp jn J

jn′ jp′ J ′

}
(pp′ : J ′||OK ||nn′ : J ′) (19)

× (
0+

f ||[c†p′ c̃n′ ]J ||Jπ
k

)(
Jπ

k ||[c†pc̃n]J ||0+
i

)
,

where k labels the different intermediate states for a given
multipole Jπ . The operators OK inside the two-particle matrix
element have the forms of Eqs. (1), (2), and (3), with the radial
dependencies defined by the decay mechanism.

The simplest case in Eq. (19) is the Fermi matrix element,
for which we have

V (r12) = hF (r12,Ek) [fSRC(r12)]2 , (20)

where we have the neutrino potential for the light neutrino
exchange

hF (r12,Ek) = 2

π
RA

∫ ∞

0

qhF (q2)

q + Ek − (Mic2 + Mf c2)/2

× j0(qr12)dq. (21)

Here RA = 1.2A1/3 fm is the nuclear radius, Mic
2 (Mf c2) is

the ground-state mass energy of the initial (final) nucleus, and
Ek is the energy of the nuclear state k of the intermediate

nucleus. The Jastrow form of the short-range correlation
function fSRC(r) is defined as

fSRC(r) = 1 − ĉe−âr2
(1 − b̂r2), (22)

where â,b̂, and ĉ are constants which have particular values
in different parametrizations of the short-range correlation
effects. For the neutrino potential (21) we still need the dipole
form factor

hF (q2) = − [
1 + q2/
2

V

]−4
, (23)

where the vector mass is 
V = 843 MeV. For more details
about the 0νββ decay mechanisms see, for example, [5].

The jj -coupled two-body matrix element in Eq. (19) can
be expressed in terms of the LS-coupled elements which are
given by Eq. (5). The matrix elements (5) can be computed
as soon as we know the value for the radial integral with the
two-body interaction given by Eq. (20). In the nuclear matrix
elements (19) we have a summation over all the single-particle
indices pp′,nn′ constrained by the chosen valence space and
angular-momentum selection rules. This suggests that the
amount of needed two-body matrix elements (5) and thus the
amount of different radial integrals (and thus the amount of
needed J integrals) is very large.

Our computation proceeds now as follows: We set up
a recursion lattice with indices (n,(l,l′),n′) and use the
relations (14)–(16) to generate all of the needed J integrals
at once. To do this, we need to know the recursion upper
bounds for the n,n′ and for the double index (l,l′). These
have to be determined in a case-by-case basis. The only
interaction-specific things we need to know are the seed-point
values. For the Fermi-type interaction these are of the form
J0(0l,0l). Let us compute these next.

Our J integral can be related to the Talmi integral Il(b)
which is given by the expression

Il(b) = N0l(1)2
∫

V (
√

2bρ)e−ρ2
ρ2l+2 dρ. (24)

Now the mentioned relation reads

J0(0l,0l) = N0l(1)2 2−(l+1)

√
π

b3l!
l∑

k=0

c(l,k)

N0l−k(1)2
Il−k(b), (25)

where

c(l,k) = (l + 1/2)!(−1)l−k

k!(l − k)!(l + 1/2 − k)!
. (26)

The remaining Talmi integrals can be computed by applying
the method of Horie and Sasaki [1] where the integral over
the radial coordinate ρ is performed analytically leaving a
one-dimensional integral over the neutrino momentum q

Il(b) = 2

π
RA

∫
U (p/

√
2b)I (p)

1√
2b

dp, (27)
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where p = √
2bq and

U (q) = hF (q2)q

q + Ek − (Mic2 + Mf c2)/2
, (28)

I (p) = N 2
0l{Î (1,1,2l,p) − Î (2ĉ,1 + α,2l,p) + Î (ĉ2,1 + 2α,2l,p) − Î (2βĉ2,1 + 2α,2l + 2,p)

+ Î (2ĉβ,1+α,2l+2,p)+Î (ĉ2β2,1+2α,2l+4,p)}, (29)

Î (A,B,m,p) =A

∫
e−Bρ2

j0(pρ)ρm+2 dρ = A

√
π

4

(
m

2

)
!B− 1

2 (m+3)e−p2/4BL
(1/2)
m/2 (p2/4B) (30)

with the abbreviations α = 2âb2 and β = 2b̂b2. The remaining integrals to be computed are of the form

2

π
RA

∫
U (p/

√
2b)e−p2/4BL

(1/2)
m/2 (p2/4B) dp, (31)

where the coefficients B and m originate from Eq. (29). After making the abbreviations γ 2 = b2/2B and m/2 = s and expanding
the associated Laguerre polynomial, we get for the final quantities to be computed expressions like

s∑
k=0

c(s,k)γ 2(s−k)
∫

U (q)e−γ 2q2
q2(s−k) dq, (32)

where the coefficients c(s,k) are given by Eq. (26). The remaining integrals in Eq. (32) cannot be calculated analytically and the
(time consuming) numerical integration becomes our only option.

The potential function U (q) in Eq. (32) contains an energy dependence in the form of an energy denominator. This means that
when we change the intermediate state [the nuclear matrix elements (19) contain a summation over all of them] we always have
to recalculate the integrals (32). Numerically this might be too time consuming so let us try to isolate the energy dependence in
the expression (32). By making a partial-fraction decomposition for U (q) we get

U (q) = − q

(q + 
k)
(
1 + q2/
2

V

)4 = −
{

− q

C1
(
1 + q2/
2

V

) + 
k

C1
(
1 + q2/
2

V

) − q

C2
(
1 + q2/
2

V

)2 + 
k

C2
(
1 + q2/
2

V

)2

− q

C3
(
1 + q2/
2

V

)3 + 
k

C3
(
1 + q2/
2

V

)3 − q

C4
(
1 + q2/
2

V

)4 + 
k

C4
(
1 + q2/
2

V

)4 + 1

C5(q + 
k)

}
q, (33)

where Ci = Ci(
k,
V ) are real coefficients and 
k = Ek − (Mic
2 + Mf c2)/2 contains the energy dependence Ek of the

intermediate state. Inserting the decomposition (33) into Eq. (32) we see that the energy dependence is isolated to the last integral
with coefficient C5. In the rest of the terms, energy dependence factors out from the integrals. Thus, these integrals need to be
calculated only once. After that they can be stored for later use. The energy-dependent part becomes

Q5 = 1

C5

s∑
k=1

c(s,k)γ 2(s−k)
∫

q

q + 
k

e−γ 2q2
q2(s−k) dq, (34)

where the remaining integral can be reduced to the computation of the exponential integral Ei(x) as follows:∫
q

q + 
k

e−γ 2q2
q2(s−k) dq = − 


2(s−k)+1
k e−γ 2
2

k

[√
π

∫ γ
k

0
ex2

dx − 1

2
Ei

(
γ 2
2

k

)]

+
2(s−k)+1∑

r=1

r−1∑
p=0

(
2(s − k) + 1

r

)(
r − 1

p

)
(−1)1−r


2(s−k)−p
k

1

2γ p+1
�

(
p + 1

2

)
. (35)

As an alternative to the explicit sum formula (35), one can apply the following recursion relation

Q(m + 1) = 1

2γ m+1
�

(
m + 1

2

)
− 
kQ(m), (36)

where

Q(m) =
∫

qm

q + 
k

e−γ 2q2
dq, (37)

Q(0) = e−γ 2
2
k

[√
π

∫ γ
k

0
ex2

dx − 1

2
Ei

(
γ 2
2

k

)]
. (38)
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FIG. 1. CPU time comparison between our old and new 0νββ

codes for computing the nuclear matrix elements M
(0ν)
F and M

(0ν)
GT . Toy

calculation uses just four oscillator basis states, realistic calculation
uses ten. Speed-up factors for these calculations are 26 (toy) and 35
(realistic). These particular computations were done for the nucleus
76Ge.

Values for the exponential integral can be calculated efficiently
by applying the rational Chebyshev approximations [7,8].
FORTRAN subroutines based on these methods can be found,
for example, from [9]. This concludes our example about
the recursive computation of two-body matrix elements for
neutrinoless double-β decay. The remaining Gamow-Teller
and tensor matrix elements are more complicated to handle
but the same procedure can be used to compute them also.

Figure 1 illustrates the efficiency of our new 0νββ code
which is based on the computational method sketched above. It
shows two nuclear matrix element calculations for the nucleus
76Ge with two different single-particle bases [The quasi-
random-phase approximation (QRPA) was used to model the
nuclear structure in the example calculations of this paper,
but the application of the method is not limited to this
model because the nuclear model used enters into the matrix
element (19) only via the transition densities]. The first one
is a toy calculation with only four oscillator basis states,
the second calculation is considered as realistic with up to
ten single-particle states included. In the toy calculation the
speed-up factor when going from the old code to the new one
is about 26. Of course a more interesting case is the realistic
calculation for which we get an improved computing speed
by a factor of about 35. In the calculations of Fig. 1 we
have computed only the Fermi and Gamow-Teller parts of
the total nuclear matrix element (18). The old code uses the
Moshinsky transformation method to compute the two-body
matrix elements. The involved radial integrals are computed
numerically in two dimensions. Much CPU time is saved by
applying a polynomial interpolation to compute radial integrals
with different energy denominators.

Figure 2 shows the performance of our new code when
computing two-body matrix elements (TBMEs). For the toy
calculation (with four oscillator basis states) the total number
of needed TBMEs is 5946 (Fermi + GT). A massive increase
in the computational burden occurs when we switch from a
toy calculation to a realistic calculation (ten oscillator basis
states). In the realistic case we need a total of 805 264

0

60

120

180

C
P

U
ti

m
e

(s
)

Toy Realistic

Total = 41.51 s
5946 TBMEs
6.98 10−3 s / TBME

Total = 211.75 s
805264 TBMEs
2.62 10−4 s / TBME

Single-core CPU times on an Intel
Celeron 550 CPU @ 2.0 GHz

FIG. 2. CPU time consumption for the computation of the two-
body matrix elements with our new 0νββ code. These particular
computations were done for the nucleus 76Ge.

TBMEs as shown in Fig. 2. For the toy calculation we
get a total CPU time of 41.51 s, thus an average time of
6.98 × 10−3 s for a single TBME. In the realistic case the
average CPU time per single TBME is greatly reduced, being
about 2.62 × 10−4. This reduction can be traced back to the
calculation of the J -integral initial values given by Eq. (25).
To compute the initial values (for the Fermi-type elements)
we must first numerically calculate the integrals related to
the first eight partial fraction terms in Eq. (33). However,
as already mentioned, we need to compute these integrals
only once and after that we can store them for later use.
The numerical calculation is a relatively time consuming
process and gives more weight to the single TBME CPU
time in the toy calculation where the total number of required
TBMEs is still quite small. The CPU time consumption values
of Fig. 2 can be compared with those given for similar
calculations in [3]. In [3] the (antisymmetrized) TBMEs are
computed by first applying the Horie and Sasaki method [1]
and then integrating the remaining integrals numerically over
the neutrino momentum. With this method, the following
average CPU time consumption values for a single TBME are
obtained: 6.69 × 10−2 s (calculations with the nucleus 48Ca)
and 9.69 × 10−2 s (calculations with the nucleus 82Se). The
CPU used for these computations was a single-core Intel Xeon
X5560 with 2.8 GHz frequency. Comparing these figures with
our average time consumption value of 2.62 × 10−4 s clearly
shows the computing power of the applied recursive algorithm:
average CPU time for single TBME goes down by two orders
of magnitude.

IV. CONCLUSIONS

In this work the Horie and Sasaki method for computing
the radial integrals and two-body matrix elements using
harmonic-oscillator wave functions was extended. The radial
integral was first represented by a sum of simpler objects
called J integrals. Then, the harmonic-oscillator generating
function and the properties of the harmonic oscillator itself
were applied to derive a set of very simple recursion relations
for the J integral. All possible J integrals can now be
generated recursively starting from the seed values of a form
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JUHANI HYVÄRINEN AND JOUNI SUHONEN PHYSICAL REVIEW C 91, 054308 (2015)

J (0l,0l′). The radial dependence of the two-body interaction
was not specified in the derivation of the recursion formulas
so they have a very general nature and can be applied to
many different nuclear structure calculations where harmonic-
oscillator single-particle wave functions are used as basis
states. Neutrinoless double-β decay was used as an example
to sketch an algorithm to be used for the computation of

the radial integrals and nuclear matrix elements. Finally, the
efficiency of our new code, based on the sketched method,
was compared with our older 0νββ code and an independent
calculational procedure of Ref. [3]. A significant reduction
in the computation time was witnessed when going from
the mentioned computational schemes to the new code, thus
confirming the value of the developed method.
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